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Abstract

This paper tackles the problem of joint active and passive beamforming optimization for an in-

telligent reflective surface (IRS)-assisted multi-user downlink multiple-input multiple-output (MIMO)

communication system under both ideal and practical IRS phase shifts. We aim to maximize the spectral

efficiency of the users by minimizing the sum mean square error (MSE) of the users’ received symbols.

For this, a joint non-convex optimization problem is formulated under the sum minimum mean square

error (MMSE) criterion. Alternating minimization is used to break the original joint optimization problem

into the separate optimization of the active precoding matrix for the base station (BS) and the matrix

of phase shifts for the IRS. While the MMSE active precoder is obtained in closed-form, the IRS

phase shifts are optimized iteratively using a modified version (developed in this paper) of the vector

approximate message passing (VAMP) algorithm. Moreover, the underlying joint optimization problem

is solved under two different models for the IRS phase shifts, namely by assuming i) a unimodular (i.e.,

ideal) constraint on the reflection coefficients and ii) a more practical reflection elements termination by

a variable reactive load (which inherently introduces the phase-dependent amplitude attenuation in the

IRS phase shifts). Simulation results are presented to illustrate the performance of the proposed method

under both perfect and imperfect channel state information (CSI) and to show the effect of the practical

constraint on the system throughput. The results validate the superiority of the proposed method over

the state-of-the-art techniques both in terms of throughput and computational complexity.
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I. INTRODUCTION

A. Background

The need for higher data rates in wireless communication is soaring. This calls for innovative

and economically viable communication technologies that can keep up with the increasing

network capacity requirement. Massive multiple-input multiple-output (MIMO) technology can

fulfill the network capacity requirement for beyond fifth-generation (B5G) wireless networks

[1]–[3]. The basic idea of massive MIMO is to equip the base stations (BSs) with tens (if

not hundreds) of antenna elements so as to simultaneously serve multiple mobile devices us-

ing the same time/frequency resources. Despite the many advantages of massive MIMO, its

practical large-scale deployment is hindered by the associated high hardware cost and energy

consumption [4], [5]. Moreover, although millimeter wave (mmWave) communication benefits

from massive MIMO due to a symbiotic convergence of technologies, its practical use is still

limited by the less penetrative propagation characteristic of mmWave signals in presence of

blockages between the BS and the mobile device. [6].

One promising technology that has been introduced recently is intelligent reflective surfaces

(IRSs), also called reconfigurable intelligent surfaces (RISs) [7], [8]. IRS is composed of a planar

metasurface consisting of a large number of passive reflective elements. Moreover, IRS does

not require a power amplifier for transmission which makes it an energy-efficient technology.

This allows the IRS to passively alter the signal propagation by reconfiguring the phases of

its reflective elements through a controller attached to the surface [9]. Therefore, IRSs can be

utilized to perform passive beamforming. Passive beamforming refers to changing the IRS phases

without actively powering the IRS antenna elements as opposed to active beamforming at the BS

so as to improve the received power while reducing the interference for unintended users, thereby

enhancing the overall throughput of the network [10]. Practically, IRS deployment requires a

large number of cost-effective phase shifters (PSs) on a surface that can be easily integrated

into a traditional wireless network [11]. Due to the aforementioned reasons, IRS-assisted com-

munication has gained substantial research interest in the wireless research community over the

recent few years [10]–[18].

In [14], a multi-user multiple-input single-output (MISO) wireless system assisted by a single

IRS in the downlink configuration is studied. The authors present a deep reinforcement learning

(DRL)-based solution to jointly optimize the IRS phase shifts and the BS precoding under

different quality of service constraints. In [18], authors tackle the problem of estimating the

cascaded BS-IRS-user channels for an IRS-assisted multi-user MISO system. The author propose
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a pilot-based solution and improve its efficiency by exploiting the fact that all users share the same

BS-IRS channel. The same problem is solved by utilizing the deep residual learning framework

in [19]. In [20], an IRS-assisted multi-cluster MISO system serving multiple users is considered

wherein the authors seek to minimize the transmit power under a minimum signal-to-interference-

plus-noise ratio (SINR) constraint by jointly optimizing the IRS phase shifts and the transmit

precoder. They tackle the underlying problem through alternating direction method of multipliers

(ADMM). An IRS-aided MISO and MIMO system with discrete phase shifts for IRS elements

is also discussed in [12]. The authors formulate the problem of minimizing the transmit power

under minimum SINR constraint and jointly optimize the transmit precoding and the IRS phase

shifts in a mixed-integer non-linear programming framework. In [17], a relatively more practical

model for IRS reflection coefficients is considered, and then a penalty-based algorithm is used

to optimize the phase matrix.

The vast majority of the existing work considers a MISO wireless system assisted by a single

or multiple IRSs serving a single user [13], [16], [17]. So far, limited research has been conducted

on IRS-aided multi-user MIMO systems. Moreover, IRS reflection coefficients are often modeled

as ideal phase shifters and a realistic approach towards modeling reflection coefficients has rarely

been investigated. In fact, most of the existing methods are limited to a single-phase shifter model,

unimodular phase shifts being the most common one, and hence they are not resilient to the

various hardware impairments of the IRS reflection elements [10], [12], [13], [16], [17].

B. Contributions

In this paper, we consider a multi-user IRS-assisted single-cell downlink MIMO system with

a single IRS. The IRS is equipped with a large number of passive phase shifters that aid the

BS to serve a small number of users. We propose a robust solution for the problem of jointly

optimizing the active and passive beamforming tasks under different models for the IRS reflection

coefficients. The main contributions embodied by this paper are as follows:

• We solve the problem of maximizing the spectral efficiency of the users by jointly optimizing

the transmit precoding matrix at the BS and the reflection coefficients at the IRS. To that

end, we first formulate the joint optimization problem under the sum MMSE criterion in

order to minimize the MSE of the received symbols for all users at the same time.

• To solve the underlying joint optimization problem, we first split it using alternate opti-

mization [21] into two easier sub-optimization tasks of the active precoder at the BS and

the reflection coefficients at the IRS. The precoding sub-optimization problem is similar to
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the MMSE transmit precoder optimization for a traditional MIMO system, which can be

solved in closed-form through Lagrange optimization.

• We modify and extend the existing VAMP algorithm [22] and propose a robust technique to

find locally optimal reflective coefficients for the IRS under multiple constraints. Precisely,

we find the sub-optimal phase matrix under two different models for the reflection coeffi-

cients: i) Under the unimodular constraint on the IRS reflection coefficients and ii) under

a practical constraint, where each IRS element is terminated by a tunable simple reactive

load.

• We discuss the convergence and provide the order of complexity of the proposed solution.

We present various numerical results to compare the proposed solution with the semi-

definite relaxation (SDR) plus MMSE-based IRS beamforming and precoding optimization

approach [10], [23], an ADMM-based solution, and a standalone massive MIMO system

using MMSE precoder. The results show that, the proposed solution: i) outperforms both

the SDR-based and the ADMM-based solutions in terms of throughput while using the same

resources and being less computationally demanding, and ii) achieves higher throughput

than a traditional massive MIMO system while using a significantly smaller number of

transmit antennas in typical propagation scenarios. We illustrate the effect of practical phase

shifts on the system throughout. We also show the robustness of the proposed solution by

assessing its performance under imperfect CSI.

C. Paper Organization and Notations

The rest of the paper is organized as follows: the system model along with the problem

formulation for jointly optimizing the active precoder and the reflection coefficients are discussed

in Section II. Section III briefly introduces the VAMP algorithm and then extends it to solve

optimization problems. In Section IV, we solve the optimization problem at hand using the

proposed extended version of VAMP. In Section V, we further solve the underlying optimization

problem under the “simple reactive loading” constraint on the IRS reflection elements. Exhaustive

numerical results are shown in Section VI. Finally, Section VII provides an analysis on the

convergence and computational complexity of the proposed solution.

