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Abstract— This paper presents novel numerical approaches to
finding the secrecy capacity of the multiple-input multiple-output
(MIMO) wiretap channel subject to multiple linear transmit
covariance constraints, including sum power constraint, per
antenna power constraints and interference power constraint.
An analytical solution to this problem is not known and existing
numerical solutions suffer from slow convergence rate and/or
high per-iteration complexity. Deriving computationally efficient
solutions to the secrecy capacity problem is challenging since
the secrecy rate is expressed as a difference of convex functions
(DC) of the transmit covariance matrix, for which its convexity is
only known for some special cases. In this paper we propose two
low-complexity methods to compute the secrecy capacity along
with a convex reformulation for degraded channels. In the first
method we capitalize on the accelerated DC algorithm which
requires solving a sequence of convex subproblems, for which
we propose an efficient iterative algorithm where each iteration
admits a closed-form solution. In the second method, we rely
on the concave-convex equivalent reformulation of the secrecy
capacity problem which allows us to derive the so-called partial
best response algorithm to obtain an optimal solution. Notably,
each iteration of the second method can also be done in closed
form. The simulation results demonstrate a faster convergence
rate of our methods compared to other known solutions. We carry
out extensive numerical experiments to evaluate the impact of
various parameters on the achieved secrecy capacity.

Index Terms— MIMO, wiretap channel, secrecy capacity, sum
power constraint, per antenna power constraint, convex-concave.

I. INTRODUCTION

SECURITY has always been a great concern to the public
since the very early days of wireless communications.
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This problem is increasingly important nowadays since wire-
less connectivity becomes an integral part of our modern
life. Our dependency on wireless communications and the
associated risks are apparent during the current global pan-
demic. Wireless communications offers great flexibility and
convenience to manage our lives but, at the same time, also
creates more entries for adversaries to attack due to its open
broadcasting nature.

Primary methods for data security are traditionally based on
cryptographic techniques which are mainly implemented at the
higher layers (e.g the application layer) of the open systems
interconnection (OSI) model of a communication network. The
computational complexity of the encryption key management
in cryptographic techniques is a major issue to apply them to a
large number of low-cost IoT devices or in dynamic and open
environments. Specifically, IoT devices are typically limited
in terms of storage and computing capability to handle such
complicated encryption/decryption algorithms. As a result,
secure data transmission strategies based on the physical
properties of radio channels have been studied as a promising
alternative, which gives rise to physical layer security (PLS).
Compared to conventional cryptographic methods, PLS has
distinguishing advantages, including low-complexity in nature
and possibly key-less secure transmission. Thus, PLS is a
powerful solution to address the data security in future wireless
networks, and has become a research area of growing interest
in the last decade.

The PLS started with the notion of perfect secrecy by
Shannon in [2]. In [3], Wyner introduced and studied the
secrecy capacity of the wiretap channel (WTC) which is
a fundamental information-theoretic model for PLS. In the
WTC, a legitimate transmitter wishes to securely transmit data
to a legitimate receiver in the presence of an eavesdropper.
The secrecy capacity is simply thought as the maximum rate
at which the transmitter can reliably communicate with the
receiver while ensuring that the eavesdropper cannot decode
the information. Since Wyner’s seminal paper, the WTC
has been extended, covering various scenarios. In particular,
the secrecy capacity of the Gaussian WTC was studied [4].
The use of multiple antennas at transceivers in contemporary
wireless communications systems gives rise to the so-called
multiple-input multiple-output (MIMO) Gaussian WTC. The
secrecy capacity of the MIMO Gaussian WTC has received
significant interest since the late 2000s. In this regard, there
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have been many results in the literature and we attempt to
comprehensively (but by no means exhaustively) summarize
the significant ones below.

An analytical solution for the multiple-input single-output
(MISO) Gaussian WTC where both the eavesdropper and
the legitimate receiver have a single antenna was proposed
in [5]. When the channel state information is perfectly
known, the secrecy capacity of MIMO WTC was character-
ized in [6]–[8]. Particularly, explicit expressions for optimal
signaling for MIMO WTC are possible under some special
cases [9]–[11]. For example, in [10] Fakoorian and Swindle-
hurst presented a full-rank solution for Gaussian MIMO WTC
under an average power constraint. A closed-form solution for
optimal signaling for strictly degraded Gaussian MIMO WTC
with sufficiently large power was presented in [11]. In [12] the
secrecy rate maximization problem for the MIMO WTC with
multiple eavesdroppers was considered, in which an alternating
matrix based algorithm, named polynomial time difference
of convex functions (POTDC), was introduced. Power min-
imization and secrecy rate maximization for the MIMO WTC
was studied in [13] using a difference of convex functions
algorithm (DCA). More recently, an efficient low-complex
solution for the MIMO WTC was proposed in [14] using
a convex-concave optimization framework. We note that the
above studies on MIMO wiretap channels focused on the
secrecy capacity subject to a sum power constraint (SPC).

