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Abstract

To capture the communications gain of the massive radiating elements with low power cost, the

conventional reconfigurable intelligent surface (RIS) usually works in passive mode. However, due to

the cascaded channel structure and the lack of signal processing ability, it is difficult for RIS to obtain

the individual channel state information and optimize the beamforming vector. In this paper, we add

signal processing units for a few antennas at RIS to partially acquire the channels. To solve the crucial

active antenna selection problem, we construct an active antenna selection network that utilizes the

probabilistic sampling theory to select the optimal locations of these active antennas. With this active

antenna selection network, we further design two deep learning (DL) based schemes, i.e., the channel

extrapolation scheme and the beam searching scheme, to enable the RIS communication system. The

former utilizes the selection network and a convolutional neural network to extrapolate the full channels

from the partial channels received by the active RIS antennas, while the latter adopts a fully-connected

neural network to achieve the direct mapping between the partial channels and the optimal beamforming

vector with maximal transmission rate. Simulation results are provided to demonstrate the effectiveness

of the designed DL-based schemes.
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I. INTRODUCTION

Recently, an emerging hardware technology called reconfigurable intelligent surface (RIS) has

been considered as a promising technique for beyond 5G to capture the performance gain of

the massive radiating elements [1]–[3]. The RIS consists of numerous reconfigurable reflecting

elements, each of which is able to shift the phase of the incident electromagnetic waves by

electronical controls [4]. With the equipped elements, an RIS can efficiently combine the reflected

signals to achieve a high level of energy at the receiver side, and reconstruct the radio scattering

environment into an intelligent one [5].

Usually, the reflecting elements of RIS are working in passive mode, which leads to very

low energy consumption [6]–[8]. Hence, RIS is easily integrated into the existing wireless

systems [9]. In [10], Guo et al. proposed a low-complexity algorithm to jointly design the

beamforming and the phase shifting at RIS elements to maximize the weighed sum-rate of all

users. In [11], Ying et al. proposed a geometric mean decomposition-based beamforming for

RIS-assisted millimeter wave hybrid multi-input-multi-output (MIMO) systems. In [12], Ning et

al. provided a hierarchical codebook design as the basis of beam training to reduce the complexity

of channel estimation, and then proposed a cooperative channel estimation procedure for RIS-

assisted system. In order to gain the above advantages, accurate channel state information (CSI)

is needed at RIS. However, the shortage of RIS with full passive elements is that the channels

from the source user to RIS and that from RIS to destination are coupled and cannot be separately

estimated.

Generally, the objective of most existing RIS designs is to maximize the achievable rate at

the user side by optimizing the beamforming vector [13]–[19]. In passive mode, RIS elements

have no digital signal processing function. Moreover, feeding back the achieved CSI at receiver

to RIS for phase shifting may cost system bandwidth. One solution is to place some baseband

signal processing units at RIS and then directly estimate the desired channels, namely, some

RIS elements could be activated during the communications process. Then, there will be two

stages, i.e., the channel estimation stage and the data transmission stage. Obviously, the channel

estimation stage would bring some extra power cost, but can simplify the signal processing of the

data transmission. In [20], Jung et al. utilized RIS with signal processing units to obtain the CSI

by uplink pilot training and analyzed the performance of the system with a well-defined uplink

frame structure and pilot contamination. On the other hand, Alexandropoulos et al. presented an

RIS architecture comprising of passive elements, a simple controller, and a single radio frequency

(RF) chain for baseband measurements [21]. Besides, they proposed an alternating optimization
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approach for explicit estimation of channel gains at RIS during dedicated training slots.

Obviously, all these works [10]– [21] are closely dependent on hypothetical mathematical

models. In the actual communication scenario, the radio scattering conditions change rapidly

with time [22], [23], which causes serious mismatch from the adopted mathematical model.

Deep learning (DL), aiming to dig certain performance gain from the data, has undergone a

renaissance with excellent performance and low complexity [24]–[31]. Hence, DL has been

adopted to implement the signal processing tasks in RIS systems and has achieved superior

performance. In [32], Khan et al. proposed a DL method for channel estimation and phase angles

in RIS-assisted wireless communication systems. Gao et al. developed an unsupervised learning

based approach for passive beamforming in RIS-assisted communication systems [33]. In [34],

Huang et al. proposed a joint design of transmit beamforming and phase shifts based on deep

reinforcement learning technique, which also has a standard formulation and low complexity.

However, to avoid large power consumption, the number of active elements on RIS should

be limited. Taha et al. use randomly configured active elements to sub-sample the channels, and

extrapolate the channels to all elements from those estimated at active elements [35]. Moreover,

they developed a DL-based solution to optimize the beamforming vector of RIS. Obviously,

the performance of the channel extrapolation is closely related to the selection of the activated

RIS elements. One commonly adopted way is to use uniform activation pattern as did in [35].

However, the best activation pattern should be related to the locations of users and RIS, together

with the electromagnetic scattering environment, while the uniform activation pattern may not

be the optimal approach.

In this paper, we investigate the active element-aided RIS communication system and try to

maximize the achievable rate for data transmission. Specifically, we add a few active elements at

RIS and construct an active antenna selection network to find the optimal locations of these

elements, where the probabilistic sampling theory is utilized to model the selection of the

activated RIS elements as a continuous and differentiable function. Furthermore, we design two

schemes, i.e., the channel extrapolation scheme and the beam searching schemes. The former

includes the active antenna selection network and a convolutional neural network (CNN) based

channel extrapolation network that aims to extrapolates the full channels for data transmission

from the estimated partial channels, while the latter adopts the active antenna selection network

and a fully-connected neural network (FNN) based beam searching network that directly maps

from the estimated partial channels to the optimal beamforming vector for data transmission.

Lastly, we design proper network off-line training to optimize both the RIS activation pattern



4

RF Chain

RF Chain

RF Chain

RIS 

controller

Fig. 1. The RIS-assisted Communication System Model.

and the respective neural network (NN) of the two schemes.

The rest of this paper is organized as follows. Section II describes the system model and the

problem formulation. Section III introduces the DL-based channel extrapolation scheme. Section

IV presents the DL-based beam searching scheme. Section V provides the numerical results and

conclusions are drawn in Section VI.