Notations: Lowercase letters (e.g., r) denote scalar variables. The uppercase italic letters (e.g.,

N ) represent scalar constants. Vectors are denoted by small boldface letters (e.g., z) and the

k-th element of z is denoted as zk. Exponent on a vector (e.g., zn) denotes component-wise

exponent on every element of the vector. Capital boldface letters (e.g., A) are used to denote
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matrices, while aik and ai stand, respectively, for the (i, k)-th entry and the i-th column of

A. CM×N denotes the set of matrices of size M × N with complex elements and A−k means

(A−1)
k. Rank(A) and Tr(A), return, respectively, the rank and the trace of any matrix A. We

also use ‖.‖2, ‖.‖F, (.)∗, (.)T, (.)H to denote the L2 norm, Frobenius norm, the conjugate,

the transpose, and the conjugate transpose operators, respectively. The operator < . > returns

the empirical average of all the elements/entries of any vector or matrix. Moreover, vec(.) and

unvec(.) denote vectorization of a matrix and unvectorization of a vector back to its original

matrix form, respectively. Diag(.) operates on a vector and generates a diagonal matrix by placing

that vector in the diagonal whereas diag(.) operates on a matrix and returns its main diagonal

in a vector. The statistical expectation is denoted as E{.}. A random vector with complex

normal distribution is represented by x ∼ C N (x; u,R), where u and R denote its mean and

covariance matrix, respectively. The imaginary unit is represented by j =
√
−1 and the ∠(.)

operator returns the angle of its complex argument. The proportional relationship between any

two entities (functions or variables) is represented by ∝ operator. Lastly, the operators ⊗, � and

∗ denote the Kronecker, the Hadamard and the column-wise Khatri-Rao products, respectively.

II. SYSTEM MODEL, ASSUMPTIONS, AND PROBLEM FORMULATION

Consider a BS that is equipped with N antenna elements serving M (M < N) single-antenna

users in the downlink. The BS is assisted by an IRS which has K (K > M) reflective elements.

For each m-th user, we have a direct link to the BS expressed by a channel vector hb-u,m ∈ CN .

The channel of the surface-user m link is denoted by hs-u,m ∈ CK . Let Hb-s ∈ CK×N denote

the channel matrix of the MIMO IRS-BS link with Rank(Hb-s) ≥ M . The signal received at

the IRS is phase-shifted by a diagonal matrix Υ = Diag(υ) ∈ CK×K , where υ ∈ CK is the

phase-shift vector having unimodular elements, i.e., |υk| = 1 for k = 1, · · · , K. In other words,

for each reflection element, we have υk = ejθk for some phase shift θk ∈ [0, 2π]. The received

signal for user m can be expressed as follows:

ym = α

(
hH

s-u,mΥHb-s

M∑
m′=1

fm′sm′ + hH
b-u,m

M∑
m′=1

fm′sm′ + w

)
, m = 1, · · · ,M, (1)

where sm ∼ C N (s; 0, 1) is the unknown transmit symbol, w ∼ C N (w; 0, σ2
w) denotes additive

white Gaussian noise (AWGN), and α ∈ R refers to the receiver scaling which is a common

practice in precoding optimization literature [24], [25]. Here, fm ∈ CN for m = 1, · · · ,M are

the precoding vectors that are used for power allocation and beamforming purposes. Let F =

[f1, f2, · · · , fM ] be the precoding matrix and let P denote the total transmit power. By denoting
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User M

hb-u,1
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· · ·
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Fig. 1: IRS-assisted multi-user MIMO system.

s = [s1, s2, · · · , sM ]T, it follows that E
{
‖Fs‖2

}
= P . Let Hb-u = [hb-u,1,hb-u,2, · · · ,hb-u,M ]

and Hs-u = [hs-u,1,hs-u,2, · · · ,hs-u,M ]. Then, by stacking all the users’ signals in one vector

y = [y1, y2, · · · , yM ]T, we can express the input-output relationship of the multi-user MIMO

system as:

y = α

HH
s-uΥHb-sFs︸ ︷︷ ︸
Users-IRS-BS

+ HH
b-uFs︸ ︷︷ ︸

Users-BS

+ w

 . (2)

The overall effective channel matrix for all users is thus given by:

HH = HH
s-uΥHb-s + HH

b-u. (3)

We aim to minimize the received symbol error of each user under the MMSE criterion, which

consequently maximizes the user SINR. A lower bound on the spectral efficiency for user m

can be expressed in terms of the MMSE of its received symbol [26] as follows:

CMMSE
m = log2

(
1

MMSEm

)
. (4)

The MSE of the received symbol for user m is given by Eym,sm

{
|ym − sm|2

}
, and for M users,

the sum symbol MSE can be written as:
M∑
m=1

Eym,sm

{
|ym − sm|2

}
= Ey,s

{
‖y − s‖22

}
. (5)

Thus, our problem under the MMSE criterion can be formulated as follows:
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arg min
α,F,Υ

Ey,s

{
‖y − s‖22

}
, (6a)

subject to Es

{
‖Fs‖22

}
= P, (6b)

υik = 0, i 6= k, (6c)

|υii| = 1, i = 1, 2, · · · , K. (6d)

Remark. The objective function in (6a) leads to some fairness among the users by ensuring that

the MSE is minimized for each user. The lower bound on sum-spectral-efficiency of M users

can be expressed in terms of the MMSE of the users’ received symbols [26] as follows:

Ĉ =
M∑
m=1

log2

(
1

MMSEm

)
= log2

(
M∏
m=1

1

MMSEm

)
. (7)

In other words, maximizing the sum-spectral-efficiency is equivalent to minimizing the product

MSE of all users. This can be achieved by minimizing the MSE of the user with the strongest

channel, thereby leading to a very unfair solution. On the other hand, aiming for complete

fairness results in a very inefficient allocation of resources when it comes to the overall system

throughput. In this respect, the sum MMSE criterion is a good balance between the two extremes.

Since our aim is to maximize the spectral efficiency of each user rather than the sum-spectral-

efficiency, the MMSE criterion is a good fit for our problem formulation.

The expectation involved in (6a) and (6b) is taken with respect to (w.r.t.) the random vectors

s and w. Explicitly writing the objective function in (6a) leads to:

Ew,s

{
Tr
(
α2sHFHHHHFs− αsHFHHs− αsHHHFs + ssH

)
+ Tr

(
α2sHFHHw + α2wHHHFs− αwHs− αsHw + α2wHw

) }
, (8)

thereby resulting in the following optimization problem.

arg min
α,F,Υ

∥∥αHH
s-uΥHb-sF− (IM − αHH

b-uF)
∥∥2

F +Mα2σ2
w, (9a)

s.t. ‖F‖2F = P, (9b)

υik = 0, i 6= k, (9c)

|υii| = 1, i = 1, 2, · · · , K. (9d)

The optimization problem in (9) is non-convex optimization problem due to the unimodular

constraint1 on the IRS phase shifts in (9d). VAMP is a low-complexity algorithm which is de-

signed to solve optimization problems with a linear objective function and non-linear constraints

1Later, we will solve the same problem under another constraint on the reflection coefficients.
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[22]. VAMP has a modular structure that makes it possible to decouple the constraints from

the objective function. Therefore, the same objective function can be minimized under different

constraints by modifying the VAMP module that satisfies the constraint (simple scalar functions).

VAMP automatically updates the stepsize at a per-iteration basis that leads to a faster convergence

compared to other iterative algorithms (e.g., ADMM) [27]. This favorable property makes VAMP

tuning-free. The performance of VAMP can be theoretically predicted to establish optimality

through the statistical state evolution framework [22], [28]. This is, however left to future work.

III. MODIFIED VAMP ALGORITHM FOR CONSTRAINED OPTIMIZATION

Recently, message passing algorithms [22], [29], [30] have gained attention in estimation

theory because of their high performance and fast convergence. Vector approximate message

passing (VAMP) [22], in particular, is a low-complexity algorithm that solves quadratic loss

optimization of recovering a vector from noisy linear measurements. In this section, we briefly

discuss the standard max-sum VAMP algorithm and we further modify it to solve the constrained

optimization problem at hand.

A. Background on Max-Sum VAMP

Approximate message passing (AMP)-based computational techniques have gained a lot of

attention since their introduction within the compressed sensing framework [29]. To be precise,

AMP solves the standard linear regression problem of recovering a vector x ∈ CN from noisy

linear observations:
z = Ax + w, (10)

where A ∈ CM×N (with M � N ) is called sensing matrix and w ∼ C N (w; 0, γ−1w IM), with

γw > 0, so that pz|x(z|x) = C N (z; Ax, γ−1w IM). Interestingly, the performance of AMP under

independent and identically distributed (i.i.d.) Gaussian sensing matrices, A, can be rigorously

tracked through scalar state evolution (SE) equations [31]. One major drawback of AMP, however,

is that it often diverges if the sensing matrix, A, is ill-conditioned or has a non-zero mean.

