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Abstract—Recently, machine learning-based channel estima-
tion has attracted much attention. The performance of machine
learning-based estimation has been validated by simulation
experiments. However, little attention has been paid to the
theoretical performance analysis. In this paper, we investigate
the mean square error (MSE) performance of machine learning-
based estimation. Hypothesis testing is employed to analyze its
MSE upper bound. Furthermore, we build a statistical model
for hypothesis testing, which holds when the linear learning
module with a low input dimension is used in machine learning-
based channel estimation, and derive a clear analytical relation
between the size of the training data and performance. Then,
we simulate the machine learning-based channel estimation in
orthogonal frequency division multiplexing (OFDM) systems to
verify our analysis results. Finally, the design considerations for
the situation where only limited training data is available are
discussed. In this situation, our analysis results can be applied
to assess the performance and support the design of machine
learning-based channel estimation.

Index Terms—channel estimation, performance analysis, MSE,
machine learning, OFDM

I. INTRODUCTION

IN wireless communication systems, the transmitted signals

are corrupted by many detrimental factors, such as mul-

tipath propagation, and mobility, etc [1], [2]. To recover the

transmitted data accurately, channel estimation is an essential

module in the coherent receiver. A portion of the transmitted

signals are known at the receiver and used for the channel

estimation, which are called pilot signals [3]. Among the

pilot-aided channel estimation methods, least-squares (LS)

estimation has the lowest complexity, which simply divides

the received signal value by the pilot [4], [5]. However, its

performance is sensitive to noise. To improve the performance

of LS estimation, the correlation in time, frequency, and space

domain can be exploited in linear minimum mean square error

(LMMSE) estimation, where the correlated LS estimates are

used to enhance an estimate of interest [6], [7]. Although

LMMSE estimation has the optimal estimation performance

[8], the computational complexity is much higher than LS

estimation and it requires the knowledge of second-order

channel statistics. Moreover, LMMSE estimation draws on the
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condition that the channel is linear and stationary. When the

channel is non-linear or non-stationary, LMMSE estimation

suffers from performance degradation and the closed-form

expression of the optimal estimation, i.e., minimum mean

square error (MMSE) estimation, turns out to be intractable

[9], [10].

While there were early works on machine learning (ML)-

based channel estimation [11]–[13], the recent re-emergence

of machine learning has motivated the use of neural net-

works for channel estimation again [9], [10], [14]–[24]. In

ML-based channel estimation, the LS estimates are fed into

a neural network, and then the neural network yields the

enhanced channel estimates. As a model-free approach, ML-

based channel estimation merely needs a dataset labeled by

true channel responses to optimize the parameters of the neural

network. An effective estimator can still be learned under

complex channel conditions. In [9], a non-stationary channel

is considered, where the expression of the MMSE estimation

cannot be calculated in closed form. The heuristic structure

deduced under a given distribution of the second-order channel

statistics is used as a blueprint to design the neural network.

Through training the neural network, the estimator performs

well under arbitrary channel models. Until now, ML-based

channel estimation has been developed for wireless energy

transfer (WET) systems [10], orthogonal frequency division

multiplexing (OFDM) systems [14], multiple-input multiple-

output (MIMO) [9], [15], [16], and massive MIMO [17]–

[19]. Deep learning (DL) techniques including fully connected

deep neural network (FC-DNN) [20], recurrent neural network

(RNN) [21], and convolution neural network (CNN) [22],

[23] have been leveraged to enhance the channel estimation

performance.

In the literature, the merits of ML-based channel estimation

have been demonstrated by experiments. However, the theo-

retical analysis of ML-based channel estimation has been paid

little attention. Specifically, it has been shown by simulations

that ML-based channel estimation can approach the optimal

estimation [9], i.e., MMSE estimation. The mean square error

(MSE) difference between the two methods, however, has not

been investigated analytically. In addition to performance, the

requirements on the training dataset, which plays an important

role in the ML-based channel estimation, have not been studied

analytically as well. In this paper, we analyze the ML-based

channel estimation from a theoretical perspective, and our

main contributions are the following.

• We investigate the MSE difference between the ML-based

channel estimation and the MMSE channel estimation

employing hypothesis testing. The analysis shows that

http://arxiv.org/abs/1911.03886v2
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there is an upper bound of the MSE difference even if the

inputs are not from the training dataset, which provides

theoretical support for ML-based channel estimation.

• We further specify the distribution functions in hypothesis

testing, which holds for the situation where the learning

module is linear with a low input dimension. Then, we

define the scaled MSE difference as the performance

measure of the ML-based channel estimation and derive

the analytical relation between the training dataset size

and performance. Moreover, we display the numerical

result of this analytical relation and obtain the sufficient

size of the training dataset.

• We conduct computer simulations to evaluate the perfor-

mance of ML-based channel estimation, where the linear

structure and deep neural network (DNN) are employed.

Through simulation experiments, the derived sufficient

size of the training dataset is examined and our theoretical

analysis is validated.

• We discuss the design of ML-based channel estimation

for the situation where only limited training data is avail-

able. Since the linear learning module may be employed

in this situation, our analysis results can be used to

predict the performance of ML-based channel estimation

and help determine the input dimension of the learning

module.