In a MIMO communications system, each transmit antenna
can be equipped with a separate RF chain, and thus a
per-antenna power constraint (PAPC) is more practically rel-
evant than constraining the sum power [15], [16]. In this
regard, the secrecy capacity with joint SPC and PAPC has
been studied in [17], [18] for the Gaussian MIMO WTC,
and more recently in [19] for the MISO Gaussian WTC.
More specifically, an iterative algorithm that combines the
alternating optimization (AO) method and the subgradient
method to compute the secrecy capacity of the MIMO WTC
for joint SPC and PAPC was proposed in [17]. Based on
an equivalent minimax reformulation of the secrecy capacity
problem, a barrier method was presented in [18]. Very recently,
a closed-form solution of optimal transmit strategies for
Gaussian MISO wiretap channels were derived in [19]. In [20],
[21], the Gaussian MIMO WTC was extended to scenarios
where the transmitter also needs to limit its interference
below a threshold. We refer to this kind of constraint as an
interference power constraint (IPC).

In this paper we consider the problem of finding the secrecy
capacity-achieving input covariance for Gaussian MIMO wire-
tap channels with joint SPC, PAPC, and IPC. As mentioned
above, analytical solutions to the general Gaussian MIMO
WTC have not been reported, and thus efficient numerical
methods are desired. To this end we note that the solution
proposed in [17] suffers a slow convergence rate which is
inherent in subgradient methods. In addition, this method
can only yield a locally optimal solution. On the contrary,
the barrier method presented in [18], being a Newton-type
method, converges very fast but its per-iteration complexity
increases rapidly with the problem size. Thus, our motivation
is to develop more efficient numerical methods to solve the

secrecy capacity problem of the MIMO WTC. To this end we
propose two algorithms which can overcome the shortcomings
of these existing solutions. Although, new research directions
in the study of the MIMO WTC are not the scope of this
paper, the proposed numerical methods are still of significant
importance since they will help find the capacity and optimal
signaling faster, which is useful to deal with time-varying
channels. For example, in a closed-loop system, we need to
solve the secrecy problem whenever the channels are updated.
In this regard, the secrecy optimization problem is an on-line
task. As a result, our proposed fast converging algorithms are
always desired, and thus, will certainly create an impact. Our
main contributions are as follows:

• For the degraded Gaussian MIMO WTC, we present a
convex reformulation for finding the optimal signaling
and the secrecy capacity. We remark that in this case,
the secrecy capacity problem is in fact convex but is
expressed in a non-convex form. To our knowledge,
no convex reformulation has been reported for a general
set up as considered in this paper. The convex reformu-
lation allows us to solve the secrecy capacity problem
using off-the-shelf convex solvers for different types of
transmit power constraints for which analytical solutions
are impossible.

• For the general Gaussian MIMO WTC, we apply an
accelerated DCA [22] to solve the secrecy capacity
problem, which requires solving a sequence of convex
subproblems. To solve these subproblems, we customize
the CoMirror algorithm introduced in [23] to achieve
an iterative method where each iteration is solved in
closed-form. The numerical results demonstrate that the
accelerated DCA converges very much quicker, compared
to a known solution that is based on AO.

• For the general Gaussian MIMO WTC, we also propose
an efficient iterative method to calculate the secrecy
capacity, which is based on the equivalent concave-
convex reformulation of the secrecy capacity problem.
We refer to this proposed method as the partial best
response algorithm (PBRA). The idea of PBRA is to find
a saddle point of the concave-convex game, by optimizing
one variable while the other is held fixed. The novelty of
the PBRA is the use of a proper approximation of the
saddle-point objective to achieve monotonic convergence
to a saddle point. Also, each iteration of the PBRA can
be solved efficiently.

