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Abstract

We investigate the achievable rate and capacity of a non-perfect photon-counting receiver. For the

case of long symbol duration, the achievable rate under on-off keying modulation is investigated based

on Kullback-Leibler (KL) divergence and Chernoff α-divergence. We prove the tightness of the derived

bounds for large peak power with zero background radiation with exponential convergence rate, and for

low peak power of order two convergence rate. For large peak power with fixed background radiation and

low background radiation with fixed peak power, the proposed bound gap is a small positive value for

low background radiation and large peak power, respectively. Moreover, we propose an approximation

on the achievable rate in the low background radiation and long symbol duration regime, which is

more accurate compared with the derived upper and lower bounds in the medium signal to noise ratio

(SNR) regime. For the symbol duration that can be sufficiently small, the capacity and the optimal duty

cycle are is investigated. We show that the capacity approaches that of continuous Poisson capacity

as Ts = τ → 0. The asymptotic capacity is analyzed for low and large peak power. Compared with

the continuous Poisson capacity, the capacity of a non-perfect receiver is almost lossless and loss with

attenuation for low peak power given zero background radiation and nonzero background radiation,

respectively. For large peak power, the capacity with a non-perfect receiver converges, while that of

continuous Poisson capacity channel linearly increases. The above theoretical results are extensively

validated by numerical results.
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I. INTRODUCTION

On some specific occasions where the conventional RF is prohibited and direct link transmis-

sion cannot be guaranteed, non-line-of-sight (NLOS) optical scattering communication can be

adopted to provide certain information transmission rate [2]. Optical scattering communication

is typically developed in the ultraviolet (UV) spectrum due to solar blind region (200nm-280nm)

where the solar background radiation is negligible. On the UV scattering communication channel

characterization, extensive studies based on Monte Carlo simulation [3], [4], theoretical analysis

[5], [6], [7] and experimental results [8], [9], [10] show that the atmospheric attenuation among

scattering channel can be extremely large, especially for long-range transmission. Hence, it is

difficult to detect the received signals using conventional continuous waveform receiver, such as

photon-diode (PD) and avalanche photon-diode (APD). Instead, a photon-counting receiver is

widely deployed.

For photon-counting receiver, the received signals are usually characterized by discrete

photoelectrons, whose number in a certain interval satisfies a Poisson distribution. For such a

Poisson channel, recent works mainly focus on point-to-point single-user channel, such as single

transmitter [11], [12], multiple transmitters [13] in continuous-time [14], [15] and discrete-time

[16], [17], [18], [19], as well as the Poisson interference channel capacity [20]. For multiple

users scenario, [21], [22] focus on the Poisson broadcast channel, [23] investigates the Poisson

multiple-access channel (MAC). Besides, the system characterization and optimization, as well

as the signal processing [24], [25], [26], [27], [28] have also been extensively studied from the

receiver side.

Most information theoretical and signal processing works assume perfect photon-counting

receiver, which is difficult to realize. A practical photon-counting receiver typically consists of

a photomultiplier tube (PMT) as well as the subsequent sampling and processing blocks [29].

Recently, extensive efforts have been made to design and characterize practical photon-counting

receivers, such as single photon avalanche diode (SPAD), which has been applied in many

optical communication scenarios [30], [31]. In optical scattering communication, we consider

a practical photon-counting receiver typically consisting of a photomultiplier tube (PMT) and
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the subsequent pulse-holding circuits to generate a series of rectangular pulses with certain

width. The square pulses generated by pulse-holding circuits typically have positive width that

incurs dead time effect [32], where a photon arriving during the pulse duration of the previous

photon cannot be detected due to the merge of two pulses. The dead time effect and the model

of sub-Poisson distribution for the photon-counting processing have been investigated in [33],

[34], where the variance is lower than the mean. The photon-counting system with dead time

effect for infinite sampling rate has been investigated in optical communication for channel

characterizations [35], [36], optical wireless communications using SPAD detector [37], [38]

and experimental implementation [30], [39]. The photon-counting system with dead time effect

for finite sampling rate with shot noise of PMTs is investigated in [40] based on a rising-

edge detector. However, the performance analysis for a sampling-based detector focusing on the

achievable transmission rate and channel capacity are still missing.

In this work, we analyze the achievable rate and capacity of a sampling-based detector under

positive dead time and finite sampling rate, assuming negligible electrical thermal noise and

shot noise. For the symbol duration that cannot be small, we first derive the upper and lower

bounds on the achievable rate based on Kullback-Leibler (KL) divergence and Chernoff α-

divergence respectively. We also investigate the convergence rate of the proposed upper and

lower bounds, and demonstrate that the bound gap converges to zero with exponential rate for

large sampling number L, large peak power A and zero background radiation Λ0. For low peak

power A, the bound gap converges to zero with order A2. For large peak power A with fixed

background radiation Λ0 and low background radiation Λ0 with fixed peak power A, the bound

gap converges to certain small positive value for low background radiation Λ0 and large peak

power A, respectively.

For the symbol duration that cannot be arbitrarily small, we derive the capacity-achieving

distribution and corresponding capacity. We show that continuous Poisson capacity equals to

that of non-perfect receiver as Ts = τ → 0. Furthermore, we characterize the capacity loss

from the continuous Poisson channel for low and large peak power. We demonstrate negligible

and significant capacity loss for low peak power given zero background radiation and nonzero
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Fig. 1. The system diagram under consideration.

background radiation, respectively. The capacity with non-perfect receiver approaches a certain

value, while that of continuous Poisson channel increases linearly.

The remainder of this paper is organized as follows. In Section II, we provide the system

model of a practical photon-counting receiver, along with the achievable rate with on-off keying

(OOK) modulation for long symbol duration and the capacity for the symbol duration that cannot

be sufficiently small. In Section III, we derive the upper and lower bounds on the maximum

achievable rate and provide an approximation for the medium signal to noise ratio (SNR) regime.

In Section IV, we investigate the asymptotic tightness of the upper and lower bounds for five

scenarios. In Sections V and VI, we investigate the capacity and the corresponding asymptotic

properties, respectively. The theoretical analysis results are extensively validated by numerical

results in Section VII. Finally, we conclude this paper in Section VIII.

II. SYSTEM MODEL

A. Signal Model

We introduce the following notations that will be adopted throughout this paper. Random

variables and vectors are denoted by upper-case letters and bold uppercase letters, respectively.

We use notation Z[j] to denote a sequence of random variables {Z1, Z2, · · · , Zj}. Realizations

of random variables are denoted in lowercase letters, and follow the above notation conventions.

Consider single-user communicating to a single non-perfect receiver. The system model is

shown in Fig. 1. Let Λ(t) denote the R
+
0 -valued photon arrival rate at time t, and Y (t) denote

the Poisson photon arrival process observed at the receiver and

Y (t) = P
(

Λ(t) + Λ0

)

, (1)

where Λ0 is the dark current at receiver, and P(·) is the Poisson arrival process that records the

time instants and the number of photon arrivals. In particular, for any time interval [t− τ, t], the
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probability of k photons arriving at the receiver is given by

P{Y (t)− Y (t− τ) = k} = 1

k!
e−Xt(Xt)

k, k = 0, 1, · · · , (2)

where Xt =
∫ t

t−τ
Λ(t

′

)+Λ0dt
′

; the arrival rate Λ is given by Λ = P
hν0

, and P , h and ν0 denote the

transmitted optical power, the Plancks constant and the optical spectrum frequency, respectively,

such that the energy per photon is given by hν0. Thus, the photon arrival rate Λ(t) must satisfy

the following constraint:

0 ≤ Λ(t) ≤ A, (3)

where A is related to the corresponding maximum power allowed. In practice, LEDs or lasers

are adopted as the transmitter with limited the peak power, such that the peak power constraint

is more of interest than the average power constraint.

Assuming perfect photon-counting receiver, each photon and the corresponding arrival time

can be detected without error. However, perfect photon-counting receiver is difficult to realize,

and a non-perfect receiver with finite sampling rate consisting of a PMT detector, an ADC, and a

digital signal processor (DSP) unit is of more interest. When a photon arrives, the PMT detector

generates a pulse with certain width, which causes the merge of two pulses if the interval of

two photon arrival is shorter than the pulse width. The maximum arrival time interval where the

two pulses merge is called dead time, denoted as τ . Denote Ts as the ADC sampling interval

and assume low to medium sampling rate such that Ts ≥ τ . Considering the PMT sampling

sequence in a symbol interval Z[L] = {Z1, · · · , ZL}, where L
△
= ⌊ T

Ts
⌋, ⌊·⌋ is the lower rounding

function. Note that for any τ > 0, the number of photon arrivals N0,τ on [0, τ ] together with the

corresponding (ordered) arrival time instants T
NY = (T1, · · · , TNτ

) are complete descriptions of

random process Y0,τ .

For the practical photon-counting receiver under consideration, assume zero shot noise, thermal

noise and finite dead time. For one or multiple photons arriving at the photon-counting receiver

at (iTs − τ, iTs], the sampling value Zi is the same due to the self-sustaining avalanche in

SPAD or the shaping circuit that converts bell-shaped response into rectangular response for
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photon-counting [38], [40]. According to above statement, we have

Zi =







0, Tj /∈ (iTs − τ, iTs], ∀ j = 1, · · · , NT ;

1, otherwise;

(4)

where P(Zi = 1) = 1 − e−(XiA+Λ0)τ and Zi and Zj are independent identically distributed for

i 6= j due to the property of independent increment for Poisson process. In other words, Zi is

an indicator on whether one or more photons arrive within τ prior to the sampling instant.

B. The Achievable Rate on Long Symbol Duration

Assume OOK modulation with symbol interval Tb, where Λ(t) = A for symbol one and

Λ(t) = 0 for symbol zero. Let Xi ∈ {0, 1} denote the symbol in the ith slot, which is independent

across different time slots. Then, the arrival rate Λ(t) =
∑+∞

i=0 XiA · 1{(i − 1)Tb ≤ t < iTb},
where 1{·} is an indicator function. Further assume that Xi is independent and identically

distributed for each i with probability P(Xi = 1) = µ. In the remainder of this paper, since we

are interested in the achievable rate and symbols Xi are independent, we consider one symbol

interval and omit subscript i.

Consider the achievable rate for the above communication system assuming long symbol

duration Tb that cannot be shortened to the sampling duration. This corresponds to practical

application scenarios where the transmitter adopts an external modulator with certain maximum

modulation rate. Let p0 and p1 denote probability P(Zi = 1|X = 0) and P(Zi = 1|X = 1),

respectively. As the sum of variables with i.i.d. binary distribution is a sufficient statistic for

these variables, we define summation N̂
△
=
∑L

i=1 Zi and the achievable rate is given as follows,

I(X ; N̂) = H(N̂)−H(N̂ |X), (5)

where N̂ follows binomial distributions B(p0, L) and B(p1, L) for symbol X = 0 and X = 1,

respectively, and B(p, L) denotes binomial distribution with probability p for each trial and L

trials.
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C. The Capacity on Arbitrarily Small Symbol Duration

Recall that the Poisson channel capacity is defined as

CTs,τ = lim
T→∞

max
ΛT∈[0,A]

1

T
I(ΛT ;Z[Lc]). (6)

Here we assume that the symbol duration can be arbitrarily small. Since ΛT → (NT ,T
NT ) →

Z[Lc] forms a Markov chain, we have I(ΛT ;Z[Lc]) ≤ I(ΛT ;NT ,T
NT ), which shows that the

Poisson channel capacity with non-perfect receiver is lower than or equal to that of continuous

Poisson channel.

According to the chain rule for mutual information, we have

1

T
I(ΛT ;Z[Lc]) =

1

T

Lc∑

l=1

I(ΛlTs

(l−1)Ts
;Zl|Λ(l−1)Ts;Z[l−1])

=
1

T

Lc∑

l=1

H(Zl|Λ(l−1)Ts;Z[l−1])−H(Zl|ΛlTs;Z[l−1])

(a)
=

1

T

Lc∑

l=1

H(Zl|Λ(l−1)Ts;Z[l−1])−H(Zl|ΛlTs

(l−1)Ts
)

≤ 1

T

Lc∑

l=1

H(Zl)−H(Zl|ΛlTs

(l−1)Ts
) =

1

T

Lc∑

l=1

I(ΛlTs

(l−1)Ts
;Zl). (7)

where equality (a) holds since Zl is conditional independent of (Λ(l−1)Ts ;Z[l−1]) given ΛlTs

(l−1)Ts
.

Thus, we have CTs,τ ≤ max
ΛTs∈[0,A]

1
Ts
I(ΛTs;Z1), where the equality holds if ΛlTs

(l−1)Ts
is independent

of each other for different l. Consequently, the capacity-achieving distribution requires indepen-

dent input signals for different sampling intervals, and the capacity is given by,

CTs,τ = max
ΛTs∈[0,A]

1

Ts

I(ΛTs;Z1). (8)

III. THE BOUNDS AND APPROXIMATE ON ACHIEVABLE RATE FOR LONG SYMBOL

DURATION

The mutual information involves the entropy of mixture distribution with intractable analytical

form. Thus, pairwise-distances are adopted to provide lower bound and upper bound on the

mutual information [41]. The results are shown in the following proposition for completeness.

Proposition 1: Define X as the transmitted signal with measurable supports {x1, · · · , xn} and

P(X = xi)
△
= ci for i = 1, · · · , n. The channel transition probability P(Y |X) can be represented
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by a set of distribution {p1, · · · , pn}, where pi(y)
△
= P(Y = y|X = xi) for i = 1, · · · , n. We

have the following lower bound and upper bound on mutual information I(X ; Y ),

−
n∑

i=1

ci ln

n∑

j=1

cj exp(−Cα(pi||pj)) ≤ I(X ; Y ) ≤ −
n∑

i=1

ci ln

n∑

j=1

cj exp(−KL(pi||pj)), (9)

where Chernoff α-divergence Cα(p||q) = − ln
∫
pα(y)q1−α(y)dy and Kullback-Leibler diver-

gence KL(p||q) =
∫
p(y) ln p(y)

q(y)
dy.

Consider OOK modulation at the transmitter and photon-counting detection at the receiver. As

Ts ≥ τ , the samples are mutually independent and photon-counting detection is performed via

examining whether each sample is higher than a certain threshold. Assume negligible shot and

thermal noise such that each sample can distinguish whether photons arrived or not perfectly.

Let pi = 1 − e−(iA+Λ0)τ for i = 0 and 1. Recalling that N̂ ∼ B(L, pi)
△
= PB

i (·), the Chernoff

α-divergence and KL divergence are given by

Cα(P
B
1 ||PB

0 ) = − ln

n∑

i=1

(
L

i

)

(pα1p
1−α
0 )i[(1− p1)

α(1− p0)
1−α]L−i

= −L ln
(

pα1 p
1−α
0 + (1− p1)

α(1− p0)
1−α
)

= C1−α(P
B
0 ||PB

1 ), (10)

KL(PB
1 ||PB

0 ) =

L∑

i=0

(
L

i

)

pi1(1− p1)
L−i
(
i ln

p1
p0

+ (L− i) ln
1− p1
1− p0

)

= L
(

p1 ln
p1
p0

+ (1− p1) ln
1− p1
1− p0

)

. (11)

Note that mutual information I(X ; N̂) depends on Λ0, A, L, µ and τ . Since I(X ; N̂) = 0 for

µ = 0 or µ = 1, we focus on the maximum mutual information I(X ; N̂) over µ ∈ [0, 1] given

fixed dead time τ . Define Imax(Λ0, A, L)
△
= max

µ∈[0,1]
I(X ; N̂). In the remainder of this Section,

we investigate the lower and upper bounds on Imax(Λ0, A, L) and the asymptotic properties for

large L and A.