The rest of this paper is organized as follows. Channel

models, the MMSE estimation, and the ML-based channel

estimation are introduced in Section II. The performance anal-

ysis on ML-based channel estimation is presented in Section

III. To validate our analysis, the performance of ML-based

channel estimation employing the linear structure and DNN is

evaluated through simulations in Section IV and Section V,

respectively. The design considerations of ML-based channel

estimation with limited training data are discussed in Section

VI. Finally, the paper is concluded in Section VII.

Notation: We use boldface small letters and capital letters

to denote vectors and matrices. E [·], D [·], and ‖·‖2 repre-

sent the expectation, the variance, and the Euclidean norm,

respectively. The superscripts (·)∗, (·)T, (·)H, (·)−1
denote the

conjugate of complex, the transpose, the Hermitian transpose

of a complex vector or matrix, and the inversion, respectively.

CN (·) represents the complex Gaussian distribution, while

χ2 (κ) represents the chi-square distribution with dimension

of κ. We denote the probability density function (PDF) and

cumulative probability function (CDF) of χ2 (κ) as pχ2
κ
(·) and

Fχ2
κ
(·), respectively.

II. CHANNEL ESTIMATION

A. Channel Model and MMSE Estimation

In pilot-assisted channel estimation, known pilot signals are

transmitted and used for channel estimation. LS estimation is

usually adopted to estimate the channel responses as the initial

estimates and then these initial estimates can be improved with

many different methods [5].

The LS estimation simply divides the received signal values

by the pilot values [5]. We use ĥp to represent a Np×1 vector

that contains the LS estimates, where Np is the number of

pilot signals. ĥp can be modeled as the superposition of actual

channel responses and noise [5], [7], i.e.,

ĥp = h+ n, (1)

where n is a white Gaussian noise vector with variance σ2. h

contains the true channel responses for pilot signals.

We denote ĥs as a Np × 1 vector containing the improved

estimates based on ĥp and use a function f(·) to represent a

certain channel estimation method [22], i.e.,

ĥs = f

(

ĥp

)

. (2)

We aim to analyze the performance of channel estimation in

this paper and the performance analysis is usually focused on

a single channel response, e.g., in [25]. Therefore, we consider

only one estimate from the final output of channel estimation.

We define ĥs as an arbitrary element in ĥs and investigate the

performance of ĥs. The index of ĥs is omitted for simplicity

since the position of ĥs in ĥs is not concerned. Then, we have

ĥs = f
(

ĥp

)

. (3)

Note that the performance analysis on ĥs can be used to

assess a channel estimation method represented by (2). Since

ĥs is an element of the vector ĥs, the analysis can be focused

on ĥs while investigating the estimation performance of ĥs in

(2).

As a general representation, (3) can describe a wide range

of channel estimation methods. The design of a channel

estimation method is to pursue a low MSE and we denote

fopt(·) as the one that has the minimal MSE, i.e., the MMSE

estimation [26]. The analytical expression of fopt (·) depends

on the statistical model of the channel [9]. In this paper, we

consider two types of channel models: the stationary channel

model and the quasi-stationary channel model.

The stationary channel which is subject to complex Gaus-

sian distribution is often assumed for conventional channel

estimation methods [27]. Then, we have h ∼ CN (0,Rhh)
and the MMSE estimation can be expressed as [5]

fopt

(

ĥp

)

= rhsh

(

Rhh + σ2
I
)−1

ĥp, (4)

where hs is the actual channel response of ĥs. rhsh denotes the

correlation vector between hs and h, i.e., rhsh = E[hs(h)
H].

I is an identity matrix.

Channel estimation for the quasi-stationary channel has

been investigated in the recent literature, e.g., in [9]. Under

a quasi-stationary channel, rhsh and Rhh are not fixed but

depend on the given parameters δ. δ may describe, for

example, angles of propagation paths and the parameters

in δ are assumed to be random variables [9]. Then, h is

assumed to be conditionally Gaussian distributed, i.e. h |δ ∼
CN

(

0,Rhh|δ

)

. Under this condition, the optimal estimation

is given by [9]

fopt

(

ĥp

)

= E

[

h

∣

∣

∣
ĥp

]

= E

[

E

[

h

∣

∣

∣
ĥp , δ

] ∣

∣

∣
ĥp

]

= E

[

fopt|δ

(

ĥp

) ∣

∣

∣
ĥp

]

,

(5)
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where

fopt|δ

(

ĥp

)

= rhsh|δ

(

Rhh|δ + σ2
I
)−1

ĥp.

It is difficult to derive the exact expression of (5).

The analytical expression of fopt (·) or MMSE estimation

depends on the channel model. Therefore, when we develop a

channel estimation algorithm based on MMSE estimation, we

should investigate the channel model. Furthermore, when the

channel model is complicated, the exact expression of MMSE

estimation is hard to obtain. As a result, the MMSE channel

estimation may sometimes be practically infeasible.

B. Machine Learning-based Channel Estimation

Channel estimation can be realized in a quite different

manner by leveraging machine learning. The procedure of

machine learning-based channel estimation is illustrated in

Fig. 1 [9]. The key component is the learning module, which

is employed to approximate the function in (3). Convolution

neural network (CNN) [22], recurrent neural network (RNN)

[21], the linear structure and etc. can be used as the learning

module. The linear structure directly connects the output with

the input and is the simplest learning module, which can only

fit a linear function.