Notation: We use bold uppercase and lowercase letters to
denote matrices and vectors, respectively. C

M×N denotes the
space of M × N complex matrices. To lighten the notation,
I and 0 define identity and zero matrices respectively, of which
the size can be easily inferred from the context. || · ||F and
|| · ||1 denote the Frobenius and �1 norm. H† and HT are
Hermitian and ordinary transpose of H, respectively; Hi,j

is the (i, j)-entry of H; |H| is the determinant of H; Fur-
thermore, we denote the expected value of a random variable
by E{.}, and [x]+ = max(x, 0). The ith unit vector (i.e.,
its ith entry is equal to one and all other entries are zero)
is denoted by ei. The notation A � (�)B means A − B
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is positive semidefinite (definite). ∇Xf , where X ∈ CM×N ,
denotes the complex gradient with respect to X∗ as defined
in [24]. PC(x) is the Euclidean projection of x onto the set
C. CN (0,A) denotes a circularly-symmetric complex-valued
Gaussian random vector with zero mean and covariance A

II. SYSTEM MODEL

Consider a MIMO WTC with a transmitter (Alice), a legit-
imate receiver (Bob) and an eavesdropper (Eve). Let Nt, Nr,
andNe denote the number of antennas at Alice, Bob, and
Eve, respectively. The signals received at Bob and Eve can
be expressed as

yb = Hbx + zr (1a)

ye = Hex + ze (1b)

respectively. In the equation above, x is the confidential
signal that Alice wishes to transmit to Bob, while keeping
it secret from Eve; Hb ∈ C

Nr×Nt and He ∈ C
Ne×Nt are

the complex channel matrix between Alice and Bob, and
between Alice a and Eve. zr ∈ CNr×1 ∼ CN (0, I) and
ze ∈ CNe×1 ∼ CN (0, I) are additive white Gaussian noise at
the legitimate receiver and at the eavesdropper respectively.1

In this paper Hb and He are assumed to be quasi-static and
perfectly known at all nodes. For a given input covariance
matrix X = E{xx†} � 0, where E{·} is the statistical
expectation, the maximum secrecy rate (in nat/s/Hz) between
Alice and Bob is given by [8]

Cs(X) =

⎡
⎢⎣ln |I + HbXH†

b|︸ ︷︷ ︸
fb(X)

− ln |I + HeXH†
e|︸ ︷︷ ︸

fe(X)

⎤
⎥⎦

+

. (2)

In this paper we are interested in the secrecy capacity
of MIMO WTC subject to some constraints on the transmit
covariance, which is mathematically stated as

Cs � max
X∈X

Cs(X) (3)

where X is determined by the transmit power constraints of
interest. Some typical examples of X are given below.

• The SPC:

Xspc = {X � 0 | tr(X) ≤ P0} (4)

where P0 is the total power budget. This setting is
fundamental to MIMO WTC and its secrecy capacity has
been extensively studied [7], [8], [10], [11], [14]. In this
case the SPC can be set to tr(X) = P0 without loss of
optimality.

• The PAPC:

Xpapc = {X � 0 | [X]i,i ≤ Pi, i = 1, 2, . . . , Nt} (5)

where Pi is the maximum allowed power for the i-th
antenna. It very often that joint SPC and PAPC (i.e.
X = Xspc ∩ Xpapc) is considered in the literature, e.g.,

1Note that, for ease of mathematical description we have assumed the noise
at both the legitimate receiver and the eavesdropper and normalized Hb and
He to the true noise power and thus the normalized noise power is unity.

in [17], [25] for MIMO WTC and recently in [19] for
MISO WTC.

• The interference power constraint (IPC):

Xipc = {X � 0 | tr(WlX) ≤ Pl, l = 1, 2, . . . , Np} (6)

where Wl = H†
l Hl and Hl is the channel between Alice

and the l-th primary receiver, Pl ≥ 0 is the corresponding
interference threshold, and Np is the number of primary
receivers. It means that the interference energy from
Alice to the l-th primary receiver should be limited by a
predetermined threshold. The case for X = Xspc∩Xipcwas
studied in [20], [21].

We remark that Cs > 0 if and only if H†
bHb − H†

eHe is
positive semidefinite or indefinite, i.e. H†

bHb − H†
eHe has

at least one positive eigenvalue, which is assumed in the
sequel of the paper. A proof for this can be found in [26,
Appendix A]. Thus we can remove the max operator in (3)
onward without loss of optimality. Further, let X∗ be the
optimal input covariance matrix of (3). Then it was proved
in [7, Corollary 1] that the secrecy capacity can be achieved
by a wiretap coding scheme the follows a circularly-symmetric
complex-valued Gaussian random vector with zero mean and
covariance X∗. Moreover, for a given X∗, a way to construct a
Gaussian wiretap code that achieves the secrecy capacity was
presented in [27]. The idea is to apply the generalized singular
value decomposition to decompose the MIMO wiretap channel
into several parallel eigen-subchannels. Then, to achieve the
secrecy capacity, Gaussian wiretap codebooks are sent along
the subchannels where the gains to Bob are larger than those
to Eve. We refer the interested readers to [27] for further
details. One may argue that considering capacity achieving
schemes as done in this paper is not of practical importance
since discrete modulation schemes and coding rates are used in
practice. However, we note that solving (3) is still practically
meaningful. Firstly, it can give an upper bound on what we
can achieve in terms of secrecy rate. Secondly, the obtained
optimal covariance matrix can be useful to construct wiretap
codes with practical finite-alphabet input that can achieve a
secrecy rate close to the secrecy capacity up to an SNR
threshold [28].