To circumvent this problem, vector AMP (VAMP) algorithm was proposed and rigorously

analyzed through SE equations in [22]. Although there is no theoretical guarantee that VAMP

will always converge, strong empirical evidence suggests that VAMP is more resilient to badly

conditioned sensing matrices given that they are right-orthogonally invariant [22]. Consider the

joint probability distribution function (pdf) of x and z, px,z(x, z)

px,z(x, z) = px(x) C N (z; Ax, γ−1w IM). (11)
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Here px(x) is some prior distribution on the vector x whose elements are assumed to be i.i.d.

with a common prior distribution, px(x), i.e.:

px(x) =
N∏
i=1

px(xi). (12)

Max-sum VAMP can solve the following optimization problem:

x̂ = arg min
x
‖z−Ax‖2 , (13)

by finding the maximum a posteriori (MAP) estimate of x as follows:

x̂ = arg max
x

px|z(x|z). (14)

The algorithm consists of the following two modules.

1) Linear MAP/MMSE Estimator: At iteration t, the linear MAP estimator receives extrinsic

information (message) from the separable (i.e., element-wise) MAP denoiser of x in the form

of a mean vector, rt−1, and a common scalar precision, γt−1. Then, under the Gaussian prior,

C N (x; rt−1, γ
−1
t−1IN), it computes the linear MAP estimate, x̄t, along with the associated posterior

precision, γ̄t, from the linear observations, z = Ax + w on x. Because we are dealing with

Gaussian densities, the linear MAP estimate is equal to the linear MMSE (LMMSE) and given

as follows:

x̄t =
(
γwAHA + γt−1IN

)−1 (
γwAHz + γt−1rt−1

)
, (15)

γ̄t = NTr
([
γwAHA + γt−1IN

]−1)−1
. (16)

The extrinsic information on x is updated as C N (x; x̄t, γ̄
−1
t IN)/ C N (x; rt−1, γ

−1
t−1IN), and then

sent back in the form of a mean vector, r̃t = (x̄tγ̄t − rt−1γt−1) / (γ̄t − γt−1), and a scalar

precision, γ̃t = γ̄t − γt−1, to the separable MAP denoiser of x. The SVD (singular value

decomposition) form of VAMP directly computes extrinsic mean vector r̃t and scalar precision

γ̃t, and can be readily obtained by substituting A = UDiag(ω)VH in (15) and (16).

2) Separable MAP Denoiser of x: This module computes the MAP estimate, x̂t, of x from the

joint distribution px(x) C N (x; r̃t, γ̃
−1
t IN). Because x is i.i.d., the MAP estimate can be computed

through a component-wise denoising function as follows:

x̂i,t = g1,i(r̃i,t, γ̃t) , arg max
xi

[
−γ̃t|xi − r̃i,t|2 + ln px(xi)

]
, (17)

or equivalently,

g1,i(r̃i,t, γ̃t) = arg min
xi

[
γ̃|xi − r̃i,t|2 − ln px(xi)

]
. (18)
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The derivative of the scalar MAP denoiser w.r.t. r̃i,t is given by [22]:

g′1,i(r̃i,t, γ̃t) ,
∂g1,i(r̃i,t, γ̃t)

∂r̃i,t
=

1

2

(
∂g1,i (r̃i,t, γ̃t)

∂<{r̃i,t}
− j

∂g1,i (r̃i,t, γ̃t)

∂={r̃i,t}

)
= γ̃tγ̂t, (19)

where γ̂t is the posterior precision. The vector valued denoiser function and its derivaive are

defined as follows:

g1(r̃t, γ̃t) ,
[
g1,1(r̃1,t, γ̃t), g1,2(r̃2,t, γ̃t), · · · , g1,N(r̃N,t, γ̃t)

]T
, (20)

g′1(r̃t, γ̃t) ,
[
g′1,1(r̃1,t, γ̃t), g

′
1,2(r̃2,t, γ̃t), · · · , g′1,N(r̃N,t, γ̃t)

]T
. (21)

Similar to the LMMSE module, the MAP denoiser module computes an extrinsic mean vector,

rt = (x̂tγ̂t − r̃tγ̃t) / (γ̂t − γ̃t), and a scalar precision, γt = γ̂t − γ̃t, and sends them back to

the LMMSE module for the next iteration. The process is repeated until convergence. It is

worth mentioning that the extrinsic parameters, i.e., the extrinsic mean vector and the scalar

precision, calculated by each module act as a Gaussian prior on the succeeding estimate of

the adjacent module, thus making VAMP parameter-free. Another key advantage of VAMP is

that it decouples the prior information, px(x), and the observations, px|z(z|x), into two separate

modules. Moreover, it also enables the denoising function to be separable even if the elements

of x are correlated in which case the LMMSE module can easily incorporate such correlation

information. The steps of the standard max-sum VAMP algorithm are shown in Algorithm 1.

B. VAMP for Optimization

In this section, we explain how max-sum VAMP can be applied to constrained optimization

problems. Given the knowledge of three matrices A ∈ CM×N , B ∈ CQ×N and Z ∈ CM×Q, the

goal is to solve an optimization problem of the form:

arg min
x ∈ CN

∥∥ADiag(x)BT − Z
∥∥2

F (22a)

s.t. fi(xi) = 0 i = 1, · · · , N. (22b)

In the context of optimization, the observation matrix, Z, is considered as the desired output

matrix and it is also assumed to be known. Unlike the estimation problem in (13), we do not

have a prior distribution on x. Yet, the optimization problem in (22) can be solved by modifying

the modules of standard max-sum VAMP.



11

Algorithm 1 Max-sum VAMP SVD
Given A ∈ CM×N , z ∈ CM , a precision tolerance (ε) and a maximum number of iterations (TMAX)

1: Initialize r0, γ0 ≥ 0 and t← 1

2: Compute economy-size SVD A = UDiag(ω)VH

3: RA = Rank(A) = length(ω)

4: Compute z̃ = Diag(ω)−1UHz

5: repeat

6: // LMMSE SVD Form.

7: dt = γwDiag(γwω
2 + γt−11RA)−1ω2

8: r̃t = rt−1 + N
RA

VDiag (dt/〈dt〉)
(
z̃−VHrt−1

)
9: γ̃t = γt−1 〈dt〉 /

(
N
RA
− 〈dt〉

)
10: // MAP Denoiser

11: x̂t = g1(r̃t, γ̃t)

12: γ̂t = 〈g′1(r̃t, γ̃t)〉 /γ̃t
13: γt = γ̂t − γ̃t
14: rt = (γ̂tx̂t − γ̃tr̃t)/γt
15: t← t+ 1

16: until ‖x̂t − x̂t−1‖22 ≤ ε ‖x̂t−1‖22 or t > TMAX

17: return x̂t

1) Extended LMMSE: Through vectorization, the objective function in (22a) can be written

in the same form as the quadratic objective function in (13) in the following way:

vec(Z) = (B⊗A)vec(Diag(x)). (23)

We then define a matrix, D ∈ CMQ×N , as follows:

D , B ∗A = [b1 ⊗ a1, · · · ,bK ⊗ aK ] . (24)

Then, the objective function in (22a) is equivalently expressed in a standard form that is amenable

to VAMP as follows:

arg min
x ∈ CN

‖Dx− vec(Z)‖22 (25a)

s.t. fi(xi) = 0 i = 1, · · · , N. (25b)
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γ

Fig. 2: Block diagram of batch VAMP for optimization. The calculation of extrinsic information

is performed by the “ext” blocks.

The column-wise Khatri-Rao structure can be exploited to avoid taking SVD of the large matrix

D as explained in the sequel. Let A = UADiag(ωA)VH
A , B = UBDiag(ωB)VH

B , D = UDiag(ω)VH

and VBA =
(
VH

B ∗VH
A

)H. By defining the normalization vector:

vn =
[
‖vBA,1‖2 , ‖vBA,2‖2 , · · · , ‖vBA,MQ‖2

]T
, (26)

it can be shown that the SVD of the matrix D is given by:

D = (UB ⊗UA)︸ ︷︷ ︸
U

Diag
(
(ωB ⊗ ωA)� vn

)︸ ︷︷ ︸
Diag(ω)

(
VH

B ∗VH
A

)
�
(
v−1n 1T

N

)︸ ︷︷ ︸
VH

. (27)

These steps can be easily incorporated in the Algorithm 1 accordingly. Similar to the standard

max-sum VAMP, at iteration t, the LMMSE module receives an extrinsic mean vector, rt−1, and

a scalar precision, γt−1, from the separable MAP estimator. The SVD form of VAMP allows for

exploiting the Kronecker structure inside the algorithm to avoid any large matrix multiplication.

