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Abstract
In this paper, we introduce a physics-based analytical characterization of the free-space path-loss

of a wireless link in the presence of a reconfigurable intelligent surface. The proposed approach is

based on the vector generalization of Green’s theorem. The obtained path-loss model can be applied

to two-dimensional homogenized metasurfaces, which are made of sub-wavelength scattering elements

and that operate either in reflection or transmission mode. The path-loss is formulated in terms of a

computable integral that depends on the transmission distances, the polarization of the radio waves,

the size of the surface, and the desired surface transformation. Closed-form expressions are obtained

in two asymptotic regimes that are representative of far-field and near-field deployments. Based on the

proposed approach, the impact of several design parameters and operating regimes is unveiled.

Index Terms
Smart radio environments, reconfigurable intelligent surfaces, path-loss, Green’s theorems.

I. INTRODUCTION

Reconfigurable intelligent surfaces (RISs) are an emerging transmission technology for ap-

plication to wireless communications [1]. Compared with, e.g., phased arrays, multi-antenna

transmitters, and relays, RISs require the largest number of scattering elements, but each of them

needs to be backed by the fewest and least costly components. Also, no power amplifiers are

usually needed. For these reasons, RISs constitute an emerging and promising software-defined

architecture that can be realized at reduced cost, size, weight, and power (C-SWaP design).

Motivated by recent experiments on the realization of unobtrusive transparent glasses that

implement anomalous reflections and transmissions [2], we aim to characterize the free-space

path-loss of a planar metamaterial-based RIS whose scattering elements have sizes and inter-

distances much smaller than the wavelength. Under these conditions, the RIS is homogenizable

and can be modeled as a continuous surface through appropriate functions, e.g., susceptibilities,

impedances. Interested readers are referred to [1] for further information on homogenized RISs.

Given the importance of modeling the path-loss in wireless networks in order to make appro-

priate link budget predictions, a few authors have recently conducted research on modeling the

path-loss of RIS-aided wireless communications [3]-[10]. With the exception of our companion
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conference paper [10] and [9], the available contributions are applicable to RISs made of

large arrays of inexpensive antennas that are usually spaced half of the wavelength apart, and,

therefore, are not homogenizable. In [3], the authors perform a measurement campaign in an

anechoic chamber and show that the power reflected from an RIS follows a scaling law that

depends on many parameters, including the size of the RIS, the mutual distances between the

transmitter/receiver and the RIS (i.e., near-field vs. far-field), and whether the RIS is used for

beamforming or broadcasting. In [4], the authors employ antenna theory to compute the electric

field in the near-field and far-field of a finite-size RIS, and prove that an RIS is capable of acting

as an anomalous mirror in the near-field of the array. The results are obtained numerically and

no explicit analytical formulation of the received power as a function of the distance is given.

Similar results are obtained in [5]. In [6], the power measured from passive reflectors in the

millimeter-wave frequency band is compared against ray tracing simulations. By optimizing the

area of the surface that is illuminated, it is shown that a finite-size passive reflector can act as

an anomalous mirror. The studies in [7] and [8] rely on the assumption of plane waves and are

applicable in the far-field of the RIS. The model proposed in [9] is applicable to continuous RISs,

and holds in the near-field and far-field of the RIS. However, the author focuses on charactering

the available spatial degrees of freedom of two RISs communicating with each other, rather than

on RISs that are utilized for reflection or transmission. In [10], we propose a path-loss model that

is applicable only to one-dimensional RISs that are deployed in a two-dimensional space. Also,

the approach in [10] does not account for the vectorial nature of the electromagnetic waves.

Motivated by the need of accurate but tractable path-loss models in order to quantify the

performance of RISs in wireless networks, we propose an approach for calculating the free-

space path-loss of an RIS-aided transmission link. The proposed path-loss model leverages the

vector generalization of Green’s theorem [11], and it is formulated in terms of a computable

integral that depends on the transmission distances, the polarization of the radio waves, the size

of the RIS, and the desired surface transformations. Closed-form expressions are obtained in

two asymptotic regimes that are representative of far-field and near-field transmission. Based on

the proposed model, the impact of several design parameters is unveiled, and the differences

and similarities between the far-field and near-field asymptotic regimes are discussed. Numerical

results are illustrated and discussed in order to validate the accuracy and applicability of the

asymptotic analytical formulations of the path-loss. Our study shows that the path-loss highly

depends on the size of the RIS and the transmission distances, especially in the near-field regime.
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(a) Tx and Rx are on the same side of the surface (b) Tx and Rx are on opposite sides of the surface

Fig. 1: System model.

The rest of this paper is organized as follows. In Section II, the system model and the

modeling assumptions are introduced. In Section III, preliminary results and definitions about

the asymptotic regimes of interested are given. In Sections IV and V, RISs that are configured to

operate as reflecting and transmitting surfaces are analyzed, respectively. In Section VI, numerical

results are illustrated to validate the obtained findings. Finally, Section VII concludes this paper.

II. SYSTEM MODEL

In a three-dimensional (3D) space, we consider a system that consists of a transmitter (Tx),

a receiver (Rx), and a flat surface (S) of zero-thickness. The surface S is a rectangle that lies

on the xy-plane (i.e., z = 0) whose center is located at the origin. The sides of S are parallel

to the x-axis and y-axis and have length 2Lx and 2Ly, respectively. S is defined as follows:

S = {s = xx̂ + yŷ : |x| ≤ Lx, |y| ≤ Ly} (1)

As shown in Fig. 1, Tx and Rx are located at rTx = xTxx̂+yTxŷ+zTxẑ and rRx = xRxx̂+yRxŷ+

zRxẑ, respectively. Without loss of generality, we assume zTx > 0. As for zRx, we consider two

cases: (i) zRx > 0, i.e., Tx and Rx are located on the same side of S; and (ii) zRx < 0, i.e.,

Tx and Rx are located on opposite sides of S. In the first case, the radio wave scattered by S

towards Rx is referred to as the reflected wave, and, thus, S operates as a reflecting surface. In

the second case, the radio wave scattered by S towards Rx is referred to as the transmitted wave

and, thus, S operates as a transmitting surface. Tx emits electromagnetic (EM) waves through

the vacuum whose permittivity and permeability are ε0 and µ0, respectively. The EM waves

emitted by Tx travel at the speed of light c = 1/
√
ε0µ0. The carrier frequency, the wavelength,

and the wavenumber are denoted by f , λ = c/f , and k = 2π/λ, respectively.
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TABLE I: Main operators (G(x, y, z) is a scalar function, F = Fxx̂+Fyŷ+Fz ẑ is a vector field with F = F(x, y, z)

and Fa = Fa(x, y, z) for a = x, y, z). Symbols in bold denote vectors. Unit-norm vectors are denoted by (̂·).

Operator Definition
δ(·, ·), Hess(·), mod (·) Dirac delta function, Hessian matrix, modulo operator
|C|, ∠C Modulus and argument of complex number C
·, × Scalar product and vector product
∇2G(x, y, z) =

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
G(x, y, z) Laplacian of G(x, y, z)

∇G(x, y, z) = ∂G(x,y,z)
∂x

x̂ + ∂G(x,y,z)
∂y

ŷ + ∂G(x,y,z)
∂z

ẑ Gradient of G(x, y, z)

∇× F =
(
∂Fz
∂y
− ∂Fy

∂z

)
x̂ +

(
∂Fx
∂z
− ∂Fz

∂x

)
ŷ +

(
∂Fy

∂x
− ∂Fx

∂y

)
ẑ Curl of F

∇ · F = ∂Fx
∂x

+
∂Fy

∂y
+ ∂Fz

∂z
Divergence of F

~∇2F = ∇2Fxx̂ +∇2Fyŷ +∇2Fz ẑ Vector Laplacian of F
∇2

rG(x, y, z), ∇rG(x, y, z) Laplacian and gradient of G(x, y, z) evaluated at r
~∇2

rF, ∇r · F Vector Laplacian and divergence of F evaluated at r
G(r1, r2) = exp(−jk|r1−r2|)

4π|r1−r2|
Green’s function solution of (10)

f(x)|x=x2x=x1 = f(x2)− f(x1) Shorthand notation
g(x, y)|x=x2x=x1 |

y=y2
y=y1 = g(x2, y2)− g(x2, y1)− g(x1, y2) + g(x1, y1) Shorthand notation

For any point s = xx̂+yŷ ∈ S, the Tx-to-S and S-to-Rx distances are denoted by dTx(x, y) =√
(x− xTx)2 + (y − yTx)2 + zTx

2 and dRx(x, y) =
√

(xRx − x)2 + (yRx − y)2 + zRx
2, respectively.

More precisely, dTx(x, y) is the radius of the wavefront of the EM wave that is emitted by Tx

and intersects S at s, and dRx(x, y) is the radius of the wavefront of the EM wave that originates

from S at s and is observed at Rx. We define dTx0 = dTx(0, 0) and dRx0 = dRx(0, 0), i.e., dTx0

and dRx0 are the distances of Tx and Rx with respect to the center of S, respectively. The polar

angle of the incident wave at s is denoted by θinc(x, y) = cos−1 (zTx/dTx(x, y)). It represents

the smallest angle formed by the z-axis and the wavefront of the EM wave that originates

from Tx and intersects S at s. The polar angle of the received wave at rRx is denoted by

θrec(x, y) = cos−1 (|zRx|/dRx(x, y)). It represents the smallest angle formed by the z-axis and the

wavefront of the EM wave that is emitted by S at s and is observed at Rx. The azimuth angle of

incidence and reflection at s are denoted by ϕinc(x, y) and ϕrec(x, y), respectively. In particular,

ϕinc(x, y) represents the angle formed by the x-axis and the projection of the EM wavefront

emitted from Tx towards S onto the xy-plane, and ϕrec(x, y) represents the angle formed by the

x-axis and the projection of the EM wavefront emitted from S towards Rx onto the xy-plane:

sinϕinc(x, y) =
yTx − y√

(xTx − x)2 + (yTx − y)2
, cosϕinc(x, y) =

xTx − x√
(xTx − x)2 + (yTx − y)2

(2)

sinϕrec(x, y) =
yRx − y√

(xRx − x)2 + (yRx − y)2
, cosϕrec(x, y) =

xRx − x√
(xRx − x)2 + (yRx − y)2

(3)

The polar and azimuth angles of the incident and received waves with respect to the center of

S are denoted by θQ0 = θQ(0, 0) and ϕQ0 = ϕQ(0, 0), where Q = inc for the incident wave and

Q = rec for the reflected or transmitted wave, respectively. Further notation is given in Table I.
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A. Source Modeling
Tx is characterized by the charge density ρ(r, rTx) and the current density J(r, rTx), where rTx

is the center location of Tx and r is a generic location in the 3D space. We assume that ρ(r, rTx)

and J(r, rTx) are non-zero within a volume VTx that contains rTx and are zero elsewhere. In

particular, ρ(r, rTx) and J(r, rTx) are not independent and fulfill the charge density continuity

equation [12, Sec. IV], i.e., ∇r · J(r, rTx) + jωρ(r, rTx) = 0, where ω = 2πf . Our proposed

analytical framework can be applied to general EM sources, but, to obtain concrete results, we

model Tx as a dipole antenna. In this case, ρ(r, rTx) and J(r, rTx) are [13, Eq. (15.5.1)]:

ρ(r, rTx) = −p · ∇rδ(r, rTx), J(r, rTx) = jωpδ(r, rTx) (4)

where p = pdmp̂inc is the electric dipole moment, pdm = |p| is the modulus of the dipole moment,

and p̂inc = p̃ince
jφinc is the (complex) transmit polarization vector with p̃inc being a real unit-

norm vector and φinc ∈ [0, 2π) being the phase of each component of p̂inc. Similar results can

be obtained for other source models, e.g., small linear wire antennas [13, Sec. 15.4].