Notations: Denote lowercase (uppercase) boldface as vector (matrix). (·)H , (·)T , and (·)∗

represent the Hermitian, transpose, and conjugate, respectively. E{·} is the expectation operator.

� and ⊗ represent the Hadamard product operator and Kronecker product operator, respectively.

Denote |A| as the number of elements in set A. [A]i,j and [A]Q,: (or [A]:,Q) represent the (i, j)-th

entry of A and the submatrix of A which contains the rows (or columns) with the index set Q,

respectively. [B]:,:,i is the i-th slice along the third dimension of a 3D matrix B. v ∼ CN (0, σ2)

means that v follows the complex Gaussian distribution with zero-mean and variance σ2. ‖a‖ is

the `2-norm of the vector a. The real and imaginary component of x is expressed as <(x) and

=(x), respectively. Moreover, diag(x) is a diagonal matrix whose diagonal elements are formed

with the elements of x.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. RIS-assisted Communication System Model

Considering an RIS assisted communications system in Fig. 1, there are one single antenna

transmitter S, one single antenna receiver D, and one RIS R with Nv × Nh = N reflecting

elements in the form of a uniform planar array (UPA), where Nv and Nh are the number of

elements in the vertical and horizontal dimension, respectively. Denote the set of all reflecting
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elements at R as N . In particular, RIS can assist the communications from S to D by reflecting

the incident electromagnetic wave with tunable phase shift.

To combat the practical frequency selective fading, we adopt orthogonal frequency division

multiplexing (OFDM) scheme with K subcarriers. Generally, the direct path between S and D
tends to be blocked by the possible obstacles like buildings and human bodies. Hence, we mainly

focus on the RIS assisted link. Define the `-th tap of the time domain channel from S to R as

[36]

h̆` =

Ph∑
p=1

hp,fcδ(`Ts − τh,p)a(φh,p, ϕh,p), (1)

where Ph is the number of the scattering paths along the link S → R, hp,fc is the equivalent

complex channel gain of the p-th path at the carrier frequency fc, τh,p is the time delay, δ(·)
denotes the Dirac function, Ts is the system sampling period, and a(φh,p, ϕh,p) ∈ CN×1 represents

the spatial steering vector of the RIS at the angles of arrival φh,p, ϕh,p. Then, the frequency

domain channel vector at the k-th subcarrier from S to R can be derived as

hk = [H]:,k =
1√
K

K−1∑
`=0

h̆`e
−2π `k

K =
1√
K

Ph∑
p=1

hp,fce
−2π

kτh,p
KTs a(φh,p, ϕh,p), (2)

where H = [h0,h1, · · · ,hK−1] ∈ CN×K is the frequency domain channel matrix between S and

R. The channel vector gk ∈ CN×1 at the k-th subcarrier from D to R can be similarly defined as

(2), and gTk is the channel from R to D by reciprocity. Define G = [g0,g1, · · · ,gK−1] ∈ CN×K

as the frequency domain channel matrix between D and R.

Then, the received signal of the k-th subcarrier at D can be written as

yk = gTk Θhksk + nk = (gk � hk)
Tθsk + nk, (3)

where sk is the signal at the k-th subcarrier from S, Θ = diag(eθ1 , · · · , eθN ) ∈ CN×N is a

diagonal matrix whose elements represent the phase shifts of RIS antennas, and nk ∼ CN (0, σ2)

is the additive white Gaussian noise (AWGN) at D. Moreover, the diagonal elements in Θ are

collected into the reflection beamforming vector θ = [eθ1 , · · · , eθN ]T ∈ CN×1.
RIS can be reconfigured by a controller connected with RF chains, and the corresponding

phase shift is set as a finite number of discrete values that belong to the quantized set A ,{
0,∆, · · · , (2b − 1)∆

}
, where b is the number of quantization bits and ∆ = 2π/2b represents

the quantization step size. Since the considered RIS has N digital phase shift elements, the

reflection beamforming vector θ would have 2bN different choices.
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Fig. 2. The architecture of the proposed schemes.

B. Problem Formulation

The effective data are conveyed along the link S → R → D with center frequency fc. The

aim is to maximize the achievable rate at D over all possible θ’s as

(P1) : max
θ?

R =
1

K

K−1∑
k=0

log2

(
1 +

∣∣(gk � hk)
Tθ
∣∣2 /σ2

)
(4)

s.t. θn ∈ A =
{

0,∆, · · · , (2b − 1)∆
}
, ∀n ∈ N . (5)

It can be checked that to find the optimal beamforming vector θ?, full channels H and G need

to be acquired at R, which is a hard task for traditional RIS due to the lack of signal processing

function. Intuitively, we can set a small part of the RIS elements, i.e., a setM, as active sensors

to obtain the partial channels between the transceivers and the RIS. Then it is possible to further

extrapolate the full channels from these partial ones, where |M| = M � N [37]. Hence,

how to design an efficient channel extrapolation scheme is the first challenge that needs to be

solved. Due to the limited number of RF chains and the requirement of low power cost, the

number of active elements should be as small as possible, which may limit the performance of

the channel extrapolation. Thus, how to approach the maximal achievable rate in (4) by finding

a quasi-optimal beamforming vector with fewer active elements is the second challenge that

needs to be solved. Note that the selection of the active antennas, i.e., the activation pattern M,

is crucial to overcoming the above two challenges but has not been solved to the best of the

authors’ knowledge. In this paper, we design two different DL-based schemes, named channel

extrapolation scheme and beam searching scheme, to separately address the aforementioned

two challenges. In both schemes, the activation pattern is optimized through the probabilistic
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sampling theory. For both schemes, the corresponding off-line training and on-line deployment

are introduced. The unified architecture of these two schemes is shown in Fig. 2.