A. Lower Bound on Mutual Information

According to Proposition 1, the lower bound on I(X ; N̂) is given as

I(X ; N̂) ≥ −
{

µ ln[(1− µ) exp(−Cα(P
B
1 ||PB

0 )) + µ]

+(1− µ) ln[µ exp(−Cα(P
B
0 ||PB

1 )) + (1− µ)]
}

. (12)
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Note that the right-hand side of equation (12) increases with respect to Cα(P
B
1 ||PB

0 ) and

Cα(P
B
0 ||PB

1 ), where the optimal α maximizing the right-hand side is intractable. We resort

to a suboptimal solution to α, given as follows,

α∗ △
= arg max

0≤α≤1
min{Cα(P

B
1 ||PB

0 ), Cα(P
B
0 ||PB

1 )}. (13)

We have the following Lemma 1 on optimal α∗.

Lemma 1: The optimal solution to problem (13), denoted as α∗, is 1
2
.

Proof: Please refer to Appendix A-A.

Define β
△
= e−Cα∗ (PB

0 ||PB
1 ) = e−Cα∗(PB

1 ||PB
0 ) = (

√
p0p1+

√

(1− p0)(1− p1))
L < 1 and function

Fl(µ, β)
△
= −{µ ln[(1−µ)β+µ]+ (1−µ) ln[µβ+(1−µ)]}. We aim to maximize Fl(µ, β) with

respect to µ to tighten the lower bound on I(X ; N̂). Since

∂Fl

∂µ
= ln[1− (1− β)µ]− β

1− (1− β)µ
− {ln[β + (1− β)µ]− β

β + (1− β)µ
}, (14)

we have

∂Fl

∂µ

∣
∣
∣
(0,β)

= − ln β + 1− β > 0,
∂Fl

∂µ

∣
∣
∣
(1,β)

= ln β − 1 + β < 0, (15)

∂2Fl

∂µ2
= − 1− β

1− (1− β)µ
− β(1− β)
(
1− (1− β)µ

)2 −
1− β

β + (1− β)µ
− β(1− β)
(
β + (1− β)µ

)2 < 0. (16)

Thus, the optimal µ maximizing Fl(µ) uniquely exists and satisfies ∂Fl

∂µ
= 0. Define monotonic

increasing function G(x)
△
= ln x− β

x
. Since ∂Fl

∂µ

∣
∣
∣
(µ∗,β)

= G(1−(1−β)µ∗)−G(β+(1−β)µ∗) = 0,

we have 1− (1− β)µ∗ = β + (1− β)µ∗ and µ∗ = 1
2
. Thus, we have the following lower bound,

Imax(Λ0, A, L) ≥ max
µ∈[0,1]

Fl(µ, β) = − ln
1 + β

2
. (17)

B. Upper Bound on Mutual Information

The upper bound can be obtained using similar method as that of obtaining the lower bound.

Defining β1
△
= exp

(
−KL(PB

1 ||PB
0 )
)

and β2
△
= exp

(
−KL(PB

0 ||PB
1 )
)
, we have the following,

Fu(µ, β1, β2) = −{µ ln[(1− µ)β1 + µ] + (1− µ) ln[µβ2 + (1− µ)]}, (18)

KL(PB
1 ||PB

0 )−KL(PB
0 ||PB

1 ) = (p1 − p0) ln
p1(1− p1)

p0(1− p0)
S 0, if p0 + p1 T 1. (19)

Define µ∗(β1, β2)
△
= arg max

0≤µ≤1
Fu(µ, β1, β2). Although closed form of µ∗(β1, β2) is intractable,

we have the following properties on µ∗(β1, β2),
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Lemma 2: Cycle µ∗(β1, β2) must satisfy the following properties,

(1) µ∗(β1, β2) + µ∗(β2, β1) = 1. Particularly, µ∗(β1, β2) =
1
2

if β1 = β2.

(2) µ∗(β1, β2) ≷ 1−β1

2−β1−β2
if β1 ≷ β2.

Proof: Please refer to Appendix A-B.

Lemma 3: We have that

max
0≤µ≤1

Fu(µ, β1, β2) ≤
|β1 − β2|(1−min{β1, β2})

1− β1β2
− ln

1− β1β2

2− β1 − β2
, (20)

where equality holds if and only if β1 = β2.

Proof: Please refer to Appendix A-C.

According to Lemma 3, an upper bound on the maximal mutual information is given by,

Imax(Λ0, A, L) ≤ max
µ∈[0,1]

Fu(µ, β1, β2) ≤
|β1 − β2|(1−min{β1, β2})

1− β1β2
− ln

1− β1β2

2− β1 − β2
. (21)

The above discussions can be summarized into the following result.

Theorem 1: We have that lower and upper bounds on Imax(Λ0, A, L) are given by Equations

(17) and (21), respectively.

C. Asymptotic Mutual Information

We first provide an interpretation to show the tightness of the upper and lower bounds. By

applying Jensens inequality to Chernoff α-divergence, we have

Cα(P
B
0 ||PB

1 ) = − lnEPB
0

[
(
PB
1

PB
0

)1−α
]
≤ −

∫

PB
0 ln(

PB
1

PB
0

)1−αdx = (1− α)KL(PB
0 ||PB

1 ),(22)

Cα(P
B
0 ||PB

1 ) = − lnEPB
1

[
(
PB
0

PB
1

)α
]
≤ −

∫

PB
1 ln(

PB
0

PB
1

)αdx = αKL(PB
1 ||PB

0 ), (23)

i.e., C 1
2
(PB

0 ||PB
1 ) ≤ 1

2
min{KL(PB

0 ||PB
1 ), KL(PB

1 ||PB
0 )}. Thus we have

exp(−C 1
2
(PB

0 ||PB
1 )) > exp(−2C 1

2
(PB

0 ||PB
1 )) ≥ exp(−min{KL(PB

0 ||PB
1 ), KL(PB

1 ||PB
0 )}),(24)

i.e., β > β2 ≥ max{β1, β2}. We consider two cases, large Cα(P
B
0 ||PB

1 ) and negligible

max{KL(PB
1 ||PB

0 ), KL(PB
0 ||PB

1 )}. Define high SNR for negligible β and low SNR if β1

and β2 approach 1, which agrees with the true scenarios of high SNR and low SNR in

the physical communication channel. Note that for high SNR regime, β, β1 and β2 approach

0; and for low SNR regime, β, β1 and β2 approach 1, i.e., β and (β1, β2) contribute similarly
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to the lower and upper bounds. Thus, lower bound (17) and upper bound (21) are valid in both

high and low SNR regimes.

As the asymptotic maximum mutual information approaches 0 in low SNR regime, we focus

on high SNR regime, including large L and A. For large L, we have the following Theorem 2

on the asymptotic results of the maximum mutual information.

Theorem 2: For large L, the asymptotic maximum mutual information is given by

Imax(Λ0, A, L)







≥ ln 2− β + o(β), ∀β1, β2;

≤ ln 2− β1, β1 = β2;

≤ ln 2 + max{β1,β2}
2

+ o(max{β1, β2}), β1 6= β2;

(25)

where β = exp
(

L ln
(√

p0p1+
√

(1− p0)(1− p1)
))

, β1 = exp
(

−L
(
p1 ln

p1
p0
+(1−p1) ln 1−p1

1−p0

))

and β2 = exp
(

− L
(
p0 ln

p0
p1

+ (1− p0) ln
1−p0
1−p1

))

.

Proof: Please refer to Appendix A-D.

Theorem 2 implies that the asymptotic maximum mutual information lim
L→∞

Imax(Λ0, A, L) =

ln 2. For large peak power A, we have the following expansions on β, β1, β2.

Lemma 4: For large A, the expansions on β, β1 and β2 are given by

β =
(√

p0p1 +
√

(1− p0)(1− p1)
)L

= p
L
2
0 − p

L−1
2

0

(
√
p0

2
(1− p1)−

√

(1− p0)(1− p1)
1
2

)
+ o(1− p1); (26)

β1 = (
p0
p1
)p1L(

1− p0
1− p1

)(1−p1)L

= pL0 − pL0

(

− L(1− p1) + (1− p1)L ln
1− p1
1− p0

)

+ o(1− p1); (27)

β2 = (
p1
p0
)p0L(

1− p1
1− p0

)(1−p0)L

= (
1

p0
)p0L(

1

1− p0
)(1−p0)L(1− p1)

(1−p0)L + o(1− p1). (28)

Proof: Please refer to Appendix A-E.

Noting that 1 − p1 = exp(−(A + Λ0)τ), Lemma 4 shows the expansions of β, β1 and β2

with exponential convergence for large A. Furthermore, we have the following Theorem 3 on

the asymptotic maximum mutual information.
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Theorem 3: For large A, the asymptotic maximum mutual information is given by

Imax(Λ0, A, L) ≥ ln
2

1 + p
L
2
0

+
p

L−1
2

0

1 + p
L
2
0

(
√
p0

2
(1− p1)−

√

(1− p0)(1− p1)
1
2

)
+ o(1− p1), (29)

Imax(Λ0, A, L) ≤ pL0 + ln(2− pL0 ) +O(max{(1− p1) ln(1− p1), (1− p1)
(1−p0)L}). (30)

Proof: Please refer to Appendix A-F.

Theorem 3 shows the upper and lower bounds on the maximum mutual information as

ln 2

1+p
L
2
0

≤ lim
A→∞

Imax(Λ0, A, L) ≤ pL0+ln(2−pL0 ) for fixed Λ0. Specifically, we have the following

on the asymptotic maximum mutual information for zero Λ0,

lim
A→∞

Imax(0, A, L) = ln 2 = lim
L→∞

Imax(Λ0, A, L). (31)

D. Approximate Method

For most scenarios of UV communication, background radiation arrival intensity Λ0 are

negligible. Since the proposed lower and upper bounds on I(X ; N̂) is loose in medium SNR

regime, we propose an approximation method to characterize I(X ; N̂) in medium SNR regime.

The approximated mutual information I(X ; N̂) based on low Λ0 is shown in Theorem 4.

Theorem 4: For low background radiation arrival intensity Λ0, we have the following

expansion on I(X ; N̂),

I(X ; N̂) = −[µ(1− p1)
L + 1− µ] ln[µ(1− p1)

L + 1− µ] + µL(1− p1)
L ln(1− p1)

−µ[1− (1− p1)
L] lnµ+ (1− µ)Lp0{ln[µ(1− p1)

L + 1− µ]− ln(µLp1)

−(L− 1) ln(1− p1)} − (1− µ)hb(Lp0) + o(Lp0) +O(
1

L
). (32)

Proof: Please refer to Appendix A-G.

The approximation mutual information can be obtained from Equation (32) via omitting the

terms with small o and big O. For reliable communication system, the sampling numbers L

is typically large and background radiation arrival intensity Λ0 is low. Thus, the proposed

approximate mutual information can be adopted especially in the medium SNR regime.

IV. ASYMPTOTIC TIGHTNESS OF UPPER AND LOWER BOUNDS

Section III-C provides an interpretation on the tightness of bounds and shows the asymptotic

maximum mutual information for large L and A. However, the convergence rate of upper and
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TABLE I

THE CONVERGENCE RATE OF BOUND GAP FOR 5 SCENARIO.

Scenario Convergence Asymptotic tightness

Large L O

(

exp
(

L ln
(√

p0p1 +
√

(1− p0)(1− p1)
)

)

)

X
Large A fixed Λ0 ≥ ln

(

1 + p
L

2

0

)

− 1
2
ln
(

1 + pL0
)

+O(exp
(

min{ 1
2
, (1− p0)L}Aτ

)

)

≤ 2p
L

2

0 − pL0 +O(exp
(

min{ 1
2
, (1− p0)L}Aτ

)

)

×

Low Λ0 fixed A ≥ ln
(

1+(1−p1)
L

2

)

− 1
2
ln
(

1+(1−p1)
L
)

+O(min{ 1
2
, p1L}Λ0τ )

≤ 2(1− p1)
L

2 − (1− p1)
L +O(min{ 1

2
, p1L}Λ0τ )

×

Large A fixed Λ0 = 0 O
(

exp
(

− Lτ
2
A
)

) X
Low A fixed Λ0 O

(

3L(1−p0)
16p0

τ 2A2
) X

lower bounds is still unknown. In this Section, we proceed to investigate the convergence rate

on the upper and lower bounds.

Defining bound gap ∆(β, β1, β2)
△
= max

µ∈[0,1]
Fu(µ, β1, β2) − Fl(µ, β), we have the following

Theorem 5 on the upper and lower bounds on ∆(β, β1, β2).

Theorem 5: For low SNR, we have the following upper bound on ∆(β, β1, β2),

∆(β, β1, β2) ≤
1

108
(
β

β1
− 1)(16

β

β1
+ 11) +

1

108
(
β

β2
− 1)(16

β

β2
+ 11); (33)

and for high SNR, we have the following upper bound on ∆(β, β1, β2),

∆(β, β1, β2) ≤ (β − β1) + (β − β2). (34)

For general β, β1, β2, we have the following lower bound on ∆(β, β1, β2),

∆(β, β1, β2) ≥
1

2
ln

1 + β

1 + β1

+
1

2
ln

1 + β

1 + β2

. (35)

Proof: Please refer to Appendix A-H.

To characterize the convergence of ∆(β, β1, β2), we consider the exponential rate of conver-

gence [42]. In summary, we consider five scenarios, where the convergence rates of the bound

gap are shown in Table I.

A. Asymptotic Tightness of Bound Gap for Large L

As L approaches infinity, β, β1 and β2 approach 0, which corresponds to high SNR regime.

Then, we have the following Theorem 6 on the convergence rate of bound gap ∆(β, β1, β2).

Theorem 6: As L approaches infinity, the convergence rate of gap ∆(β, β1, β2) is given by,

− lim
L→∞

ln∆(β, β1, β2)

L
= − ln

(√
p0p1 +

√

(1− p0)(1− p1)
)
. (36)
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Proof: Please refer to Appendix A-I.

Theorem 7 demonstrates that the proposed bounds are asymptotically tight, where bound

gap ∆(β, β1, β2) approaches zero with exponential rate − ln
(√

p0p1+
√

(1− p0)(1− p1)
)

as L

approaches infinity.

B. Bound Gap for Large Peak Power A

As peak power A approaches infinity, probability p1 approaches 1 and β, β1, β2 approach 0,

which also corresponds to high SNR regime. We have the following upper and lower bounds on

the bound gap ∆(β, β1, β2).

Theorem 7: For large peak power and fixed background radiation arrival intensity, we have

the following upper and lower bounds on ∆(β, β1, β2),

∆(β, β1, β2) ≤ 2p
L
2
0 − pL0 + ǫu + o(ǫu), (37)

∆(β, β1, β2) ≥ ln
(
1 + p

L
2
0

)
− 1

2
ln
(
1 + pL0

)
+ ǫl + o(ǫl), (38)

where

ǫu =







2p
L−1
2

0

√
1− p0(1− p1)

1
2 , (1− p0)L > 1

2
;

{

2p
L−1
2

0

√
1− p0 − p

−L+ 1
2

0 (1− p0)
− 1

2

}

(1− p1)
1
2 , (1− p0)L = 1

2
;

−p−Lp0
0 (1− p0)

−L(1−p0)(1− p1)
L(1−p0), (1− p0)L < 1

2
;

(39)

ǫl =







(1 + p
L
2
0 )

−1p
L−1
2

0

√
1− p0(1− p1)

1
2 , (1− p0)L > 1

2
;

{

(1 + p
L
2
0 )

−1p
L−1
2

0

√
1− p0 − 1

2
p
−L+ 1

2
0 (1− p0)

− 1
2

}

(1− p1)
1
2 , (1− p0)L = 1

2
;

−1
2
p−Lp0
0 (1− p0)

−L(1−p0)(1− p1)
L(1−p0), (1− p0)L < 1

2
.

(40)

Proof: Please refer to Appendix A-J.

Theorem 7 demonstrates that the offset items ǫu and ǫl converge to 0 as peak power A

approaches infinity. Furthermore, the exponential rates of ǫu and ǫl with respect to A are given

as follows,

− lim
A→∞

ln ǫu
A

= min{1
2
, (1− p0)L}τ, (41)

− lim
A→∞

ln ǫl
A

= min{1
2
, (1− p0)L}τ. (42)
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When peak power A approaches infinity, the offset items are negligible for low p0, and the

following is approximately satisfied,

ln
(
1 + p

L
2
0

)
− 1

2
ln
(
1 + pL0

)
≤ ∆(β, β1, β2) ≤ 2p

L
2
0 − pL0 . (43)

C. Bound Gap for Low Background Noise Λ0

For low background radiation arrival intensity, probability p0 approaches 0 and β, β1, β2

approach 0, which corresponds to high SNR regime. We have the following upper and lower

bounds on bound gap ∆(β, β1, β2).