There are two phases in machine learning-based channel

estimation including the training phase and the deployment

phase. In the training phase, the parameters of the learning

module are optimized through reducing a loss function over a

data set T . To be specific, the data set T can be represented as

T = {(ĥp(1), hs(1))...(ĥp(m), hs(m))...(ĥp(M), hs(M))},

where (ĥp(m), hs(m)) denotes the mth pair of training data

in T and hs(m) is the label for the input ĥp(m). Note that

we omit the index m for simplicity if it is not needed. The

loss function is defined as the square error of estimation, i.e.,

L(f(ĥp), hs) = |f(ĥp)− hs|2. In addition, we define LT as

the average loss function over the data set T , i.e.,

LT =
1

M

∑

m

∣

∣

∣
f
(

ĥp (m)
)

− hs (m)
∣

∣

∣

2

. (6)

We call LT the training loss in the following. Through mini-

mizing LT , the learning module can be trained to approximate

a function that achieves good estimation performance. In the

deployment phase, the initial estimates ĥp input the learning

module and then the learning module produces the estimate

of hs.

The machine learning-based channel estimation does not

heavily rely on the channel model [9] and merely needs

a dataset for training. This is because the learning module

of machine learning-based channel estimation can be simply

regarded as a black box, which can directly perform channel

estimation after its parameters are optimized through training.

It is not required to derive the explicit expression of channel

estimation, unlike conventional methods. As a result, when

a complicated channel condition is considered, an effective

estimator can still be learned in a data-driven manner.

However, the theoretical analysis on the performance of

machine learning-based channel estimation lacks in the recent

literature. If the sample size is infinitely large and the training
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Fig. 1. Sketch diagram of machine learning based estimation.

loss approaches the expected square error, i.e., MSE, MMSE

estimation can be learned by training since the estimator that

minimizes the training loss will be the one that minimizes

MSE. However, in practice, the sample size is a finite value

and the training loss is merely the sampled value of MSE.

Then, the training procedure can only guarantee that the

learned estimator minimizes the square error of training data.

If new data inputs the estimator, the MSE performance of

the output is unpredictable and only experimental evaluation

has been provided for the performance of ML-based channel

estimation. Therefore, we analyze the MSE performance of

the ML-based channel estimation in this paper.

III. PERFORMANCE ANALYSIS ON MACHINE

LEARNING-BASED CHANNEL ESTIMATION

A. Performance Analysis Using Hypothesis Testing

The MSE of channel estimation represented by f (·) is also

the expectation of loss function, as can be seen from the

equation below.

LE = E

[

L
(

f
(

ĥp

)

, hs

)]

= E

[

∣

∣

∣
f
(

ĥp

)

− hs

∣

∣

∣

2
]

.
(7)

It is difficult to obtain the joint probability density function

(PDF) of f(ĥp) and hs, which depends on many channel

statistics, and thus the MSE of f (·) is intractable.

We denote f∗ (·) as the learned function in ML-based

channel estimation. The learned estimation is normally not the

MMSE estimation fopt(·) as mentioned above, and there is a

certain loss in the MSE performance compared with fopt(·).
We denote the MSEs of fopt (·) and f∗ (·) as LE1 and LE2,

respectively. We use ∆LE
to represent the MSE difference

between fopt (·) and f∗ (·), i.e., ∆LE
= LE2−LE1. Notice that

the MSE of f∗ (·) is difficult to calculate and one may concern

more about the MSE difference ∆LE
than the exact MSE LE2.

Since the MSE difference ∆LE
can show whether the ML-

based channel estimation approaches the optimal performance,

it can indicate the learning performance more clearly than the
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exact value of MSE LE2. We investigate the MSE difference

∆LE
in this paper.

We employ hypothesis testing to analyze ∆LE
[28]. Define

∆LE
≥ ∆0

LE
as hypothesis H0 and ∆LE

< ∆0
LE

as

hypothesis H1. Set the confidence level as 1 − ε0. Then,

if the probability of the observed event that happens under

hypothesis H0 is lower than ε0, i.e., P (H0) ≤ ε0, we can

accept H1 and it is derived that the upper bound of the MSE

difference ∆LE
is ∆0

LE
. More specifically, we believe that the

MSE difference between the MMSE estimation fopt(·) and the

learned estimation f∗ (·) is no more than ∆0
LE

at a confidence

level of 1−ε0. Since whether the condition P (H0) ≤ ε0 holds

is unknown , further analysis on P (H0) is needed.

Denote ξ1 as the training loss of fopt (·), i.e.,

ξ1 =
1

M

∑

m

∣

∣

∣
fopt

(

ĥp (m)
)

− hs (m)
∣

∣

∣

2

.

Denote ξ2 as the training loss of f∗ (·), i.e.,

ξ2 =
1

M

∑

m

∣

∣

∣
f∗

(

ĥp (m)
)

− hs (m)
∣

∣

∣

2

.

The learned estimation has the minimal training loss, i.e., ξ1 ≥
ξ2. We denote the probability that ξ1 ≥ ξ2 as ε. Note that

P (H0) is the probability of ξ1 ≥ ξ2 under hypothesis H0.