III. DEEP LEARNING BASED CHANNEL EXTRAPOLATION SCHEME

As presented in Section II, one main challenge for the RIS assisted communication system

is the acquirement of the full channels H and G when designing the optimal beamforming

vector θ?. Traditionally, the receiver D can perform channel estimation to obtain the cascaded

channel of H and G and feed back the CSI to R. However, the overheads of the channel

estimation and the feedback would be high due to the massive number of reflecting elements

on the RIS. To overcome this bottleneck, we add signal processing function for a small part

M of the RIS reflecting elements N and utilize these active antennas to acquire the individual

channels between the transceivers and the RIS. Define the channels between the active antennas

M and the transceivers as two M ×K matrices H̃ = [H]M,: and G̃ = [G]M,:. In this section,

our first aim is to extrapolate the full channels from these partial channels, i.e., utilizing the

partially known channels to recover the rest unknown channels between the transceivers and the

rest antennas. Note that the selection of the active antennas’ locations, i.e, the activation pattern

M, would greatly affect the extrapolation performance. Our second aim is to find an optimal

activation patternM. Since DL can effectively extract the latent and complex relationship among

various datasets such as different channels, we design a DL-based channel extrapolation scheme

to optimize both the activation pattern and the channel extrapolation ability. The overall flow of

the designed scheme is expressed as

{H,G} spatial sub-sampling−−−−−−−−−−→ {H̃, G̃} channel extrapolation−−−−−−−−−−→ {Ĥ, Ĝ}, (6)

where Ĥ ∈ CN×K and Ĝ ∈ CN×K denote the recovery of H and G, respectively. The structure

of (6) is shown in Fig. 3, which contains the active antenna selection network and the channel

extrapolation network.

A. Active Antenna Selection Network

Define the spatial compression ratio as r = M
N

. The effect of the active antenna selection

network can be expressed as a sub-sampling matrix S on the full channel H and G as

H̃ = SH, (7)

G̃ = SG, (8)
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Fig. 3. The structure of the designed DL-based channel extrapolation scheme.

where S = [sT0 , s
T
1 , . . . , s

T
M−1]

T ∈ {0, 1}M×N is a binary matrix and its m-th row vector sm

contains only one non-zero entry.

Generally, the Back Propagation (BP) algorithm is involved when training the DL model.

However, since the utilization of S is a discrete combination operation, it is difficult to de-

fine the gradient differentiation. To overcome this obstacle, we define a trainable matrix Ξ =

[ξT0 , ξ
T
1 , · · · , ξTM−1]T ∈ RM×N , whose m-th row vector is an independent categorical distribution

ξm and the n-th entry of ξm is denoted as an unnormalized log-probability (logit) ξm,n. Then, we

leverage the probabilistic sampling strategy and replace S with a learned sub-sampling matrix

SΞ, whose elements are controlled by Ξ.

Since the DL model can only deal with real-valued number, we first separate the real and

imaginary parts of H and G, and then collect them into an N ×K × 4 real-valued 3D matrix

Zin = [<(H);=(H);<(G);=(G)] as the input data of the active antenna selection network.

The selection network implements the selection operation on H and G to obtain H̃ and G̃ by

sub-sampling Zin along its first dimension as

Z̃ = [<(H̃);=(H̃);<(G̃);=(G̃)] = FΞ(Zin), (9)

where Z̃ ∈ RM×K×4 denotes the original output of the selection network, FΞ(·) represents the

sub-sampling function and is expressed as

[Z̃]:,:,i = SΞ[Zin]:,:,i, i = 0, 1, 2, 3. (10)

Within the probabilistic sampling theory, sm can be defined as [39]

sm = one hot(cm), (11)

where one hot(·) denotes the one-hot encoding operation, cm ∼ Cat(N,πm) is a categorical

random variable with πm = [πm,0, πm,1, · · · , πm,N−1] containing N class probabilities. For

different categorical variables, i.e., ∀m1 6= m2, cm1 and cm2 are independent with each other.
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Note that the result of one hot(cm) is a 1×N unit-vector and the index of the non-zero entry

corresponds to the class of the drawn sample. The larger πm,n means that the m-th rows of H̃ and

G̃ can be separately achieved from the n-th rows of H and G with higher probability, namely,

the n-th RIS element in N will be activated with higher priority. Furthermore, we reparameterize

πm,n with ξm,n by using a softmax function as

πm,n =
exp(ξm,n)

N−1∑
n′=0

exp(ξm,n′)

. (12)

In order to obtain an effective sample from the categorical distribution, we resort to the

Gumbel-Max trick and generate a realization of cm as [40]

c′m = arg max
n
{ξm,n + wm,n}, (13)

where {wm,0, wm,1, · · · , wm,N−1} are independent and identically distributed samples following

the Gumbel(0, 1) distribution. Correspondingly, sm can be achieved from c′m as

sm = one hot{arg max
n
{ξm,n + wm,n}}. (14)

However, when conducting the above operation from m = 0 to M−1, the same row in H and

G, i.e., the same RIS antenna element, may be repeatedly selected many times. To avoid this

case, we dynamically exclude the categories that have already been chosen. Then, we renormalize

the logits of the remaining categories and further implement the Gumbel-Max trick.

When training the selection network, ξm is iteratively updated through the BP to complete the

active antenna selection. However, since the operator arg max is non-differentiable, we resort

to softmaxτ function as a continuous and differentiable approximation of one hot{arg max}.
Then, there is [39]

sm = lim
τ→0

softmaxτ (ξm + wm) = lim
τ→0

exp{(ξm + wm)/τ}
N−1∑
n=0

exp{(ξm,n + wm,n)/τ}
, (15)

where the temperature τ controls the softness of softmaxτ and wm = [wm,0, wm,1, · · · , wm,N−1]
is the 1 × N Gumbel noise vector. Note that lower τ means the generated Gumbel-Softmax

distribution softmaxτ (ξm + wm) is closer to the categorical distribution. During the selection

network training, τ will be gradually reduced to approach the true discrete distribution. The

first-order partial derivative of sm with respect to ξm can be written as

∂sm

∂ξTm
=

∂

∂ξTm
Ewm [softmaxτ (ξm + wm)] , τ > 0. (16)
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Fig. 4. The structure of the proposed channel extrapolation network.