Theorem 8: For low background radiation arrival intensity given fixed peak power, we have

the following upper and lower bounds on ∆(β, β1, β2),

∆(β, β1, β2) ≤ 2(1− p1)
L
2 − (1− p1)

L + ǫ
′

u + o(ǫ
′

u), (44)

∆(β, β1, β2) ≥ ln
(
1 + (1− p1)

L
2

)
− 1

2
ln
(
1 + (1− p1)

L
)
+ ǫ

′

l + o(ǫ
′

l), (45)

where

ǫ
′

u =







2(1− p1)
L−1
2
√
p1p

1
2
0 , p1L > 1

2
;

{

2(1− p1)
L−1
2
√
p1 − (1− p1)

−L+ 1
2p

− 1
2

1

}

p
1
2
0 , p1L = 1

2
;

−(1 − p1)
−L(1−p1)p−Lp1

1 pLp10 , p1L < 1
2
;

(46)

ǫ
′

l =







(1 + (1− p1)
L
2 )−1(1− p1)

L−1
2
√
p1p

1
2
0 , p1L > 1

2
;

{

(1 + (1− p1)
L
2 )−1(1− p1)

L−1
2
√
p1 − 1

2
(1− p1)

−L+ 1
2p

− 1
2

1

}

p
1
2
0 , p1L = 1

2
;

−1
2
(1− p1)

−L(1−p1)p−Lp1
1 pLp10 , p1L < 1

2
.

(47)

Proof: According to reciprocities p0 ←→ 1 − p1, p1 ←→ 1 − p0 and Theorem 7, we can

readily obtain the results in Theorem 8. The detailed procedure is omitted here.

Theorem 8 demonstrates that offset items ǫ
′

u and ǫ
′

l converge 0 as the background radiation

arrival intensity Λb approaches 0. Furthermore, the linear convergence rate of ǫ
′

u and ǫ
′

l with

respect to Λb can be obtained as follows,

lim
Λb→0

ǫ
′

u

Λb

= min{1
2
, p1L}τ, (48)

lim
Λb→0

ǫ
′

l

Λb

= min{1
2
, p1L}τ. (49)
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As background radiation arrival intensity Λb approaches 0, the gap is negligible for small Λb

and the following is approximately satisfied,

ln
(
1 + (1− p1)

L
2

)
− 1

2
ln
(
1 + (1− p1)

L
)
≤ ∆(β, β1, β2) ≤ 2(1− p1)

L
2 − (1− p1)

L. (50)

D. Bound Gap for Large Peak Power A and Λ0 = 0

For zero background radiation arrival intensity, we have probability p0 = 0 and β = (1−p1)
L
2 ,

β1 = 0, β2 = (1 − p1)
L, which corresponds to high SNR regime. We have the following on

bound gap ∆(β, β1, β2).

Theorem 9: For large peak power A and zero background radiation arrival intensity Λ0, we

have the following on ∆(β, β1, β2),

− lim
A→∞

ln∆(β, β1, β2)

A
=

Lτ

2
. (51)

Proof: Please refer to Appendix A-K.

Theorem 9 demonstrates that the upper and lower bounds are asymptotically tight for

sufficiently large peak power A if background radiation arrival intensity Λ0 = 0, with exponential

rate Lτ
2

.

E. Bound Gap for Low Peak Power A

For low peak power, probability p1 approaches p0 and β, β1, β2 approach 1, which corresponds

to low SNR regime. We have the following result on bound gap ∆(β, β1, β2).

Theorem 10: For low peak power A given fixed background radiation arrival intensity Λ0, we

have the following on ∆(β, β1, β2),

∆(β, β1, β2) =
3L(1− p0)

16p0
τ 2A2 + o(A2). (52)

Proof: Please refer to Appendix A-L.

Theorem 10 demonstrates that bound gap ∆(β, β1, β2) converges to 0 with order A2.

V. CAPACITY FOR ARBITRARILY SYMBOL DURATION

Assuming low to medium sampling rate, we investigate the capacity for two cases, Ts = τ

and Ts > τ . According to Equation (8), the capacity is given by CTs,τ
△
= max

ΛTs∈[0,A]

1
Ts
I(ΛTs;Z).
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A. Capacity for Sampling Time Ts = τ

Assuming Ts = τ , the main result on the Poisson capacity with non-perfect receiver is

summarized in Theorem 11.

Theorem 11: For Ts = τ , the optimal input signal is constrained within binary level {0, A},
and Cτ,τ can be obtained by solving the following problem:

Cτ,τ =
1

τ
max
0≤µ≤1

hb

(
p̂(µ)

)
− (1− µ)hb

(
p(Λ0)

)
− µhb

(
p(A + Λ0)

)
, (53)

where p̂(µ)
△
= (1−µ)p(Λ0)+µp(A+Λ0), hb(x) = −x ln x− (1−x) ln(1−x), p(x)

△
= 1− e−xτ ,

and µ denotes the duty cycle. Furthermore, the optimal duty cycle µ∗ satisfies

hb

(
p(A+ Λ0)

)
− hb

(
p(Λ0)

)
= h

′

b(p̂(µ))
(

p(A + Λ0)− p(Λ0)
)

, and is given by

µ∗ =
a

1+a
− p(Λ0)

p(A+ Λ0)− p(Λ0)
∈ [0, 1], (54)

where a = exp(−hb

(
p(A+Λ0)

)
−hb

(
p(Λ0)

)

p(A+Λ0)−p(Λ0)
). The capacity Cτ,τ =

1
τ
F (µ∗), where

F (µ)
△
= hb

(
p̂(µ)

)
− (1− µ)hb

(
p(Λ0)

)
− µhb

(
p(A+ Λ0)

)
. (55)

Remark 1: The same as the scenario of continuous Poisson channel, the optimal input distri-

bution is also binary-level. However, for continuous Poisson channel, the optimal input signal

requires infinite transmitter bandwidth; while for the non-perfect receiver under consideration,

the optimal input signal distribution requires finite transmitter bandwidth related to the receiver

dead time.

Here we provide two major steps on the proof.

In Step 1, we prove that the optimal input distribution must be constrained within two levels

{0, A}, given by the following Proposition.

Proposition 2: The optimal input signal is constrained within two binary levels {0, A}.
Proof: Please refer to Appendix B-A.

In Step 2, We provide the optimal duty cycle, given by the following proposition.

Proposition 3: The optimal duty cycle is µ∗ =
a

1+a
−p(Λ0)

p(A+Λ0)−p(Λ0)
, where a =

exp(−hb

(
p(A+Λ0)

)
−hb

(
p(Λ0)

)

p(A+Λ0)−p(Λ0)
). The capacity with non-perfect receiver Cτ,τ = 1

τ
F (µ∗), where

F (µ)
△
= hb(p̂(µ))− (1− µ)hb

(
p(Λ0)

)
− µhb

(
p(A+ Λ0)

)
.

Proof: Please refer to Appendix B-B.
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B. Capacity for Sampling Time Ts > τ

Define α = τ
Ts

such that 0 < α < 1. Following the proof procedure of Section V-A, the

optimal duty cycle does not depend on Ts and the capacity is given by CTs = αCτ,τ . This result

implies that α is an attenuation factor related to the sampling rate of the non-perfect receiver.

VI. ASYMPTOTIC PROPERTIES ON THE CAPACITY

Section V provides a rigorous proof on the capacity of a sample-based receiver and shows

that the optimal input distribution is binary, the same as the continuous Poisson channel. In this

Section, we further investigate the asymptotic properties of the non-perfect receiver compared

with the continuous Poisson channel.

A. Asymptotic Property of Capacity for τ → 0

We consider sampling time Ts = τ and both approach zero. The main results are summarized

in Theorem 12.

Theorem 12: The optimal duty cycle and capacity of the non-perfect receiver approach those

of continuous Poisson channel for any A and Λ0, respectively, as τ → 0.

Proof: Please refer to Appendix B-C.

Theorem 12 studies the asymptotic property of the non-perfect receiver for Ts = τ → 0. It

shows that Theorem 11 extends the result of continuous Poisson channel [11], and provides a

more general and practical results.

Furthermore, we have the following results on the asymptotic property on the convergence of

the optimal duty cycle with respect to τ .

Theorem 13: For fixed Λ0, as τ approaches 0, the optimal duty cycle of the non-perfect

receiver point-wisely, but not uniformly, converge to that of continuous Poisson channel.

Proof: Please refer to Appendix B-D.

B. Asymptotic Property of the Optimal Duty Cycle for A→ 0 and A→∞

We investigate the asymptotic property of the optimal duty cycle for the non-perfect receiver.

The asymptotic property consists of 4 cases: A → ∞ given Λ0 = 0, A → 0 given Λ0 = 0,

A→∞ given Λ0 > 0 and A→ 0 given Λ0 > 0, as shown in Theorem 14.
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TABLE II

THE ASYMPTOTIC PROPERTY OF NON-PERFECT RECEIVER POISSON CHANNEL AND CONTINUOUS POISSON CHANNEL.

Practical Receiver Continuous Poisson

Peak Power → 0 → ∞ → 0 → ∞

Duty cycle
Λ0 = 0 1

e
1
2

1
e

1
e

Λ0 > 0 1
2

1− 1
(

1+exp
(

eΛ0τhb

(

p(Λ0)
)))

(1−p(Λ0))

1
2

1
e

Capacity
Λ0 = 0 A

e
+ o(A) 1

τ
A
e

A
e

Λ0 > 0 dτA
2 + o(A2) cΛ0

1
τ

dPoiA
2 + o(A2) A

e
+ o(A)

Theorem 14: The optimal duty cycles of the non-perfect receiver for A→ 0 and A→∞ are

summarized in Table II.

Proof: Please refer to Appendix B-E.

Theorem 14 investigates the optimal duty cycle of the non-perfect receiver and show the

difference with that of continuous Poisson channel for large peak power A, since larger peak

power A leads to larger photon-counting loss for the non-perfect photon-counting receiver. The

optimal duty cycle for low peak power demonstrates negligible difference with that of continuous

Poisson channel, since there is almost no photon-counting loss for low peak power A.

C. Asymptotic Property of Non-perfect Poisson Capacity for A→ 0 and A→∞

Similar to Section VI-B, the asymptotic property analysis of the capacity with non-perfect

receiver consists of 4 cases: A→∞ given Λ0 = 0, A→ 0 given Λ0 = 0, A→∞ given Λ0 > 0

and A→ 0 given Λ0 > 0. The results on the above four cases are summarized in Table II.

Recall that the capacity Cτ,τ = 1
τ
F (µ∗), where F (µ) = hb

(
p̂(µ)

)
− (1 − µ)hb

(
p(Λ0)

)
−

µhb

(
p(A + Λ0)

)
, p̂(µ) = (1 − µ)p(Λ0) + µp(A + Λ0), a = exp

(

− hb

(
p(A+Λ0)

)
−hb

(
p(Λ0)

)

p(A+Λ0)−p(Λ0)

)

and

µ∗ =
a

1+a
−p(Λ0)

p(A+Λ0)−p(Λ0)
. We demonstrate the asymptotic results of the four cases.

Case 1: A→∞ given Λ0 = 0.

According to [11], for Λ0 = 0 and any A, the asymptotic Poisson capacity is given by

CPoi =
1
e
A. Such linear capacity properties motivate us to investigate the asymptotic capacity for

non-perfect receiver with dead time τ . It is easy to check that lim
A→∞

a = lim
A→∞

exp(−hb(p(A))
p(A)

) = 1,

lim
A→∞

µ∗ = 1
2

and lim
A→∞

p̂(µ∗) = 1+p(Λ0)
2

= 1
2
. Thus, we have

lim
A→∞

Cτ,τ = lim
A→∞

1

τ
F (µ∗) =

1

τ
hb(

1

2
) =

1

τ
, (56)
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which shows that the capacity for non-perfect receiver with dead time τ approaches 1
τ

for large peak power A. The loss compared with the continuous Poisson channel stems from

photon-counting loss for large peak power.

Case 2: A→ 0 given Λ0 = 0.

It is obvious that the capacity with perfect or non-perfect photon receiver approaches 0 when

A→ 0. Work [11] shows that CPoi =
1
e
A for continuous Poisson channel, i.e., the convergence

rate is linear for low A, while the convergence rate of non-perfect photon receiver for low A

still needs to be investigated.

For Λ0 = 0, it is easy to check that lim
A→∞

a = 0. Noting that hb(x) = x(1 − ln x) + o(x), we

have

µ∗ =
a

p(A)
= exp

(
− p(A)(1− ln p(A)) + o(p(A))

p(A)
− ln p(A)

)
=

1

e
+ o(A), (57)

p̂(µ∗) =
1

e
p(A) + o(A). (58)

Thus, the capacity with non-perfect photon receiver for low A is given by

Cτ,τ =
1

τ
{hb(p̂)− µ∗hb(p(A))} =

1

τ
{p̂− p̂ ln p̂− µ∗(p(A)− p(A) ln p(A)

)
+ o(A)}

=
1

eτ
p(A) + o(A) =

1

e
A+ o(A), (59)

which shows that the capacity for non-perfect receiver with dead time τ approaches 0 with the

same linear convergence rate as that of continuous Poisson channel, i.e., finite dead time receiver

causes negligible capacity loss for low A.

Case 3: A→∞ given Λ0 > 0.

For Λ0 > 0 and large A, the asymptotic continuous Poisson capacity is given by CPoi =

1
e
A + o(A). It is seen that the asymptotic capacity loss given Λ0 > 0 compared with that given

Λ0 = 0 is negligible for large A. Thus, there is a problem on the asymptotic Poisson capacity

loss for non-perfect receiver given dead time τ . Theorem 15 provides the answer as follows.

Theorem 15: The non-perfect receiver capacity for A → ∞ is given by lim
A→∞

Cτ,τ = cΛ0

1
τ
,

where cΛ0 = hb

(
exp
(
eΛ0τhb

(
p(Λ0)

))

1+exp
(
eΛ0τhb

(
p(Λ0)

))

)

− hb

(
p(Λ0)

)
eΛ0τ

(

1+exp
(
eΛ0τhb

(
p(Λ0)

))) .

Proof: Please refer to Appendix B-F.
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Coefficient cΛ0 characterizes the asymptotic capacity with non-perfect receiver for nonzero

background radiation Λ0. It is seen that cΛ0 = 1 iff Λ0 = 0 and cΛ0 < 1 for Λ0 > 0. However,

the monotonicity properties of cΛ0 with respect to Λ0 needs to be investigated, which is the main

argument of Theorem 16.

Theorem 16: cΛ0 monotonically decreases with Λ0 and cΛ0 ∈ (0, 1] for Λ0 ∈ [0,+∞).

Proof: Please refer to Appendix B-G.

Case 4: A→ 0 given Λ0 > 0.

For the asymptotic capacity for low A given Λ0 > 0, the main results are shown in Theorem 17.

Theorem 17: For Λ > 0, the asymptotic capacity for continuous Poisson channel and non-

perfect receiver are CPoi = dPoi
Λ0

A2+ o(A2) and Cτ,τ = dτΛ0
A2+ o(A2) for small A, respectively,

where dPoi
Λ0

= 1
8Λ0

and dτΛ0
=

τ
(
1−p(Λ0)

)

8p(Λ0)
.

Proof: Please refer to Appendix B-H.

Theorem 17 demonstrates the asymptotic capacity with non-perfect receiver and continuous

Poisson capacity both as O(A2) for low A given Λ0 > 0. Furthermore, we have Theorem 18 on

dPoi
Λ0

and dτΛ0
.

Theorem 18: dPoi
Λ0

> dτΛ0
holds for any Λ0 > 0 and τ > 0. In addition, dτΛ0

approaches dPoi
Λ0

for any Λ0 > 0 when τ → 0, i.e., lim
τ→0

dτΛ0
= dPoi

Λ0
.