We have P (H0) = ε when ∆LE
≥ ∆0

LE
. To simplify the

expression of ε, we need the following assumption.

Assumption 1. ξ1 is independent of ξ2, i.e., p (ξ1, ξ2) =
p1 (ξ1) p2 (ξ2), where p1 (ξ1) and p2 (ξ2) are the PDFs of ξ1
and ξ2, respectively.

If Assumption 1 does not hold, e.g., if fopt(·) = f∗(·) and

ξ1 is highly correlated with ξ2, the actual value of P (H0) is

lower than its calculated value ε. To illustrate, when f∗(·) is

close to fopt(·), which may violate the independence between

ξ1 and ξ2, the MSE difference between f∗(·) and fopt(·)
is reduced, which contributes to H1. Then, the actual value

P (H0) decreases and thus is lower than the calculated value ε.

In the case, we can still accept H1 at the same confidence level.

Since the confidence level can be regarded as the lower bound

of P (H1), the actual probability of H1 can be higher than

the confidence level. In other words, the hypothesis testing

results derived under Assumption 1 apply for the situation

where Assumption 1 does not hold.

Under Assumption 1, ε can be expressed as

ε =

∫ ∞

0

∫ x1

0

p (x1, x2)dx2dx1

=

∫ ∞

0

p1 (x1)

∫ x1

0

p2 (x2)dx2dx1

=

∫ ∞

0

p1 (x1)F2 (x1)dx1,

(8)

where F2 (x) is the cumulative probability function (CDF) of

ξ2, i.e., F2 (x) =
∫ x

−∞
p2 (z)dz.

The value of ε is dependent on ∆LE
. Fig. 2 displays an

example of shapes for p1 (x) and F2 (x). With the increasing

of ∆LE
, the high value region of p1 (x) will further move

to the near zero region of F2 (x). According to (8), when the

multiplication of p1 (x) and F2 (x) is near zero, ε will be rather

( )1p x ( )2F x

x
1E1E

D
2E2E

Fig. 2. Sketch diagram for PDF of ξ1 and CDF of ξ2.

small. Therefore, we can infer that ε is negatively correlated

to ∆LE
.

We assume that the value of ε is ε0 when ∆LE
= ∆0

LE
.

Since P (H0) = ε for ∆LE
≥ ∆0

LE
and ε is negatively

correlated to ∆LE
, P (H0) has the maximum value when

∆LE
achieves its minimum value ∆0

LE
. As ε = ε0 when

∆LE
= ∆0

LE
, the maximum value of P (H0) is ε0. There-

fore, we have P (H0) ≤ ε0. It demonstrates the condition

P (H0) ≤ ε0 in above hypothesis testing and thus proves that

compared with the optimal channel estimation, the MSE loss

of machine learning-based channel estimation is less than ∆0
LE

at a confidence level of 1− ε0.

The above analysis actually demonstrates the validity of

ML-based channel estimation, which is the main challenge

when applying machine learning techniques. This is typically

examined by experiments, while we verify it from a theoretical

perspective. The analysis shows the MSE upper bound of ML-

based channel estimation and the MSE is actually the expected

loss function, as mentioned above. The expected loss function

describes the performance of output for unseen data [29] and

thus indicates the applicability of machine learning when the

input data is not from the training set.

From Fig. 2, the effect of the sample size on the perfor-

mance of ML-based channel estimation can be explained as

well. With the increasing of the sample size, the variances

of ξ1 and ξ2 will be reduced, and then p1 (x) will become

narrow and F2 (x) will increase more sharply. As a result, the

overlapping part between p1 (x) and F2 (x) will be reduced

and the value of ε will be smaller. For the confidence level

1−ε0, the corresponding upper bound ∆0
LE

decreases. There-

fore, the MSE of the learned estimation LE2 will be closer to

the minimal MSE LE1.

B. Analytical Relation between Sample Size and Performance

To derive the analytical relation between the sample size and

∆0
LE

, the knowledge of the distributions of the training losses

ξ1 and ξ2 are required. We make the following assumptions

to specify a distribution for the training loss.

Assumption 2. Output error is subject to complex Gaussian

distribution, i.e., (f(ĥp)− hs) ∼ CN (0,LE). LE is actually

the MSE of the estimation represented by f(ĥp).
Assumption 3. Output errors are independent, i.e.,

(f(ĥp(m1))− hs(m1)) and (f(ĥp(m2))− hs(m2)) are in-

dependent when m1 6= m2.

Assumption 2 holds when the simplest learning module is

used, i.e., the linear structure. hs and ĥp are Gaussian random
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variables as mentioned in Section II-A. The output error is the

linear combination of those variables when the function f(·)
is a linear one. Thus, the output error is Gaussian as well [26].

Since the means of hs and ĥp are all zeros, the mean of the

output error is also zero. In addition, since E[f(ĥp)− hs] = 0,

the variance of the output error equals E[|f(ĥp)− hs|2], i.e.,

the MSE LE for the channel estimation function f(·). Hence,

we have (f(ĥp)− hs) ∼ CN (0,LE).