In order to achieve a faster co-adaptation of the channel extrapolation network with different

RIS activation patterns during training, we fill zeros into Z̃ after the sub-sampling operation

and feed the data related with all RIS antenna elements into the following channel extrapolation

network rather than those at the M activated antennas. Accordingly, the zero-filling operation

on Z̃ is

Z̄ = ZF (Z̃), (17)

where Z̄ ∈ RN×K×4 represents the processed output of the selection network, the non-zero rows

of Z̄ is consistent with Z̃ and their locations are the same with the original ones in Zin.

B. Channel Extrapolation Network

The channel extrapolation network aims to simultaneously extrapolate the full channels H and

G from the sub-sampled channels H̃ and G̃. Since the channel matrices H̃, G̃, H and G are

all 2D matrices, it is reasonable to utilize CNN to conducte the extrapolation task. Moreover,

to obtain an efficient extrapolation performance, we resort to the iterative proximal-gradient

algorithm [39], which is dedicated to solving the ill-posed linear measurement problem in (7).

The structure of the CNN-based channel extrapolation network is shown in Fig. 4. The output

of the channel extrapolation network is expressed as

Ẑ = [<(Ĥ);=(Ĥ);<(Ĝ);=(Ĝ)] = GWC
(Z̄), (18)

where Ẑ ∈ RN×K×4 and the function GWC
(·) denotes the extrapolation operation learned by

CNN, whose trainable parameters set is WC .
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Consider Np proximal-gradient iteration and each iteration contains Nq + 2 convolutional

layers. The total number of convolutional layers in the channel extrapolation network is NC =

1+Np×(Nq+2). In the l-th convolutional layer, the input 3D matrix is first zero-padded on each

slice and is then processed by Nl convolutional kernels of size H×W×Dl, where H , W and Dl

represent the height, the width and the depth of the convolutional kernels, respectively. Then, all

Nl convolutional kernels successively slide along the first two dimensions of the input to generate

Nl real-valued 2D feature matrices. The size of each feature matrix depends on the height H and

width W of the kernel, the number of zero-padding P and the convolution stride S. In our work,

the hyperparameters like P and S should be designed carefully to ensure that the dimension

of each slice remains unchanged after convolution. The rectified linear unit (ReLU) activation

function is applied at the first Nq convolutional layers in each iteration. Finally, the output layer

adopts 4 convolutional kernels to obtain the recovery version of the real and imaginary parts of

the full channel matrices, as shown in (18). More details about this part will be discussed in

Section V. We present the feasibility of the channel extrapolation in Appendix A.

After obtaining Ẑ, we further combine its real and imaginary parts to obtain the extrapolated

full channels Ĥ and Ĝ.

C. Off-line Training for Active Antenna Selection and Channel Extrapolation Network

Define ωl as the vector containing trainable parameters of the l-th convolutional layer and

WC = {ω1,ω2, . . . ,ωNC} as the parameter set of the channel extrapolation network. The set for

off-line training is denoted as D, where |D| = Ntr is the number of off-line training samples.

Furthermore, a sample in D is an input-target pair written as (Zin,ZTA), where ZTA is the

extrapolation target and is equal to Zin in our work since we need to acquire the original full

channels. During the off-line training phase, the tunable parameters in WC and Ξ are trained by

minimizing the mean square error (MSE) between the output Ẑ and the target ZTA. Thus, the

loss function of the channel extrapolation network is written as

Lc =
1

4NKMtr

Mtr−1∑
µ=0

3∑
i=0

∥∥∥[Zµ
TA]:,:,i − [Ẑµ]:,:,i

∥∥∥2
F
, (19)

where ‖A‖F is the Frobenius norm of matrix A and Mtr is the batch size for off-line training.

Besides, we promote the training of the parameters in Ξ towards one-hot distributions through

penalizing convergence towards high entropy distribution for the active antenna selection network

as

Ls = −
M∑
m=1

N∑
n=1

πm,n log πm,n. (20)
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When the parameters for the active antenna selection network and the channel extrapolation

network are updated jointly, the resultant optimization problem of the channel extrapolation

scheme is expressed as {
ŴC , Ξ̂

}
= arg min

WC ,Ξ
(Lc + ρLs), (21)

where the penalty multiplier ρ evaluates the importance of different penalties.

During the off-line training phase, the adaptive moment estimation (Adam) [41] optimizer

algorithm is adopted to achieve the optimal model parameters ŴC and Ξ̂. We use the learning

rates ηω and ηξ to respectively update the parameters in WC and Ξ, where ηω < ηξ. Moreover,

we initially set τ as 5.0 and gradually reduce it to 0.5 during training to approach the discrete

distribution. All elements in Ξ are initialized as ξm,n ∼ N (0, 0.05).

After completing the off-line training, the optimal activation pattern M can be obtained by

extracting SΞ̂ from the trained active antenna selection network. Note that SΞ̂ is controlled by

the parameters in Ξ̂ and the index of the non-zero entry in each row of SΞ̂ corresponds to

the optimal location of an active antenna element on the RIS. Moreover, the trained channel

extrapolation network with parameters ŴC can gain the ability to extrapolate the full channels

from the given partial channels.

D. On-line Deployment for Channel Extrapolation Network

As described in (P1), our next step is to calculate the optimal reflection bemforming vector

θo with the recovered Ĥ and Ĝ in the on-line phase.