The product of a Kronecker-structured matrix and a vector can be computed in an efficient

way through reverse vectorization or unvectorization by computing the product of three smaller

matrices, and then vectorizing the result. Therefore, line 4 of Algorithm 1 can be modified as

follows:

z̃ = Diag(ω)−1UHvec(Z) = Diag(ω)−1vec
(
UH

AZU∗B
)
. (28)

The steps for computing the extrinsic mean vector, r̃t, and the scalar precision, γ̃t, remain

unchanged and they are computed directly without the need for computing the LMMSE estimate,

x̄t, and the posterior precision, γ̄t. Hence, the only Kronecker product required for the LMMSE

is of the two vectors ωB and ωA.
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Algorithm 2 Max-sum VAMP SVD for optimization
Given A ∈ CM×N , B ∈ CQ×N , Z ∈ CM×Q, a precision tolerance (ε) and a maximum number of iterations (TMAX)

1: Select initial r0, γ0 ≥ 0 and t← 1

2: Compute economy-size SVD A = UADiag(ωA)VH
A

3: Compute economy-size SVD B = UBDiag(ωB)VH
B

4: Compute VBA =
(
VH

B ∗VH
A

)H
5: Compute normalization vector vn =

[
‖vBA,1‖2 , ‖vBA,2‖2 , · · · , ‖vBA,MQ‖2

]T
6: Compute VH = VH

BA �
(
v−1n 1T

N

)
7: Compute ω = (ωB ⊗ ωA)� vn

8: Compute z̃ = Diag(ω)−1vec
(
UH

AZU∗B
)

9: RBA = Rank(B ∗A) = length(ω)

10: repeat

11: // LMMSE SVD Form.

12: dt = γwDiag(γwω
2 + γt−11RBA)−1ω2

13: r̃t = rt−1 + N
RBA

VDiag (dt/〈dt〉)
(
z̃−VHrt−1

)
14: γ̃t = γt−1 〈dt〉 /

(
N
RBA
− 〈dt〉

)
15: // Separable MAP Projector.

16: x̂t = g(r̃t, γ̃)

17: γ̂t = γ̃−1t 〈g′(r̃t, γ̃)〉
18: γt = γ̂t − γ̃t
19: rt = γ−1t (γ̂tx̂t − γ̃tr̃t)
20: t← t+ 1

21: until ‖x̂t − x̂t−1‖22 ≤ ε ‖x̂t−1‖22 or t > TMAX

22: return x̂t

2) Scalar MAP Projector: Because the constraint on x is component-wise, we model the

constraint on its entries, xi, as a prior with some precision, γp, i.e., px(xi) ∝ exp
(
−γp|fi(xi)|2

)
with γp → ∞. We then define the scalar denoising function (now called projector function in

the context of optimization) as follows:

x̂i,t = gi(r̃i,t, γ̃t) , arg min
xi

[
γ̃t|xi − r̃i,t|2 − ln px(xi)

]
, (29)
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or equivalently:

gi(r̃i,t, γ̃t) = arg min
xi

[
γ̃t|xi − r̃i,t|2 + γp|fi(xi)|2

]
. (30)

The parameter γp in (30) accounts for the weight given to the prior on xi inside the scalar MAP

optimization. Therefore, taking γp → ∞ enforces the constraint. Taking the derivative of the

scalar projector function w.r.t. r̃i,t as defined in equation (19) yields:

g′i(r̃i,t, γ̃t) = γ̃tγ̂t, (31)

where γ̂t is the posterior precision. The vector valued projector function, g(r̃t, γ̃), and its

derivative, g′(r̃t, γ̃), are defined in the same way as (20) and (21) respectively. Similar to the

denoiser module, extrinsic information from the projector module is calculated in the form of

the mean vector, rt = (x̂tγ̂t − r̃tγ̃t) /(γ̂t− γ̃t), and scalar precision, γt = γ̂t− γ̃t, which are then

fed to the LMMSE module. In an analogous way to sum-product VAMP, the max-sum VAMP

(for optimization) decouples the constraint from the objective function and also enables the

projector function to be separable. While the LMMSE module optimizes the objective function

with no constraints, the latter are enforced by the projector function. This modular property

makes VAMP a robust algorithm for solving optimization problems in the presence of linear

mixing and under various component-wise constraints. The block diagram and the algorithmic

steps for the optimization-oriented VAMP are presented in Fig. 2 and Algorithm 2 respectively.

IV. VAMP-BASED SOLUTION FOR THE JOINT BEAMFORMING PROBLEM

In this section, we apply the optimization-oriented VAMP algorithm, described in Section

III-B, to simultaneously optimize the matrix of phase shifters, Υ, as well as the optimal precoding

matrix F. We decouple the joint optimization problem into two sub-problems through alternate

optimization. In one side we optimize Υ by utilizing the modified max-sum VAMP and, on the

other side, we find the optimal transmit precoding F.

A. Alternating Optimization

We use alternating minimization which is the two-block version of the block coordinate descent

(BCD) algorithm. It is a simple iterative approach that optimizes one variable at a time2 (while

fixing the others) and the process is repeated for every variable. Although it is hard to analytically

establish the optimality of the alternating minimization technique for non-convex optimization

problems, it is known that it performs really well for various non-convex optimization problems

2Note here that a variable can be a scalar, a vector, or a whole matrix.
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especially for large system sizes [32]–[35]. More specifically, we divide the optimization problem

in (6) into the following two sub-optimization problems:

1)

arg min
Υ

Ey,s

{
‖y − s‖22

}
(32a)

s.t. υik = 0, i 6= k, (32b)

|υii| = 1, i = 1, 2, · · · , K. (32c)
2)

arg min
α,F

Ey,s

{
‖y − s‖22

}
(33a)

s.t. Es ‖Fs‖22 = P. (33b)

Let us define the error at iteration t as follows:

Et ,
∥∥∥α̂t (HH

s-uΥ̂tHb-s + HH
b-u

)
F̂t − IM

∥∥∥2
F

+Mα̂2
tσ

2
w. (34)

The algorithm stops iterating when |Et − Et−1| < εEt−1, where ε ∈ R+ is some precision

tolerance. The algorithmic steps for alternating minimization (after evaluating the expectation)

are shown in Algorithm 3.

Algorithm 3 Alternating minimization
Given Hs-u, Hb-u, Hb-s, a precision tolerance (ε), and a maximum number of iterations (TMAX)

1: Initialize Υ̂0 and t← 1.

2: repeat
3:

[α̂t, F̂t] = arg min
α,F

∥∥∥α(HH
s-uΥ̂t−1Hb-s + HH

b-u

)
F− IM

∥∥∥2
F

+Mα2σ2
w

s.t. ‖F‖2F = P

4:

Υ̂t = arg min
Υ

∥∥∥α̂t (HH
s-uΥHb-s + HH

b-u

)
F̂t − IM

∥∥∥2
F

s.t. υik = 0 i 6= k,

|υii| = 1 i = 1, 2, · · · , K
5: t← t+ 1

6: until |Et − Et−1| < εEt−1 or t > TMAX

7: return Υ̂t, F̂t, α̂t.
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B. Optimization of the Phase Shifters Matrix

Here, we specialize optimization-oriented VAMP algorithm introduced in Section III-B in

order to optimize the phase matrix, Υ. Let us restate the associated optimization after explicitly

finding the expectation in (32) as follows:

arg min
υ

∥∥αHH
s-uDiag(υ)Hb-sF− (IM − αHH

b-uF)
∥∥2

F (35a)

s.t. |υi| = 1 i = 1, 2, · · · , K. (35b)

The solution is obtained by setting A = αHH
s-u, B = (Hb-sF)T and Z = IM − αHb-uF in

Algorithm 2 and then choosing a suitable projector function to satisfy the constraints on the

reflection coefficients. The unconstrained minimization of the objective function in (35a) is

performed by the LMMSE module. We define the projector function that enforces the constraint

on the reflection coefficients as:

g2,i (r̃i, γ̃) , arg min
υi

[
γ̃|υi − r̃i|2 + γp

∣∣|υi| − 1
∣∣2] . (36)

Solving the optimization problem in (36) results in the following closed-form expression for the

underlying projector function:

g2,i (r̃i, γ̃) =
γ̃

γ̃ + γp
r̃i +

γp

γ̃ + γp
r̃i|r̃i|−1. (37)

As γp →∞, we have, γ̃
γ̃+γp
→ 0 and γp

γ̃+γp
→ 1. Therefore, the projector function simplifies to:

g2,i (r̃i) = r̃i|r̃i|−1. (38)

The derivative of the projector function (38) w.r.t. r̃i is obtained according to equation (19) as

follows:

g′2,i (r̃i) =
1

2
|r̃i|−1. (39)

Finally, the projector function, g2(r̃t), and its derivative g′2(r̃t) are obtained by following (20)

and (21) respectively.