B. Metasurface Modeling
We assume that the surface S is a metamaterial-based RIS, which is electrically-large and

is made of sub-wavelength reconfigurable scattering elements whose inter-distances are much

smaller than the wavelength. As detailed in [1, Sec. III-E], therefore, S is homogenizable, i.e., it

can be modeled through appropriate continuous surface-averaged functions (e.g., susceptibilities),

even though the RIS is made of discrete elements. More specifically, the RIS is regarded as an

EM discontinuity, i.e., the total tangential components of the EM fields at the two sides (z = 0+

and z = 0−) of S are discontinuous, and their difference is dictated by constituent equations

that are referred to as generalized sheet transition conditions [1, Fig. 17]. For a homogenizable

metamaterial-based RIS, the relation between the reflected (transmitted) tangential components

of the EM fields can be formulated in terms of inhomogeneous functions as stated in [1, Eq.

(50)]. Each Cartesian component of the reflected (transmitted) EM field may be formulated as a

weighted linear combination of all the Cartesian components of the incident EM field. By virtue

of linearity, we consider, without loss of generality, one term of the linear combination, whose

corresponding inhomogeneous function is referred to as (field) local reflection or transmission

coefficient if S operates as a reflecting surface or as a transmitting surface, respectively.

In particular, the reflection (transmission) coefficient is denoted by Γ̃ref(s) (Γ̃tran(s)), which

is a complex function that is appropriately engineered (through the design of surface-averaged
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susceptibilities) in order to apply specified transformations to the impinging EM waves. Specific

examples are provided in further text. As elaborated in [1, Fig. 14] and detailed in further text,

the surface equivalent theorem dictates that the EM field scattered by S at any point in a 3D

space can be formulated in terms of only the incident fields, Γ̃ref(s), and Γ̃tran(s) at s ∈ S.

For generality, the RIS is assumed to be capable of modifying the polarization of the impinging

radio waves. More precisely, given an incident signal with polarization p̂inc, the polarization of

the reflected and transmitted signals are denoted by p̂ref = p̃refe
jφref and p̂tran = p̃trane

jφtran ,

respectively. Similar to the definition of p̂inc, p̃ref and p̃tran are real unit-norm vectors and φref ∈

[0, 2π) and φtran ∈ [0, 2π) are the phases of each component of p̂ref and p̂tran, respectively.

Based on these modeling assumptions, the electric field at any point s ∈ S on the reflection

side of the RIS (i.e., z = 0+) can be formulated as follows:

ES(s) = ES(s, z = 0+) = Einc(s; p̂inc) + Γ̃ref(s)Einc(s; p̂ref) (5)

where Einc(s; p̂inc) is the incident field at s with polarization p̂inc and Γ̃ref(s) = Γref(s)Eref(p̂inc, p̂ref)

is the reflection coefficient. To make explicit the impact of the change of polarization introduced

by S, Γ̃ref(s) is formulated as the product of two terms: (i) Γref(s) that is polarization-independent;

and (ii) Eref(p̂inc, p̂ref) that denotes the efficiency of the change of polarization from p̂inc to p̂ref.

In addition, Einc(s; p̂ref) denotes the reflected electric field whose polarization is p̂ref, which is

formally the same as the incident electric field except for the change of polarization.

Along the same lines and with a similar meaning of the symbols, the electric field at any

point s ∈ S on the transmission side of the RIS (i.e., z = 0−) can be formulated as follows:

ES(s) = ES(s, z = 0−) = Γ̃tran(s)Einc(s; p̂tran) = Γtran(s)Etran(p̂inc, p̂tran)Einc(s; p̂tran) (6)

where we have taken into account that at z = 0− there is no incident field [1, Eq. (6)].

We emphasize, as detailed in [1, Fig. 29], that (5) and (6) are applicable in the far-field of the

RIS microstructure, i.e., at distances from S at which the presence of possible evanescent fields

that are excited to realize RISs with high reflection and transmission efficiency can be safely

ignored. In the next sections, we assume k � 1/dTx(x, y) and k � 1/dRx(x, y) that are typically

fulfilled for wireless applications and allow us to ignore the presence of possible evanescent

fields. The far-field of the RIS microstructure encompasses the near-field and the far-field of the

RIS. These two regimes are analyzed, in detail, in further text.
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III. PRELIMINARIES

In this section, we introduce a general formulation of the received EM field at Rx in the

presence of S. The proposed approach adheres to the principles of physical optics and overcomes

the limitations of geometric optics [14, Sec. 8.2.1]. Also, we introduce methods for computing

recurrent integrals that characterize the EM filed scattered by reflecting and transmitting surfaces.

A. Received Field at Rx
Assuming the universal time-dependency ejωt, the electric field, E(r), and magnetic field,

H(r), at any location r ∈ R3 in vacuum satisfy the differential equations [12, Eqs. (6), (7)]:

∇r × (∇r × E(r)) = k2E(r)− jωµ0J(r, rTx) (7)

∇r × (∇r ×H(r)) = k2H(r) +∇r × J(r, rTx) (8)

The solutions of (7) and (8) are related through the relation H(r) = −∇r × E(r)/(jωµ0).

Therefore, the complete characterization of the EM field can be given only through E(r).

In the absence of the RIS, the solution of (7), i.e., E(r), observed at rRx boils down, by

definition, to the incident electric field with polarization p̂inc. This latter electric field is denoted

by Einc(rRx; p̂inc). Using the notation in Section II-A, it can be formulated as [13, Eq. (15.3.10)]:

Einc(rRx; p̂inc) =

∫
VTx

(
−jωµ0J(r, rTx)G (rRx, r) +

ρ(r, rTx)

ε0
∇rG (rRx, r)

)
dr (9)

where G (rRx, r) is the Green function defined as follows [13, Eq. (18.10.2)]:

∇2
rRx
G(rRx, r) + k2G(rRx, r) = −δ(rRx, r) (10)

In the presence of S , E(rRx), at any point rRx in a volume V ⊆ R3, does not have a simple

formulation as in (9). Under the assumptions of physical optics [14, Sec. 8.2.1], the field E(rRx)

solution of (7) in the presence of S can be characterized by using the Stratton-Chu formula [12].

Lemma 1. Let rRx be the observation point of interest in a generic volume V ⊆ R3. Let ∂V

be a generic closed boundary of V such that (see Fig. 2): (i) Rx is always located inside the

volume, i.e., rRx ∈ V ; (ii) S is part of the boundary, i.e., S ∈ ∂V ; and (iii) Tx is located

inside the volume, i.e., rTx ∈ V , in the reflection case and outside the volume, i.e., rTx /∈ V

in the transmission case, respectively. Let r′ be a generic point on the closed boundary ∂V ,

i.e., r′ ∈ ∂V , and let E∂V (r′) and H∂V (r′) denote the total electric and magnetic fields at r′,

respectively. Then, E(rRx) solution of (7) in the presence of S can be formulated as follows:

E(rRx) = 1(rTx∈V )Einc(rRx; p̂inc)−
∫
∂V

[−jωµ0 (n̂out ×H∂V (r′))G(rRx, r
′)

+ (n̂out · E∂V (r′))∇r′G(rRx, r
′) + (n̂out × E∂V (r′))×∇r′G(rRx, r

′)] dr′ (11)
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(a) (b)

Fig. 2: Volume V and closed boundary ∂V for a reflecting (a) and transmitting (b) surface.

where n̂out is the normal vector pointing outwards the volume and 1(·) is the indicator function.

Proof. See [12, Eq. (14)].

Remark 1. The choice of V and ∂V is not unique. For convenience, Fig. 2 shows an example

in which V is the upper or lower half-plane of the 3D space and ∂V = H∞ + S∞, where H∞
is the hemisphere for z > 0 or z < 0 with an infinite radius for a reflecting or transmitting

surface, respectively, and S∞ is the entire xy-plane (including S).

Remark 2. There exist alternative integral expressions for the solution of (7) in the presence of

S, e.g., Franz’s formula [15, Eq. (3)]. We choose (11) as the basis of our analysis for two reasons:

(i) the incident field Einc(rRx; p̂inc) explicitly appears in (9), which leads to simple interpretations

as elaborated in further text; and (ii) the two terms n̂out×E∂V (r′) and n̂out×H∂V (r′) are directly

related to the magnetic and electric currents, respectively, that are induced by the incident signal

in the scattering elements (i.e., the inclusions) of the metasurface [1, Eq. (1)], which provides

us with explicit evidence of the physics-based phenomena that govern the operation of RISs. In

particular, (11) can be viewed as an instance of the surface equivalent theorem [1, Fig. 14].

Even though (11) provides us with a computable integral for E(rRx), it does not offer an explicit

analytical expression that depends on S and that yields insights on the impact of important design

parameters. In the sequel, we analyze E(rRx) in detail and compute several equivalent explicit

expressions for (11) that are useful in wireless applications and that unveil important scaling

laws. To this end, we assume, without loss of generality, that Rx is equipped with an antenna

whose polarization is p̂rec = p̃rece
jφrec [16], where p̃rec is a real unit-norm vector and φrec ∈ [0, 2π)

is the common phase of the three components of p̂rec. In general, E(rRx) depends on p̂inc, p̂ref

or p̂tran, and p̂rec. To explicitly highlight the impact of p̂rec, we reformulate (11) as follows.
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Theorem 1. The projection of E(rRx) in (11) onto the receive polarization vector p̂rec is:

E(rRx) · p̂rec = 1(rTx∈V )Einc(rRx; p̂inc) · p̂rec (12)

−
∫
∂V

[(E∂V (r′) · p̂rec)∇r′G(rRx, r
′)−G(rRx, r

′)∇r′ (E∂V (r′) · p̂rec)] · n̂outdr
′

Proof. See Appendix A.

By appropriately choosing p̂rec, E(rRx) along any directions can be retrieved, e.g., p̂rec = x̂,

p̂rec = ŷ, and p̂rec = ẑ. The Stratton-Chu formula in (12), however, does not explicitly reveal the

impact of S. Thus, we reformulate (12) such that S , instead of V and ∂V , appears explicitly.

Theorem 2. Let ES(s) be the surface electric field at point s ∈ S in (5) and (6) for a reflecting

and transmitting surface, respectively. Then, (12) can be equivalently reformulated as follows:

E(rRx) · p̂rec = Einc(rRx; p̂inc) · p̂rec −
∫
S

[((ES(s)− Einc(s; p̂inc)) · p̂rec)∇sG(rRx, s) (13)

−G(rRx, s)∇s((ES(s)− Einc(s; p̂inc)) · p̂rec)] · n̂outds

Proof. See Appendix B.