During the channel estimation stage, the M active antenna elements act as channels sensors

to obtain the partial channels H̃ and G̃ by standard approaches such as least square (LS) esti-

mation and minimum-mean square error (MMSE) estimation. Subsequently, the trained channel

extrapolation network can rapidly output the extrapolated channels Ĥ and Ĝ with fed H̃ and

G̃. Obviously, with the monotonicity of the logarithmic function and the independence of noise,

(P1) can be equivalently transformed as

(P2) : θ? = arg max
θ

K∑
k=1

(∣∣∣∣([Ĝ]:,k � [Ĥ]:,k

)T
θ

∣∣∣∣2
)

s.t. θn ∈ A =
{

0,∆, · · · , (2b − 1)∆
}
,∀n ∈ N . (22)

Note that without the constraint, the optimal solution can be readily obtained as

θ? =

∑K
k=1

(
[Ĝ]:,k � [Ĥ]:,k

)∗
‖
∑K

k=1

(
[Ĝ]:,k � [Ĥ]:,k

)∗
‖
. (23)
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Algorithm 1 The training and deployment for channel extrapolation scheme
1: PHASE I: Off-line training phase
2: Require: Training dataset D, the number of iterations Niter, τstart = 5, τend = 0.5, and the

initialized trainable parameters WC and Ξ.
3: Compute ∆τ = τstart−τend

Niter−1
4: for i = 1 to Niter do
5: Draw mini-batches Dm: a random subset of D
6: Draw Gumbel noise vectors wm for m ∈ {0, ...,M − 1}
7: Compute SΞ = [sT0 , s

T
1 , . . . , s

T
M−1]

T using sm = one hot{arg max
n
{ξm,n + wm,n}} for

m ∈ {0, ...,M − 1}, and dynamically exclude the repeatedly selected elements
8: Sub-sample the input as [Z̃]:,:,i = SΞ[Zin]:,:,i for i = 0, 1, 2, 3

9: Achieve the input of CNN-based channel extrapolation network as Z̄ = ZF (Z̃)

10: Compute the output of CNN-based channel extrapolation network as Ẑ = GWC
(Z̄)

11: Compute the loss function as Lc + ρLs
12: Set τ = τstart − (i− 1)∆τ

13: Update ∂
∂ξTm

Ewm [softmaxτ (ξm + wm)] , τ > 0

14: Use the Adam optimizer to update WC and Ξ

15: end for
16: Acquire the learned logit matrix Ξ̂, the optimal activation pattern M and channel extrapo-

lation network parameters ŴC

17: Determine the locations of the M active antenna elements on R with M
18: PHASE II: On-line deployment phase
19: R utilizes the M active antenna elements as channel sensors to obtain H̃ and G̃

20: Feed H̃ and G̃ into the trained channel extrapolation network to obtain Ĥ and Ĝ

21: Solve the projection problem in (24) to periodically obtain the reflection beamforming vector
θo on R

22: Adopt θo to implement the communication along the link S→ R→ D

Then, with a pre-defined set of the phase shift range A for θ, we can achieve the solution θo

by solving the following projection problem

θo = arg min
θn∈A
||θ? − θ||2. (24)

Within the subsequent data transmission stage, R utilizes θo to assist the communication

between S and D. For clarity, we present the details about the off-line training and the on-line

deployment of the channel extrapolation scheme in Algorithm 1.
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IV. DEEP LEARNING BASED BEAM SEARCHING SCHEME

To overcome the second challenge presented in Section II, we need to further reduce the

number of active antenna elements compared with the channel extrapolation scheme and approach

the the maximal achievable rate for data transmission. We first adopt a pre-define codebook B
which contains the candidate reflection beamforming vector θ and is in the same order of the

number of the RIS reflecting elements. The more detailed design of the codebook B will be

presented in Section V. It is worth noting that the codebook B is a suboptimal option compared

with the quantized set A but can reduce the training overhead. Then, if the number of possible

solutions for θ is limited and is not too large, some coarse partial channels H̃ and G̃ that are

obtained from fewer active antennas can be utilized to establish a well mapping between these

partial channels and an optimal beamforming vector θs in B. Note that the selection of activation

patternM would also greatly affect the performance of the mapping. Hence, we further propose

a DL-based beam searching scheme to optimize the activation pattern M and to extract the

hidden relationship between the partial channels and the optimal beamforming vector in B. The

overall flow of the designed scheme is expressed as

{H,G} spatial sub-sampling−−−−−−−−−−→ {H̃, G̃} beam searching−−−−−−−→ {θs}. (25)

Similar to the channel extrapolation scheme, the beam searching scheme also contains two

main parts, i.e., the active antenna selection network and the beam searching network, to sepa-

rately conduct the spatial sub-sampling operation and the beam searching operation in (25).

A. Active Antenna Selection Network

Since the structure of the active antenna selection network in the beam searching scheme is

similar to that in the channel extrapolation scheme in Fig. 3, we omit the description of this part

and directly propose the beam searching network in the following part.

B. Beam Searching Network

The beam searching network aims to find an optimal beamforming vector θs in the codebook

B with given H̃ and G̃. Compared with the CNN-based channel extrapolation network which

requires relatively expensive training overhead due to the high-dimensional output, the output

dimension of the beam searching network is much lower. This inspires us to adopt FNN for the

beam searching network to find out the optimal beamforming vector θs, as shown in Fig. 5. Use

the codebook B to construct the training target so that once the beam searching network is fed

with an input Z̄, it can pick up one θs from B to maximize the achievable rate R. Accordingly,
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Fig. 5. The structure of the proposed beam searching network.

the selection of θs can be converted to a multi-classification problem. In other words, since the

training of the active antenna selection network and the beam searching network are implemented

jointly, the corresponding index for θs in B can be viewed as a label attached to a specific full

channel pair {H,G}, i.e., the input data Zin of the active antenna selection network in the beam

searching scheme. Hence, the expected output of the beam searching network can be transformed

into ps, which is a one-hot encoding vector of size |B|×1 and the index of the non-zero element

in ps indicates the location of θs in B.

We adopt the FNN-based beam searching network to find out the optimal beamforming vector

θs as

p̂s = GWB
(Z̄), (26)

where WB represents the trainable parameters set of the FNN-based beam searching network

and p̂s represents the output of the beam searching network.

In the beam searching network, the designed FNN contains one input layer, NF − 1 hidden

layers and one output layer, as shown in Fig. 5. The input Z̄ is first flatten into a vector to

the input layer and is then fully-connected with the subsequent hidden layer. The l-th hidden

layer contains Nl output nodes and the Leaky ReLUs is used as the activation functions for all

the hidden layers. Moreover, dropout [42] is utilized for all but the last hidden layer to avoid

overfitting. Finally, the output layer adopts a softmax function as defined in (12) to obtain the

output p̂s, which includes the corresponding probabilities for all the classifications with respect
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to the input data Zin. Then, the index of the maximum value in p̂s is the estimated location of

θs in B. We present the feasibility of the beam searching in Appendix B.