C. Optimal Precoding

The sub-optimization problem in (33) is a constrained MMSE transmit precoding optimization

for traditional MIMO systems. It can be solved by jointly optimizing F and α using Lagrange

optimization. After finding the expectation, we construct the Lagrangian function associated to

the problem in (33) as follows:

L(F, α, λ) =
∥∥αHHF− IM

∥∥2
F +Mα2σ2

w + λ(Tr(FFH)− P ), (40)
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Fig. 3: Block diagram of the proposed algorithm.

with λ ∈ R being the Lagrange multiplier. The closed-form solutions for optimal α and F are

given below and we refer the reader to [24] for more details:

αopt = g3 (H) ,

√
1

P

√√√√Tr

([
HHH +

Mσ2
wIN
P

]−2
HHH

)
. (41)

Fopt = g4 (H) ,

√
P
[
HHH + Mσ2

wIN
P

]−1
H√

Tr
([

HHH + Mσ2
wIN
P

]−2
HHH

) = αopt−1

[
HHH +

Mσ2
wIN
P

]−1
H. (42)

Note that, the scalar, α, merely represents a scaling factor at the receiver that is used to scale

the incident signal as so to obtain the transmitted constellation symbols and this a common

practice in MMSE precoding optimization [24], [25]. Choosing a common α for all users results

in better tractability and makes it possible to derive a closed-form solution for the optimal α.

By inspecting the closed-form solution of the precoding matrix, we observe that it is scaled

by αopt−1 . This allows the transmitter to optimally scale all the transmit symbols based on the

available transmit power whereas the receiver upscales the received signal plus noise to get back

the original transmitted symbols while keeping the SNR unaffected. It is also worth mentioning

that the optimal scaling factor, αopt, is only utilized in optimizing the precoding matrix since

the receivers can blindly estimate this scalar based on the received symbol sequence [24], [25].

Now that we have solved both sub-optimization problems in (32) and (33), separately, we

substitute their solutions into Algorithm 3. The overall block diagram and algorithmic steps are

respectively shown in Fig. 3 and Algorithm 4.

Remark. It is possible to include per-user data requirement by formulating the problem under

the weighted MMSE (WMMSE) criterion where we scale the MSEs of the users with weights
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according to each user’s data requirement and then minimize the sum MSE. To that end, we

define a positive semi-definite real diagonal matrix, Q, containing user weights, {qm}Mm=1, in

its diagonal, i.e., Q = Diag(q1, · · · , qM). Then, the optimization problem under the WMMSE

criterion is given by:

arg min
α,F,Υ

Ey,s

{∥∥Q1/2(y − s)
∥∥2
2

}
, (43a)

subject to Es

{
‖Fs‖22

}
= P, (43b)

υik = 0, i 6= k, (43c)

|υii| = 1, i = 1, 2, · · · , K. (43d)

In this formulation, WMMSE precoding optimization is performed instead of the ordinary MMSE

precoding optimization, wherein the matrices A, B and Z are adjusted accordingly inside the

VAMP part of the Algorithm 4.

V. JOINT BEAMFORMING UNDER REACTIVE LOADING AT THE IRS

We consider a reflective element that is combined with a tunable reactive load 3 instead of an

ideal phase shifter, i.e., 4 υi = −(1+jχi)
−1, where χi ∈ R is a scalar reactance value that has to

be optimized for each reflection coefficient. Under the unimodular constraint, the idealistic IRS

has a full field of view (FOV) and the reflection coefficients correspond to ideal phase-shifters

and are of the form υi = ejθi , where θi ∈ [0, 2π]5, whereas under the practical constraint we

have a restriction on the possible values of the IRS phase shifts i.e., ∠− (1 + jχ)−1 ∈
[
-π
2
, π
2

]
.

Moreover, the magnitude of each phase shift under this constraint is always less than 1 for any

χ 6= 0. Practically, this introduces the phase-dependent amplitude attenuation in the incident

wave. We rewrite the objective function under the new constraint on phases as follows:

arg min
υ

∥∥αHH
s-uDiag(υ)Hb-sF− (IM − αHH

b-uF)
∥∥2

F (44a)

s.t. υi =
−1

1 + jχi
, i = 1, 2, · · · , K. (44b)

3This can be implemented for instance by an antenna array composed of omni-directional dipole elements loaded with the

reactive elements in the absence of a ground plane to allow for bidirectional beamforming and not just hemispherical coverage.
4The value 1 is the normalized resistive part of the element impedance whereas χi is the normalized reactive part of the

antenna plus reactive termination. Accordingly υi represents the induced current flowing across the antenna. We assume the

antenna elements to be uncoupled which holds approximately for half-wavelength element spacing.
5In practice, this assumption is difficult from a practical standpoint. With the reactive-loading constraint, the assumption of

an IRS with full FOV becomes more acceptable.
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Algorithm 4 VAMP-based joint optimization algorithm
Given Hs-u, Hb-u, Hb-s, a precision tolerance (ε), and a maximum number of iterations (TMAX)

1: Initialize υ̂0, r0, γ0 ≥ 0 and t← 1

2: Ĥ0 =
(
HH

s-uDiag(υ̂0)Hb-s + HH
b-u

)H
3: α̂0 = g3

(
Ĥ0

)
4: F̂0 = g4

(
Ĥ0

)
5: repeat

6: // LMMSE SVD Form.

7: Set A = α̂t−1H
H
s-u, B =

(
Hb-sF̂t−1

)T
and Z = IM − α̂t−1HH

b-uF̂t−1.

8: Compute economy-size SVD A = UADiag(ωA)VH
A

9: Compute economy-size SVD B = UBDiag(ωB)VH
B

10: Compute VBA =
(
VH

B ∗VH
A

)H
11: Compute normalization vector vn =

[
‖vBA,1‖2 , ‖vBA,2‖2 , · · · , ‖vBA,M2‖

2

]T
12: Compute VH = VH

BA �
(
v−1n 1T

K

)
13: Compute ω = (ωB ⊗ ωA)� vn

14: Compute z̃ = ω−1 � vec
(
UH

AZU∗B
)

15: RBA = Rank(B ∗A) = length(ω)

16: dt = γw(γwω
2 + γt−11RBA)−1 � ω2

17: r̃t = rt−1 + K
RBA

V
(

dt
〈dt〉 �

(
z̃−VHrt−1

))
18: γ̃t = γt−1 〈dt〉 /

(
K
RBA
− 〈dt〉

)
19: // Separable MAP Projector

20: υ̂t = g2 (r̃t)

21: γ̂t = γ̃−1t 〈g′2 (r̃t)〉.
22: γt = γ̂t − γ̃t
23: rt = γ−1t (γ̂tυ̂t − γ̃tr̃t)

24: //Find α and F through their closed-form solutions.