Assumption 3 approximately holds when the output errors

are highly random [30]. To satisfy this condition, independent

training data should be provided and the number of parameters

in the learning module should be small. The independence of

training data can be guaranteed by properly generating the

inputs and labels [9]. However, the number of parameters

in the learning module is related to the chosen learning

module and the use of a complex learning module may violate

Assumption 3. As an illustration, if a complex learning module

with a huge number of parameters is used, overfitting may

happen [29]. Then, the output errors may all be zeros and

thus highly correlated.

In summary, Assumption 2 and Assumption 3 approxi-

mately hold when the learning module is approximately linear

and the input dimension is low since a low input dimension

can reduce the number of parameters in the learning module.

Lemma 1: Given assumptions 2 and 3, the normalized

training loss 2Mξ/LE is subject to chi-square distribution

χ2 (2M), where ξ is the training loss given in (6).

Proof. If assumption 2 holds, we have |f(ĥp)− hs|2 =
a2+b2, where a and b are both Gaussian, i.e., a ∼ N (0,LE/2)
and b ∼ N (0,LE/2). Then, 2|f(ĥp)− hs|2/LE can be

represented as the superposition of two normalized Gaussian

variables.

If assumption 3 holds, the normalized training loss

2Mξ/LE can be regarded as the superposition of the squares

of 2M independent nomalized Gaussian variables, which is

the formal description of the chi-square distribution χ2 (2M).

Therefore, it is verified that the normalized training loss is

subject to the chi-square distribution χ2 (2M).

According to Lemma 1, 2Mξ1/LE1 and 2Mξ2/LE2 are

both subject to the chi-square distribution χ2 (2M). We denote

κ = 2M as the degree of freedom in χ2 (2M). Then, the PDF

of ξ1 can be represented as

p1 (x) =
κ

LE1
pχ2

κ

(

κx

LE1

)

, (9)

and the CDF of ξ2 can be expressed as

F2 (x) = Fχ2
κ

(

κx

LE2

)

. (10)

Substituting (9) and (10) into (8) gives

ε =

∫ ∞

0

p1 (x1)F2 (x1)dx1

=

∫ ∞

0

κ

LE1
pχ2

κ

(

κx1

LE1

)

Fχ2
κ

(

κx1

LE2

)

dx1

ς1=
κx1

LE1=

∫ ∞

0

pχ2
κ
(ς1)Fχ2

κ

(

LE1ς1
LE2

)

dς1

=

∫ ∞

0

Fχ2
κ

(

ς1

1 +
∆LE

LE1

)

pχ2
κ
(ς1)dς1.

(11)

As can be seen from (11), ε is determined by κ, which

is related to the sample size, the MSE difference ∆LE
and

the minimal MSE LE1. We define α = ∆LE
/LE1, where α

can be regarded as the scaled MSE difference. We use α as

the performance metric for the ML-based channel estimation.

Then, there are only two variables left, i.e., κ and α. After the

confidence level 1−ε is determined, a clear analytical relation

between α and κ can be derived.

It is intuitive that the structure of the learning module,

including the input dimension and the category of the learning

module (linear or non-linear), influences the learning perfor-

mance. However, the learning performance indicator α is only

determined by the training data size indicator κ. This is be-

cause the analytical relation between α and κ is derived based

on Assumption 2 and Assumption 3. The two assumptions

actually exclude the effects of the structure of the learning

module from the analysis result since the two assumptions

require that the learning module should be approximately

linear and the input dimension should be low. We can see that

although the two assumptions limit the applicable scenarios of

the analysis, they indeed contribute to obtaining a clear relation

between the learning performance and the sample size.

The value, 0.95, is usually considered to be an acceptable

confidence level [28]. Therefore, we set ε = 0.05 and plot the

curve of α as a function of κ in Fig. 3. The required training

data size can be obtained from this curve. As an example, we

consider that the learning performance is satisfactory when the

MSE difference of the learned estimator is lower than 10% of

the optimal MSE performance. Then, the required training data

size corresponds to α = 0.1 on the curve. It can be seen that

when κ is above 1200, α is below 0.1. Therefore, it shows

that if the learning module is linear and its input dimension

is low, we can create a training dataset whose size is only

around 600 (the training data size M = κ/2) and a satisfactory

estimator can be learned based on the training dataset. Note

that the learning performance indicator α is an upper bound

for the scaled MSE difference. The above analysis result may

still hold when Assumption 2 and Assumption 3 are slightly

violated in practice. In addition, the sufficient dataset size 600

is derived for α = 0.1. When other values of the learning

performance indicator α are chosen, the sufficient dataset size

varies w.r.t α.

IV. PERFORMANCE EVALUATION FOR ML-BASED

CHANNEL ESTIMATION EMPLOYING LINEAR STRUCTURE

In the previous section, we present the performance analysis

of the ML-based channel estimation and a conclusion is
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Fig. 3. Figure of scaled performance loss upper bound α varied with sample
size indicator κ when ε is set to 0.05.

reached that 600 is a sufficient sample size when the linear

learning module with a low input dimension is used. To verify

this conclusion, we conduct computer simulations to examine

the performance of ML-based channel estimation in which the

linear learning module is employed. We use stationary channel

models in simulations so that the optimal channel estimation

has a closed-form and the performance measure, i.e., scaled

MSE difference α, can be calculated.