Proof: Please refer to Appendix B-I.

Theorem 18 implies that the capacity with non-perfect receiver is strictly lower than that of

continuous Poisson channel for low A given Λ0 > 0 asymptotically, where the two capacities

converge asymptotically for small A given Λ0 = 0.

D. The Monotonicity of Non-perfect Receiver Capacity

Theorem 11 characterizes the non-perfect receiver capacity given dead time τ , sampling

interval Ts, background radiation Λ0 and peak power A. According to Section V-B, the non-

perfect receiver capacity is proportional to the sampling rate T−1
s . The relationship between the

non-perfect receiver capacity and other parameters still needs to be investigated.

1) The Monotony with peak power A: We still consider Ts = τ and provide the following

result on the monotonicity of the non-perfect receiver capacity Cτ,τ and the non-perfect receiver

capacity per power
Cτ,τ

A
, as shown in Theorem 19.
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Theorem 19: The non-perfect receiver capacity Cτ,τ(A,Λ0) increases with peak power A for

any Λ0. In addition, there exists Ath, Ath1 and Ath2 such that the non-perfect receiver capacity

Cτ,τ (A,Λ0) is concave with A for A ≥ Ath1 and the non-perfect receiver capacity per power

Cτ,τ

A
decreases with peak power A for any A ≥ Ath2 .

Proof: Please refer to Appendix B-J.

Theorem 19 provides a strict proof that larger A corresponds larger capacity with non-perfect

receiver. Theorem 19 shows the capacity with non-perfect receiver is concave for large A, and

the capacity with non-perfect receiver per power decreases with peak power A due to capacity

saturation characteristics for large power.

2) The Monotonicity with dead time τ : Section VI-A shows the asymptotic property of the

non-perfect receiver for low τ and reveals the connection between non-perfect receiver and

continuous Poisson channel. We further provide the monotonicity results on two special cases,

for large τ and Λ0 = 0 in Theorem 20 and Theorem 21, respectively.

Theorem 20: For τ ≥ ln 2
Λ0

, the capacity with non-perfect receiver CTs,τ for fixed Ts increases

with τ .

Proof: Please refer to Appendix B-K.

Theorem 21: For Λ0 = 0, the capacity with non-perfect receiver Cτ,τ for Ts = τ decreases

with τ for any τ ≥ Ath2

A
, where Ath2 is given by Theorem 19.

Proof: Please refer to Appendix B-L.

VII. NUMERICAL RESULTS

A. Numerical Results on the Achievable Rate for Long Symbol Duration

Assume photon-counting receiver with OOK modulation. We adopt the following system

parameters: symbol rate is set to 1Msps; dead time 20ns [43]; background radiation arrival

intensity 20000s−1, such that the normalized dead time is 0.02 and the normalized background

photon rate is 0.02. For simplicity, we adopt normalized dead time, peak power, background

radiation arrival intensity. For practical system, the symbol duration is typically 200ns to 1000ns

and far exceeds the dead time that is typically 10ns to 20ns. We first investigate the optimal duty

cycle for binominal channel by brute-force method (red full line), the suboptimal duty cycle by

approximation based on Equation (32) (black full line), and the lower and upper bounds (blue
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and purple full line) with respect to peak power A, for L = 20 and L = 30, as shown in Figure 2

and Figure 3, respectively. It is seen that the optimal duty cycle and proposed suboptimal duty

cycle from the derived lower and upper bounds approach 0.5 as the peak power approaches

infinity, i.e., the proposed suboptimal duty cycle from the derived lower and upper bounds is

asymptotically optimal for large peak power. In addition, the proposed suboptimal duty cycle

converges to optimal duty cycle faster for a larger sampling number L. For large peak power and

large L, the suboptimal duty cycle by approximation method is less accurate due to the omitted

larger coefficient one-order term in Equation (76) [44].

For mutual information, Figure 4 shows the mutual information of binominal channel, discrete

Poisson channel, along with the derived upper and lower bounds and the approximation based on

Equation (32) with respect to the duty cycle. The normalized dead time, background radiation,

peak power and sampling numbers are set to 0.02, 0.02, 10 and 30, respectively. It is seen that

the proposed upper bound and lower bound are more accurate in low or large duty cycle and

the approximation is more accurate for medium and large duty cycle. The mutual information of

discrete Poisson channel is also plotted as a benchmark to show the small loss due to imperfect

receiver. “Lower bound” and “Lower bound sub” curves are obtained by brute-force search on α

and suboptimal α in Lemma 1, respectively. Figure 5 shows the maximum mutual information

over duty cycle µ with respect to peak power. The maximum mutual information with respect to

duty cycle µ for binominal channel, approximation method, discrete Poisson channel, the lower

bound and the upper bound are obtained by brute-force search, and that for “lower bound sub”

and “upper bound sub” are obtained from Lemma 1 and Lemma 3, respectively. It is seen that

proposed upper bound and lower bound become more accurate as peak power A increases, and

the approximation is more accurate in low and medium peak power regimes.

Consider the asymptotic tightness of the proposed upper and lower bounds. The normalized

dead time and background radiation are both set to 0.02. We focus on the five scenarios addressed

in Section IV. For large sampling numbers L, Figure 6 plots the bound gap by numerical method

and the derived upper and lower bounds against sampling numbers L for different peak power

values A. It is seen that the proposed upper and lower bounds on gap become tighter as the peak



24

power increases. Figure 7 shows the numerical values and the exponential term from Equation

(36) of ∆(β, β1, β2) against sampling numbers L for different peak power values A. It is seen

that the proposed upper and lower bounds converge to 0 with exponential rate as predicted by

Equation (36). The normalized dead time and background radiation are set to 0.02.

Set the normalized dead time and sampling numbers to 0.1 and 10, respectively. For large peak

power A given fixed background radiation arrival intensity Λ0, Figure 8 plots the difference of

derived upper and lower bounds on ∆(β, β1, β2) against peak power A for different background

radiation arrival intensity Λ0, from both numerical computations and the limit from Equation (43)

via omitting the vanishing terms. It is seen that the gap converges as A increases beyond 100.

Figure 9 plots the offset items in the derived upper and lower bounds from Equations (37) and

(38), respectively, against peak power A for different background radiation arrival intensity Λ0.

The approximation values are obtained from the exponential terms. It is seen that the derived

upper and lower bounds on the offset terms can well predict the true value with the same

attenuation rate. In addition, the gap converges to 0 exponentially with the peak power.

Consider low background radiation arrival intensity Λ0 given fixed peak power A, where the

normalized dead time and sampling numbers are set to 0.1 and 10, respectively. Figure 10 plots

the difference of derived upper and lower bounds on ∆(β, β1, β2) against background radiation

arrival intensity Λ0 for different peak power A. It is seen that the limit of the gap can well

predict the true value. Figure 11 plots the offset item in the derived upper and lower bounds

from Equations (44) and (45), against background radiation arrival intensity Λ0 for different peak

power A. It is seen that the offset items in the derived upper and lower bounds can well predict

those from numerical computation. In addition, the gap between the numerical computation and

theoretical approximation converges to 0 with linear rate for low peak power.

Consider large peak power A given background radiation arrival intensity Λ0 = 0 where the

normalized dead time and sampling numbers are set to 0.1, 10, respectively. Figure 12 plots the

gap between derived upper and lower bounds on ∆(β, β1, β2) from Equations (99) and (100),

respectively, against peak power A. It is seen that the gap from theoretical derivations can well

predict the numerical results. The normalized dead time and sampling numbers are set to 0.1, 10,
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respectively. For low peak power A with the same normalized dead time and sampling numbers,

Figure 13 plots the numerical values and theoretical approximations of the derived bounds gap

on ∆(β, β1, β2) against peak power A for different background radiation arrival intensity Λ0. It

is seen that the approximation via dropping o(A2) item (denoted as “Limit”) from Equation (52)

can well predict that from numerical computation, which converges to 0 in the rate of order two

predicted by Equation (52) for low peak power.

B. Numerical Results on the Capacity for Arbitrary Symbol Duration

It has been concluded that the case of non-perfect receiver for Ts ≥ τ can be converted to

that of non-perfect receiver for Ts = τ . Hence, we investigate the case for Ts = τ .

Consider the same receiver parameters as those in Section VII-A. The optimal duty cycle

versus A for different dead time and Λ0 = 0.001 and Λ0 = 0 are shown in Figure 14 and

Figure 15, respectively. It is seen that the optimal duty cycle converges to that of continuous

Poisson channel, while asymptotic duty cycles for large peak power are more different. Similarly,

the non-perfect receiver capacity versus peak power for different dead time given Λ0 = 0.001

and Λ0 = 0 are shown in Figure 16 and Figure 17, respectively. It is seen that the capacity with

non-perfect receiver converges to that of continuous Poisson channel. Moreover, the capacity

with non-perfect receiver converges for large peak power given dead time τ , while the capacity

of continuous Poisson channel linearly increases with peak power. The gap in large peak power

regime stems from the photon-counting loss.

We then analyze the asymptotic property for the capacity with non-perfect receiver. Figure 18

and Figure 19 show the non-perfect receiver capacity, continuous Poisson capacity and the

approximation versus low peak power A for different Λ0 > 0 and Λ0 = 0, respectively. Prefix

“Theo-” denotes the exact capacity with non-perfect receiver shown in Theorem 11 and prefix

“Appro-” represents the dominant term approximation of non-perfect receiver given by Equation

(59) and Theorem 17. It is seen that the dominant term approximation is close to the exact value

for low peak power. Figure 20 shows the capacity of non-perfect receiver and the corresponding

capacity limit given in Equation (56) and Theorem 15 for dead time τ = 0.02. Numerical results

shows that the capacity with non-perfect receiver is close to the saturation capacity for peak
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Fig. 2. The optimal/suboptimal duty cycle µ versus peak power A from the brute-force approach, the derived bounds and

approximation for L = 20.

power A > 103.

VIII. CONCLUSION

We have investigated the achievable rate and capacity of a practical photon counting receiver

with positive dead time and finite sampling rate. For the symbol duration that cannot be

sufficiently small, we have proposed upper and lower bounds on the achievable rate based on

Kullback-Leibler (KL) divergence and Chernoff α-divergence, and shown the tightness of the

proposed bounds. The convergence rate of proposed bounds is investigated for five scenarios.

Moreover, an approximation on the achievable rate is proposed, which is more accurate compared

with the proposed upper and lower bounds in the medium signal to noise ratio (SNR) regime. For

the symbol duration that can be arbitrarily small, we investigate the capacity and the optimal

signal distribution for the non-perfect receiver. We demonstrate that the continuous Poisson

capacity equals that of non-perfect receiver with Ts = τ → 0. Furthermore, the asymptotic

capacity and the capacity loss from continuous Poisson channel for low and large peak power

are characterized. The results on the achievable rate, the capacity, the signal distribution, the
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gap between the upper and lower bounds, and the loss from the continuous Poisson channel are

validated by the numerical results.

APPENDIX A

THE PROOF OF MAIN RESULTS ON ACHIEVABLE RATE FOR LONG SYMBOL DURATION

A. Proof of Lemma 1

Note that C1−α(P
B
0 ||PB

1 ) = Cα(P
B
1 ||PB

0 )
△
= −L ln f(α), where f(α|p0, p1) = pα1p

1−α
0 + (1 −

p1)
α(1− p0)

1−α, we have f
′

(α|p0, p1) = p0(
p1
p0
)α ln p1

p0
+ (1− p0)(

1−p1
1−p0

)α ln 1−p1
1−p0

, f
′′

(α|p0, p1) >
0, f

′

(0|p0, p1) = −KL(p0||p1) and f
′

(1|p0, p1) = KL(p1||p0) > 0. Thus, the optimal α△ to

maximize Cα(P
B
1 ||PB

0 ) uniquely exists and satisfies f
′

(α△) = 0, i.e.,

α△(p0, p1) =
ln 1−p0

p0
+ ln ln 1−p0

1−p1
− ln ln p1

p0

ln p1(1−p0)
p0(1−p1)

. (60)
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Since the symmetry f(α|p0, p1) = f(1 − α|1 − p1, 1 − p0), we have 1 − α△(p0, p1) = α△(1 −
p1, 1− p0) and

α△ − (1− α△) =
[ln 1−p0

p0
+ ln ln 1−p0

1−p1
− ln ln p1

p0
]− [ln p1

1−p1
+ ln ln p1

p0
− ln ln 1−p0

1−p1
]

ln p1(1−p0)
p0(1−p1)

=
ln (1−p0)(1−p1)

p0p1
+ 2
(
ln ln 1−p0

1−p1
− ln ln p1

p0

)

ln p1(1−p0)
p0(1−p1)

S 0, if p0 + p1 T 1, (61)

where the last inequality follows from the fact that the right term of the numerator of Equation

(61) decreases with p0 and becomes 0 for p0 = 1 − p1. Based on the above statement, we can

readily obtain α∗ = arg max
0≤α≤1

min{Cα(P
B
1 ||PB

0 ), C1−α(P
B
1 ||PB

0 )} = 1
2
.

B. Proof of Lemma 2

Based on symmetry Fu(µ, β1, β2) = Fu(1− µ, β2, β1), we have

∂Fu(·, β1, β2)

∂µ
|µ∗(β1,β2) = −

∂Fu(·, β2, β1)

∂µ
|1−µ∗(β2,β1) = 0, (62)
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Fig. 17. The non-perfect receiver capacity versus peak power A given Λ0 = 0 for different dead time τ .
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i.e., µ∗(β1, β2) + µ∗(β2, β1) = 1. Defining G(x, β) = ln x− β
x

, we have

∂Fu

∂µ

∣
∣(

µ∗(β1,β2),β1,β2

) = G
(
1− (1− β2)µ,

β1 + β2

2

)
−G

(
β1 + (1− β1)µ,

β1 + β2

2

)

+
β1 − β2

2
{ 1

1− (1− β2)µ
+

1

β1 + (1− β1)µ
} = 0. (63)

Thus we have G
(
1− (1− β2)µ,

β1+β2

2

)
−G

(
β1 + (1− β1)µ,

β1+β2

2

)
≶ 0 if β1 ≷ β2. As G(x, β)

decreases with x, we can obtain µ∗(β1, β2) ≷ 1−β1

2−β1−β2
if β1 ≷ β2.

C. Proof of Lemma 3

Consider the following three cases.

Case 1: β1 = β2. According to Equation (14), we have max
0≤µ≤1

Fu(µ, β1, β2) = − ln 1+β2

2
, i.e., the

equality holds.

Case 2: β1 < β2. According to Lemma 2, we have

ln
β1 + (1− β1)µ

∗(β1, β2)

1− (1− β2)µ∗(β1, β2)
=

β1

β1 + (1− β1)µ∗(β1, β2)
− β2

1− (1− β2)µ∗(β1, β2)
< 0. (64)

As µ∗(β1, β2) <
1−β1

2−β1−β2
, we have the following upper bound on max

0≤µ≤1
Fu(µ, β1, β2),

Fu(µ
∗(β1, β2), β1, β2) = − ln[1− (1− β2)µ

∗(β1, β2)]− µ∗(β1, β2)

·{ β1

β1 + (1− β1)µ∗(β1, β2)
− β2

1− (1− β2)µ∗(β1, β2)
}

< − ln
1− β1β2

2− β1 − β2

− β1 − β2

(1− β1β2)/(2− β1 − β2)
µ∗(β1, β2)

< − ln
1− β1β2

2− β1 − β2
+

(β2 − β1)(1− β1)

(1− β1β2)
. (65)

Case 3: β1 > β2. Similarly to Case 2, we have

Fu(µ
∗(β1, β2), β1, β2) < − ln

1− β1β2

2− β1 − β2
+

(β1 − β2)(1− β2)

(1− β1β2)
. (66)

D. Proof of Theorem 2

Note that β, β1 and β2 approach 0 as L approaches infinity. According to Equation (17) and

Taylor expansion ln(a+ x) = ln a+ 1
a
x+ o(x), we have

Imax(Λ0, A, L) ≥ − ln
1 + β

2
= ln 2− β + o(β). (67)
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For β1 > β2, since 1−β1β2

2−β1−β2
− 1

2
= β1+β2−2β1β2

2(2−β1−β2)
= β1

4
+ o(β1), we have

Imax(Λ0, A, L) ≤
|β1 − β2|(1−min{β1, β2}})

1− β1β2
− ln

1− β1β2

2− β1 − β2

= β1 + o(β1) + ln 2− β1

2
+ o(β1) = ln 2 +

β1

2
+ o(β1). (68)

Similarly, for β1 < β2, we have Imax(Λ0, A, L) ≤ ln 2 + β2

2
+ o(β2). Thus, Imax(Λ0, A, L) ≤

ln 2 + max{β1,β2}
2

+ o(max{β1, β2}) for β1 6= β2.