25: Ĥt =
(
HH

s-uDiag(υ̂t)Hb-s + HH
b-u

)H
26: α̂t = g3

(
Ĥt

)
27: F̂t = g4

(
Ĥt

)
28: t← t+ 1

29: until |Et − Et−1| < εEt−1 or t > TMAX

30: return υ̂t, F̂t, α̂t.
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To find the sub-optimal phase matrix under the new constraint, we change the projector function

accordingly as follows:

g5,i (r̃i, γ̃) , arg min
υi

[
γ̃|υi − r̃i|2 + γp

∣∣∣∣υi +
1

1 + jχopt
i

∣∣∣∣2
]
, (45)

where

χopt
i = g6 (r̃i) , arg min

χi

∣∣∣∣r̃i +
1

1 + jχi

∣∣∣∣2. (46)

The optimization problem in (45) is a bi-level one [36]. The solution to (46) is substituted in

(45) which is then solved as ordinary MAP optimization. We show in Appendix A that the

solution to (46) is given by:

g6 (r̃i) =
1

2={r̃i}

(
1 + 2<{r̃i}+

√
(1 + 2<{r̃i})2 + 4={r̃i}2

)
. (47)

Substituting (47) back into (45) and solving the minimization leads to the following result:

g5,i(r̃i, γ̃) =
γ̃

γ̃ + γp
r̃i −

γp

γ̃ + γp
(1 + jg6 (r̃i))

−1 , (48)

where γp →∞. Thus, the projector function can be expressed as:

g5,i (r̃i) = − (1 + jg6 (r̃i))
−1 , (49)

whose derivative is obtained as defined in equation (19) as follows:

g′5,i (r̃i) = jg′6 (r̃i) (1 + jg6 (r̃i))
−2 , (50)

where

g′6 (r̃i) =
1

2

(
∂g6 (r̃i)

∂<{r̃i}
− j

∂g6 (r̃i)

∂={r̃i}

)
. (51)

The partial derivatives involved in (51) are given by:

∂g6 (r̃i)

∂<{r̃i}
= ={r̃i}−1 + (1 + 2<{r̃i})

(
={r̃i}

√
(1 + 2<{r̃i})2 + 4={r̃i}2

)−1
, (52)

and

∂g6 (r̃i)

∂={r̃i}
= − (1 + 2<{r̃i})

(
2={r̃i}2

)−1
− (1 + 2<{r̃i})2

(
2={r̃i}2

√
(1 + 2<{r̃i})2 + 4={r̃i}2

)−1
. (53)

Since the derivative is required to be a real scalar, we take the absolute value of the complex

derivative and, therefore, we modify the derivative of the projector function (50) as follows:

g′5,i (r̃i) =
∣∣jg′6 (r̃i) (1 + jg6 (r̃i))

−2∣∣. (54)

Lastly, we obtain the vector valued projector function, g5(r̃t), and its derivative g′5(r̃t) according

to (20) and (21) respectively and replace g2(r̃t) and g′2(r̃t) in lines 19 and 20 of Algorithm 4.
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VI. NUMERICAL RESULTS: PERFORMANCE AND COMPLEXITY ANALYSIS

A. Simulation Model and Parameters

We present exhaustive Monte-Carlo simulation results to assess the performance of the pro-

posed algorithm. We assume that the IRS is located at a fixed distance of 500 m from the BS and

the users are spread uniformly at a radial distance of 10 m to 50 m from the IRS. A path-based

propagation channel model, also known as parametric channel model [26], is used. Such a model

are more appropriate for systems with large antenna arrays. One key parameter of such a channel

model is the number of multi-path components of the BS-IRS channel which governs the effect

of channel correlation. The channel between the IRS and the BS is generated according to:

TABLE I: Simulation parameters, their notations and values.

Parameter Notation, Value Parameter Notation, Value

Number of channel paths IRS-BS link QIRS = 10 IRS-BS distance dIRS = 500 m

Number of channel paths BS-user link Qb-u = 2 User-BS distance d = 500 m

Number of channel paths IRS-user link Qs-u = 2 User-IRS distance d′ ∈ [10, 50] m

Path-loss exponent IRS-BS, IRS-user link η = 2.5 Noise variance σ2
w = −100 dBm

Path-loss exponent BS-user link η = 3.7 Channel path gain cq ∼ C N (0, 1)

Reference distance d0 = 1 m Path-loss at reference distance C0 = −30 dB

Hb-s =
√
L(dIRS)

QIRS∑
q=1

cqaIRS(ϕq, ψq)aBS(φq)
T. (55)

Here, QIRS and L(dIRS) denote the number of channel paths and the distance-dependent path-loss

factor, respectively. The vectors aBS(φ) and aIRS(ϕ, ψ) are the array response vectors for the BS

and the IRS, respectively. The coefficients cq in (55) denote the path gains which are modeled

by a complex normal distribution, i.e., cq ∼ C N (cq; 0, 1). Assuming that a uniform linear array

(ULA) with N antennas is used at the BS, we have aBS(φ) = [1, e2πj
db
λ

cosφ, · · · , e2πj
db
λ
(N−1) cosφ]T

wherein λ, φ, and db represent the wavelength, the angle of departure (AOD), and the inter-

antenna spacing at the BS, respectively. The IRS is equipped with a (square) uniform planar

array (UPA) with K antenna elements which are assumed to have a cosine embedded element

pattern. By defining the z-axis as the normal vector to the array, the array response vector for

the IRS is expressed as follows [37]:

aIRS(ϕ, ψ) =
√
| cosϕ|


1

e2πj
ds
λ

sinϕ sinψ

...

e2πj
ds
λ
(
√
K−1) sinϕ sinψ

⊗


1

e2πj
ds
λ

sinϕ cosψ

...

e2πj
ds
λ
(
√
K−1) sinϕ cosψ

 . (56)
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Here ds represents the inter-antenna spacing at the IRS whereas ϕ and ψ are the angles of

elevation and azimuth, respectively. In simulations we set db = ds = λ/2. The angles ψq and φq

are uniformly distributed in the interval [0, 2π) and the ϕq’s are uniformly distributed in [0, π).

The channel of the direct link between the BS and each m-th single-antenna user, with Qb-u

paths, is modeled as follows:

hb-u,m =
√
L(dm)

Qb-u∑
q=1

cm,qaBS(φm,q), m = 1, · · · ,M. (57)

Similar to the IRS-BS channel, cm,q ∼ C N (cm,q; 0, 1) and each angle φm,q is uniformly dis-

tributed in [0, 2π). The channel vectors in (57) are assumed to be independent across all users.

Finally, the channel vector for the link between each m-th user, and the IRS with Qs-u channel

paths, is modeled as follows:

hs-u,m =
√
L(d′m)

Qs-u∑
q=1

cm,qaIRS(ϕm,q, ψm,q), m = 1, · · · ,M. (58)

The term L(d) = C0(d/d0)
η in (55), (57), (58) is the distance-dependent path-loss factor, where

C0 denotes the path-loss at a reference distance d0 = 1 m, and η is the path-loss exponent.

Moreover, to account for the line-of-sight (LOS) component, the gain of one channel path is set

to at least of 5 dB higher than the other path gains. To account for channel correlation effects,

we have set the number of multi-path components lower than the number of BS antennas and the

IRS antenna elements for the BS-IRS channel thereby making the channel matrix rank-deficient.

Therefore, in simulations we have set the number of users lower than the rank of BS-IRS channel

matrix Hb-s. In the simulations, we fix dIRS = 500 m for the IRS-BS channel whereas the user-BS

distance, d, and the user-IRS distance, d′, vary for each user according to its location from the BS

and the IRS, respectively. In all simulations, we also set C0 = −30 dB, η = 3.7 (NLOS BS-user

channel), η = 2.5 (NLOS IRS-BS and IRS-user channels), Qb-u = 2, Qs-u = 2, ε = 10−3 and

σ2
w = −100 dBm. The results are averaged over 1000 independent Monte Carlo simulations.

The following two scenarios are studied. First, we consider the case where only the BS-IRS

channel contains a LOS component. Then we consider the scenario where both the BS-IRS and

the IRS-user channels have a LOS component but all the direct BS-user channels do not have a

LOS component. The proposed VAMP-based algorithm is compared against the following four

different configurations:

i. A MIMO system assisted by one IRS where the SDR technique is used to optimize the

IRS reflection coefficients in combination with MMSE precoding.
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ii. A MIMO system assisted by one IRS where the joint optimization of the phase matrix the

and the precoding is solved through alternate optimization and penalty-based ADMM.

iii. A massive MIMO system with a large number of BS antennas with MMSE precoding.

iv. An IRS-assisted MIMO system with unoptimized IRS phases and MMSE transmit precoding.

B. Benchmarking Metrics

We use two metrics for performance evaluation, namely the sum-rate, Ĉ, and the normalized

root mean square error (NRMSE) which are defined as follows:

Ĉ =
M∑
m=1

log2

1 +

∣∣hH
mfm

∣∣2
σ2

w +
∑
i 6=m

∣∣hH
mfi
∣∣2
 , (59)

where hHm = hH
s-u,mΥHb-s + hH

b-u,m.