The reformulation in (13) can be applied to any physical source at Tx, i.e., ρ(r, rTx) and

J(r, rTx), which determine the incident fields Einc(s; p̂inc) and Einc(rRx; p̂inc), and to any field

transformations applied by the RIS, i.e., ES(s). In the following, as a concrete example, we

focus our attention on a physical source that corresponds to a dipole antenna [13, Sec. (15.5)].

Lemma 2. Let r̂Rx-Tx be the unit-norm propagation vector from rTx to rRx. The incident electric

field at rRx generated by a dipole antenna is Einc(rRx; p̂inc) ≈ E0,inc (rRx; p̂inc)G (rRx, rTx) where

E0,inc (rRx; p̂inc) = k2pdm
ε0

(p̂inc − (r̂Rx-Tx · p̂inc)r̂Rx-Tx) = k2pdm
ε0

(p̃inc − (r̂Rx-Tx · p̃inc)r̂Rx-Tx) e
jφinc .

Proof. The electric field radiated by a dipole antenna is [13, Eq. (15.5.5)]. The approximation

follows from k � 1/|rRx − rTx|. The proof follows by simplifying the triple vector product.

Remark 3. The first addend in (13), i.e., the incident field at rRx, and the integral that yields the

contribution from the RIS sum up, in general, incoherently and, thus, interfere with each other.

The phase terms ∠Γref(x, y) and ∠Γtran(x, y) of S can, however, be optimized in order to make

sure that both contributions (incident field and scattered field) add up coherently at rRx.

B. Approximations and Asymptotic Regimes
In Sections IV and V, we capitalize on (13) in order to derive explicit expressions for the

electric field reflected and transmitted by an RIS, and to unveil scaling laws as a function of

relevant design parameters. To this end, some recurrent integrals need to be computed and some
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asymptotic approximations are exploited. In this section, we introduce methods to compute these

integrals and we formally introduce the asymptotic operating regimes of interest.

1) Type-1 Integral: Consider the following type of integral:

I1 =

∫ Ly

−Ly

∫ Lx

−Lx
A1(dTx(x, y), dRx(x, y))B1(x, y)e−jk(dTx(x,y)+dRx(x,y)−C(x,y))dxdy (14)

where A1(dTx(x, y), dRx(x, y)), B1(x, y), and C(x, y) are real-valued functions. In particular, we

assume the following: (i) A1(dTx(x, y), dRx(x, y)) depends on dTx(x, y) and dRx(x, y); (ii) B1(x, y)

is independent of dTx(x, y) and dRx(x, y); and (iii) C(x, y) is a linear function in x and y.

Definition 1. Define rES = 8(L2
x + L2

y)/λ. Assume that (13) is formulated in terms of type-1

integrals. An RIS is said to operate in the electrically-small regime if dTx0 > rES and dRx0 > rES .

The electrically-small regime in Definition 1 is analogous to the Fraunhofer far-field [17, Sec.

4.4.1]. This can be shown from the Taylor expansion of, e.g., dTx(x, y) around the origin:

dTx(x, y) = dTx0 − x sin θinc0 cosϕinc0 − y sin θinc0 sinϕinc0 +R2(x, y) (15)

where R2(x, y) collects the terms of higher order than the first degree. In general, the Fraunhofer

distance is calculated for linear structures, e.g., by assuming Ly � Lx, and by then replacing the

length of the structure (L = Lx) with the largest dimension of S [17, Eq. (4.41)]. Based on (1),

the largest dimension of S is its diagonal D = 2
√
L2
x + L2

y. For linear structures, (15) reduces

to dTx(x) = dTx0 − x sin θinc0 + R2(x). By definition, the Fraunhofer far-field is the distance rF

at which the identity max{R2(x)} = π/8 holds true, which gives rF = 2D2/λ. Thus, we obtain

rF = rES . Notably, rES can be formulated in terms of the ratio between the surface area and

the wavelength, i.e., rES = 2AS
λ

a2x+a2y
axay

, where AS is the area of S and Lx = axL, Ly = ayL.

Lemma 3. In the electrically-small regime, the integral in (14) can be approximated as:

I1 ≈ A1(dTx0, dRx0)e−jk(dTx0+dRx0)

∫ Ly

−Ly

∫ Lx

−Lx
B1(x, y)e−jk(Dxx+Dyy−C(x,y))dxdy (16)

where Dx = sin θinc0 cosϕinc0 + sin θrec0 cosϕrec0 and Dy = sin θinc0 sinϕinc0 + sin θrec0 sinϕrec0.

Proof. It follows from (15) by ignoring R2(x, y) and noting that A1(·, ·)→ A1(dTx0, dRx0).

Definition 2. Define P(x, y) = dTx(x, y) + dRx(x, y)− C(x, y). The stationary points of P(x, y)

are the points (xs, ys) such that ∂
∂x
P(x, y)|(x,y)=(xs,ys) = ∂

∂y
P(x, y)|(x,y)=(xs,ys) = 0.

Definition 3. Define P(x, y) = dTx(x, y) + dRx(x, y) − C(x, y) and let Ψ be the set of its

stationary points. Let D = 2
√
L2
x + L2

y be the diagonal of S. Assume that (13) is formu-

lated in terms of type-1 integrals. An RIS is said to operate in the electrically-large regime if

(2D2/λ)(zTx/[dTx(xs, ys)]
2 + zRx/[dRx(xs, ys)]

2)� 1 for all stationary points (xs, ys) ∈ Ψ.
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Similar to the Fraunhofer far-field [17, Sec. 4.4.1], Definition 3 can be justified by starting from

a line surface, e.g., by assuming Ly � Lx and by then replacing the length of the line (L = Lx)

with the diagonal D of S. Consider the line integral I` =
∫ L
−LM(`)e−jkP(`)d` corresponding

to (14), where M(`) is a slowly-varying function in [−L,L], P(`) = dTx(`) + dRx(`) − C(`),

dTx(`) =
√
`2 + z2

Tx, dRx(`) =
√
`2 + z2

Rx, and C(`) is a linear function in `. Let `s ∈ [−L,L] be

a stationary point (assuming that it exists) of P(`), i.e., ∂
∂x
P(`)|`=`s = 0. Definition 3 can

be justified by invoking the stationary phase method to compute I` [18]. In particular, the

integrand of I` oscillates very quickly outside a small region centered at `s, and, thus, the

contributions outside the small region around `s cancel out when computing the integral. Under

these conditions, I` can be well approximated by replacing P(`) with its Taylor approximation at

`s ∈ [−L,L], i.e., P(`) ≈ P(`s) + 1
2

(zTx/[dTx(`s)]
2 + zRx/[dRx(`s)]

2) (`− `s)2, and by letting the

extremes of integration go to infinity, provided that the region around `s that dominates I` is well

contained in [−L,L]. This is usually true when the minimum of the integrand of I` falls within

[−L,L], which occurs if the condition in Definition 3 is fulfilled. Notably, the latter condition can

be formulated in terms of ratio between the area of the surface and the wavelength, i.e., ds � rEL

with rEL = 2D2

λ

√
zTx

b2Tx
+ zRx

b2Rx
= 2AS

λ

a2x+a2y
axay

√
zTx

b2Tx
+ zRx

b2Rx
, dTx (xs, ys) = bTxds, dRx (xs, ys) = bRxds.

Remark 4. Based on Definition 1 and Definition 3, the following comments can be made: (i) the

terminology electrically-small RIS originates from the conditions dTx0 > rES and dRx0 > rES ,

i.e., the transmission distances (computed with respect to the center of S) are larger than the

electrical size of S, which is AS/λ; (ii) the terminology electrically-large RIS originates from

the condition ds � rEL, i.e., the transmission distances (computed with respect to the stationary

point of the phase term) are smaller than the electrical size, AS/λ, of S; and (iii) since, in

general,
√

zTx

b2Tx
+ zRx

b2Rx
< 1, then rEL = rES

√
zTx

b2Tx
+ zRx

b2Rx
< rES . This implies that the electrically-

large regime holds for shorter distances than the radiating near-field regime [17, Sec. (4.4.2)].

Lemma 4. Define A(xs, ys) = Hess(P(x, y))|(x,y)=(xs,ys). Assume that Ψ is not empty and, for

(xs, ys) ∈ Ψ, det(A(xs, ys)) 6= 0. In the electrically-large regime, (14) can be approximated as:

I1 ≈ (2π/k)
∑

(xs,ys)∈Ψ
A1(dTx(xs, ys), dRx(xs, ys))B1(xs, ys) |det(A(xs, ys))|−1/2

exp (−jkP(xs, ys)− jπsign (A(xs, ys)) /4) (17)

where sign (A(xs, ys)) = N+(A(xs, ys)) − N−(A(xs, ys)) is the signature of A(xs, ys), with

N+(A(xs, ys)) and N−(A(xs, ys)) the number of positive and negative eigenvalues of A(xs, ys).
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Proof. See Appendix C.

Lemma 5. Let Ψ be empty. In the electrically-large regime, (14) can be approximated as:

I1 ≈
1

(−jk)2

[
A1(dTx(x, y), dRx(x, y))B1(x, y)e−jkP(x,y)

Px(x, y)Py(x, y)

] ∣∣∣x=Lx

x=−Lx

∣∣∣y=Ly

y=−Ly
(18)

where Px(x, y) = ∂
∂x
P(x, y) and Py(x, y) = ∂

∂y
P(x, y).

Proof. See Appendix D.

By comparing Lemmas 4 and 5, we evince that, since det(A(xs, ys)) is independent of k, |I1|

is inversely proportional to k if at least one stationary point is contained in S , and is inversely

proportional to k2 if no stationary point lies in S. For k � 1, thus, |I1| is dominated by the

contributions from the stationary points. In the rest of this paper, therefore, we focus our attention

on the case studies (in the electrically-large regime) in which at least one stationary point exists.

2) Type-2 Integral: Consider the following type of integral:

I2 =

∫ Ly

−Ly

∫ Lx

−Lx
A2(dTx(x, y), dRx(x, y))B2(x, y)dxdy (19)

where A2(dTx(x, y), dRx(x, y)) is a real-valued function of the distances dTx(x, y) and dRx(x, y),

and B2(x, y) is a real-valued function that is independent of dTx(x, y) and dRx(x, y).

Lemma 6. Assume dTx0 � D and dRx0 � D, where D = 2
√
L2
x + L2

y is the diagonal of S. The

integral in (19) can be approximated as follows:

I2 ≈ A2(dTx0, dRx0)

∫ Ly

−Ly

∫ Lx

−Lx
B2(x, y)dxdy (20)

Proof. It follows from (15) noting that dTx(x, y) ≈ dTx0, dRx(x, y) ≈ dRx0 if dTx0, dRx0 � D.

If dTx0 � D and dRx0 � D, it is not straightforward to compute (19) in general. This case

study is analyzed in Sections IV-C and V-C for the specific A2(x, y) and B2(x, y) of interest.