A. System Model for Simulation

We consider an OFDM system with N subcarriers [5]. The

DC (direct current) carrier and a certain number of carriers

at the edges of the spectrum are null, and we denote K as

the number of usable subcarriers in an OFDM symbol. CP

length Ncp is set to N/4 and assumed to be over the maximum

delay. The channel is assumed to be constant over one OFDM

symbol. Time and frequency synchronization are assumed to

be accurate as well.

We use an exponentially decaying power-delay profile

(PDP), which can be expressed as

Γ (τ) = Ce−τ/τmax (12)

where C is a normalization coefficient and τmax is the maxi-

mum delay of the channel.

Referring to the framework in Fig. 1, the estimator can be

interpreted as Fig. 4. Note that the estimator is not exactly the

same as the framework in Fig. 1. The output of the estimator

has the same dimension as the input, while the framework in

Fig. 1 only gives a single estimate. However, when it comes

to the evaluation of estimation performance, the estimator

becomes consistent with the framework. We calculate the

average over the MSEs of the channel frequency responses

(CFRs) and the output of the estimator is treated as a single

estimate like the framework in Fig. 1. Therefore, the MSE

performance of the estimator in Fig. 4 can be used to examine

the analysis in Section III.

Training set

Learning 

algorithm

1

f_LSĥ

2

f_LSĥ

1

f_LS
ˆKh -

f_LS
ˆKh

1

f_MLĥ

2

f_MLĥ

1

f_ML
ˆKh -

f_ML
ˆKh

Fig. 4. Sketch diagram of ML-based channel estimation employing the linear
structure.

The estimator in Fig. 4 is actually the realization of (2).

Since we use a linear learning module and the processing on

LS estimates is linear, the function f in (2) can be expressed

as the multiplication by a coefficient matrix. Therefore, the

mathematical expression of the estimator is given by

ĥ
ML
f = Wĥ

LS
f , (13)

where W is a K×K matrix and contains the parameters of the

learning module. ĥLS
f corresponds to ĥp in (2) and contains

the LS estimates of CFRs, i.e.,

ĥ
LS
f =

[

ĥ1
f LS, ..., ĥ

K
f LS

]T

.

ĥ
ML
f corresponds to ĥs in (2) and contains the output of the

estimator, i.e.,

ĥ
ML
f =

[

ĥ1
f ML, ..., ĥ

K
f ML

]T

.

In Fig. 4, the training set is

T =
{

...,
(

ĥ
LS
f (m) ,hf (m)

)

, ...
}

,

where hf contains the actual values of the CFRs, which is the

label of training data.

The learning algorithm is to find the W∗ that minimizes

the training loss, which can be formulated as

W∗ = arg
W

min
∑

m

∥

∥

∥
Wĥ

LS
f (m)− hf (m)

∥

∥

∥

2

2
. (14)

The optimization problem of (14) has an analytical solution

[29]

W∗ = H

(

Ĥ
H
Ĥ

)−1

Ĥ
H, (15)

where Ĥ = [ĥLS
f (1) , ..., ĥLS

f (M)] is a matrix containing

the LS estimation of CFRs in the training set T and H

contains the corresponding true values of CFRs, i.e., H =
[hf (1) , ...,hf (M)]. As we use independent training data, the

column vectors in Ĥ are not correlated. Therefore, (ĤH
Ĥ) is

full rank and invertible.
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B. Numerical Results

In the simulation of the ML-based channel estimation, we

first generate training data to optimize the parameter matrix

of the learning module and obtain W∗. We assume that the

correct channel statistics, i.e., the noise variance σ2 and the

channel correlation function, are known. That is, given the

dataset size M , we can use the true channel model to generate

M realizations of channel vectors hf and the respective LS

estimates ĥLS
f . We also assume that the channel realizations are

independent to support Assumption 3. After training, we use

W∗ to perform channel estimation. The channel realizations

are assumed to be independent of those generated for training

so that the estimation performance for whole new data can be

shown.

We simulate the LMMSE estimator in (4) as the opti-

mal estimation fopt(·). The MSE of the LMMSE estimator

corresponds to the minimal MSE LE1 and the MSE of the

learned estimator corresponds to LE2. Then, the performance

measure of ML-based channel estimation α = ∆LE
/LE1 can

be calculated using LE1 and LE2, where ∆LE
= LE2 − LE1.

We first conduct simulation experiments to verify the con-

clusion reached in Section III-B that 600 is a sufficient dataset

size when the learning module is linear and its input dimension

is low. In our simulations, the input dimension is the number

of usable subcarriers per symbol K and we can adjust the

number of null subcarriers to control the input dimension.

We set the input dimension set as low values including 4, 8,

12. The discrete Fourier transform (DFT) size N , the dataset

size M and the maximum delay τmax are set to 16, 600
and 2, respectively. Fig. 5 compares the MSE performance

of ML-based channel estimation and the LMMSE channel

estimation. We can see that the performance of ML-based

channel estimation with the three input dimensions is close

to that of the LMMSE channel estimation at different signal-

to-noise ratios (SNRs). This simulation result verifies that

a training data set of size 600 is indeed sufficient for the

considered learning module. It also validates our theoretical

analysis using hypothesis testing and the derived analytical

relation between the dataset size and performance.