C. Training and Deployment for Active Antenna Selection and Beam Searching Network

During the off-line training phase, we use the available full channel data pair {H,G} and

the per-defined codebook B to get the corresponding label ps. Accordingly, a sample in the

training set D is denoted by (Zin,p
s), where the input data Zin for the beam searching scheme

has the same definition as that for the channel extrapolation scheme in (9). Furthermore, we

use the categorical cross entropy between the output and label as the loss function of the beam

searching network, which can be expressed as

Lb = − 1

Mtr

Mtr−1∑
µ=0

|B|−1∑
i=0

pµi log p̂µi , (27)

where pi and p̂i are separately the i-th element in ps and p̂s, and Mtr is the batch size for

network training.

Considering the loss of the active antenna selection network in (20), the resultant optimization

problem for the beam searching scheme is denoted as{
ŴB, Ξ̂

}
= arg min

WB ,Ξ
(Lb + ρLs). (28)

During the off-line training phase, the Adam optimizer is adopted to achieve the optimal model

parameters ŴB and Ξ̂. Since the off-line training for the beam searching network is similar with

that for the channel extrapolation network in Section III-C, we omit some description due to

space limitation. More details about the training of the beam searching network will be specified

in Section V.

After completing the off-line training, the optimal activation pattern M can be acquired from

the trained active antenna selection network, and the optimal locations of the active antenna

elements are determined.

In the following deployment phase, once R obtains the partial channels H̃ and G̃ from

the channel estimation stage, it can directly determine the optimal beamforming vector θs in

the codebook B to assist the communication between S and D during the subsequent data

transmission stage.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the designed channel extrapolation scheme

and beam searching scheme through numerical simulations.
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A. Communication Scenario and DeepMIMO Dataset

Considering the presented RIS-aided communication system described in Section II, it is

reasonable to adopt a realistic electromagnetic environment to generate the channels. Therefore,

we resort to the indoor massive MIMO scenario ‘I1’ of the DeepMIMO dataset [43], which is

generated based on the Wireless InSite [44] and is widely used in DL applications for massive

MIMO systems.

Correspondingly, the primary parameters for the simulation are listed in TABLE I. Adopt the

BS 8 in the ‘I1’ scenario as the RIS of the system model. The RIS is set as an UPA with 8× 8

(N = 64) antennas as its elements. In FDD model, the forward link S → R → D and the

backward link D → R → S work in different frequency bands. Intuitively, different activation

patternsM could be selected at different frequency bands for the forward and the backward links,

respectively. However, this solution would increase the system’s power consumption and decrease

its spectral efficiency. One feasible method is that the two links share the same activated RIS

elements from one frequency band. Thus, there exists frequency mismatch between the estimated

channels and the channels to be extrapolated. To exhibit the ability of channel extrapolation

between different frequencies, we set the carrier frequencies for the channel estimation stage

and the data transmission stage as fa = 2.4 GHz and fc = 2.5 GHz, respectively. Denote Ha and

Ga as the channel matrices with carrier frequency fa. For UPA, the antenna spacing d is set to λc
2

and λc
4

for comparison. Moreover, we select the users located within the regions from the 1st row

to the 200th row and from the 201th row to the 400th row in the ‘I1’ scenario as the transmitters

S and receivers D, respectively. Since each row in the aforementioned regions contains 201 users,

the total number of users is 80400. We select each S-D pair one-to-one from their corresponding

regions to further generate 40200 samples. The bandwidth of the OFDM system is set as 100

MHz, while the number of sub-carriers is set as K = 64. The channels Ha, Ga, H and G are

generated from the DeepMIMO dataset generation code [43]. Typically, we adopt CNv ,r1⊗CNh,r2

as the beamforming codebook B to match the structure of the proposed RIS, where CNv ,r1 ∈
CNv×r1Nv and CNh,r2 ∈ CNh×r2Nh are separately the beamforming codebooks along the vertical

and horizontal dimension, r1 and r2 are the over-sampling coefficients for CNv ,r1 and CNh,r2 ,

respectively. The (i, j)-th entry of CNv ,r1 is defined as [CNv ,r1 ]i,j = 1√
Nv
e
−2π d

λc
i cos( π

r1Nv
j)
, i =

0, 1, · · · , Nv − 1, j = 0, 1, · · · , r1Nv − 1 and the entries in CNh,r2 have the similar definition.

B. Network Parameters Configuration

In the channel extrapolation scheme, one sample of the dataset is composed of two channel

sets {Ha,Ga} and {H,G}. Employ 80% of the dataset for network training and the rest for
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TABLE I
THE ADOPTED DEEPMIMO DATASET PARAMETERS.

Parameter value

Name of scenario I1

The carrier frequency of channel estimation and data transmission 2.4 GHz, 2.5 GHz

Number of BS antennas in (x, y, z) (8, 8, 1)

Number of paths 5

Active users as the transmitters S Row 1 to 200

Active users as the transmitters D Row 201 to 400

System bandwidth 100 MHz

Number of OFDM sub-carriers 64

TABLE II
LAYER PARAMETERS FOR THE CNN-BASED CHANNEL EXTRAPOLATION NETWORK.

Layer Output size Initialization Activation Kernel size Strides

1× Conv2D 64× 64× 4 Glorot uniform None 3× 3 1× 1

6× Conv2D (proximal-gradient iteration) 64× 64× 64 Glorot uniform ReLU 3× 3 1× 1

1× Conv2D (proximal-gradient iteration) 64× 64× 4 Glorot uniform None 3× 3 1× 1

1× Conv2D (proximal-gradient iteration) 64× 64× 4 Glorot uniform None 3× 3 1× 1

testing. Considering the CNN-based channel extrapolation network in Section III-B, we use 3×3

convolutional kernels and set P = 1 and S = 1 for all the convolutional layers. Specially, we

set Np = 5 and Nq = 6 to learn a powerful proximal operator as shown in Fig. 4. The initial

parameters for the learning rates are set as ηξ = 1e − 3 and ηω = 1e − 4, respectively, and the

penalty multiplier ρ is taken as 1e−4. The Adam optimizer is used for the network training with

batch size 16. We conduct the training of the active antenna selection network and the channel

extrapolation network until the training loss converges. TABLE II provides the layer parameters

of the channel extrapolation network.