Remark 5. The asymptotic regime in Lemma 6 is independent of λ and is, in general, different

from the asymptotic regime in Definition 1 that depends on λ. We still refer to it as electrically-

small regime, however, since dTx0 � D and dRx0 � D implies D/λ � dTx0/λ and D/λ �

dRx0/λ. Likewise, the regime dTx0 � D and dRx0 � D is referred to as electrically-large regime.

IV. ELECTRIC FIELD IN THE PRESENCE OF A REFLECTING SURFACE

In this section, we analyze E(rRx) under the assumption that S is a reflecting surface according

to the definitions and assumptions given in Section II (see Fig. 1a and Fig. 2a).

Proposition 1. Let ŝ(x,y) = sin θinc(x, y) cosϕinc(x, y)x̂+sin θinc(x, y) sinϕinc(x, y)ŷ+cos θinc(x, y)ẑ,

be the unit-norm propagation vector from rTx to s = xx̂+ yŷ ∈ S. Define Ωref(x, y; p̂ref, p̂rec) =
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(k2/ε0)pdm
(
p̃rec · p̃ref −

(
ŝ(x,y) · p̃rec

) (
ŝ(x,y) · p̃ref

))
E (p̂inc, p̂ref). Under the assumptions stated in

Lemma 2, the electric field E(rRx) projected onto p̂rec can be formulated as follows:

E(rRx) · p̂rec ≈ p̂rec · E0,inc (rRx; p̂inc)G(rRx, rTx)

+ jkej(φref+φrec)

∫
S

Γref(s)Ωref(x, y; p̂ref, p̂rec)G (s, rTx)G(rRx, s)

[
zRx

|s− rRx|
+

zTx

|s− rTx|

]
ds

= p̂rec · E0,inc (rRx; p̂inc)G(rRx, rTx) + I0

∫ Ly

−Ly

∫ Lx

−Lx
IR(x, y)e−jkPR(x,y)dxdy

(21)

where I0 = jk/(16π2), and the following shorthand notation is used:

PR(x, y) = dTx(x, y) + dRx(x, y)− (φrec + φref + ∠Γref(x, y))/k (22)

IR(x, y) =
|Γref(x, y)|Ωref(x, y; p̂ref, p̂rec)

dTx(x, y)dRx(x, y)
(cos θinc(x, y) + cos θrec(x, y)) (23)

Proof. See Appendix E.

Remark 6. The approximation in (21) originates only from the assumptions k � 1/dTx(x, y),

k � 1/dRx(x, y) (see Section II). This is apparent from the proof in Appendix E. The proof in

Appendix E can, however, be readily generalized in order to avoid these assumptions.

The electric field in (21) is formulated as the sum of the incident electric field in the ab-

sence of S and the contribution due to the reflection from S. This latter term is denoted by

FR(rRx) = I0

∫ Ly
−Ly

∫ Lx
−Lx IR(x, y)e−jkPR(x,y)dxdy and is analyzed next to better understand the

performance of RISs as a function of important design parameters and configurations for S, e.g.,

∠Γref(x, y). As illustrative examples, we consider case studies that correspond to using phase

gradient metasurfaces, which are known to be approximated implementations of perfect anoma-

lous reflectors [1]. This choice is motivated only for analytical convenience and to shed light on

the impact of important design parameters. Proposition 1 has, in fact, general applicability.

A. S is Configured for Specular Reflection

This setup is obtained if ∠Γref(x, y) = φ0 for (x, y) ∈ S, where φ0 ∈ [0, 2π) is a fixed phase.

Corollary 1. Let (xs, ys) ∈ S be the solution of the following system of equations:
(xs − xTx)

dTx(xs, ys)
+

(xs − xRx)

dRx(xs, ys)
= 0,

(ys − xTx)

dTx(xs, ys)
+

(ys − xRx)

dRx(xs, ys)
= 0 (24)

In the electrically-large regime, FR(rRx) can be approximated as follows:

FR(rRx) ≈
|Γref(xs, ys)|Ωref(xs, ys; p̂ref, p̂rec)

4π(dTx(xs, ys) + dRx(xs, ys))
e−jk(dTx(xs,ys)+dRx(xs,ys)−(φ0+φref+φrec)/k) (25)

Proof. See Appendix F.
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Remark 7. Assume that Tx and Rx move along directions such that (xs, ys), and θinc(xs, ys),

θrec(xs, ys), ϕinc(xs, ys), ϕrec(xs, ys) are kept fixed. From Corollary 1, we evince the following.

• Since Γref(xs, ys) depends only on (xs, ys) and Ωref(xs, ys; p̂ref, p̂rec) depends only on p̃inc,

p̃rec, θinc(xs, ys), θrec(xs, ys), ϕinc(xs, ys), and ϕrec(xs, ys), they are both independent of

the Tx-to-(xs, ys) and (xs, ys)-to-Rx distances. In the electrically-large regime, therefore,

|FR(rRx)| decays as a function of the sum of the Tx-to-(xs, ys) and (xs, ys)-to-Rx distances.

• In the electrically-large regime, |FR(rRx)| is independent of the size of S. This implies that

the received power is bounded, even though the size of S grows large (tending to infinity).

• The system of equations in (24) is equivalent to ϕinc(xs, ys) = (ϕrec(xs, ys) + π) mod 2π

and θinc(xs, ys) = θrec(xs, ys). These conditions correspond to the law of reflection.

Corollary 2. In the electrically-small regime, FR(rRx) can be approximated as follows:

FR(rRx) ≈
jkΩref(0, 0; p̂ref, p̂rec) (cos θinc0 + cos θrec0)

16π2 (dTx0dRx0)
e−jk(dTx0+dRx0−(φ0+φref+φrec)/k)

∫ Ly

−Ly

∫ Lx

−Lx
|Γref(x, y)|ejk(Dxx+Dyy)dxdy (26)

where Dx and Dy are defined in Lemma 3. Let sinc (x) = sin(πx)
πx

be the sinc function. If

|Γref(x, y)| = Γref > 0 for (x, y) ∈ S, then FR(rRx) can be further simplified as follows:

FR(rRx) ≈
jkΓrefΩref(0, 0; p̂ref, p̂rec)LxLy (cos θinc0 + cos θrec0)

4π2dTx0dRx0

sinc (kLxDx) sinc (kLyDy)

e−jk(dTx0+dRx0−(φ0+φref+φrec)/k) (27)

Proof. If follows directly from (16).

Remark 8. Assume that Tx and Rx move along directions such that θinc0, θrec0, ϕinc0, ϕrec0 are

kept fixed. From Corollary 2, the following conclusions can be drawn.

• In the electrically-small regime, |FR(rRx)| decays as a function of the product of the Tx-to-

(0, 0) and (0, 0)-to-Rx distances, where (0, 0) is the center of S.

• In the electrically-small regime, |FR(rRx)| grows linearly with the area of S, i.e., AS =

4LxLy. This does not imply that |FR(rRx)| grows unbounded if the size of S tends to infinity.

If AS →∞, in fact, the RIS does not operate in the electrically-small regime anymore, but

in the electrically-large regime. Therefore, the approximation in Corollary 2 needs to be

replaced with the approximation in Corollary 1, which does not depend on the size of S.

• In the electrically-small regime, |FR(rRx)| attains its maximum for Dx = Dy = 0. If the angle

of incidence θinc0 is fixed, this is fulfilled in correspondence of the angles of observation
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θinc0 = θrec0 and ϕinc0 = (ϕrec0+π) mod 2π, which can be interpreted as the law of reflection.

Also, the main lobe of sinc(kLxDx) and sinc(kLyDy) gets narrower if Lx and Ly increase.

B. S is Configured for Anomalous Reflection

This setup is obtained by setting ∠Γref(x, y) = k(αRx + βRy) + φ0 for (x, y) ∈ S, where

αR ∈ R, βR ∈ R are design parameters, and φ0 ∈ [0, 2π) is a fixed phase. As detailed in further

text, the direction of anomalous reflection is determined by the specific choice of αR and βR.

Corollary 3. Let (xs, ys) ∈ S be the solution of the following system of equations:

(xs − xTx)

dTx(xs, ys)
+

(xs − xRx)

dRx(xs, ys)
= αR,

(ys − xTx)

dTx(xs, ys)
+

(ys − xRx)

dRx(xs, ys)
= βR (28)

Define the shorthand notation ΘQ = θQ(xs, ys) and ΦQ = ϕQ(xs, ys) for Q ∈ {inc, rec}. In the

electrically-large regime, FR(rRx) can be approximated as follows:

FR(rRx) ≈
|Γref(xs, ys)|Ωref(xs, ys; p̂ref, p̂rec)e

−jk(dTx(xs,ys)+dRx(xs,ys)−(αRxs+βRys)−(φ0+φref+φrec)/k)

8π
√
R1(dTx(xs, ys))2 +R2(dRx(xs, ys))2 +R3dTx(xs, ys)dRx(xs, ys)

(29)
where R1 = cos2 Θrec/(cos Θinc + cos Θrec)

2, R2 = cos2 Θinc/(cos Θinc + cos Θrec)
2, and R3 =(

cos2 Θinc + cos2 Θrec + sin2 Θinc sin2 Θrec sin2(Φinc − Φrec)
)
/(cos Θinc + cos Θrec)

2.

Proof. It follows from Lemma 4 along the same lines as the proof of Corollary 1. The only

difference is that P(x, y) = PR(x, y), det(A(xs, ys)), and sign(A(xs, ys)) depend on αR, βR.

The analytical formulation in (29) does not provide direct design insights. To this end, we

introduce an approximation for (29) in order to unveil scaling laws and performance trends.

Corollary 4. Consider ζ ′1 > 0, ζ ′2 > 0. Define K1 = (R1ζ
′
1+1

2
R3ζ

′
2)/
√
R1ζ ′1

2 +R2ζ ′2
2 +R3ζ ′1ζ

′
2,

K2 = (R2ζ
′
2 + 1

2
R3ζ

′
1)/
√
R1ζ ′1

2 +R2ζ ′2
2 +R3ζ ′1ζ

′
2. Then, (29) can be approximated as follows:

FR(rRx) ≈
|Γref(xs, ys)|Ωref(xs, ys; p̂ref, p̂rec)

8π(K1dTx(xs, ys) +K2dRx(xs, ys))
e−jk(dTx(xs,ys)+dRx(xs,ys)−(αRxs+βRys)−(φ0+φref+φrec)/k)

(30)
Proof. For simplicity, let us denote ζ1 = dTx(xs, ys) and ζ2 = dRx(xs, ys). Define f(ζ1, ζ2) =√
R1ζ2

1 +R2ζ2
2 +R3ζ1ζ2. Consider a generic pair of points (ζ ′1, ζ

′
2). The function f(ζ1, ζ2)

can be approximated at (ζ ′1, ζ
′
2) by using the Taylor approximation, which yields f(ζ1, ζ2) ≈√

R1ζ ′1
2 +R2ζ ′2

2 +R3ζ ′1ζ
′
2 +(R1,3(ζ1−ζ ′1)+R2,3(ζ2−ζ ′2))/

√
R1ζ ′1

2 +R2ζ ′2
2 +R3ζ ′1ζ

′
2, where

R1,3 = (R1ζ
′
1 + R3ζ

′
2/2) and R2,3 = (R2ζ

′
2 + R3ζ

′
1/2). The proof follows with the aid of

algebraic steps. The parameters K1 and K2 are independent of the pair (ζ ′1, ζ
′
2) if ζ ′1 = ζ ′2.