Assumption 3 will not hold with the increasing input

dimension as mentioned in Section III-B. It can be inferred

that the scaled MSE difference α increases as the input di-

mension increases. Since training data will be insufficient with

the growing parameters in the learning module, the learning

performance will be degraded. Nevertheless, a training data set

of size 600 may still be sufficient when the input dimension is

relatively high. As the performance measure α in Section III-B

is actually the upper bound for the scaled MSE difference,

the actual scaled MSE difference may be satisfactory when

Assumption 3 is slightly violated. We simulate the scaled MSE

difference α of ML-based channel estimation under different

values of the input dimension to examine its range. The scaled

MSE difference α is presented in Fig. 6 as a function of

the input dimension K at SNRs of -10 dB, -5 dB, 0 dB,

10 dB, and 20 dB. It can be observed the curves are very

close under high SNRs and low SNRs, respectively, and only

have a little difference around the SNR of 0 dB. Furthermore,
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Fig. 5. The MSE performance of ML-based channel estimation and LMMSE
channel estimation under different SNRs.
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Fig. 6. The scaled MSE difference of ML-based channel estimation under
different input dimensions.

the scaled MSE difference α is even smaller at lower SNRs,

which indicates that the noise variance of the LS estimates

does not influence the learning performance. This agrees with

the result shown in (11), which implies that the noise level

is not a factor affecting the learning performance. Moreover,

the scaled MSE difference α indeed grows with the increasing

of the input dimension K . As the curve for the SNR of 0 dB

has approximately the average performance, we investigate the

input dimension range based on this curve. It can be seen that

α < 0.1 with the input dimension lower than 60. We consider

that the learning performance is acceptable when the scaled

MSE difference α < 0.1. Therefore, the input dimension can

increase to 60 with a training dataset of size 600.

When the input dimension is larger than 60, a training

dataset of size 600 is not sufficient and more training data is

required. To investigate the required dataset size for ML-based
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Fig. 7. The scaled MSE difference of ML-based channel estimation under
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channel estimation with a high input dimension, we set the

DFT size N as 256 and simulate ML-based channel estimation

under K = 120, 180, 240, respectively. In Fig. 7, we display

the scaled MSE difference α with respect to the sample size

M . As expected, the required sample size grows as the input

dimension increases. Furthermore, the required dataset size

is approximately in proportion to the input dimension. Based

on this result, we can determine the sufficient size of the

dataset for high input dimensions. However, further theoretical

analysis is required to verify the derived dataset size and it is

left as future work.

V. PERFORMANCE EVALUATION FOR ML-BASED

CHANNEL ESTIMATION EMPLOYING DNN

Deep learning (DL) has attracted much attention recently.

Therefore, in this section, we evaluate the performance of ML-

based channel estimation employing the deep neural network

(DNN) with the derived training dataset size 600. Note that the

analysis in Section III-B may not hold for this situation. This

is because the DNN can approximate a non-linear function,

which violates Assumption 2, and commonly has a large

number of parameters, which violates Assumption 3.

A. System Model for Simulation

We simulate the same OFDM system as above but consider

the quasi-stationary scenario, where the maximum delay τmax

is assumed to be a random variable. As explained in Section

II, the closed-form of the optimal channel estimation is hard

to derive. However, it is the scenario where ML-based chan-

nel estimation shines. The estimator can be directly trained

to approximate some complicated expression for the quasi-

stationary channel condition since DNN can be regarded as a

universal function approximator [20].

The structure of the estimator is illustrated in Fig. 8. DNN

works as the function f in (2), which maps the LS estimates

to the improved estimation results. The employed DNN has

Training set

Learning 

algorithm

1

f_LSĥ

f_LS
ˆKh

1

f_MLĥ

f_ML
ˆKh

Fig. 8. Sketch diagram of ML-based estimation employing the linear structure.

three layers, including one input layer, one hidden layer, and

one output layer. The numbers of neurons in each of the

three layers are 2K , 4K , 2K , respectively. Since a DNN

cannot get complex numbers as input and also cannot provide

them as output, we take the real part and imaginary part of

a complex number as two input variables and combine two

output variables to generate a complex number. Therefore,

the input and output dimensions are twice of the subcarriers’

number. The activation function in input and output layers is

linear, while the Sigmoid function is used in the hidden layer.

B. Numerical Results

The frequency correlation function of channel responses

is the Fourier transform of the PDP. Since the maximum

delay τmax is a random variable, the channel correlation

function is unknown and the LMMSE channel estimation

cannot be performed. To cope with the uncertainty of the

channel correlation function, the robust estimator proposed

in [31] can be applied. The robust estimator is actually the

LMMSE estimation using a uniform PDP based correlation

function. The maximum delay of the PDP uses the upper

bound of τmax, i.e., the possibly largest value of τmax. The

robust estimator is also called the robust LMMSE estimator

in this paper.