With respect to the beam searching scheme, the input data is the same as that for the channel

extrapolation scheme. We set the over-sampling coefficients for the codebook B as r1 = r2 = 2.

Each label ps in a sample of the training dataset corresponds to an optimal beamforming vector

θs searched in B. The dataset is divided with the same ratio as that for the channel extrapolation

scheme. Adopt four hidden layers for the FNN-based beam searching network in Section IV-B.

The initial learning rates are ηξ = 1e−2 and ηω = 1e−4, respectively, and the penalty multiplier
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TABLE III
LAYER PARAMETERS FOR THE FNN-BASED BEAM SEARCHING NETWORK.

Layer Output size Initialization Activation

Flatten 16384 - -

FNN 1 16384 Glorot uniform Leaky ReLU (α = 0.2)

Dropout 1 (50%) 16384 - -

FNN 2 4096 Glorot uniform Leaky ReLU (α = 0.2)

Dropout 2 (50%) 4096 - -

FNN 3 4096 Glorot uniform Leaky ReLU (α = 0.2)

Dropout 3 (50%) 4096 - -

FNN 4 2048 Glorot uniform Leaky ReLU (α = 0.2)

FNN 5 256 Glorot uniform Softmax
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Fig. 6. The NMSEs of channel extrapolation versus the spatial compression ratio r.

ρ is 1e − 4. The Adam optimizer is used for the network training with batch size 256 and the

epoch for training is set to 500. The layer parameters of the beam searching network are listed

in TABLE III.

C. Performance Evaluation

Fig. 6 depicts the normalized MSEs (NMSEs) for the channel extrapolation scheme versus

the spatial compression ratio r. Note that the curves labeled by ‘Unif’ correspond to the active
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Fig. 7. The NMSEs of channel extrapolation versus frequency gaps.

antenna selection network with uniform selection strategy, while the ones marked by ‘Prob’

represent the performance of the active antenna selection network with the proposed probabilistic

selection strategy.

It can be checked that all the NMSE curves decrease with the increase of r, where r ∈
{ 1
16
, 1
8
, 1
4
, 1
2
}. Moreover, it can be found that the performance of the proposed channel extrap-

olation scheme with probabilistic selection strategy is better than that with uniform selection

strategy for both d = λc
4

and d = λc
2

. Specially, compared with the case of d = λc
4

, the proposed

scheme with d = λc
2

can obtain a better performance. This is because that a smaller antenna

spacing leads to a higher correlation between the channels of neighboring antennas that can not

be distinguished, which damages the CNN’s extrapolation performance.

In Fig. 7, we respectively extract the channels of 4 neighbouring subcarriers from {Ha,Ga}
and {H,G} and further evaluate the NMSE performance of the channel extrapolation scheme

with respect to the subcarrier frequency gaps between channel matrices, where d = λc
4

and 4

different frequency gaps are considered. It can be found that as the subcarrier frequency gap

increases, the NMSE gradually increases. However, the performance impact is not large, which

means that the proposed scheme can achieve a good extrapolation performance even with larger

frequency gap. Furthermore, with the same r, the performance of the proposed scheme with

the probabilistic selection strategy is always better than that with the uniform selection strategy,

which verifies its effectiveness.
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Fig. 9. (a) The active antenna selection under r = 1/4. (b) The active antenna selection under r = 1/8.

Fig. 8 studies the NMSE performance of the channel extrapolation scheme with probabilistic

and uniform selection strategy versus epoch for network training, where r = 1
8
. Obviously, it

can be checked that the NMSE decreases with the epoch. And it takes about 170 to 180 epoches

to achieve the steady state, which proves the robustness of the proposed scheme.

Fig. 9 displays the active antenna selection results of r = 1
4

and r = 1
8
, where d = λc

2
. It can

be found that there are 16 non-uniform active antennas selected under r = 1
4

and 8 non-uniform

active antennas selected under r = 1
8
. Moreover, from the two sub-figures, it can be found that
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Fig. 10. Training loss with different learning rate ratio for probabilistic selection.

the uniform selection strategy is not optimal and the probabilistic selection strategy can achieve

a better performance, which shows the effectiveness of the proposed probabilistic active antenna

selection network.

Fig. 10 shows the training loss versus the epoch of the beam searching scheme with proba-

bilistic selection strategy, where different learning rate ratio ν =
ηξ
ηω

is considered and r = 1
8
.

It can be seen that the training loss decreases with the epoch. Besides, it can be checked that

the larger the learning rate ratio is, the lower the training loss will be. This is because a larger

learning rate ratio can accelerate the training of the selection network. Moreover, we can see

that the rate of convergence of the training loss is approaching a limit when ν = 100. It means

that when ν > 100, the increasing of ν has few benefits to the classification performance of the

beam searching network.

In Fig. 11, we set ν = 100 and r = 1
8
, with which a faster training loss convergence can be

achieved as proved in Fig. 10. The figure shows the comparison of the training loss for the beam

searching scheme with d set as λc
2

and λc
4

, respectively. It can be seen that the performance with

d = λc
2

is better than that with d = λc
4

, which confirms the explanation provided for the results

in Fig. 6. In addition, Fig. 11 also shows the performance comparison between the uniform

selection strategy and the probabilistic selection strategy, which verifies the considerable gain of

the proposed probabilistic selection strategy.

Fig. 12 shows the performance comparison between different r for the beam searching scheme,
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Fig. 13. Test loss versus spatial compression ratio with different selection strategies and antenna spacings.

where both probabilistic and uniform selection strategy are considered. It can be checked that the

performance enhances with the increase of r. Besides, under each different r, the probabilistic

selection strategy always provides a performance gain compared with the uniform selection

strategy. It is worth noting that when the spatial compression ratio becomes large enough, i.e.,

r = 1
4
, the probabilistic selection strategy shows a limited performance gain compared with the

uniform selection strategy. This is because that when increasing the number of sampled elements,

the sampling strategy have less impact on the classification performance of the subsequent beam

searching network.