For β1 = β2, we have

Imax(Λ0, A, L) =
|β1 − β2|(1−min{β1, β2}})

1− β1β2
− ln

1− β1β2

2− β1 − β2

= − ln
1 + β1

2
= ln 2− β1 + o(β1). (69)

E. Proof of Lemma 4

As β =
(√

p0p1 +
√

(1− p0)(1− p1)
)L

and 1 − √x = 1
2
(1 − x) + o(1 − x) for x → 1, we

have

p
L
2
0 −

(√
p0p1 +

√

(1− p0)(1− p1)
)L

=
(√

p0 −
√
p0p1 −

√

(1− p0)(1− p1)
)
L−1∑

i=0

(p
L
2
0 )

i
(√

p0p1 +
√

(1− p0)(1− p1)
)L−1−i

= p
L−1
2

0

(
√
p0

2
(1− p1)−

√

(1− p0)(1− p1)
1
2

)
+ o(1− p1). (70)

Since β1 = (p0
p1
)p1L(1−p0

1−p1
)(1−p1)L and 1− x−ax = ax ln x+ o(x ln x) = −a(1− x) + o(1− x) for

x→ 1, we have

pL0 − β1 = pL0

(

1− (
1

p1
)p1L(

1− p0
1− p1

)(1−p1)L
)

= pL0

((
1− (

1

p1
)p1L

)
+ (

1

p1
)p1L

(
1− (

1− p0
1− p1

)(1−p1)L
))

= pL0

(

− L(1− p1) + (1− p1)L ln
1− p1
1− p0

)

+ o(1− p1). (71)

Noting that β2 = (p1
p0
)p0L(1−p1

1−p0
)(1−p0)L, we have

(
1

p0
)p0L(

1

1− p0
)(1−p0)L(1− p1)

(1−p0)L − β2

= (
1

p0
)p0L(

1

1− p0
)(1−p0)L(1− p1)

(1−p0)L
(
1− pLp01

)

= (
1

p0
)p0L(

1

1− p0
)(1−p0)L(1− p1)

(1−p0)LLp0
(
1− p1

)
+ o(1− p1) = o(1− p1). (72)
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F. Proof of Theorem 3

For large A, p1 and β2 approach 1 and 0, respectively. According to Lemma 4, Equation (17)

and ln(a+ x) = ln a+ x
a
+ o(x), we have

Imax(Λ0, A, L) ≥ − ln
1 + β

2

= ln
2

1 + p
L
2
0

+
p

L−1
2

0

1 + p
L
2
0

(
√
p0

2
(1− p1)−

√

(1− p0)(1− p1)
1
2

)
+ o(1− p1).(73)

For the upper bound, since

1− β1β2

2− β1 − β2
− 1

2− β1
=
−(1 + 2β1 − β2

1)β2

(2− β1 − β2)(2− β1)
=
−(1 + 2β1 − β2

1)β2

(2− β1)2
+ o(β2), (74)

the maximal mutual information is given by

Imax(Λ0, A, L) ≤
|β1 − β2|(1−min{β1, β2})

1− β1β2

− ln
1− β1β2

2− β1 − β2

= β1 − (1 + β1)β2 + o(β2) + ln(2− β1) +
−(1 + 2β1 − β2

1)β2

2− β1)
+ o(β2)

= pL0 + ln(2− pL0 ) +O(max{(1− p1) ln(1− p1), (1− p1)
(1−p0)L}). (75)

G. Proof of Theorem 4

Note that for binomial distribution PB
i , we have the following approximation on entropy [44,

Theorem 2],

H(PB
i ) =

1

2
ln 2πeLpi(1− pi) +O(

1

L
), i = 0, 1. (76)

Since P(N̂ = 0|X = 0) = (1−p0)L = 1−Lp0+o(Lp0), defining random variable Ŷ ∼ B(1, Lp0),

we have H(PB
0 )−H(Ŷ ) = o(Lp0) and

H(N̂ |X) =
µ

2
ln[2πeLp1(1− p1)] + (1− µ)hb(Lp0) +O(

1

L
) + o(Lp0). (77)

Considering the mixture distribution of N̂ , we have

P(N̂ = 0) = µ(1− p1)
L + (1− µ)(1− Lp0) + o(Lp0)

△
= q0 + o(Lp0); (78)

P(N̂ = 1) = µLp1(1− p1)
L−1 + (1− µ)Lp0 + o(Lp0)

△
= q1 + o(Lp0); (79)

P(N̂ = i) = µ

(
L

i

)

pi1(1− p1)
L−i + o(Lp0)

△
= qi + o(Lp0), for i ≥ 2. (80)



40

According to the continuity of entropy function, we have H(N̂) = −
∑L

i=0 qi ln qi + o(Lp0).

Based on Taylor expansion, we have

−q0 ln q0 = −[µ(1− p1)
L + 1− µ] ln[µ(1− p1)

L + 1− µ]

+(1− µ)Lp0{1 + ln[µ(1− p1)
L + 1− µ]}+ o(Lp0), (81)

−q1 ln q1 = −µLp1(1− p1)
L−1[ln(µLp1) + (L− 1) ln(1− p1)]

−(1− µ)Lp0[1 + ln(µLp1) + (L− 1) ln(1− p1)] + o(Lp0), (82)

−
L∑

i=2

qi ln qi = −µ lnµ[1− q0 − q1] + µH(PB
1 ) + µ

{

L(1− p1)
L ln(1− p1)

+Lp1(1− p1)
L−1[ln(Lp1) + (L− 1) ln(1− p1)]

}

. (83)

Since I(X ; N̂) = H(N̂)−H(N̂ |X), we can obtain Equation (32).

H. Proof of Theorem 5

Note that ∂Fu

∂β1
= − µ(1−µ)

(1−µ)β1+µ
< 0, ∂Fu

∂β2
= − µ(1−µ)

µβ2+1−µ
< 0, ∂2Fu

∂β2
1

= µ(1−µ)2

[(1−µ)β1+µ]2
> 0 and

∂2Fu

∂β2
2
= µ2(1−µ)

[µβ2+1−µ]2
> 0. For low SNR, according to Taylor Theorem and β > max{β1, β2}, we

have

Fu(µ, β1, β2)− Fu(µ, β, β2)
(a)
=

µ(1− µ)

(1− µ)β1 + µ
(β − β1) +

∂2Fu

∂β2
1

∣
∣
∣
(β,ξ1,β2)

(β − β1)
2

(b)

≤ µ(1− µ)

(1− µ)β1 + µ
(β − β1) +

∂2Fu

∂β2
1

∣
∣
∣
(β,β1,β2)

(β − β1)
2, (84)

where (a) holds due to the Taylor expansion in terms of β1, ξ1 ∈ (β1, β) and (b) holds since

∂2Fu

∂β2
1

is monotonically decreasing with respect to β1. Furthermore, we have

max
µ∈[0,1]

Fu(µ, β1, β2)− Fu(µ, β, β2) ≤ max
µ∈[0,1]

µ(1− µ)

(1− µ)β1 + µ
(β − β1) +

µ(1− µ)2

[(1− µ)β1 + µ]2
(β − β1)

2

(c)

≤ 1

4β1
(β − β1) +

4

27β2
1

(β − β1)
2, (85)

where (c) holds since (1 − µ)β1 + µ ≥ β1, µ(1 − µ) ≤ (µ+(1−µ)
2

)2 = 1
4

and µ(1 − µ)2 ≤
1
2
(2µ+(1−µ)+(1−µ)

3
)2 = 4

27
. Similar to equation (85), we have

max
µ∈[0,1]

Fu(µ, β, β2)− Fu(µ, β, β) ≤
1

4β2

(β − β2) +
4

27β2
2

(β − β2)
2. (86)
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As Fl(µ, β) = Fu(µ, β, β), we have the upper bound on ∆(β, β1, β2) in low SNR regime,

∆(β, β1, β2) = max
µ∈[0,1]

Fu(µ, β1, β2)− Fu(µ, β, β)

(d)

≤ max
µ∈[0,1]

Fu(µ, β1, β2)− Fu(µ, β, β2) + max
µ∈[0,1]

Fu(µ, β, β2)− Fu(µ, β, β)

(e)

≤ 1

4β1
(β − β1) +

4

27β2
1

(β − β1)
2 +

1

4β2
(β − β2) +

4

27β2
2

(β − β2)
2

=
1

108
(
β

β1
− 1)(16

β

β1
+ 11) +

1

108
(
β

β2
− 1)(16

β

β2
+ 11), (87)

where (d) holds due to max
x

f(x) + g(x) ≤ max
x

f(x) + max
x

g(x) and (e) holds according to

Equations (85) and (86).

For high SNR, note that

Fu(µ, β1, β2)− Fu(µ, β, β2) = µ ln[1 +
(1− µ)(β − β1)

(1− µ)β1 + µ
]
(f)

≤ µ(1− µ)(β − β1)

(1− µ)β1 + µ
(g)

≤ (1− µ)(β − β1), (88)

where (f) and (g) hold due to ln(1 + x) ≤ x and µ ≤ (1 − µ)β1 + µ, respectively. Thus, we

have

max
µ∈[0,1]

Fu(µ, β1, β2)− Fu(µ, β, β2) ≤ β − β1. (89)

Similarly to Equation (89), we have

max
µ∈[0,1]

Fu(µ, β, β2)− Fu(µ, β, β) ≤ β − β2. (90)

Thus, we have the following upper bound on ∆(β, β1, β2) in high SNR regime,

∆(β, β1, β2) ≤ max
µ∈[0,1]

Fu(µ, β1, β2)− Fu(µ, β, β2) + max
µ∈[0,1]

Fu(µ, β, β2)− Fu(µ, β, β)

≤ (β − β1) + (β − β2). (91)

For general β, β1, β2, we have the following lower bound on ∆(β, β1, β2),

∆(β, β1, β2) = max
µ∈[0,1]

Fu(β, β1, β2)− Fu(β, β, β)

(h)

≥ max
µ∈[0,1]

Fu(β, β1, β2)− max
µ∈[0,1]

Fu(β, β, β)

= max
µ∈[0,1]

Fu(β, β1, β2) + ln
1 + β

2
µ= 1

2≥ −1
2
(ln

1 + β1

2
+ ln

1 + β2

2
) + ln

1 + β

2
=

1

2
ln

1 + β

1 + β1
+

1

2
ln

1 + β

1 + β2
,
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where (h) holds since that for positive function f(x) and g(x),

max
x

f(x)− g(x) ≥ f(x∗)− g(x∗) ≥ f(x∗)−max
x

g(x) = max
x

f(x)−max
x

g(x),

where x∗ = argmax
x

f(x).

I. Proof of Theorem 6

As β = exp
(
− C 1

2
(PB

1 ||PB
0 )
)
→ 0, β1 = exp

(
− KL(PB

1 ||PB
0 )
)
→ 0 and β2 = exp

(
−

KL(PB
0 ||PB

1 )
)
→ 0 as L approaches infinity, such scenario corresponds to high SNR regime.

According to Theorem 5, β1 = o(β) and β2 = o(β), we have

∆(β, β1, β2) ≤ (β − β1) + (β − β2)

= 2 exp(−C 1
2
(PB

1 ||PB
0 )) + o(exp(−C 1

2
(PB

1 ||PB
0 ))). (92)

Thus, we have the following lower bound on the exponential rate of ∆(β, β1, β2) with respect

to L,

− lim
L→∞

ln∆(β, β1, β2)

L
≥ lim

L→∞

C 1
2
(PB

1 ||PB
0 )

L
= − ln

(√
p0p1 +

√

(1− p0)(1− p1)
)
. (93)

Similarly, we have

∆(β, β1, β2) ≥
1

2
ln

1 + β

1 + β1

+
1

2
ln

1 + β

1 + β2

=
1

2

β − β1

1 + β1

+
1

2

β − β2

1 + β2

+ o(β) = β + o(β); (94)

and thus an upper bound on exponential rate of ∆(β, β1, β2) with respect to L is given as follows,

− lim
L→∞

ln∆(β, β1, β2)

L
≤ lim

L→∞

C 1
2
(PB

1 ||PB
0 )

L
= − ln

(√
p0p1 +

√

(1− p0)(1− p1)
)
. (95)

From Equations (93) and (95), we have

− lim
L→∞

ln∆(β, β1, β2)

L
= − ln

(√
p0p1 +

√

(1− p0)(1− p1)
)
. (96)

It demonstrates the asymptotic tightness of the upper and lower bounds for large L, with

exponential rate − ln
(√

p0p1 +
√

(1− p0)(1− p1)
)
.
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J. Proof of Theorem 7

According to Lemma 4 and Theorem 5, we have the upper bound on ∆(β, β1, β2),

∆(β, β1, β2) ≤ (β − β1) + (β − β2) = 2p
L
2
0 − pL0 + ǫu + o(ǫu), (97)

where ǫu is shown in Equation (39). Similarly, according to Theorem 5, we have the following

upper bound on ∆(β, β1, β2),

∆(β, β1, β2) ≥ ln
(
1 + p

L
2
0

)
− 1

2
ln
(
1 + pL0

)
+ ǫl + o(ǫl), (98)

where ǫl is showed in equation (40).

K. Proof of Theorem 9

According to Theorem 5, we have the following upper and lower bounds on bound gap

∆(β, β1, β2),

∆(β, β1, β2) ≤ (β − β1) + (β − β2),

= 2(1− p1)
L
2 + o

(
(1− p1)

L
2

)
, (99)

∆(β, β1, β2) ≥
1

2
ln

1 + β

1 + β1
+

1

2
ln

1 + β

1 + β2

=
1

2
(1− p1)

L
2 +

1

2

(1− p1)
L
2 − (1− p1)

L

1 + (1− p1)L
+ o
(
(1− p1)

L
2

)

= (1− p1)
L
2 + o

(
(1− p1)

L
2

)
. (100)

Thus, the asymptotic tightness is demonstrated as follows,

0 = lim
A→∞

(1− p1)
L
2 + o

(
(1− p1)

L
2

)
≤ lim

A→∞
∆(β, β1, β2)

≤ lim
A→∞

2(1− p1)
L
2 + o

(
(1− p1)

L
2

)
= 0. (101)

Furthermore, we have the following on the exponential rate of the bound gap with respect to

peak power A,

− lim
A→∞

ln∆(β, β1, β2)

A
≥ lim

A→∞
− ln[2(1− p1)

L
2 + o

(
(1− p1)

L
2

)
]

A
=

Lτ

2
, (102)

− lim
A→∞

ln∆(β, β1, β2)

A
≤ lim

A→∞
− ln[(1− p1)

L
2 + o

(
(1− p1)

L
2

)
]

A
=

Lτ

2
, (103)

i.e., − limA→∞
ln∆(β,β1,β2)

A
= Lτ

2
.
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L. Proof of Theorem 10

For low peak power A, we have p1 → p0 and p1−p0 = e−Λ0τ (1−e−Aτ ) = (1−p0)τA+o(A).