Given Θinc, Θrec, Φinc, and Φrec, (29) and (30) coincide only if K1 = (cos Θrec)/(cos Θinc +

cos Θrec), K2 = (cos Θinc)/(cos Θinc + cos Θrec), and 2K1K2 = [cos2 Θinc + cos2 Θrec + sin2 Θinc
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sin2 Θrec sin2(Φinc−Φrec)]/(cos Θinc + cos Θrec)
2 are satisfied simultaneously. This holds true only

if S is a uniform surface, i.e., αR = βR = 0, which corresponds to specular reflection. As for

anomalous reflection, (30) is an approximation for (29) because Taylor’s approximation is used.

The approximation in (30) depends, in general, on ζ ′1 and ζ ′2. A convenient choice for these

parameters is ζ ′1 = ζ ′2, since (30) is independent of ζ ′1 and ζ ′2 (i.e., ζ ′1 and ζ ′2 cancel out in (30))

if ζ ′1 = ζ ′2. With the aid of (30), the impact and scaling laws of key parameters can be unveiled.

Remark 9. Assume that Tx and Rx move along directions such that (xs, ys), and θinc(xs, ys),

θrec(xs, ys), ϕinc(xs, ys), ϕrec(xs, ys) are kept fixed. From (30), we evince the following.

• In the electrically-large regime, |FR(rRx)| decays as a function of the weighted sum of the

Tx-to-(xs, ys) and (xs, ys)-to-Rx distances. Also, |FR(rRx)| is independent of the size of S.

• From (28), we have sin θinc(xs, ys) cosϕinc(xs, ys) + sin θrec(xs, ys) cosϕrec(xs, ys) = −αR
and sin θinc(xs, ys) sinϕinc(xs, ys) + sin θrec(xs, ys) sinϕrec(xs, ys) = −βR. This implies that,

in general, the polar and azimuthal angles of incidence and reflection in correspondence

of the stationary point (xs, ys) are different and depend on αR and βR. This corresponds to

the generalized law of reflection. By using (28), in particular, αR and βR can be optimized

in order to obtain the desired angle of reflection for a given angle of incidence.

• If αR = βR = 0, (29) and (30) reduce, as expected, to (25).

Corollary 5. In the electrically-small regime, FR(rRx) can be approximated as follows:

FR(rRx) ≈
jkΩref(0, 0; p̂ref, p̂rec) (cos θinc0 + cos θrec0)

16π2dTx0dRx0

e−jk(dTx0+dRx0−(φ0+φref+φrec)/k) (31)∫ Ly

−Ly

∫ Lx

−Lx
|Γref(x, y)|ejk(DαRx+DβRy)dxdy

where the shorthand notation DαR = αR + Dx and DβR = βR + Dy is used. If |Γref(x, y)| =

Γref > 0 for (x, y) ∈ S, then FR(rRx) can be further simplified as follows:

FR(rRx) ≈
jkΓrefΩref(0, 0; p̂ref, p̂rec)LxLy (cos θinc0 + cos θrec0)

4π2dTx0dRx0

sinc (kLxDαR) sinc (kLyDβR) e−jk(dTx0+dRx0−(φ0+φref+φrec)/k) (32)

Proof. It follows by substituting C(x, y) = k(αRx+ βRy) + φ0 in (16).

Remark 10. From (32), conclusions similar to Remark 7 can be drawn with one exception.

|FR(rRx)| in (32) attains its maximum in correspondence of angles of incidence and reflection that

fulfill the equalities αR = −(sin θinc0 cos θinc0 + sin θrec0 cos θrec0) and βR = −(sin θinc0 sin θinc0 +
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sin θrec0 sin θrec0). Thus, αR and βR can be appropriately optimized for maximizing the reflected

signal towards a desired direction, given the angle of incidence with respect to the center of S.

C. S is Configured for Focusing
This setup is obtained by setting ∠Γref(x, y) = k (dTx(x, y) + dRx(x, y)) + φ0 for (x, y) ∈ S ,

where φ0 ∈ [0, 2π) is a fixed phase. With this setup, FR(rRx) in (21) simplifies as follows:

FR(rRx) ≈
jkej(φ0+φrec+φref)

16π2

∫ Ly

−Ly

∫ Lx

−Lx
Ωref(x, y; p̂ref, p̂rec)

|Γref(x, y)| (cos θinc(x, y) + cos θrec(x, y))

dTx(x, y)dRx(x, y)
dxdy (33)

In the electrically-large regime, (33) cannot be, in general, further simplified, since no fast

oscillating term is present in the integrand function, and, hence, the stationary phase method

cannot be applied. In this case, therefore, we focus our attention on analyzing an upper-bound

for |FR(rRx)|, in order to unveil the impact of the size of S (e.g., if it tends to infinity).

Corollary 6. Assume dP1(x, y) ≤ dP2(x, y), where (P1,P2) = (Tx,Rx) or (P1,P2) = (Rx,Tx),

|Γref(x, y)| = Γref > 0 for (x, y) ∈ S, and zP1 6= 0. Define Cref = 2k3pdmΓrefE(p̂inc,p̂ref)
16π2ε0

. Then:

|FR(rRx)| ≤ Cref

(
1 +

zP2

zP1

)
tan−1

[
(xP1 − x)(yP1 − y)

zP1

√
(xP1 − x)2 + (yP1 − y)2 + z2

P1

]∣∣∣x=Lx

x=−Lx

∣∣∣y=Ly

y=−Ly
(34)

Proof. Consider Ωref(x, y; p̂ref, p̂rec) in Proposition 1, where p̃rec, p̃ref, and ŝ(x,y) are real unit-

norm vectors. By virtue of Cauchy-Schwarz’s inequality (i.e., − |u| |v| ≤ u ·v ≤ |u| |v| for any

u and v), we have −1 ≤ p̃rec · p̃ref ≤ 1, −1 ≤ ŝ(x,y) · p̃rec ≤ 1, and −1 ≤ ŝ(x,y) · p̃ref ≤ 1. Hence,

we obtain −2k
2pdmE(p̂inc,p̂tran)

ε0
≤ Ωref(x, y; p̂ref, p̂rec) ≤ 2k

2pdmE(p̂inc,p̂tran)
ε0

for (x, y) ∈ S. Thus:

|FR(rRx)| ≤
2k3pdmΓrefE (p̂inc, p̂ref)

16π2ε0

∫ Ly

−Ly

∫ Lx

−Lx

(cos θinc(x, y) + cos θrec(x, y))

dTx(x, y)dRx(x, y)
dxdy (35)

Since dP1(x, y) ≤ dP2(x, y), we have (cos θinc(x,y)+cos θrec(x,y))
dP1(x,y)dP2(x,y)

≤ zTx+zRx
(dP1(x,y))3

. Using the notable integral∫ Ly
−Ly

∫ Lx
−Lx

1
(dP1(x,y))3

dxdy = z−1
P1 tan−1

[
(xP1−x)(yP1−y)

zP1

√
(xP1−x)2+(yP1−y)2+z2P1

]∣∣∣x=Lx

x=−Lx

∣∣∣y=Ly

y=−Ly
, the proof follows.

Remark 11. From Corollary 6, we observe that |FR(rRx)| /
(

1 + zP2
zP1

)
2k3pdmΓrefE(p̂inc,p̂ref)

8πε0
for

Lx, Ly → ∞. This implies that |FR(rRx)| is upper-bounded if the size of S increases without

bound. Thus, the received power is bounded even for an infinitely large RIS. The scaling law as

a function of the transmission distances is, in general, different from the weighted-sum distance

obtained in (29). This is because of the different optimization of ∠Γref(x, y). In the electrically-

large regime, an anomalous reflecting RIS and a focusing RIS behave, in general, differently.
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Corollary 7. In the electrically-small regime, FR(rRx) in (33) can be approximated as follows:

FR(rRx) ≈
jkej(φ0+φrec+φref)

16π2dTx0dRx0

Ωref(0, 0; p̂ref, p̂rec) (cos θinc0 + cos θrec0)

∫ Ly

−Ly

∫ Lx

−Lx
|Γref(x, y)|dxdy

(36)
If |Γref(x, y)| = Γref > 0 for (x, y) ∈ S, then FR(rRx) can be further approximated as follows:

FR(rRx) ≈
jkΓrefΩref(0, 0; p̂ref, p̂rec)LxLy (cos θinc0 + cos θrec0)

4π2dTx0dRx0

ej(φ0+φrec+φref) (37)

Proof. It follows directly from (20).

Remark 12. The scaling laws of |FR(rRx)| in (37) as a function of the distances and the size of S

are the same as in (32) for anomalous reflection. This can be justified by analyzing ∠Γref(x, y) for

focusing and anomalous reflection. As for focusing, ∠Γref(x, y) = k (dTx(x, y) + dRx(x, y)) +φ0.

In the electrically-small regime, dTx(x, y) and dRx(x, y) can be approximated by using (15) and

ignoring R2(x, y), which yields ∠Γref(x, y) = k(αR + βR) + (dTx0 + dRx0 + φ0) with αR and βR

as given in Remark 9. The obtained ∠Γref(x, y) coincides with that of a surface that operates

as an anomalous reflector towards the same direction as the focusing spot of a surface that

operates as a focusing lens. In the electrically-small regime, hence, anomalous reflectors and

focusing lenses are almost equivalent. This does not apply in the electrically-large regime.

V. ELECTRIC FIELD IN THE PRESENCE OF A TRANSMITTING SURFACE

In this section, we analyze E(rRx) under the assumption that S is a transmitting surface

according to the definitions and assumptions given in Section II (see Fig. 1b and Fig. 2b). Some

analytical steps are similar to the setup of reflecting surfaces. Thus, only the final results and the

most important steps of the analysis are reported. The same applies to the performance trends.