NRMSE(α,Υ,F) ,
1√
M

√∥∥α (HH
s-uΥHb-s + HH

b-u

)
F− IM

∥∥2
F +Mα2σ2

w. (60)

C. Performance Results With Perfect CSI

1) BS-IRS channel with LOS component: This situation is encountered in a typical urban or

suburban environments where the BS is located far away from the users and has no direct LOS

component. However, the IRS is installed at a location where a LOS component is present in

the BS-IRS link but not in the user-IRS link. Here we set the number of users to M = 8 and

the number of BS antennas to N = 32 for every configuration except for massive MIMO for

which we use N = 96. Fig. 4(a), depicts the achievable sum-rate versus the transmit power,

P , for the different considered transmission schemes. The proposed algorithm in this scenario

outperforms the massive MIMO system even with a significantly smaller number of transmit

antennas. VAMP automatically updates the stepsize at a per-iteration basis that leads to a faster

convergence compared to other iterative algorithms Since the proposed algorithm is based on

VAMP, it outperforms the ADMM-based solution as it automatically updates the stepsize at a

per-iteration basis (by means of calculating extrinsic information at each step) that leads to a

faster convergence compared to ADMM, where the penalty parameter must be manually chosen.

As per the IRS-assisted configuration, where one uses the SDR technique to optimize the IRS

reflection coefficients, a significant gap is observed between the achieved sum-rates as compared

to the proposed algorithm.

Fig. 4(b) shows a plot of sum-rate against the number of IRS reflective elements. It is observed

that even with a small number of active transmit antennas and merely ten paths between the
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(a) M = 8 and K = 256. (b) M = 8, N = 32 and P = 30 dBm. (c) M = 8, N = 32, and K = 256.

Fig. 4: LOS IRS-BS channel: (a) Sum-rate versus transmit power, (b) Sum-rate versus the

number of IRS reflective elements, and (c) NRMSE versus the number of iterations (BS-user

link excluded).

IRS and the BS, the sum-rate for the proposed solution keeps increasing with the number of

reflective elements. In contrast, the sum-rate saturates after a small gain when the IRS reflection

coefficients are not optimized. Compared to the ADMM-based solution and the SDR method,

the proposed algorithm shows higher throughput at every point.

The convergence of the proposed algorithm is investigated in Fig. 4(c) which depicts the

NRMSE as a function of the number of iterations. Here we exclude the direct BS-user link to

highlight the throughput of the BS-IRS-user link after optimizing the IRS phase shifts. Observe

that the major portion of the gain is achieved in the first few iterations. The small number

of iterations required for convergence in combination with the low per-iteration complexity

makes the proposed algorithm very attractive from the practical implementation point of view.

The superiority of the proposed VAMP-based algorithm over the ADMM-based approach stems

from the feedback mechanism of VAMP. In fact, such feedback controls the weight given to

the update of Υ at each iteration compared to that of the preceding iteration. This is achieved

with the help of scalar precision parameters that act as weighting coefficients for the Υ updates

that are computed in the current and the preceding iteration. In addition to the plots shifting

downward, the increase in transmit power widens the gap between ADMM and the proposed

VAMP-based algorithm. This demonstrates that the latter utilizes the available transmit power

in a more efficient way than ADMM.

2) BS-IRS and IRS-user channels with LOS components: Fig. 5(a) illustrates the sum-rate

versus the transmit power for this configuration. As expected, the results show that by adding a

LOS component, the use of an IRS together with the proposed joint beamforming optimization

solution yields considerably higher sum-rates compared to a massive MIMO system with no

IRS. Moreover, although the ADMM-based solution now matches the performance of massive
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(a) M = 8 and K = 256. (b) M = 8, N = 32 and P = 30 dBm. (c) M = 8, N = 32, and K = 256.

Fig. 5: LOS IRS-user and BS-IRS channels: (a) Sum-rate versus transmit power, (b) Sum-rate

versus the number of IRS reflection elements, and (c) NRMSE versus the number of iterations

(BS-user link excluded).

MIMO, the advantage of the proposed VAMP-based solution over the ADMM- and SDR-based

solutions is higher when compared to the NLOS configuration.

The results in Fig. 5(b), i.e., sum-rate vs the number of IRS reflective elements, also exhibit

the same trends as in the NLOS scenario yet with a broader gap between the curves, thereby,

corroborating the superiority of the proposed solution. Intuitively, the presence of a LOS com-

ponent helps the VAMP-based joint beamforming scheme to focus most of the transmit/reflected

energy in that direction. This is clearly depicted in Fig. 5(c), where the NRMSE achieved by

the proposed algorithm is approaching the NRMSE achieved by the ADMM-based solution but

at almost 5 dB lower transmit power.

3) Practical IRS phase shifts: In this subsection, we assess the effect of replacing the uni-

modular constraint on the reflection coefficients by reactively loaded omni-directional elements.

We use the same channel configuration as in Section VI-C2. But, we rely on optimizing just

the reactive part of the reflection coefficients. Therefore, as portrayed by Fig. 6(b), the new

constraint decreases the throughput when compared with the ideal phase shifters setup. However,

the resulting sum-rate is still much higher than the one obtained by using unoptimized IRS

reflection coefficients. In fact, when the number of IRS elements is higher than a certain value,

the proposed approach with practical phase shifts achieves higher throughput than both the

SDR- and ADMM-based solutions with ideal phase shifts. Similarly, due to having less room

for optimizing the reflection coefficients, Fig. 6(a) shows that the NRMSE saturates sooner and

at a higher value as compared to the case of a unimodular constraint (i.e., ideal phase shifts).

Nonetheless, even with the more practical reactive load constraint, the resulting VAMP-based

NRMSE is close to the NRMSE achieved by ADMM with ideal phase shifters.
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(a) M = 8, N = 32, K = 256

and P = 30 dBm.

(b) M = 8, N = 32

and P = 30 dBm.

(c) M = 8, N = 32,

and K = 256.

Fig. 6: LOS IRS-user and BS-IRS channels: (a) NRMSE versus the number of iterations (BS-user

link excluded), (b) Sum-rate versus IRS elements with practical phase shifts, and (c) Sum-rate

versus transmit power under imperfect CSI.

D. Performance Results With Imperfect CSI

In this section, we measure the performance of the proposed solution in the presence of channel

estimation errors. Specifically, we consider a scenario where pilot training followed by MMSE

estimation algorithms are used to estimate the cascaded BS-IRS-users and the direct BS-user

channels [38], [39]. We model the estimated channel matrix and vectors using the statistical CSI

error model proposed in [40]–[42] as follows:

Ĥb-s = κHb-s +
√

(1− κ2)L(dIRS)∆b-s, (61)

ĥb-u,m = κhb-u,m +
√

(1− κ2)L(dm)δb-u,m, m = 1, · · · ,M, (62)

ĥs-u,m = κhs-u,m +
√

(1− κ2)L(d′m)δs-u,m, m = 1, · · · ,M, (63)

where κ ∈ [0, 1] denotes the channel estimation accuracy and ∆b-s, δb-u,m and δs-u,m follow the cir-

cularly symmetric complex Gaussian (CSCG) distribution, i.e., vec(∆b-s) ∼ C N (0,1N×N ⊗ IK),

δb-u,m ∼ C N (0, IN) and δs-u,m ∼ C N (0, IK). We first optimize the matrices F and Υ under

imperfect CSI and then use the exact CSI matrices to calculate the sum-rate. Fig. 6(c) plots the

sum-rate versus transmit power for different values of the channel estimation accuracy parameter

κ. We also include plots for the other beamforming schemes under perfect CSI for reference.

The results show the resilience of the proposed VAMP-based approach against small channel

estimation errors. At low SNR, it is observed that the proposed design with a low channel

estimation accuracy of κ = 0.85 performs better than the SDR based approach and nearly as

good as the ADMM-based approach under perfect CSIs. Moreover, the performance loss with a

high channel estimation accuracy value of κ = 0.99 is negligible.
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VII. CONVERGENCE, OPTIMALITY, AND COMPLEXITY ANALYSIS

According to the monotone convergence theorem in real analysis [43], a monotonically de-

creasing sequence with a lower bound is convergent. In our case, since the objective function,∥∥αHH
s-uΥHb-sF− (IM − αHH

b-uF)
∥∥2

F +Mα2σ2
w (64)

has a lower bound of zero, the proposed algorithm will always converge to a solution if the MSE

monotonically decreases in both steps of the algorithm, i.e., the step of optimizing the phase-

shifts (VAMP part) and the step of optimizing the active precoding. For the latter, we have a

closed-form optimal solution. Therefore, it is necessary that the MSE decreases monotonically

inside the VAMP step in every iteration to guarantee the convergence of the entire algorithm.