In Fig. 13, we shows the classification performance on the test set versus the spatial compres-

sion ratio for the beam searching scheme, where both probabilistic and uniform selection strategy

with two different antenna spacings are considered. Results show that the test loss decreases with

increasing r for both selection strategy. Moreover, Fig. 13 illustrates the significant gain of the

probabilistic selection strategy at a lower spatial compression ratio, i.e., r = 1
16

and r = 1
8
,

compared with the uniform selection strategy. In addition, the gap between the test loss of

probabilistic and uniform selection strategies reduces as r increases. Especially, when r = 1
2
,

the test loss of probabilistic and uniform selection strategies are very close, for both d = λc
2

and

d = λc
4

, respectively, which has been explained in the description of Fig. 12.

Fig. 14 shows the comparisons of the achievable rate for the two proposed schemes when

d = λc
2

and the signal-to-noise ratio is 30 dB. It can be seen that due to the limitation of the
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.

designed codebook B, the upper bound of the achievable rate for the beam searching scheme is

lower than that for the channel extrapolation scheme. Moreover, since the optimal beamforming

vector in (23) highly depends on the performance of channel extrapolation, the achievable rate

is lower for the channel extrapolation scheme compared with the beam searching scheme when

r = 1
16

. On the other hand, the achievable rate for the beam searching scheme is stable when

r reduces. This demonstrates the robustness of the proposed beam searching scheme, which

requires fewer active elements to obtain a considerable rate. Furthermore, when r increases, the

achievable rates for the channel extrapolation scheme become higher than that for the beam

searching scheme. This can be explained that as the channel extrapolation performance greatly

improved when increasing r, a better beamforming vector can be found based on (23) and

(24) compared with the codebook B. For both the beam searching scheme and the channel

extrapolation scheme, the achievable rates with the probabilistic selection strategy are higher

than those with the uniform selection strategy, which again verifies the gain of the probabilistic

sampling compared with the uniform sampling.

VI. CONCLUSIONS

In this paper, we have examined the active element-aided RIS communication system and

proposed two DL-based schemes, i.e., the channel extrapolation scheme and the beam searching
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scheme, respectively. For both schemes, the probabilistic sampling theory has been utilized to find

the optimal locations of the active RIS elements. Moreover, a CNN-based channel extrapolation

network has been designed to extrapolated the full channels for data transmission from the

estimated partial channels in the channel extrapolation scheme, whereas an FNN-based beam

searching network has been designed to achieve the direct mapping from the estimated partial

channels to the optimal beamforming vector for data transmission in the beam searching scheme.

The efficient BP was utilized to optimize the proposed networks during training. Simulation

results showed the effectiveness of the proposed DL-based schemes.

APPENDIX A
FEASIBILITY OF CHANNEL EXTRAPOLATION

From (2), define the parameter set for H as Qh(fc) = {hp,fc , τh,p, φh,p, ϕh,p}
Ph
p=1. With the

fixed structure of R, H can be derived from Qh(fc). Thus, Qh(fc) can be seen as the physical

intrinsic factor of link along S→ R. Before proceeding, we give the following definitions:

Definition 1: The mapping function ΦN ,fc from the physical intrinsic factor set Qh(fc) to the

channel H can be written as

ΦN ,fc : {Qh(fc)} → {H}, (29)

where the sets {Qh(fc)} and {H} are the domain and codomain of ΦN ,fc , respectively.

Under fixed scattering scenario, if the number of RIS elements is large enough, we can extract

Qh(fc) from H, which can be easily checked from (2). With the physical meanings of Qh(fc),

we have the following bijective mapping [37] relation

Qh(fc)↔ H. (30)

Thus, the above defined mapping function (29) is bijective, which means that Qh(fc) corre-

sponds to one unique channel H, and vice versa. Then, the inverse mapping of ΦN ,fc exists and

can be expressed as

Φ−1N ,fc : {H} → {Qh(fc)}. (31)

Definition 2: The mapping function ΦM,fc from Qh(fc) to the partial channel H̃ can be

denoted as

ΦM,fc : {Qh(fc)} → {H̃}, (32)

where the sets {Qh(fc)} and {H̃} are the domain and codomain of ΦM,fc , respectively.
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SinceM is a subset of N and H̃ is formed by the elements in H, with the results in Definition

1, it can be determined that the mapping function (32) is bijective when the elements in M are

sufficient. Correspondingly, the inverse mapping of ΦM,fc is

Φ−1M,fc
: {H̃} → {Qh(fc)}. (33)

With the bijective properties of the mapping functions in (29) and (32), we can obtain the

following proposition.

Proposition 1 [37]: For the given communication environment and RIS structure, the mapping

relation from the partial channel H̃ to the full channel H can be characterized by the function

ΨM,fc→N ,fc defined as

ΨM,fc→N ,fc = ΦN ,fc ◦Φ−1M,fc
: {H̃} → {H}, (34)

where (·) ◦ (·) denotes the composite mapping operation.

The above proposition demonstrates that the extrapolation of H from H̃ is feasible. We can

consider a similar process for G and G̃ and verify the feasibility of the proposed channel ex-

trapolation [38]. Then, with feasible mapping between the partial channels and the full channels,

we can effectively recover H and G from H̃ and G̃, respectively.

APPENDIX B
FEASIBILITY OF BEAM SEARCHING

Within the beam searching scheme, the optimal beamforming vector θs at R is chosen from

the codebook B. Since the feasible mapping from the partial channels H̃ and G̃ to the full

channels H and G is existing. With the extrapolated H and G, we can traverse all the possible

vectors in B and find the optimal beamforming vector θs by utilizing (4) as the performance

metric. Obviously, one set {H,G} corresponds to only one determined θs. Hence, there exists

explicit mapping between {H̃, G̃} and θs within B. Accordingly, the beam searching is also

feasible. For clarity, we give the following proposition.

Proposition 2: If θ is selected from B, then there exists a specific mapping relation from

{H̃, G̃} to the optimal θs. Correspondingly, this mapping is expressed as

ΠM→B :
{

H̃, G̃
}
→ {θs} . (35)
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