Proposition 2. Let ŝ(x,y) = sin θinc(x, y) cosϕinc(x, y)x̂+sin θinc(x, y) sinϕinc(x, y)ŷ+cos θinc(x, y)ẑ,

be the unit-norm propagation vector from rTx to s = xx̂+ yŷ ∈ S. Define Ωinc(x, y; p̂inc, p̂rec) =

(k2/ε0)pdm
(
p̃rec · p̃inc −

(
ŝ(x,y) · p̃rec

) (
ŝ(x,y) · p̃inc

))
and Ωtran(x, y; p̂tran, p̂rec) = (k2/ε0)pdm(p̃rec ·

p̃tran −
(
ŝ(x,y) · p̃rec

) (
ŝ(x,y) · p̃tran

)
)E (p̂inc, p̂tran). Under the assumptions stated in Lemma 2, the

electric field E(rRx) projected onto p̂rec can be formulated as follows:

E(rRx) · p̂rec ≈ p̂rec · E0,inc (rRx; p̂inc)G(rRx, rTx) + jk

∫
S

[
Γtran(x, y)Ωtran(x, y; p̂tran, p̂rec)e

j(φtran+φrec)

−Ωinc(x, y; p̂inc, p̂rec)e
j(φinc+φrec)

]
G (s, rTx)G(rRx, s)

[
zRx

|s− rRx|
− zTx

|s− rTx|

]
ds (38)
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= p̂rec · E0,inc (rRx; p̂inc)G(rRx, rTx)

− I0

∫ Ly

−Ly

∫ Lx

−Lx
ID(x, y)e−jkPD(x,y)dxdy + I0

∫ Ly

−Ly

∫ Lx

−Lx
IT (x, y)e−jkPT (x,y)dxdy

where I0 = jk/(16π2), PD(x, y) = dTx(x, y) + dRx(x, y) − (∠φinc + ∠φrec)/k, PT (x, y) =

dTx(x, y) +dRx(x, y)− (∠Γtran(x, y) +∠φtran +∠φrec)/k, and the following shorthands are used:

ID(x, y) =
Ωinc(x, y; p̂inc, p̂rec) (cos θinc(x, y) + cos θrec(x, y))

dTx(x, y)dRx(x, y)
(39)

IT (x, y) =
|Γtran(x, y)|Ωinc(x, y; p̂tran, p̂rec) (cos θinc(x, y) + cos θrec(x, y))

dTx(x, y)dRx(x, y)
(40)

Proof. See Appendix G.

Remark 13. Consider p̂tran = p̂inc, ∠Γtran(x, y) = 0, and |Γtran(x, y)| = 1. By definition, we

have E(p̂inc, p̂inc) = 1. Then, the integral terms in Proposition 2 coincide and their difference

vanishes. This result is consistent with the fact that, under the considered special setup, the

surface transmits the impinging wave without any modifications. Therefore, we retrieve the setup

in the absence of S, and the received field coincides with the incident field in the absence of S.

In (38), the only term that depends on the design and properties of S is the last one, which we

denote by FT (rRx) = I0

∫ Ly
−Ly

∫ Lx
−Lx IT (x, y)e−jkPT (x,y)dxdy. In the next sub-sections, therefore,

we focus our attention only on the analysis of FT (rRx). Similar to Section IV, FT (rRx) is analyzed

as a function of important design parameters and configurations for S, e.g., ∠Γtran(x, y). As

illustrative examples, similar to reflecting surfaces, we consider phase gradient metasurfaces [1].

A. S is Configured for Specular Transmission
This setup is obtained if ∠Γtran(x, y) = φ0 for (x, y) ∈ S, where φ0 ∈ [0, 2π) is a fixed phase.

Corollary 8. Let (xs, ys) ∈ S be the solution of the following system of equations:

(xs − xTx)

dTx(xs, ys)
+

(xs − xRx)

dRx(xs, ys)
= 0,

(ys − xTx)

dTx(xs, ys)
+

(ys − xRx)

dRx(xs, ys)
= 0 (41)

In the electrically-large regime, FT (rRx) can be approximated as follows:

FT (rRx) ≈
|Γtran(xs, ys)|Ωtran(xs, ys; p̂tran, p̂rec)

4π(dTx(xs, ys) + dRx(xs, ys))
e−jk(dTx(xs,ys)+dRx(xs,ys)−(φ0+φtran+φrec)/k) (42)

Proof. It is similar to the proof of Corollary 1.

Corollary 9. In the electrically-small regime, FT (rRx) can be approximated as follows:

FT (rRx) ≈
jkΩtran(0, 0; p̂tran, p̂rec) (cos θinc0 + cos θrec0)

16π2dTx0dRx0

e−jk(dTx0+dRx0−(φ0+φtran+φrec)/k)
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∫ Ly

−Ly

∫ Lx

−Lx
|Γtran(x, y)|ejk(Dxx+Dyy)dxdy (43)

where definitions and notation similar to Corollary 2 are employed. If |Γtran(x, y)| = Γtran > 0

for (x, y) ∈ S, then FT (rRx) can be simplified as follows:

FR(rRx) ≈
jkΓtranΩtran(0, 0; p̂tran, p̂rec)LxLy (cos θinc0 + cos θrec0)

4π2dTx0dRx0

sinc (kLxDx) sinc (kLyDy)

e−jk(dTx0+dRx0−(φ0+φtran+φrec)/k) (44)

Proof. It follows by direct application of (16).

The intensity of FT (rRx) in Corollaries 8 and 9 is similar to that in Corollaries 1 and 2, respec-

tively. Therefore, similar scaling laws and performance trends are obtained. In the electrically-

large regime, in particular, the law of transmission, i.e., ϕinc(xs, ys) = (ϕrec(xs, ys)+π) mod 2π

and θinc(xs, ys) = θrec(xs, sy) can be retrieved by direct inspection of (41).

B. S is Configured for Anomalous Transmission
This setup is obtained by setting ∠Γtran(x, y) = k(αTx + βTy) + φ0 for (x, y) ∈ S, where

αT ∈ R and βT ∈ R are design parameters, and φ0 ∈ [0, 2π) is a fixed phase. Similar to reflecting

surfaces, the direction of anomalous transmission is determined by the setup of αT and βT .

Corollary 10. Let (xs, ys) ∈ S be the solution of the following system of equations:

(xs − xTx)

dTx(xs, ys)
+

(xs − xRx)

dRx(xs, ys)
= αT ,

(ys − xTx)

dTx(xs, ys)
+

(ys − xRx)

dRx(xs, ys)
= βT (45)

Assume the same notation and definitions as in Corollary 3 and Corollary 4. In the electrically-

large regime, FT (rRx) can be approximated as follows:

FT (rRx) ≈
|Γtran(xs, ys)|Ωtran(xs, ys; p̂tran, p̂rec)e

−jk(dTx(xs,ys)+dRx(xs,ys)−(αT xs+βT ys)−(φ0+φtran+φrec)/k)

8π
√
R1(dTx(xs, ys))2 +R2(dRx(xs, ys))2 +R3dTx(xs, ys)dRx(xs, ys)

≈ |Γtran(xs, ys)|Ωtran(xs, ys; p̂tran, p̂rec)

8π(K1dTx(xs, ys) +K2dRx(xs, ys))
e−jk(dTx(xs,ys)+dRx(xs,ys)−(αT xs+βT ys)−(φ0+φtran+φrec)/k) (46)

Proof. It is similar to the proofs of Corollary 3 and Corollary 4.

Corollary 11. In the electrically-small regime, FT (rRx) can be approximated as follows:

FT (rRx) ≈
jkΩtran(0, 0; p̂tran, p̂rec) (cos θinc0 + cos θrec0)

16π2dTx0dRx0

e−jk(dTx0+dRx0−(φ0+φtran)/k) (47)∫ Ly

−Ly

∫ Lx

−Lx
|Γtran(x, y)|ejk(DαT x+DβT y)dxdy
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where the shorthand notation DαT = αT +Dx and DβT = βT +Dy is used. If |Γtran(x, y)| = Γtran

for (x, y) ∈ S, then FT (rRx) can further be approximated as follows:

FT (rRx) ≈
jkΓtranΩtran(0, 0; p̂tran, p̂rec)LxLy (cos θinc0 + cos θrec0)

4π2dTx0dRx0

sinc (kLxDαT ) sinc (kLyDβT )

e−jk(dTx0+dRx0−(φ0+φtran)/k) (48)

Proof. It is similar to the proof of Corollary 5.

Once again, we observe that the intensity of FT (rRx) in Corollaries 10 and 11 is similar to that

in Corollaries 3 and 5, respectively. In particular, the angles of transmission can be optimized

through the setup of αT and βT , similar to the optimization of αR and βR for reflecting surfaces.

C. S is Configured for Focusing
This setup is obtained by setting ∠Γtran(x, y) = k (dTx(x, y) + dRx(x, y)) + φ0 for (x, y) ∈ S,

where φ0 ∈ [0, 2π) is a fixed phase. With this setup, FT (rRx) in (38) simplifies as follows:

FT (rRx) ≈
jkej(φ0+φrec+φtran)

16π2

∫ Ly

−Ly

∫ Lx

−Lx
Ωtran(x, y; p̂tran, p̂rec)

|Γtran(x, y)| (cos θinc(x, y) + cos θrec(x, y))

dTx(x, y)dRx(x, y)
dxdy (49)

Similar to reflecting surfaces, the following corollaries provide an upper-bound and an asymptotic

approximation for (49) in the electrically-large and electrically-small regimes, respectively.

Corollary 12. Assume dP1(x, y) ≤ dP2(x, y), where (P1,P2) = (Tx,Rx) or (P1,P2) = (Rx,Tx),

|Γtran(x, y)| = Γtran > 0 for (x, y) ∈ S, and zP1 6= 0. Define Ctran = 2k3pdmΓtranE(p̂inc,p̂tran)
16π2ε0

. Then:

|FT (rRx)| ≤ Ctran

(
1− zP2

zP1

)
tan−1

[
(xP1 − x)(yP1 − y)

|zP1|
√

(xP1 − x)2 + (yP1 − y)2 + z2
P1

]∣∣∣x=Lx

x=−Lx

∣∣∣y=Ly

y=−Ly
(50)

Proof. It is the same as for Corollary 6.

Corollary 13. In the electrically-small regime, FT (rRx) can be approximated as follows:

FT (rRx) ≈
jkej(φ0+φrec+φtran)

16π2
Ωtran(0, 0; p̂tran, p̂rec) (cos θinc0 + cos θrec0)

∫ Ly

−Ly

∫ Lx

−Lx
|Γtran(x, y)|dxdy

(51)

If |Γtran(x, y)| = Γtran > 0 for (x, y) ∈ S, then FT (rRx) can be further approximated as follows:

FT (rRx) ≈
jkΓtran|Ωtran(0, 0; p̂tran, p̂rec)|LxLy (cos θinc0 + cos θrec0)

4π2dTx0dRx0

ej(φ0+φrec+φtran) (52)

Proof. It follows by direct application of (20).
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(a) Simulation setup
Settings

f = 28 GHz, λ = 10.71 mm
ε0 = 8.85 · 10−12 Farad/meter
pdm = (k2/ε0)−1

p̃inc = p̃ref = p̃tran = p̃rec = ŷ (transverse electric)
φ0 = φinc = φref = φtran = φrec = 0
E (p̂inc, p̂ref) = E (p̂inc, p̂tran) = 1
|Γref(x, y)| = |Γtran(x, y)| = 1 ∀(x, y) ∈ S
θinc0 = π/4, ϕinc0 = π/3
θrec0 = π/6, ϕrec0 = π (reflecting S)
θrec0 = π/3, ϕrec0 = 5π/4 (transmitting S)
αR = αT = − sin θinc0 cosϕinc0 − sin θrec0 cosϕrec0

βR = βT = − sin θinc0 sinϕinc0 − sin θrec0 sinϕrec0

(b) Reflecting surface. Setup: dTx0 = dRx0 = 100 m
Table 2(a): Simulation setup and Fig. 3(b) impact of surface size.