Noting that
√
x+ p0 =

√
p0 +

1
2
√
p0
x− 1

8p
3
2
0

x2 + o(x2), we have

1−√p0p1 −
√

(1− p0)(1− p1)

= 1−
(
p0 +

p1 − p0
2

− (p1 − p0)
2

8p0

)
−
(
1− p0 +

p0 − p1
2

− (p0 − p1)
2

8(2− p0)

)
+ o(A2)

=
(p1 − p0)

2

8p0(1− p0)
+ o(A2) =

(1− p0)

8p0
τ 2A2 + o(A2). (104)

Thus, we have the following Taylor expansion on β,

β = exp
(
− C 1

2
(PB

1 ||PB
0 )
)
= 1− C 1

2
(PB

1 ||PB
0 ) + o

(
C 1

2
(PB

1 ||PB
0 )
)

= 1− L
(
1−√p0p1 −

√

(1− p0)(1− p1)
)
+ o(1−√p0p1 −

√

(1− p0)(1− p1))

= 1− L(1− p0)

8p0
τ 2A2 + o(A2). (105)

Note that KL(PB
1 ||PB

0 ) = L
(
p1 ln

p1
p0

+ (1− p1) ln
1−p1
1−p0

)
, according to Taylor theorem, we have

KL(PB
1 ||PB

0 ) = 0 + L
(
ln

p1
p0
− ln

1− p1
1− p0

)
∣
∣
∣
p1=p0

(p1 − p0)

+
L

p1(1− p1)

∣
∣
∣
p1=p0

(p1 − p0)
2

2
+ o
(
(p1 − p0)

2
)

=
L(1− p0)

2p0
τ 2A2 + o(A2). (106)

Thus, we have the following Taylor expansion on the β1,

β1 = exp
(
−KL(PB

1 ||PB
0 )
)
= 1−KL(PB

1 ||PB
0 ) + o

(
KL(PB

1 ||PB
0 )
)

= 1− L(1 − p0)

2p0
τ 2A2 + o(A2). (107)

Similarly, we have Taylor expansion β2 = 1− L(1−p0)
2p0

τ 2A2 + o(A2).

According to Theorem 5, we have

∆(β, β1, β2) ≤
1

108
(
β

β1
− 1)(16

β

β1
+ 11) +

1

108
(
β

β2
− 1)(16

β

β2
+ 11)

=
1

108
(
L(1− p0)

2p0
− L(1− p0)

8p0
)τ 2A2 × 27× 2 + o(A2)

=
3L(1− p0)

16p0
τ 2A2 + o(A2), (108)

∆(β, β1, β2) ≥
1

2
ln

1 + β

1 + β1
+

1

2
ln

1 + β

1 + β2
=

3L(1− p0)

16p0
τ 2A2 + o(A2). (109)
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Based on Equations (108) and (109), we have ∆(β, β1, β2) =
3L(1−p0)

16p0
τ 2A2 + o(A2).

APPENDIX B

THE PROOF OF MAIN RESULTS ON THE CAPACITY FOR ARBITRARILY SYMBOL DURATION

A. Proof of Proposition 2

Converse part: Note that ΛTs → XTs
→ Z forms a Markov chain, where XTs

=
∫ Ts

Ts−τ
Λ(t

′

)dt
′

, according to data processing inequality, we have I(ΛTs;Z) ≤ I(XTs
;Z). Note

that the conditional entropy H(Z|XTs
) = hb(S), where S = p(XTs

+ Λ0) and p(x) = 1− e−xτ .

Define µ(XTs
) as the probability measure of XTs

. Entropy H(Z) is given by H(Z) = hb(p̂),

where p̂ =
∫
p(XTs

+ Λ0)dµ(XTs
) = E[S]. The mutual information I(X,Z) is as follows,

I(X,Z) = hb(p̂)−
∫

hb(p(XTs
+ Λ0))dµ(XTs

). (110)

As mapping XTs
→ S is a one-to-one mapping, we have

I(XTs
;Z) = I(S;Z) = hb(E[S])− E[hb(S)], (111)

and the following equation holds,

max
µ(XTs )

I(XTs
;Z) = max

µ(S)
I(S;Z) = max

p(Λ0)≤p̂≤p(A+Λ0)
max

µ(S):E[S]=p̂
I(S;Z)

= max
p(Λ0)≤p̂≤p(A+Λ0)

hb(p̂) + max
µ(S):E[S]=p̂

E[−hb(S)]. (112)

Note that function −hb(·) is strictly convex and the solution to maximize a strictly convex

function over all finite support probability given first moment is achieved by a distribution of

two mass extreme points. Accordingly, defining µ
△
= P(XTs

= A), we have

Cτ,τ ≤
1

τ
max
µ(XTs )

I(XTs
, Z)

=
1

τ
max
0≤µ≤1

hb

(
p̂(µ)

)
− (1− µ)hb

(
p(Λ0)

)
− µhb

(
p(A+ Λ0)

)
, (113)

where µ satisfies (1− µ)p(Λ0) + µp(A+ Λ0) = p̂, i.e., µ = p̂−p(Λ0)
p(A+Λ0)−p(Λ0)

.

Achievability part: Let waveform ΛTs in [0, Ts] randomly selected from waveform set {0, A∗
(u(t)− u(t− Ts))} with probability µ∗ = P{ΛTs = A ∗ (u(t)− u(t− Ts))}, where u(t) denotes

as a step function, then we have

Cτ,τ ≥
1

τ
max
0≤µ≤1

hb

(
p̂(µ)

)
− (1− µ)hb

(
p(Λ0)

)
− µhb

(
p(A+ Λ0)

)
. (114)
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B. Proof of Proposition 3

Recalling F (µ)
△
= hb

(
p̂(µ)

)
− (1 − µ)hb

(
p(Λ0)

)
− µhb(p(Aτ)), where p̂ = (1 − µ)p(Λ0) +

µp(A+ Λ0), we have

F
′

(µ) = −(p(A+ Λ0)− p(Λ0)) ln
p̂

1− p̂
+ hb

(
p(Λ0)

)
− hb

(
p(A+ Λ0)

)
, (115)

F
′′

(µ) = −p(A+ Λ0)− p(Λ0)

p̂(1− p̂)
< 0. (116)

Note that hb(·) is concave, according to Lemma 5, we have h
′

b(y) > hb(x)−hb(y)
x−y

> h
′

b(x) for

0 ≤ y < x ≤ 1, and

F
′

(0) = −(p(A+ Λ0)− p(Λ0))
(hb

(
p(A+ Λ0)

)
− hb

(
p(Λ0)

)

p(A+ Λ0)− p(Λ0)
− h

′

b(p(Λ0))
)
> 0; (117)

F
′

(1) = −(p(A+ Λ0)− p(Λ0))
(hb

(
p(A+ Λ0)

)
− hb

(
p(Λ0)

)

p(A+ Λ0)− p(Λ0)
− h

′

b(p(A+ Λ0))
)
< 0.(118)

Thus, µ∗ △
= argmaxF (µ) uniquely exists and satisfies F

′

(µ∗) = 0, i.e.,

µ∗ =
a

1+a
− p(Λ0)

p(A+ Λ0)− p(Λ0)
, (119)

where a = exp(−hb

(
p(A+Λ0)

)
−hb

(
p(Λ0)

)

p(A+Λ0)−p(Λ0)
). Hence we have C = 1

τ
F (µ∗).

C. Proof of Theorem 12

First we show the Taylor expansion of a given in Theorem 11.

Since hb(x) = −x ln(x)− (1− x) ln(1− x) = x− x ln(x) + o(x) and ln p(x)
τ

= ln(x) + o(τ),

we have

hb

(
p(A + Λ0)

)
− hb

(
p(Λ0)

)

p(A+ Λ0)− p(Λ0)
+ ln τ =

Aτ − Aτ p(A+Λ0)
τ

+ p(Λ0) ln
p(Λ0)

τ
+ o(τ)

p(A+ Λ0)− p(Λ0)

= 1 +
Λ0 ln(Λ0)− (A+ Λ0) ln(A+ Λ0)

A
. (120)

Defining s = Λ0

A
, based on Equation (120), we have

lim
τ→0

a

τ
= exp

(
− lim

τ→0
(
hb

(
p(A+ Λ0)

)
− hb

(
p(Λ0)

)

p(A+ Λ0)− p(Λ0)
+ ln τ)

)
=

A

e

(1 + s)1+s

ss
, (121)

lim
τ→0

µ∗ = lim
τ→0

A
e
(1+s)1+s

ss
τ − Λ0τ + o(τ)

Aτ
=

(1 + s)1+s

ess
− s. (122)
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Based on the above results, we have the following result, which shows that the capacity is

consistent with the scenario of continuous Poisson channel,

lim
τ→0

Cτ,τ = lim
τ→0

1

τ
F (µ∗) = lim

τ→0

∂F (µ∗)

∂τ

= lim
τ→0

(1− µ∗)Λ0e
−Λ0τ ln

p(Λ0)(1− p̂)

(1− p(Λ0))p̂
+ µ∗(A+ Λ0)e

−(A+Λ0)τ ln
p(A+ Λ0)(1− p̂)

(1− p(A + Λ0))p̂

= (1− µ∗)Λ0 ln
Λ0

µ∗A+ Λ0
+ µ∗(A + Λ0) ln

A+ Λ0

µ∗A + Λ0

= A[−(µ∗ + s) ln(µ∗ + s) + µ∗(1 + s) ln(1 + s) + (1− µ∗)s ln s]. (123)

D. Proof of Theorem 13

According to Equation (121), point-wise convergence is obvious. Set A = 1
τ
, then we have

lim
τ→0

µ∗ =
exp(−hb(p(1))/p(1))

p(1)[1 + exp(−hb(p(1))/p(1))]
6= 1

e
, (124)

which shows that the convergence is not uniform.

E. Proof of Theorem 14

Considering the scenario without background radiation, i.e., Λ0 = 0. For A→∞, we have

lim
A→∞

a = exp
(
− lim

A→∞
(
hb

(
p(A+ Λ0)

)

p(A+ Λ0)
)
)
= 1, (125)

and the optimal duty cycle lim
A→∞

µ∗ = 1
2
. When A→ 0, we have lim

A→0
a = 0 and

lim
A→0

µ∗ x=p(A)
====== lim

x→0

exp(−hb(x)
x

)

x
= lim

x→0
exp(

(1− x) ln(1− x)

x
) =

1

e
. (126)

As the optimal duty cycle for continuous Poisson channel is 1
e

for Λ0 = 0 and any A, the optimal

duty cycle for larger A deviates more due to larger counting loss.

For Λ0 > 0, as A→∞, we have

lim
A→∞

a = exp
(
− lim

A→∞
(
hb

(
p(A+ Λ0)

)
− hb

(
p(Λ0)

)

p(A+ Λ0)− p(Λ0)
)
)
= exp

(
eΛ0τhb

(
p(Λ0)

))
, (127)

and lim
A→∞

µ∗ = 1− 1(
1+exp

(
eΛ0τhb

(
p(Λ0)

)))
(1−p(Λ0))

.

For A→ 0 and Λ0 > 0, since lim
A→0

a = 0, we have

lim
A→0

µ∗ = lim
A→0

a

p(A)
= lim

A→0

exp
(
ln p(A)− 1 + o(1)

)

p(A)
=

1

e
. (128)
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For‘ A→ 0 and Λ0 > 0, we have

lim
A→0

a = exp(−h′

b(p(Λ0))) =
p(Λ0)

1− p(Λ0)
. (129)

According to Taylor’s theorem and p(A + Λ0)− p(Λ0) =
(
1 − p(Λ0)

)
Aτ + o(A), we have the

following results for sufficiently small A,

hb

(
p(A+ Λ0)

)
− hb

(
p(Λ0)

)

p(A+ Λ0)− p(Λ0)
= h

′

b(p(Λ0)) +
h

′′

b (p(Λ0))

2

(
p(A+ Λ0)− p(Λ0)

)
+ o
(
p(A+ Λ0)− p(Λ0)

)

= h
′

b(p(Λ0)) +
h

′′

b (p(Λ0))

2

(
1− p(Λ0)

)
Aτ + o(A), (130)

a =
p(Λ0)

1− p(Λ0)
− exp(−h′

b(p(Λ0)))
h

′′

b (p(Λ0))

2

(
1− p(Λ0)

)
Aτ + o(A),

=
p(Λ0)

1− p(Λ0)
− 1

2
(
1− p(Λ0)

)2

(
1− p(Λ0)

)
Aτ + o(A), (131)

lim
A→0

µ∗ = lim
A→0

a
1+a
− p(Λ0)

(
1− p(Λ0)

)
Aτ

= (1− p(Λ0))
2[− p(Λ0)

1− p(Λ0)
[−2p(Λ0)(1− p(Λ0))]

−1

=
1

2
. (132)

F. Proof of Theorem 15

Note that lim
A→∞

hb

(
p(A+Λ0)

)
−hb

(
p(Λ0)

)

p(A+Λ0)−p(Λ0)
=

−hb

(
p(Λ0)

)

1−p(Λ0)
, ln

(
1 − p(A + Λ0)

)
= −Aτ and hb(x) =

hb(1− x) = (1− x)− (1− x) ln(1− x) + o(1− x) for x→ 1. We have

hb

(
p(A + Λ0)

)
− hb

(
p(Λ0)

)

p(A+ Λ0)− p(Λ0)
− −hb

(
p(Λ0)

)

1− p(Λ0)

=

(
1− p(Λ0)

)
hb

(
p(A+ Λ0)

)
− hb

(
p(Λ0)

)(
1− p(A+ Λ0)

)

(
1− p(Λ0)

)(
p(A+ Λ0)− p(Λ0)

)

=

(
1− p(Λ0)

)(
p(A+ Λ0)− p(A+ Λ0) ln p(A+ Λ0)

)

(
1− p(Λ0)

)2 + o(Ae−Aτ )

= eΛ0τAτe−Aτ + o(Ae−Aτ ). (133)

Since exp
(
− (x+∆x)

)
= exp(−x)− exp(−x)∆x+ o(∆x), the Taylor expansion of a can be

expressed as follows based on Equation (133),

a = exp
(

eΛ0τhb

(
p(Λ0)

))

− exp
(

eΛ0τhb

(
p(Λ0)

))

eΛ0τAτe−Aτ + o(Ae−Aτ ). (134)
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For the optimal duty cycle µ∗, based on Equation (134) and the Taylor expansion of 1
1+a

, we

have

µ∗ =
a

1+a
− p(Λ0)

p(A+ Λ0)− p(Λ0)
= 1−

1− p(A+ Λ0)− 1
1+a

p(A+ Λ0)− p(Λ0)
= 1−

1− p(A+ Λ0)− 1
1+a

1− p(Λ0)
+ o(Ae−Aτ )

= 1−
e−(A+Λ0)τ − [1 + exp

(

eΛ0τhb

(
p(Λ0)

))

]−1 + [1 + exp
(

eΛ0τhb

(
p(Λ0)

))

]−2eΛ0τAτe−Aτ

1− p(Λ0)

+o(Ae−Aτ ),

= 1− [1 + exp
(

eΛ0τhb

(
p(Λ0)

))

]−1eΛ0τ + [1 + exp
(

eΛ0τhb

(
p(Λ0)

))

]−2e2Λ0τAτe−Aτ + o(Ae−Aτ ).

Similarly, the Taylor expansion of p̂ is given by

p̂ = p(Λ0) + µ∗(p(A+ Λ0)− p(Λ0)
)

= p(Λ0) +
{

1− [1 + exp
(

eΛ0τhb

(
p(Λ0)

))

]−1eΛ0τ
}

e−Λ0τ

+[1 + exp
(

eΛ0τhb

(
p(Λ0)

))

]−2eΛ0τAτe−Aτ + o(Ae−Aτ ). (135)

Based on Equations (135) and (135) and hb

(
p(A+Λ0)

)
= O(Ae−Aτ), the asymptotic capacity

is given as follows

lim
A→∞

Cτ,τ =
1

τ
lim
A→∞

F (µ∗) =
1

τ
lim
A→∞

hb(p̂)− (1− µ∗)hb

(
p(Λ0)

)
− µ∗hb

(
p(A+ Λ0)

)

=
1

τ

{

lim
A→∞

{

hb

(

p(Λ0) +
{

1− [1 + exp
(

eΛ0τhb

(
p(Λ0)

))

]−1eΛ0τ
}

e−Λ0τ

)

+O(Ae−Aτ)
}

−(1− µ∗)hb

(
p(Λ0)

)

}

= cΛ0

1

τ
, (136)

where cΛ0 = hb

(
exp
(
eΛ0τhb

(
p(Λ0)

))

1+exp
(
eΛ0τhb

(
p(Λ0)

))

)

− hb

(
p(Λ0)

)
eΛ0τ

(

1+exp
(
eΛ0τhb

(
p(Λ0)

))) .