In practice, most of the approximate message passing-based algorithms (including VAMP) add

damping steps inside the algorithm to avoid any oscillations in the resultant MSE and thus,

ensuring convergence [22]. The lines 18 and 20 inside the VAMP part of the Algorithm 4 are,

respectively, replaced by the damped versions:

γ̃t = %γt−1 〈dt〉 /
(

K

RBA

− 〈dt〉
)

+ (1− %)γ̃t−1. (65)

υ̂t = %g1(r̃t) + (1− %)υ̂t−1, (66)

for all iterations t > 1 where % ∈ (0, 1] is a suitably chosen damping factor. The optimality

TABLE II: Comparison between the CPU execution time of the proposed VAMP-based algorithm,

the ADMM-based algorithm and the SDR-based algorithm for different design configurations.

The algorithms terminate when |NRMSEt − NRMSEt−1| < 10−3NRMSEt−1 or t > 100.

Design Parameters

VAMP-based

algorithm

O(MN(K+N))

(msec)

ADMM-based

algorithm

O(MN(K+N))

(msec)

SDR-based

algorithm

O(MN +K6)

(msec)

M = 2, N = 16, K = 64 14 26 2100

M = 4, N = 32, K = 256 104 340 12500

of the proposed VAMP-based approach can be investigated through statistical state evolution

analysis of the proposed algorithm which we have left for a future work. Please note that for

non convex optimization problems like optimizing the phase-shifts matrix under uni-modular

constraint, asymptotic (for large matrix sizes) optimality can be claimed for i.i.d. matrices, if the

proximal functions (projector function and its derivative inside Algorithm 4) are shown to be
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Lipschitz continuous, and the state evolution analysis reveals that the VAMP-based algorithm has

only one fixed point [22], [28]. For implementation purpose, we choose the maximum possible

value for precision tolerance, ε, for which the mean square error (MSE) approximately saturates

before the algorithm is stopped. For the proposed solution we have found out that ε = 10−3 does

the trick as the MSE achieved by choosing any lower values for ε is approximately equal to the

MSE achieved by choosing ε = 10−3. The maximum number of iterations, Tmax, is a hardware-

dependent parameter and is manually chosen to have a limit on the number of iterations.

Note that, by utilizing the Kronecker structure, we avoid any large matrix multiplication

or even taking SVD of Kronecker or Khatri-Rao product of matrices. Let A = αHH
s-u and

B = (Hb-uF)T. For our system model, the matrices A and B are of the same size M × K.

Assuming that the matrices A and B are of full rank, the complexity of the truncated SVDs of the

matrices is of O(M2K). The computational complexity of the column-wise Khatri-Rao product

in line 10 and the following operations in lines 11 and 12 of Algorithm 4 has a complexity of

O(M2K). The Kronecker product of two vectors in line 13 and the component-wise operations

of vectors in lines 16 and 17 are of order O(M2). The projector function and its derivative

has a complexity in the order of O(K). The functions g3 (H) and g4 (H) can be implemented

efficiently by using the matrix inversion lemma, thereby entailing a complexity ofO(M3+MN2).

The complexity of all other matrix multiplications elsewhere including the LMMSE part is of

order O(MNK +M2K). Therefore, the overall per-iteration complexity of the algorithm is of

order O(M3 + M2K + MNK + MN2). Since M < N and M < K in our case, the overall

per-iteration complexity simplifies to O(MN(K +N)) or O(MNK) for N ≤ K.

Table II provides a comparison of CPU (central processing unit) run time between the VAMP-

based approach, the ADMM-based approach and the SDR-based approach for different design

configurations. For comparison purpose, we measure the time until the NRMSE saturates with a

tolerance, ε , therefore we run the algorithms until |NRMSEt − NRMSEt−1| < εNRMSEt−1 or

t > TMAX, while setting ε = 10−3 and TMAX = 100. We set the channel simulation parameters as

in Section VI-C2 with P = 30 dBm. The algorithms are simulated on MATLAB R2020a on a lap-

top PC having a Core i7-4720HQ processor and 16 GB of RAM with Windows 10 operating sys-

tem. As expected, the simulation results confirm that the proposed approach is significantly faster

in terms of convergence time, especially when there is a high number of IRS antenna elements.

VIII. CONCLUSION

We investigated the problem of joint active and passive beamforming design for an IRS-

assisted downlink multi-user MIMO system under both ideal and practical models for the IRS
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phase shifts. The associated joint non-convex optimization has been formulated under sum-

MMSE criterion. Using alternating minimization, the joint optimization has been decomposed

into two sub-optimization tasks, i.e., optimizing the IRS phase shifts and the BS precoding

matrix separately. Regarding the phase shifts, we have presented a novel approach that relies on

the approximate message passing framework to solve the associated sub-optimization problem.

For this, we have first extended the traditional VAMP algorithm, and then used the extended

version to find a local optimum, for the phase-shifts matrix under both ideal and practical

constraints. The optimal precoder at the BS, however, was found in closed-form using Lagrange

optimization. Simulation results illustrate the superiority of the proposed approach over existing

beamforming schemes (e.g., the SDR-and ADMM-based approaches) both in terms of throughput

and convergence speed. The results also illustrate that the reduction in the throughput of the

system under more restrictive phase shifts is not significant. Moreover, it has been shown that

the performance of the proposed approach is largely unaffected by small channel estimation

errors. Its optimality can also be investigated through state evolution analysis which is left for

a follow-up work. Since the proposed solution provides flexibility in terms of choosing the

constraint on the IRS reflection coefficients, it opens up the possibility of solving the joint

optimization problem using more physically consistent models for the IRS reflection elements.

APPENDIX A

We solve the following optimization problem:

arg min
χ

f(χ), (67)

where

f(χ) ,

∣∣∣∣r̃ +
1

1 + jχ

∣∣∣∣2, (68)

in which χ ∈ R and r̃ ∈ C. Expanding the objective function, we re-express it as follows:

arg min
χ

r̃∗r̃ +
r̃∗

1 + jχ
+

r̃

1− jχ
+

1

(1− jχ)(1 + jχ)
. (69)

Let a , <{r̃} and b , ={r̃}. We substitute a and b into (69) and simplify the objective function

as follows:

arg min
χ

a2 + b2 +
1 + 2a

1 + χ2
− 2bχ

1 + χ2
. (70)

By defining c , (1 + 2a), we take the derivative w.r.t. χ and set it to zero to obtain:

f ′(χ) = − 2b(1− χ2)

(1 + χ2)2
− 2cχ

(1 + χ2)2
= 0. (71)
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Simplifying (71) leads to:

bχ2 − cχ− b = 0. (72)

The roots of the quadratic equation in (72) are real and distinct and are given by:

χ1 =
c+
√
c2 + 4b2

2b
, (73)

and

χ2 =
c−
√
c2 + 4b2

2b
. (74)

where b 6= 0. By taking the second derivative of the objective function in (70) w.r.t. χ and

resorting to some straightforward algebraic manipulations, we also obtain:

f ′′(χ) =
2

(1 + χ2)3
(6bχ− 2bχ3 + 3cχ2 − c). (75)

Substituting χ = χ1 in (75) and simplifying the result yields:

f ′′(χ1) =
1

(1 + χ2
1)

3

(
1

b2

(
c3 + c2

√
c2 + 4b2

)
+ 4

(
c+
√
c2 + 4b2

))
. (76)

Since b 6= 0, we have c2
√
c2 + 4b2 > |c3| and

√
c2 + 4b2 > |c| which implies that f ′′(χ1) > 0.

Similarly, we have:

f ′′(χ2) =
1

(1 + χ2
2)

3

(
1

b2

(
c3 − c2

√
c2 + 4b2

)
+ 4

(
c−
√
c2 + 4b2

))
< 0, b 6= 0. (77)

Thus, we choose:

χopt = χ1 =
1 + 2a+

√
(1 + 2a)2 + 4b2

2b
, (78)

Interestingly, the solution χ1 results in the same sign for both ={−(1 + jχ1)
−1} and ={r̃}.
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