In conclusion, we evince that |FT (rRx)| in Corollaries 12 and 13 is similar to |FR(rRx)| in

Corollaries 6 and 7, respectively. As for the performance trends as a function of the size of S

and the transmission distances, reflecting and transmitting surfaces have a similar behavior.

VI. NUMERICAL RESULTS

In this section, we illustrate some numerical examples in order to shed light on the behavior

of the path-loss in the presence of RISs. In addition, we aim to analyze the conditions under

which the considered asymptotic regimes hold true, and whether the considered phase gradient

metasurfaces allow us to realize anomalous reflection/transmission and focusing as elaborated

in Sections IV and V. Unless otherwise stated, we use the simulation setup in Table 3a. The

simulation results illustrate FR(rRx) and FT (rRx) obtained in Sections IV and V, respectively.

A. Anomalous Reflection and Focusing
In Fig. 4, we analyze anomalous transmission and focusing (transmitting surface) by using

Proposition 2. The radial lines spaced by 45 degrees denote the angle ϕ and the three inner circles

spaced by 30 degrees denote the angle θ (some lines and circles are removed for clarity). We

observe that the correct angles of transmission are obtained. We note that anomalous transmitting

surfaces yield a larger coverage area than focusing lenses. This is obtained, however, only for

short transmission distances (near-field of the RIS). On the other hand, the larger coverage area

is not apparent for long transmission distances (far-field of the RIS). This confirms Remark 12.

In Fig. 5, we analyze anomalous reflection and focusing (reflecting surface) by using Proposi-

tion 1. In particular, we consider a discretized version of the integral in (21), which corresponds

to a practical implementation of the RIS based on (discrete) scattering elements. Provided that

the scattering elements are spaced less than half of the wavelength apart (i.e., the discretization
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(a) Anomalous transmission, dTx0 = dRx0 = 5 m (b) Focusing lens, dTx0 = dRx0 = 5 m

(c) Anomalous transmission, dTx0 = dRx0 = 50 m (d) Focusing lens, dTx0 = dRx0 = 50 m

Fig. 4: Anomalous transmission vs. focusing lens (transmitting surface). Setup: 2Lx = 2Ly = 1 m.

(a) Anomalous reflection, no discretization (b) Anomalous reflection, discretization step = 0.25λ

(c) Anomalous reflection, discretization step = 0.5λ (d) Anomalous reflection, discretization step = λ

Fig. 5: Anomalous reflection: Impact of discretization. Setup: 2Lx = 2Ly = 0.5 m; dTx0 = dRx0 = 5 m.

step is λ/2), we evince that no significant differences can be observed at the naked eye. If the

discretization step is greater than λ/2, e.g., it is λ, we observe the presence of grating lobes

(spurious reflections) in unwanted directions. To better appreciate the impact of discretization,

Fig. 6 reports the absolute error difference that corresponds to the setups in Fig. 5. We observe
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(a) Absolute error of Figs. 5(b), 5(a) (b) Absolute error of Figs. 5(c), 5(a) (c) Absolute error of Figs. 5(c), 5(b)

Fig. 6: Absolute error difference corresponding to Fig. 5.

(a) Anomalous reflection (b) Focusing lens

Fig. 7: Anomalous reflection vs. focusing lens: Impact of transmission distance.

that some differences are indeed apparent and that more closely spaced scattering elements yield

more accurate estimates of the electric field (especially in the considered near-field regime).

B. Transmission Distance
In Fig. 7, we analyze the impact of the transmission distance in the context of anomalous

reflection and focusing. In particular, the distances from the transmitter to the center of the RIS,

and from the center of the RIS to the receiver are denoted by dTx0 = dRx0 = d0. The angles

of observation computed with respect to the center of the RIS are kept fixed as d0 increases

or decreases. We observe that the analytical frameworks obtained in the electrically-large and

electrically-small asymptotic regimes well overlap, in the regions of interest, with the integral

representation of the electric field. In particular, we note a major difference between anomalous

reflectors and focusing lenses. As for anomalous reflectors, we observe two scaling laws as a

function of the distance: (i) the weighted-sum path-loss model for short distances and (ii) the

product path-loss model for long distances. As for focusing lenses, on the other hand, we observe

a single scaling law: the product path-loss model that is sufficiently accurate for short and long
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distances. This highlights that the impact of the distance depends on the setup of the RIS. A

focusing lens co-phases all the contributions scattered from the RIS and this yields a different

scaling law as compared with an anomalous reflector. As for anomalous reflectors, it is worth

noting that the weighted-sum path-loss model may be accurate up to a few tens of meters, which

may be important in indoor scenarios and for local coverage enhancement in outdoor scenarios.

C. Surface Size
In Fig. 3b, we analyze the impact of the size of the RIS for anomalous reflection and focusing

(reflecting surface). In particular, the figure reports the intensity of the electric field as a function

of the diagonal, D, of the RIS. We observe that the intensity of the electric field is bounded even

if the size of the surface increases without bound. The closed-form analytical frameworks and the

bounds obtained in the electrically-large and electrically-small regimes well predict the scaling

law. It is worth noting that the electrically-small approximation may significantly overestimate

the intensity of the electric field even for relatively small surfaces and for long transmission

distances (100 meters in the figure). These results confirm that the proposed path-loss model

is compliant with the power conservation law and that the received power is always bounded,

regardless of the size of the surface, in the far-field of the RIS microstructure.

VII. CONCLUSION

We have introduced a physics-compliant path-loss model for RIS-aided wireless transmission.

The proposed path-loss model is general enough for application to various operating regimes,

which include near-field and far-field asymptotic regimes. The impact of several design parame-

ters has been analyzed. In particular, we have proved that the scaling laws of the received power

as a function of the transmission distance and the size of the RIS are different in the near-field

and far-field regimes, and they depend on the wave transformations applied by the RIS. Notably,

the received power scattered by an RIS is bounded as its size increases without bound.

In the context of wireless communications, in general terms, one should always use the integral

representation of the path-loss in order to make sure that the received power is physically

meaningful as a function of every design parameter, e.g., the surface size and the transmission

distance. The simple analytical expressions obtained in the near-field and far-field asymptotic

regimes can be employed provided that the considered system setup is compliant with their

regime of validity. For application to the performance evaluation and optimization of wireless

networks, one may consider the use of a two-law path-loss model (in analogy with two-slope

path-loss models), which combines together the closed-form analytical expressions obtained in
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the near-field and far-field regimes. This approach may avoid the analytical intractability of using

two-fold integrals while ensuring compliance with physics-based constraints.

APPENDIX A – PROOF OF THEOREM 1
By inserting H∂V (r′) = −∇r′ × E∂V (r′)/(jωµ0) in (11), we obtain the following:

E∂V (rRx) = 1(rTx∈V )Einc(rRx; p̂inc)−
∫
∂V

[(n̂out ×∇r′ × E∂V (r′))G(rRx, r
′) (53)

+ (n̂out · E∂V (r′))∇r′G(rRx, r
′) + (n̂out × E∂V (r′))×∇r′G(rRx, r

′)] dr′

(a)
= 1(rTx∈V )Einc(rRx; p̂inc)−

∫
∂V

[(n̂out ×∇r′ × E∂V (r′))G(rRx, r
′) + (n̂out · ∇r′G(rRx, r

′))E∂V (r′)] dr′

(b)
= 1(rTx∈V )Einc(rRx; p̂inc)−

∫
∂V

[(n̂out · E∂V (r′))∇r′G(rRx, r
′)−G(rRx, r

′) (n̂out · ∇r′)E∂V (r′)] dr′

where (a) and (b) follow by applying the identity a×b×c = (a ·c)b− (a ·b)c, for any vectors

a, b, c [17, Eq. (VII-37)], to the fourth and second addends, respectively, i.e.:

n̂out × E(r′)×∇r′G(rRx, r
′) = (n̂out · ∇r′G(rRx, r

′))E(r′)− (n̂out · E(r′))∇r′G(rRx, r
′) (54)

(n̂out ×∇r′ × E(r′))G(rRx, r
′) = (n̂out · E(r′))∇r′G(rRx, r

′)− (n̂out · ∇r′)E(r′)G(rRx, r
′)

(c)
= (n̂out · E(r′))∇r′G(rRx, r

′)−G(rRx, r
′) (n̂out · ∇r′)E(r′)− (n̂out · ∇r′G(rRx, r

′))E(r′) (55)

where (c) comes from the product rule of derivatives. The proof follows by scalar-multiplying

both sides of (53) with p̂rec and from the identity (n̂out · ∇r′)E∂V (r′)·p̂rec = n̂out·(∇r′(E∂V (r′) · p̂rec)).

APPENDIX B – PROOF OF THEOREM 2
The total electric field at any point r′ ∈ ∂V \ S (i.e., not including S) is equal to the incident

field, i.e., E∂V (r′) = Einc(r
′, p̂inc). On the other hand, the electric field at any point s ∈ S is equal

to E∂V (r′) = ES(s), where ES(s) is given in (5) or (6). By denoting M(r′) = Einc(r
′, p̂inc) · p̂rec

and N(s) = ES(s) · p̂rec, (12) can be written, with the aid of some algebra, as follows:

E(rRx) · p̂rec
(a)
= 1(rTx∈V )M(rRx)−

∫
∂V

[M(r′)∇r′G(rRx, r
′)−G(rRx, r

′)∇r′M(r′)] · n̂outdr
′

−
∫
S

[(N(s)−M(s))∇sG(rRx, s)−G(rRx, s)∇s(N(s)−M(s))] · n̂outds (56)

where (a) is obtained by taking into account that: (i)
∫
∂V

=
∫
∂V \S +

∫
S , and (ii) N(s)−M(s)

is the difference between the total electric field ES(s) and the incident field Einc(s, p̂inc) on S.

Let us consider I∂V = −
∫
∂V

[M(r′)∇r′G(rRx, r
′)−G(rRx, r

′)∇r′M(r′)] · n̂outdr
′. By applying

the divergence theorem [13, Eq. (C.25)] and the identity ∇r · (f∇rg) = f∇2
rg+∇rf · ∇rg [17,

Eq. (VII-46)] to generic scalar functions f and g, I∂V can be simplified as follows:
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I∂V = −
∫
V

[
M(r)(∇2

r + k2)G(rRx, r)−G(rRx, r)(∇2
r + k2)M(r)

]
dr (57)

(a)
= M(rRx) +

∫
V

G(rRx, r)(∇2
r + k2)M(r)dr

(b)
= M(rRx) +

∫
V

G(rRx, r)
(

(~∇2
r + k2)Einc(r; p̂inc)

)
· p̂recdr

where (a) follows from (10) and from the fact that rRx is always contained in V , and (b) follows

from the identity (∇2
r + k2)M(r) =

(
(~∇2

r + k2)Einc(r; p̂inc)
)
· p̂rec.