G. Proof of Theorem 16

Note that cΛ0 = hb(
u

1+u
)− lnu

1+u
, where u = exp

(
eΛ0τhb

(
p(Λ0)

))
, we have

∂cΛ0

∂u
= − 1

u(1 + u)
< 0. (137)

Subsequently, we focus on the monotonicity of u with respect to Λ0. Define v(x) = hb(x)
x

, x ∈
(0, 1), and we have v

′

(x) = ln(1−x)
x2 < 0. Since eΛ0τhb

(
p(Λ0)

)
= v(e−Λ0τ ) and e−Λ0τ
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monotonically decreases with Λ0, we have ∂u
∂Λ0

> 0 and cΛ0 monotonically decreases with

Λ0. Such monotonically decreasing property aligns with the intuition since larger background

radiation Λ0 leads to more capacity loss.

For Λ0 = 0, it is easy to check that cΛ0 = 1. According to monotone convergence theorem, the

limitation of cΛ0 for large background radiation Λ0 exists. Since v(x) = 1− ln x+o(1) for small

x, and due to the continuity of exp(·) and v(·), we have lim
Λ0→∞

u = exp
(

lim
Λ0→∞

v(e−Λ0τ )
)
= +∞.

Similarly, according to monotone convergence theorem and equation (137), we have lim
Λ0→∞

cΛ0 =

lim
u→∞

hb(
u

1+u
)− lnu

1+u
= 0.

H. Proof of Theorem 17

For continuous Poisson channel and peak power constraint, according to [11], the capacity is

given by CPoi = A[q∗(1 + s) ln(1 + s) + (1 − q∗)s ln s − (q∗ + s) ln(q∗ + s)], As s = Λ0

A
and

q∗ = (1+s)(1+s)

sse
− s. when s → +∞ (i.e., low SNR), we have q∗ = 1

2
+ O(1

s
). Considering the

asymptotic capacity for small A, we have

CPoi = As[q∗(1 + s−1) ln(1 + s) + (1− q∗) ln s− (1 + q∗s−1) ln(q∗ + s)]

= Λ0[− ln(q∗ + s) + q∗ ln(1 + s) + (1− q∗) ln s− q∗s−1 ln(q∗ + s) + q∗s−1 ln(1 + s)]

= Λ0[− ln(1 +
q∗

s
) + q∗ ln(1 +

1

s
) +

q∗

s
ln(1 +

1− q∗

q∗ + s
)]

=
q∗(1− q∗)

2s2
+ o(s−2) =

1

8Λ0
A2 + o(A2). (138)

Similarly, Taylor expansion is adopt to calculate the asymptotic capacity of non-perfect receiver

for small A. The main clue is to obtain the Taylor expansion of
hb

(
p(A+Λ0)

)
−hb

(
p(Λ0)

)

p(A+Λ0)−p(Λ0)
, a, µ∗, p̂,

and Cτ,τ , one by one.

Since
f(x)−f(y)

x−y
= f

′

(y)+ f
′′

(y)
2

(x−y)+ f
′′′

(y)
6

(x−y)2+o
(
(x−y)2

)
for differentiable function

f(·), we have

hb

(
p(A+ Λ0)

)
− hb

(
p(Λ0)

)

p(A+ Λ0)− p(Λ0)
= h

′

b

(
p(Λ0)

)
+

h
′′

b

(
p(Λ0)

)

2

(
1− p(Λ0)

)
Aτ

+
h

′′′

b

(
p(Λ0)

)

6

(
1− p(Λ0)

)2
A2τ 2 + o(A2), (139)
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As h
′

b(x) = ln 1−x
x

, h
′′

b (x) = − 1
x(1−x)

, h
′′′

b (x) =
1
x2 − 1

(1−x)2
and

exp
(
− (a0 + a1∆x+ a2∆

2x+ o(∆2x))
)

= exp(−a0)− exp(−a0)a1∆x+ exp(−a0)∆2x
(
− a2 +

a21
2

)
+ o(∆2x), (140)

based on equation (139), the Taylor expression of a and a
1+a

are given by

a = exp
(

− hb

(
p(A+ Λ0)

)
− hb

(
p(Λ0)

)

p(A+ Λ0)− p(Λ0)

)

= exp
(

− h
′

b

(
p(Λ0)

))

− exp
(

− h
′

b

(
p(Λ0)

))h
′′

b

(
p(Λ0)

)

2

(
1− p(Λ0)

)
Aτ

+exp
(

− h
′

b

(
p(Λ0)

))

A2τ 2
{

− h
′′′

b

(
p(Λ0)

)

6

(
1− p(Λ0)

)2
+

1

2

[h
′′

b

(
p(Λ0)

)

2

(
1− p(Λ0)

)]2
}

+ o(A2)

=
p(Λ0)

1− p(Λ0)
+

Aτ

2
(
1− p(Λ0)

) +
p(Λ0)

1− p(Λ0)
A2τ 2

{

− 1

6
[p−2(Λ0)−

(
1− p(Λ0)

)−2
]
(
1− p(Λ0)

)2

+
1

8

(
1− p(Λ0)

)2

p2(Λ0)
(
1− p(Λ0)

)2

}

+ o(A2)

=
p(Λ0)

1− p(Λ0)
+

Aτ

2
(
1− p(Λ0)

) +
8p(Λ0)− 1

24p(Λ0)
(
1− p(Λ0)

)A2τ 2 + o(A2). (141)

Since t+∆t
1+t+∆t

= t
1+t

+ (1 + t)−2∆t− 2(1 + t)−3∆2t+ o(∆2t), the Taylor expansion of a
1+a

and

µ∗ are given by

a

1 + a
= p(Λ0) +

(
1− p(Λ0)

)2 Aτ

2
(
1− p(Λ0)

) +
(
1− p(Λ0)

)2 8p(Λ0)− 1

24p(Λ0)
(
1− p(Λ0)

)A2τ 2

−
(
1− p(Λ0)

)3
+

A2τ 2

4
(
1− p(Λ0)

)2

= p(Λ0) +
(
1− p(Λ0)

)Aτ

2
+

2p(Λ0)− 1

24p(Λ0)

(
1− p(Λ0)

)
A2τ 2 + o(A2), (142)

µ∗ =
a

1+a
− p(Λ0)

p(A+ Λ0)− p(Λ0)
=

(
1− p(Λ0)

)
Aτ
2
+ 2p(Λ0)−1

24p(Λ0)

(
1− p(Λ0)

)
A2τ 2

(
1− p(Λ0)

)
Aτ

+ o(A)

=
1

2
+

2p(Λ0)− 1

24p(Λ0)
Aτ + o(A). (143)

Based on equation (143), we have the Taylor expansion of p̂ as follows,

p̂ = p(Λ0) + µ∗(p(A+ Λ0)− p(Λ0)
)

= p(Λ0) +
1

2

(
1− p(Λ0)

)
Aτ +

[2p(Λ0)− 1

24p(Λ0)

(
1− p(Λ0)

)
−
(
1− p(Λ0)

)

4

]

A2τ 2 + o(A2)

= p(Λ0) +
1

2

(
1− p(Λ0)

)
Aτ +

−4p(Λ0)− 1

24p(Λ0)

(
1− p(Λ0)

)
A2τ 2 + o(A2). (144)
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To obtain the asymptotic capacity with non-perfect receiver CPoi, the Taylor expansion of hb(p̂)

is given as follows,

hb(p̂) = hb

(
p(Λ0)

)
+ h

′

b

(
p(Λ0)

)1

2

(
1− p(Λ0)

)
Aτ +

[

h
′

b

(
p(Λ0)

)−4p(Λ0)− 1

24p(Λ0)

(
1− p(Λ0)

)

+
1

8
h

′′

b

(
p(Λ0)

)(
1− p(Λ0)

)2
]

A2τ 2 + o(A2). (145)

Similarly, µ∗hb

(
p(A + Λ0)

)
+ (1− µ∗)hb

(
p(Λ0)

)
is given by

µ∗hb

(
p(A+ Λ0)

)
+ (1− µ∗)hb

(
p(Λ0)

)

= hb

(
p(Λ0)

)
+
(1

2
+

2p(Λ0)− 1

24p(Λ0)
Aτ + o(A)

){

h
′

b

(
p(Λ0)

)(
1− p(Λ0)

)
(Aτ − 1

2
A2τ 2)

+h
′′

b

(
p(Λ0)

)1

2

(
1− p(Λ0)

)2
A2τ 2 + o(A2)

}

= hb

(
p(Λ0)

)
+ h

′

b

(
p(Λ0)

)1

2

(
1− p(Λ0)

)
Aτ +

{

h
′

b

(
p(Λ0)

)(
1− p(Λ0)

)−4p(Λ0)− 1

24p(Λ0)

+h
′′

b

(
p(Λ0)

)1

4

(
1− p(Λ0)

)2
}

A2τ 2 + o(A2). (146)

Based on Equations (145) and (146), the asymptotic capacity Cτ,τ is given as follows,

Cτ,τ =
1

τ

{

hb(p̂)− (1− µ)hb

(
p(Λ0)

)
− µhb

(
p(A+ Λ0)

)}

=
1

τ

{

− h
′′

b

(
p(Λ0)

)

8

(
1− p(Λ0)

)2
}

A2τ 2 + o(A2) =
τ
(
1− p(Λ0)

)

8p(Λ0)
A2 + o(A2).(147)

I. Proof of Theorem 18

Defining f(t)
△
= t − t ln t − 1, t ∈ (0, 1), we have f

′

(t) = − ln t > 0. Since lim
t→0

f(t) = −1
and lim

t→1
f(t) = 0, we have −t ln t

1−t
< 1 holds for t ∈ (0, 1). Let t = e−Λ0τ = 1− p(Λ0), we have

ln t = −Λ0τ and dτ =
τ
(
1−p(Λ0)

)

8p(Λ0)
< 1

8Λ0
= dPoi.

For any Λ0 > 0, we have

lim
τ→0

dτ
dPoi

= lim
τ→0

Λ0τ
(
1− p(Λ0)

)

p(Λ0)
t=e−Λ0τ

======= lim
t→1

−t ln t
1− t

= 1. (148)
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J. Proof of Theorem 19

Since Cτ,τ(A,Λ0) = 1
τ

{

hb(p̂) − (1 − µ∗)hb

(
p(Λ0)

)
− µ∗hb

(
p(A + Λ0)

)}

and h
′

b(p̂) =

hb

(
p(A+Λ0)

)
−hb

(
p(Λ0)

)

p(A+Λ0)−p(Λ0)
, we have

∂Cτ,τ (A,Λ0)

∂A
=

1

τ

{

h
′

b(p̂)
[
µ∗(1− p(A + Λ0)

)
τ +

∂µ∗

∂A

(
p(A+ Λ0)− p(Λ0)

)]

−µ∗h
′

b

(
1− p(A+ Λ0)

)
τ − ∂µ∗

∂A

(

hb

(
p(A + Λ0)

)
− hb

(
p(Λ0)

))}

= µ∗(1− p(A+ Λ0)
)(

h
′

b(p̂)− h
′

b

(
p(A + Λ0)

))

> 0, (149)

where the last inequality is satisfied since h
′′

b < 0 and p̂ < p(A+Λ0). Thus, Cτ,τ(A,Λ0) strictly

increases with peak power A.

Further from Equation (149), we have

∂2Cτ,τ (A,Λ0)

∂A2
= µ∗(1− p(A+ Λ0)

)[hb

(
p(A+ Λ0)

)
− hb

(
p(Λ0)

)

p(A+ Λ0)− p(Λ0)
− ln

1− p(A+ Λ0)

p(A + Λ0)

]

+µ∗(1− p(A+ Λ0)
)2
[

− 1

p(A+ Λ0)− p(Λ0)

(hb

(
p(A+ Λ0)

)
− hb

(
p(Λ0)

)

p(A+ Λ0)− p(Λ0)

− ln
1− p(A+ Λ0)

p(A+ Λ0)

)

+
1

p(A+ Λ0)
(

1− p(A+ Λ0)
)

]

︸ ︷︷ ︸

I1

+
∂µ∗

∂A

(
1− p(A+ Λ0)

)[hb

(
p(A + Λ0)

)
− hb

(
p(Λ0)

)

p(A+ Λ0)− p(Λ0)
− ln

1− p(A+ Λ0)

p(A+ Λ0)

]

︸ ︷︷ ︸

I2

.

Since lim
x→0

xh
′

b(x) = lim
x→0

x ln 1−x
x

= 0 and lim
A→∞

a = exp
(

eΛ0τhb

(
p(Λ0)

))

, we have

lim
A→∞

∂a

∂A

= lim
A→∞

−a
h

′

b

(
p(A+ Λ0)

)(
p(A+ Λ0)− p(Λ0)

)
−
(

hb

(
p(A+ Λ0)

)
− hb

(
p(Λ0)

))

[p(A + Λ0)− p(Λ0)]2
[1− p(A+ Λ0)]

= 0. (150)

Note that ∂µ∗

∂A
= −[ a

1+a
− p(Λ0)]

1−p(A+Λ0)
[p(A+Λ0)−p(Λ0)]2

+ 1
p(A+Λ0)−p(Λ0)

∂a
∂A

(1+a)2
and 1 − p(A + Λ0) =

e−(A+Λ0)τ , we have lim
A→∞

∂µ∗

∂A
= 0 and I2 = o

((
1 − p(A + Λ0)

)
ln
(
1 − p(A + Λ0)

))

. For term
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I1, we have

I1 = −µ∗(1− p(A+ Λ0)
){[hb

(
p(A+ Λ0)

)
− hb

(
p(Λ0)

)

p(A+ Λ0)− p(Λ0)
− ln

1− p(A+ Λ0)

p(A+ Λ0)

]

·
(
1− 1− p(A+ Λ0)

p(A+ Λ0)− p(Λ0)

)
+

1

p(A+ Λ0)

}

= µ∗{(1− p(A+ Λ0)
)
ln
(
1− p(A+ Λ0)

)
+ (1− hb

(
p(Λ0)

)

p(A+ Λ0)
)
(
1− p(A+ Λ0)

)}

+o
(
1− p(A+ Λ0)

)
. (151)

Since
(
1− p(A+Λ0)

)
= o
((

1− p(A+Λ0)
)
ln
(
1− p(A+Λ0)

))

for p(A+Λ0)→ 1, we have

∂2Cτ,τ (A,Λ0)

∂A2
= I1 + I2

= µ∗(1− p(A + Λ0)
)
ln
(
1− p(A+ Λ0)

)
+ o(

(
1− p(A+ Λ0)

)
ln
(
1− p(A+ Λ0)

)
),(152)

and there exists Ath1 such that
∂2Cτ,τ (A,Λ0)

∂A2 < 0 holds for any A ≥ Ath1 .

According to Equation (149) and lim
x→0

xh
′

b(x) = 0, we have that for A→∞,

∂Cτ,τ (A,Λ0)

∂A
= µ∗h

′

b(p̂)e
−(A+Λ0)τ +O(Ae−Aτ ) = O(e−Aτ). (153)

Based on Equation (153) and Theorem 15, there exists Ath2 so that
∂Cτ,τ/A

∂A
= 1

A

(∂Cτ,τ (A,Λ0)
∂A

−
Cτ,τ/A

)
< 0 holds for any A ≥ Ath2 .