III. CONVEX REFORMULATIONS FOR MIMO WIRETAP

CHANNELS

A. The Degraded Case

In general Cs(X) is non-convex with respect to X, and
thus, finding optimal signaling for MIMO WTC is difficult.
However, if the channel is degraded (i.e. H†

bHb � H†
eHe)

then Cs(X) becomes concave (i.e. problem (3) is convex) [8],
and thus, efficient algorithms for solving (3) are possible in
principle. More specifically, analytical solutions have been
reported for degraded MIMO WTC under some specific power
constraints. For example, full-rank solutions via water-filling
like algorithm for the SPC only was presented in [10].
Moreover, when the transmit power is sufficient large, closed-
form for optimal signaling is possible [11]. When X is either
SPC only or PAPC only, closed-form solutions are presented
in [19] for MISO WTC. When X stands for the joint SPC and
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PAPC, numerical solutions based on alternating optimization
are proposed in [17] for MIMO WTC.

Regarding numerical algorithms for finding optimal sig-
naling for degraded MIMO WTC, we note that off-the-shelf
convex solvers cannot be used to solve (3) directly despite its
convexity, since it is not expressed in a standard convex form.
To overcome this issue, one could customize standard algo-
rithms for convex optimization such as interior-point methods
or gradient based methods to solve (3), which was done e.g.
in [18]. In this section, we equivalently reformulate (3) as
a standard convex problem for degraded MIMO WTC. As a
result, we can avail of powerful modern convex solvers to
compute the optimal signaling. In this regard, the following
lemma is in order.

Lemma 1: Let Δ = H†
bHb−H†

eHe � 0. Then problem (3)
is equivalent to the following convex problem

maximize
X�0,Y�0

ln |Y| (7a)

subject to
[
I + Δ1/2XΔ1/2 − Y Δ1/2XH†

e

HeXΔ1/2 I + HeXH†
e

]
� 0

(7b)

X ∈ X (7c)

where X denotes any convex set of transmit covariance
constraints including those in (4), (5), (6), or any combination
thereof.

Proof: Please refer to Appendix 1.
We note that a similar convex reformulation was also

presented for degraded channels in [29] for the SPC and
Alice also sends some power to an energy harvester which
acts as an eavesdropper. The proof in [29] is quite involved.
In our paper, we only require the feasible set of the secrecy
capacity problem to be convex. Thus, it can deal with any
linear transmit covariance matrix constraints, including energy
harvesting threshold constraint as a special case. We remark
that our proof for the convex reformulation is based on the
epigraph form of (3) and is much more elegant. We further
remark that (7) can be converted into a standard semidefinite
program, which is done automatically by modeling tools for
convex optimization such as CVX [30] and YALMIP [31]. The
interested reader is referred to [32, p. 149] for further details.
To conclude this section we note that modern off-the-shelf
solvers such as MOSEK [33] can solve (7) very fast when Nt

is not too large.

B. The General Case

For nondegraded MIMO WTC, problem (3) is a non-convex
program in general, and thus, finding optimal signaling is
difficult. In such cases, a convex-concave reformulation of
(3) is particularly useful. Specifically, based on the collective
results in [7], [8], [18], [20], [34], the secrecy capacity of
general MIMO WTC in (3) can be equivalently expressed in
the form of a minimax optimization problem as

Cs = min
K∈K

max
X∈X

f(K,X) � log
|I + K−1HXH†|
|I + HeXH†

e|
(8)

where H = [HT
b ,HT

e ]T ∈ C(Nr+Ne)×Nt is the extended
channel, X stands for the transmit power constraints including
SPC, PAPC and IPC, or any combination thereof, and K is
defined as

K =
{
K
∣∣∣∣K =

[
I K̄

K̄† I

]
; K̄ ∈ C

Nr×Ne ;K � 0
}

. (9)

The set K deserves further explanations. In fact, K in (8)
is the covariance matrix of the following composite noise:

z =
[
zr

ze

]
(10)

which is obtained by assuming that Bob knows both Hb and
He [7], [8]. As a result, K is defined as

K =

[
E
{
zrz†r
}

E
{
zrz†e
}

E
{
zez†r
}

E
{
zez†e
}
]