Consider the integral IV =
∫
V
G(rRx, r)

(
(~∇2

r + k2)Einc(r; p̂inc)
)
· p̂recdr. From (7) and by

virtue of the identities ∇r × ∇r × Einc(r; p̂inc) = ∇r(∇r · Einc(r; p̂inc)) − ~∇2
rEinc(r; p̂inc) [17,

Eq. (VII-51)] and ∇ · Einc(r; p̂inc) = ρ(r, rTx)/ε0 [13, Sec. 1.1], the integral IV simplifies to

IV =
∫
V
G(rRx, r)(∇rρ(r, rTx)/ε0 + jωµ0J(r, rTx)) · p̂recdr. By definition: (i) IV = 0 if Tx

is not contained in V , and (ii) IV = −Einc(rRx; p̂inc) · p̂rec if Tx is contained in V [13, Eqs.

(15.3.3), (15.3.6)]. Thus, we have IV = −1(rTx∈V )M(rRx), and, from (57), I∂V = M(rRx) −

1(rTx∈V )M(rRx). With the aid of some simplifications, the proof follows.

APPENDIX C – PROOF OF LEMMA 4
The proof is based on the application of the stationary phase method [17, Appendix VIII], [18]

to (14) under the assumption of operating in the electrically-large regime, as stated in Definition

3. Let (xs, ys) ∈ Ψ be the stationary points of P(x, y) = dTx(x, y)+dRx(x, y)−C(x, y) for (x, y) ∈

S. By invoking the stationary phase method, the integral I1 in (14) oscillates very quickly outside

a small region centered at (xs, ys) ∈ Ψ, and, thus, the contributions outside the small region

around the stationary points cancel out when computing the integral [17, pg. 923]. Under these

conditions, I1 can be well approximated by (i) replacing P(x, y) with its Taylor approximation

evaluated at (xs, ys) ∈ Ψ, i.e., P(x, y) ≈ P(xs, ys)+A(x−xs)2 +B(y−ys)2 +C(x−xs)(y−ys)

where A = ∂2

∂x2
P(x, y)|(x,y)=(xs,ys), B = ∂2

∂y2
P(x, y)|(x,y)=(xs,ys), and C = ∂2

∂x∂y
P(x, y)|(x,y)=(xs,ys)

and (ii) by letting the extremes of integration go to infinity, since I1 is dominated by a small

region around the stationary points and the contributions to the integral outside that small region

cancel out. For simplicity, let us assume that a single stationary point exists. The case study with

multiple stationary points is obtained by summing up the contributions from all the stationary

points [18, Sec. 1.3, pg. 15]. Accordingly I1, can be approximated as follows:

I1 ≈ A1(dTx(xs, ys), dRx(xs, ys))B1(xs, ys)e
−jkP(xs,ys)∫ ∞

−∞

∫ ∞
−∞

e−jk(A(x−xs)2+C(x−xs)(y−ys)+B(x−xs)2)dxdy (58)
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From (58), the proof follows from [17, Eqs. (VIII-10)-(VIII-22)].

APPENDIX D – PROOF OF LEMMA 5
Define Q(x, y) = A1(dTx(x, y), dRx(x, y))B1(x, y). Since no stationary points lie in S, we can

divide and multiply the integrand of (14) by ∂P(x, y)/∂x 6= 0. Thus,(14) can be written as:

I1 =

∫ Ly

−Ly

∫ Lx

−Lx

Q(x, y)e−jkP(x,y)

∂P(x, y)/∂x

∂P(x, y)

∂x
dxdy

(a)
=

1

(−jk)

∫ Ly

−Ly

(
Q(x, y)e−jkP(x,y)

∂P(x, y)/∂x

∣∣∣x=Lx

x=−Lx
−
∫ Lx

−Lx

∂

∂x

(
Q(x, y)

∂P(x, y)/∂x

)
e−jkP(x,y)dx

)
dy

(b)
≈ 1

(−jk)

∫ Ly

−Ly

(
Q(Lx, y)e−jkP(Lx,y)

Px(Lx, y)

)
dy − 1

(−jk)

∫ Ly

−Ly

(
Q(−Lx, y)e−jkP(−Lx,y)

Px(−Lx, y)

)
dy

(c)
≈ 1

(−jk)2

[
Q(Lx, y)e−jkP(Lx,y)

Px(Lx, y)Py(Lx, y)
− Q(−Lx, y)e−jkP(−Lx,y)

Px(−Lx, y)Py(−Lx, y)

] ∣∣∣y=Ly

y=−Ly
(59)

where (a) is obtained by using integration by parts, (b) follows by virtue of Riemann-Lebesgue’s

lemma, which states that the integral over x decays with 1/k2, and, therefore, it can be ignored

as compared with the first term [19, Eqs. (3.21), (3.22)], [20, Eq. (4.2)], and (c) follows by

applying again the same procedure but by multiplying and dividing the two integrands in (b) by

∂P(±Lx, y)/∂y 6= 0. The proof follows by iterating the same procedure once more.

APPENDIX E – PROOF OF PROPOSITION 1
Consider (13). From Lemma 2, Einc(rRx; p̂inc) ≈ E0,inc (rRx; p̂inc)G (rRx, rTx). From (5) and

Lemma 2, ES(s) = Einc(s; p̂inc)+Γref(s)Eref(p̂inc, p̂ref)Einc(s; p̂ref), with Einc(s; p̂inc) ≈ E0,inc (s; p̂inc)

G (s, rTx) and Einc(s; p̂ref) ≈ E0,inc (s; p̂ref)G (s, rTx). By inserting them in (13), we obtain:

E(rRx) · p̂rec ≈ p̂rec · E0,inc (rRx; p̂inc)G(rRx, rTx) (60)

−
∫
S

[Fref(s)G (s, rTx)∇sG(rRx, s)−G(rRx, s)∇s (Fref(s)G (s, rTx))] · n̂outds

where Fref(s) = Γref(s)Eref(p̂inc, p̂ref)E0,inc (s; p̂ref) · p̂rec = Γref(s)Ωref(x, y; p̂ref, p̂rec)e
j(φref+φrec) for

(x, y) ∈ S, where Ωref(·) is defined in the statement of Proposition 1.

In the reflection case, n̂out = −ẑ. Thus, by using the product rule of derivatives, we have n̂out ·

∇s (Fref(s)G (s, rTx)) = Z1+Z2, where Z1 = −Fref(s)
∂
∂z
G (s, rTx) and Z2 = −G (s, rTx)

∂
∂z
Fref(s).

By computing the derivatives, it can be shown that Z1 ∝ k3

|s−rTx|G (s, rTx) and Z2 ∝ k2

|s−rTx|G (s, rTx).

Under the assumption k � 1/|s− rTx|, Z1 dominates Z2 and hence n̂out ·∇ (Fref(s)G (s, rTx)) ≈

Z1 = −Fref(s)
∂
∂z
G (s, rTx). Therefore, (60) can be simplified as follows:
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E(rRx) · p̂rec ≈ p̂rec · E0,inc (rRx; p̂inc)G(rRx, rTx) (61)

−
∫
S
Fref(s) [G (s, rTx)∇sG(rRx, s)−G(rRx, s)∇sG (s, rTx)] · n̂outds

(a)
≈ p̂rec · E0,inc (rRx; p̂inc)G(rRx, rTx) + jk

∫
S
Fref(s)G (s, rTx)G(rRx, s)

[
zRx

|s− rRx|
+

zTx

|s− rTx|

]
ds

where (a) is obtained by taking into account that n̂out = −ẑ, and, hence, by definition:

∇sG(s, rTx) · n̂out
(b)
= +

∂

∂z
G(s, rTx)|z=0

(d)
≈ jkG(s, rTx)

zTx

|s− rTx|
(62)

∇sG(rRx, s) · n̂out
(c)
= − ∂

∂z
G(rRx, s)|z=0

(d)
≈ −jkG(rRx, s)

zRx

|rRx − s|
(63)

where the “+” sign in (b) and the “-” sign in (c) take into account that the direction of propagation

of the incident and reflected signals point towards the same and the opposite directions with

respect to n̂out, respectively, and the approximations in (d) take into account that 1/|s− rTx| � k

and 1/|rRx − s| � k. This completes the proof.

APPENDIX F – PROOF OF COROLLARY 1
Consider (21). The proof is based on the stationary phase method stated in Lemma 4. Ac-

cording to Definition 2, the stationary points of P(x, y) = PR(x, y) in (22) correspond to the

solutions of (24). Due to the monotonicity of (24) with respect to xs and ys, either a single or

no stationary point exists. More precisely, (24) can be equivalently re-written as follows:

sin θinc(xs, ys) cosϕinc(xs, ys) = − sin θrec(xs, ys) cosϕrec(xs, ys) (64)

sin θinc(xs, ys) sinϕinc(xs, ys) = − sin θrec(xs, ys) sinϕrec(xs, ys)

which, using some algebra, yields ϕinc(xs, ys) = (ϕrec(xs, ys)+π) mod 2π and θs = θinc(xs, ys) =

θrec(xs, ys) (i.e., the law of reflection). Based on Lemma 4 with P(x, y) = PR(x, y), the determi-

nant of A(xs, ys) is det(A(xs, ys)) = PxxPyy−(Pxy)
2 = cos2 θs (1/dTx(xs, ys) + 1/dRx(xs, ys))

2,

where the derivatives are Pxx = ∂2

∂x2
PR(x, y)|(x,y)=(xs,ys), Pyy = ∂2

∂y2
PR(x, y)|(x,y)=(xs,ys), and

Pxy = ∂2

∂x∂y
PR(x, y)|(x,y)=(xs,ys). In addition, it can proved that (Pxy)

2 < PxxPyy, which im-

plies that the two eigenvalues of A(xs, ys) are positive and distinct. Therefore, we obtain

sign(A(xs, ys)) = 2. The proof follows by inserting det(A(xs, ys)) and sign(A(xs, ys)) in 4.

APPENDIX G – PROOF OF PROPOSITION 2
Consider (13). From Lemma 2, Einc(rRx; p̂inc) ≈ E0,inc (rRx; p̂inc)G (rRx, rTx). From (6) and

Lemma 2, ES(s) = Γtran(s)Etran(p̂inc, p̂tran)Einc(s; p̂tran), with Einc(s; p̂tran) ≈ E0,inc (s; p̂tran)G (s, rTx).

By inserting them in (13), we obtain:
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E(rRx) · p̂rec ≈ p̂rec · E0,inc (rRx; p̂inc)G(rRx, rTx) (65)

−
∫
S

[Ftran(s)G (s, rTx)∇sG(rRx, s)−G(rRx, s)∇s (Ftran(s)G (s, rTx))] · n̂outds

where Ftran(s) = (Γtran(s)Etran(p̂inc, p̂tran)E0,inc (s; p̂tran) − E0,inc (s; p̂inc)) · p̂rec, which can be

formulated in terms of Ωinc(·) and Ωtran(·) as defined in the statement of Proposition 2.

The rest of the proof is similar to Appendix E. The difference is that n̂out = ẑ, and, hence,

the signs in (b) and (c) that correspond to (62) and (63) are both negative because the direction

of propagation of the incident and transmitted signals is opposite to n̂out.
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