K. Proof of Theorem 20

Recall that the capacity with non-perfect receiver CTs,τ =
1
Ts
F (µ∗), where F (µ) = hb(p̂(µ))−

(1−µ)hb

(
p(Λ0)

)
−µhb

(
p(A+Λ0)

)
. Since the capacity with non-perfect receiver depends on Ts,

Aτ and Λ0τ and the multiplicative symmetry between (A,Λ0) and τ , we have CTs,βτ (A,Λ0) =

CTs,τ (βA, βΛ0), where β is the dead time factor satisfying Ts ≥ βτ ≥ ln 2
Λ0

. According to the
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capacity of the non-perfect receiver, we have

∂CTs,βτ

∂β
=

∂CTs,τ (βA, βΛ0)

∂β

=
1

Ts

{

h
′

b(p̂)
(

(1− µ∗)
(
1− p(βΛ0)

)
Λ0 + µ∗(1− p(β(A+ Λ0))

)
(A+ Λ0)

+
∂µ∗

∂β

(
p(β(A+ Λ0))− p(βΛ0)

))

− (1− µ∗)h
′

b

(
p(βΛ0)

)(
1− p(βΛ0)

)
Λ0

−µ∗h
′

b

(
p(β(A+ Λ0))

)(
1− p(βΛ0)

)
(A+ Λ0)−

∂µ∗

∂β

(

hb

(
p(β(A+ Λ0))

)
− hb

(
p(βΛ0)

))}

(a)
=

1

Ts

{

h
′

b(p̂)
(

(1− µ∗)
(
1− p(βΛ0)

)
Λ0 + µ∗(1− p(β(A+ Λ0))

)
(A+ Λ0)

−(1 − µ∗)h
′

b

(
p(βΛ0)

)(
1− p(βΛ0)

)
Λ0 − µ∗h

′

b

(
p(β(A+ Λ0))

)(
1− p(βΛ0)

)
(A+ Λ0)

}

(b)

≥ −µ∗(1− µ∗)
[
h

′

b

(
p(βΛ0)

)
− h

′

b

(
p(β(A+ Λ0))

)][(
1− p(βΛ0)

)
Λ0 −

(
1− p(β(A+ Λ0))

)
(A+ Λ0)

]

> 0, (154)

where (a) holds since hb

(
p(β(A+Λ0))

)
− hb

(
p(βΛ0)

)
= h

′

b(p̂)
(

p(β(A+Λ0))− p(βΛ0)
)

based

on Theorem 11, and (b) holds since hb
′′′(x) = 1

x2 − 1
(1−x)2

< 0 for x ≥ 1
2

and h
′

b(p̂) ≥
(1− µ∗)h

′

b

(
p(βΛ0)

)
+ µ∗h

′

b

(
p(β(A+ Λ0))

)
for p(βΛ0) ≥ 1− e

−(A+Λ0)
ln 2

A+Λ0 = 1
2
.

L. Proof of Theorem 21

For Λ0 = 0 and Ts = τ , according to the multiplicative symmetry between (A,Λ0) and τ , we

have Cβτ,βτ (A, 0) = β−1Cτ,τ(βA, 0). According to Theorem 20, Cτ,τ (A, 0)/A decreases with A

for any A ≥ Ath2 and thus, Cτ,τ(A, 0) decreases with τ for any τ ≥ Ath2

A
.

APPENDIX C

AUXILARY LEMMA

Lemma 5: Assume function f(x) is strictly convex and its first-order derivative exists. For

x > y, then we have function g(x, y)
△
= f(x)−f(y)

x−y
strictly monotonically increases with x, strictly

monotonically decreases with y. To be specific, we have f
′

(y) < f(x)−f(y)
x−y

< f
′

(x)

Proof: According to Lagrange mean value theorem, for x > y, we have f(x) − f(y) =

f
′

(ξ)(x − y) < f
′

(x)(x − y), where y < ξ < x. Since g
′

x = f
′

(x)(x−y)−[f(x)−f(y)]
(x−y)2

> 0,

function g(x, y) strictly monotonically increases with x. Similarly, we have function g(x, y)

strictly monotonically decreases with y.
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Note that function g(x, y) strictly monotonically increases with x, we have f
′

(x) =

sup
y:x>y

f(x)−f(y)
x−y

> f(x)−f(y)
x−y

for any y < x. Similarly, we have f
′

(y) < f(x)−f(y)
x−y

.

REFERENCES

[1] Z. Jiang, C. Gong, G. Wang, and Z. Xu, “Achievable rate bounds on Poisson channel with a sample-based practical photon-

counting receiver,” in 2019 IEEE International Conference on Communications Workshops (ICC Workshops). (accepted).

[2] Z. Xu and B. M. Sadler, “Ultraviolet communications: potential and state-of-the-art,” IEEE Communications Magazine,

vol. 46, no. 5, pp. 67–73, May 2008.

[3] H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels

for communication,” IEEE Journal on Selected Areas in Communications, vol. 27, no. 9, pp. 1535–1544, Dec. 2009.

[4] H. Zhang, H. Yin, H. Jia, S. Chang, and J. Yang, “Characteristics of non-line-of-sight polarization ultraviolet communication

channels,” Applied Optics, vol. 51, no. 35, pp. 8366–8372, 2012.

[5] A. Gupta, M. Noshad, and M. Brandt-Pearce, “NLOS UV channel modeling using numerical integration and an approximate

closed-form path loss model,” in Laser Communication and Propagation through the Atmosphere and Oceans, vol. 8517.

International Society for Optics and Photonics, 2012, p. 851709.

[6] Y. Zuo, H. Xiao, J. Wu, W. Li, and J. Lin, “Closed-form path loss model of non-line-of-sight ultraviolet single-scatter

propagation,” Optics Letters, vol. 38, no. 12, pp. 2116–2118, 2013.

[7] Y. Sun and Y. Zhan, “Closed-form impulse response model of non-line-of-sight single-scatter propagation,” JOSA A, vol. 33,

no. 4, pp. 752–757, 2016.

[8] G. Chen, L. Liao, Z. Li, R. J. Drost, and B. M. Sadler, “Experimental and simulated evaluation of long distance NLOS UV

communication,” in Communication Systems, Networks & Digital Signal Processing (CSNDSP), 2014 9th International

Symposium on. IEEE, 2014, pp. 904–909.

[9] L. Liao, Z. Li, T. Lang, and G. Chen, “UV LED array based NLOS UV turbulence channel modeling and experimental

verification,” Optics Express, vol. 23, no. 17, pp. 21 825–21 835, 2015.

[10] N. Raptis, E. Pikasis, and D. Syvridis, “Power losses in diffuse ultraviolet optical communications channels,” Optics Letters,

vol. 41, no. 18, pp. 4421–4424, 2016.

[11] A. D. Wyner, “Capacity and error exponent for the direct detection photon channel-part I-II,” IEEE Transactions on

Information Theory, vol. 34, no. 6, pp. 1449–1471, Jun. 1988.

[12] M. R. Frey, “Information capacity of the Poisson channel,” IEEE Transactions on Information Theory, vol. 37, no. 2, pp.

244–256, Feb. 1991.

[13] K. Chakraborty, S. Dey, and M. Franceschetti, “Outage capacity of mimo poisson fading channels,” IEEE Transactions on

information Theory, vol. 54, no. 11, pp. 4887–4907, Nov. 2008.

[14] M. Davis, “Capacity and cutoff rate for poisson-type channels,” IEEE Transactions on Information Theory, vol. 26, no. 6,

pp. 710–715, 1980.

[15] S. Shamai and A. Lapidoth, “Bounds on the capacity of a spectrally constrained poisson channel,” IEEE Transactions on

Information Theory, vol. 39, no. 1, pp. 19–29, 1993.

[16] A. Lapidoth and S. M. Moser, “On the capacity of the discrete-time Poisson channel,” IEEE Transactions on Information

Theory, vol. 55, no. 1, pp. 303–322, Jan. 2009.

[17] A. Lapidoth, J. H. Shapiro, V. Venkatesan, and L. Wang, “The discrete-time poisson channel at low input powers,” IEEE

Transactions on Information Theory, vol. 57, no. 6, pp. 3260–3272, 2011.

[18] L. Wang and G. W. Wornell, “A refined analysis of the poisson channel in the high-photon-efficiency regime,” IEEE

Transactions on Information Theory, vol. 60, no. 7, pp. 4299–4311, 2014.



57

[19] J. Cao, S. Hranilovic, and J. Chen, “Capacity-achieving distributions for the discrete-time poisson channelpart i: General

properties and numerical techniques,” IEEE Transactions on Communications, vol. 62, no. 1, pp. 194–202, Jan. 2014.

[20] L. Lai, Y. Liang, and S. S. Shitz, “On the capacity bounds for Poisson interference channels,” IEEE Transactions on

Information Theory, vol. 61, no. 1, pp. 223–238, Jan. 2015.

[21] A. Lapidoth, I. E. Telatar, and R. Urbanke, “On wide-band broadcast channels,” IEEE Transactions on Information Theory,

vol. 49, no. 12, pp. 3250–3258, 2003.

[22] H. Kim, B. Nachman, and A. El Gamal, “Superposition coding is almost always optimal for the poisson broadcast channel,”

IEEE Transactions on Information Theory, vol. 62, no. 4, pp. 1782–1794, 2016.

[23] A. Lapidoth and S. Shamai, “The poisson multiple-access channel,” IEEE Transactions on Information Theory, vol. 44,

no. 2, pp. 488–501, 1998.

[24] M. A. El-Shimy and S. Hranilovic, “Binary-input non-line-of-sight solar-blind uv channels: Modeling, capacity and coding,”

IEEE/OSA Journal of Optical Communications and Networking, vol. 4, no. 12, pp. 1008–1017, Dec. 2012.

[25] Z. Jiang, C. Gong, and Z. Xu, “Clipping noise and power allocation for ofdm-based optical wireless communication using

photon detection,” IEEE Wireless Communications Letters, vol. 8, no. 1, pp. 237–240, 2019.

[26] C. Gong and Z. Xu, “Non-line of sight optical wireless relaying with the photon counting receiver: A count-and-forward

protocol,” IEEE Transactions on Wireless Communications, vol. 14, no. 1, pp. 376–388, Jan. 2015.

[27] M. H. Ardakani and M. Uysal, “Relay-assisted ofdm for ultraviolet communications: performance analysis and optimiza-

tion,” IEEE Transactions on Wireless Communications, vol. 16, no. 1, pp. 607–618, Jan. 2017.

[28] M. H. Ardakani, A. R. Heidarpour, and M. Uysal, “Performance analysis of relay-assisted NLOS ultraviolet communications

over turbulence channels,” IEEE/OSA Journal of Optical Communications and Networking, vol. 9, no. 1, pp. 109–118,

Jan. 2017.

[29] W. Becker, Advanced time-correlated single photon counting techniques. Springer Science & Business Media, 2005.

[30] D. Chitnis and S. Collins, “A SPAD-based photon detecting system for optical communications,” IEEE Journal of Lightwave

Technology, vol. 32, no. 10, pp. 2028–2034, May 2014.

[31] S. Gnecchi, N. A. Dutton, L. Parmesan, B. R. Rae, S. Pellegrini, S. J. McLeod, L. A. Grant, and R. K. Henderson, “Analysis

of photon detection efficiency and dynamic range in spad-based visible light receivers,” IEEE Journal of Lightwave

Technology, vol. 34, no. 11, pp. 2774–2781, 2016.

[32] S. R. Cherry, J. A. Sorenson, and M. E. Phelps, Physics in nuclear medicine e-Book. Elsevier Health Sciences, 2012.

[33] K. Omote, “Dead-time effects in photon counting distributions,” Nuclear Instruments and Methods in Physics Research

Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 293, no. 3, pp. 582–588, 1990.

[34] F. Y. Daniel and J. A. Fessler, “Mean and variance of single photon counting with deadtime,” Physics in Medicine &

Biology, vol. 45, no. 7, p. 2043, 2000.

[35] R. J. Drost, B. M. Sadler, and G. Chen, “Dead time effects in non-line-of-sight ultraviolet communications,” Optics Express,

vol. 23, no. 12, pp. 15 748–15 761, 2015.

[36] E. Sarbazi and H. Haas, “Detection statistics and error performance of spad-based optical receivers,” in Personal, Indoor,

and Mobile Radio Communications (PIMRC), IEEE 26th Annual International Symposium on, 2015, pp. 830–834.

[37] E. Sarbazi, M. Safari, and H. Haas, “On the information transfer rate of spad receivers for optical wireless communications,”

in IEEE Global Communications Conference (GLOBECOM), 2016, pp. 1–6.

[38] E. Sarbazi, M. Safari, and H. Hass, “Statistical modeling of single-photon avalanche diode receivers for optical wireless

communications,” IEEE Transactions on Communications, vol. 66, no. 9, pp. 4043–4058, Sep. 2018.

[39] G.-L. Shentu, Q.-C. Sun, X. Jiang, X.-D. Wang, J. S. Pelc, M. Fejer, Q. Zhang, and J.-W. Pan, “217 km long distance

photon-counting optical time-domain reflectometry based on ultra-low noise up-conversion single photon detector,” Optics

Express, vol. 21, no. 21, pp. 24 674–24 679, 2013.



58

[40] D. Zou, C. Gong, K. Wang, and Z. Xu, “Characterization on practical photon counting receiver in optical scattering

communication,” IEEE Transactions on Communications, vol. 67, no. 3, pp. 2203–2217, March 2019.

[41] A. Kolchinsky and B. D. Tracey, “Estimating mixture entropy with pairwise distances,” Entropy, vol. 19, no. 7, p. 361,

2017.

[42] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley & Sons, 2012.

[43] G. Wang, K. Wang, C. Gong, D. Zou, Z. Jiang, and Z. Xu, “A 1Mbps real-time NLOS UV scattering communication

system with receiver diversity over 1km,” IEEE Photonics Journal, vol. 10, no. 2, pp. 1–13, Apr. 2018.

[44] P. Jacquet and W. Szpankowski, “Entropy computations via analytic depoissonization,” IEEE Transactions on Information

Theory, vol. 45, no. 4, pp. 1072–1081, May 1999.


	I Introduction
	II System Model
	II-A Signal Model
	II-B The Achievable Rate on Long Symbol Duration
	II-C The Capacity on Arbitrarily Small Symbol Duration

	III The Bounds and Approximate on Achievable Rate for Long Symbol Duration
	III-A Lower Bound on Mutual Information
	III-B Upper Bound on Mutual Information
	III-C Asymptotic Mutual Information
	III-D Approximate Method

	IV Asymptotic Tightness of Upper and Lower bounds
	IV-A Asymptotic Tightness of Bound Gap for Large L
	IV-B Bound Gap for Large Peak Power A
	IV-C Bound Gap for Low Background Noise 0
	IV-D Bound Gap for Large Peak Power A and 0=0
	IV-E Bound Gap for Low Peak Power A

	V Capacity for Arbitrarily Symbol Duration 
	V-A Capacity for Sampling Time Ts = 
	V-B Capacity for Sampling Time Ts > 

	VI Asymptotic Properties on the Capacity
	VI-A Asymptotic Property of Capacity for 0
	VI-B Asymptotic Property of the Optimal Duty Cycle for A0 and A
	VI-C Asymptotic Property of Non-perfect Poisson Capacity for A0 and A
	VI-D The Monotonicity of Non-perfect Receiver Capacity
	VI-D1 The Monotony with peak power A
	VI-D2 The Monotonicity with dead time 


	VII Numerical Results
	VII-A Numerical Results on the Achievable Rate for Long Symbol Duration
	VII-B Numerical Results on the Capacity for Arbitrary Symbol Duration

	VIII Conclusion
	Appendix A: The proof of main results on achievable rate for Long Symbol Duration
	A-A Proof of Lemma ??
	A-B Proof of Lemma ??
	A-C Proof of Lemma ??
	A-D Proof of Theorem ??
	A-E Proof of Lemma ??
	A-F Proof of Theorem ??
	A-G Proof of Theorem ??
	A-H Proof of Theorem ??
	A-I Proof of Theorem ??
	A-J Proof of Theorem ??
	A-K Proof of Theorem ??
	A-L Proof of Theorem ??

	Appendix B: The proof of main results on the Capacity for Arbitrarily Symbol Duration
	B-A Proof of Proposition ??
	B-B Proof of Proposition ??
	B-C Proof of Theorem ??
	B-D Proof of Theorem ??
	B-E Proof of Theorem ??
	B-F Proof of Theorem ??
	B-G Proof of Theorem ??
	B-H Proof of Theorem ??
	B-I Proof of Theorem ??
	B-J Proof of Theorem ??
	B-K Proof of Theorem ??
	B-L Proof of Theorem ??

	Appendix C: Auxilary Lemma
	References