In simulations, the DFT size N is set to 64 and the valid

subcarrier number K is 60. The maximum delay τmax is

drawn from a uniform distribution within [1, 2, .., 16]. Fig. 9

shows the MSE performance of ML-based channel estimation

and conventional channel estimation methods including LS

estimation and robust LMMSE estimator. When a large dataset

is provided for training, the ML-based estimator achieves

a significant improvement over the LS estimator and out-

performs the robust LMMSE estimator. However, when the

sample size is reduced to 600, huge performance degradation is

observed in the ML-based channel estimation. It shows that the

derived analytical relation between the training dataset size and

performance is not suitable for DL techniques since Assump-

tion 2 and Assumption 3 are violated when DL techniques are

used. To derive the sufficient size of the training dataset for

ML-based channel estimation employing DL techniques, one
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may only need to reconsider the distribution of the training

loss since the performance analysis using hypothesis testing

in Section III-A still holds for DL techniques.

VI. DESIGN OF ML-BASED CHANNEL ESTIMATION WITH

LIMITED TRAINING DATA

In the previous studies of ML-based channel estimation, it

is usually assumed that sufficient training data, e.g., tens of

thousands of samples [9], are available. However, in com-

munications systems, generating training data may lead to

the reduction of system efficiency. Considering the system

efficiency, the available training data may be limited in some

applications, e.g., only hundreds of training data. Therefore,

we discuss the ML-based channel estimation with a small

training dataset in this section.

A linear learning module is preferable for ML-based chan-

nel estimation with limited training data compared to complex

neural networks. As seen in Fig. 9, although DNN has better

potential than the linear structure, it suffers from unacceptable

performance degradation when the training data is limited.

Similarly, the input dimension should be relatively low since

the learning module with a high input dimension requires a

large amount of training data as shown in Fig. 7. Therefore,

when the size of the training data is small, the ML-based

channel estimation may employ a linear learning module with

a low input dimension.

In this case, our theoretical results in Section III-B can be

used to make quantitative predictions for the learning perfor-

mance of ML-based channel estimation. Then, the learning

module becomes a white box because its performance is pre-

dictable given the size of the training dataset. Additionally, our

analysis results can help design ML-based channel estimation.

As an example, we consider the design of ML-based channel

estimation for an OFDM system with 512 subcarriers, in which

480 are valid, and only 600 sample pairs are available for

training. We choose the linear structure as the learning module.

As for the input dimension, considering the correlations be-

tween subcarriers, the potentially optimal performance may be

achieved by setting it as 480. However, 480 is too large for the

sample size since the provided training data is merely enough

for a low input dimension according to our analysis in III-B.

Therefore, we partition the OFDM symbol into subsymbols

consisting of much fewer subcarriers as in [27] and filter

over these subsymbols. In this way, the input dimension can

be reduced. We consider that the learning performance is

acceptable when α ≤ 0.1. Given that the sample size is

600, the input dimension can be raised to 60 as shown in

Fig. 6. Therefore, we expect that 60 is a good choice for

the input dimension. When the input dimension is 60, the

learning performance is already satisfactory, which means that

the performance of the learned estimation is close to that

of the optimal estimation. If the input dimension is further

reduced, the performance of ML-based channel estimation

reduces due to the performance degradation of the optimal

channel estimation.

We simulate ML-based channel estimation employing the

linear structure under several symbol partition schemes. We

assume a stationary channel and τmax is set to 64. The results

are displayed in Fig. 10, where the MSE performance of the LS

estimator is also plotted as a baseline. Interestingly, we observe

that the scheme that partitions the symbols into subsymbols

containing 60 subcarriers each, i.e., the input dimension 60,

indeed performs the best. When the input dimension is 240

or 480, a significant performance loss is observed due to the

lack of training data. The MSEs for the input dimensions 30,

60, and 120 are close and their MSE differences change w.r.t.

the SNR. At low SNRs, the input dimension 30 achieves the

best performance. This is because the MSE value is large

at low SNRs and the MSE of ML-based channel estimation

can be reduced significantly by reducing the scaled MSE

difference α. The ML-based channel estimation with a lower

input dimension has smaller α and thus tends to have better

performance. However, when the MSE value is quite small

at high SNRs, the performance improvement brought by

reducing α may be ignorable. Then, the ML-based channel

estimation with a high input dimension tends to have better

performance since it has a lower achievable MSE. Therefore,

the input dimension 120 shows the best performance and the

input dimension 30 performs the worst within the three input

dimensions at high SNRs. In contrast, the input dimension 60

achieves a good tradeoff between the scaled MSE difference α
and the achievable MSE and thus has a moderate performance

at all SNRs.

VII. CONCLUSION

In this paper, we have presented the performance analysis

of ML-based channel estimation. The MSE upper bound of

ML-based channel estimation is investigated using hypothesis

testing. Moreover, we propose the scaled MSE difference,

which divides the potentially minimal MSE with the difference

between the MSE of ML-based channel estimation and the

potentially minimal MSE, as the performance measure. An

analytical relation between this performance measure and the
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sample size is derived for ML-based channel estimation em-

ploying the linear learning module with a low input dimension.

We plot a curve for this analytical result and derive the size

of the training dataset for a given scaled MSE difference

0.1, which is verified through simulations. Our performance

analysis is also validated in the simulation experiments. We

discuss the ML-based channel estimation for the scenario

where the available training data is limited and apply our

analysis results to support the design of the estimator.

Future work may reconsider the statistical model of hypoth-

esis testing and derive the theoretical performance evaluation

for ML-based channel estimation employing other learning

structures, e.g., the DNN.
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