=
[

I K̄
K̄† I

]
,

where K̄ represents the correlation between zr and ze.
We remark that (8) is true regardless of the degradedness of

the MIMO WTC. The significance of the above minimax refor-
mulation is two fold. First, computing the secrecy capacity is
always equivalent to finding a saddle point of (8). Second, (8)
is more numerically tractable since f(K,X) is convex with
respect to K and is concave with respect to X. Thus, (8) is also
widely known as a convex-concave problem. Let (X∗,K∗) be
the saddle point of (8) which always exists since X and K are
convex and compact. Then the following inequality holds

f(X,K∗) ≤ Cs = f(X∗,K∗) ≤ f(X∗,K). (11)

Further f(K,X) is an upper bound of Cs(X), i.e.
f(K,X) ≥ Cs(X) for any feasible (K,X). However, it is
worth noting that, while the equality min

K∈K
max
X∈X

f(K,X) =

max
X∈X

Cs(X) is always true, a saddle point (X∗,K∗) to (8)

is not necessarily an optimal solution to (3) in general. More
precisely, it is possible that Cs = f(X∗,K∗) > Cs(X∗) for
some cases, especially when (8) has multiple saddle points. For
example, consider the following real-valued channel matrices
for simplicity:

Hb =
[−0.4176 1.4224
−1.4963 −2.0426

]
; He =

[
0.6726 1.4335
1.7762 −0.3694

]
.

(12)

Note that the resulting MIMO WTC is nondegraded and
thus convex reformulation presented in the preceding subsec-
tion is not applicable. For the joint SPC and PAPC given in (5)
with P0 = 10, P1 = P2 = 6, solving (8) (using the minimax
barrier method in [18] or Algorithm 3 presented shortly) yields

X∗ =
[
1.7305 1.2198
1.2198 5.9985

]
and Cs = 1.0420, (13)

but Cs(X∗) = 0.3409 < Cs. However, if the SPC is active,
i.e. tr(X∗) = P0, then X∗ is also a maximizer of (3). The
above example implies that numerical algorithms for solving
both (3) and (8) are desired.

To motivate the efficient numerical methods proposed in the
subsequent sections we note that existing numerical solutions
for solving (3) for general MIMO WTC can be generally
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classified into two ways. The first one is based on local
optimization approaches to solving (3) directly with the hope
that they can also yield an optimal solution by a good
initialization [12], [17], [25]. The drawback of such methods
is that the achieved covariance matrix is not guaranteed to be
the optimal signaling. The second way is based on finding a
saddle point of a convex-concave reformulation of (3) [18].
However, as explained by the example above, such a method
always gives the secrecy capacity but not necessarily the
optimal signaling. More explicitly, if we construct a Gaussian
wiretap code based on the obtained saddle point of (8), then
the achievable secrecy rate can be strictly smaller than the
secrecy capacity.

C. A Suboptimal Method

For comparison purpose we briefly describe a suboptimal
method that can efficiently compute an achievable secrecy rate.
In particular, this method is obtained by forcing HeXH†

e = 0.
Note that we can rewrite X = UU† for some U. Thus the
constraint HeXH†

e = 0 is equivalent to HeU = 0, which
means U should belong to the null space of He. Let V be
a basis of the null space of He which is nonempty when
Nt > Ne. Then we can write X = VTV†, where T � 0 is
the solution to the following optimization problem

maximize
T�0

ln |I + HbVTV†H†
b| (14a)

subject to VTV† ∈ X . (14b)

In the remainder of the paper we refer to this suboptimal
method as the zero-forcing (ZF) method since the idea in fact
comes from the zero-forcing method for downlink multiuser
MIMO [35].

IV. ACCELERATED DCA METHOD FOR SOLVING (3)

A. Algorithm Description

As mentioned above, since the equivalent convex-concave
formulation is not always useful to find the optimal signaling
of the general MIMO WTC, one still needs to solve (3)
directly. In [17], [25], an AO method was introduced to
solve (3). Here we propose a simple but efficient method
derived based on the obvious observation that Cs(X) is a
DC function. Note that fb(X) and fe(X) are indeed concave
functions [36, Section 3.1] and Cs(X) can be rewritten as
Cs(X) = −fe(X) − (−fb(X)) which is a DC function. This
naturally motivates the use of DCA to solve (3). In this regard
maximizing a concave function is a convex problem, and thus,
the term −fe(X) is considered as the non-convex term. Thus,
the main idea of the conventional DCA is to linearize the
non-convex term of the problem, which is −fe(X) in our case,
at a given operating point and solve the approximate convex
subproblem. This process is repeated until some stopping
criterion is met.

In this paper we consider an accelerated version of
DCA (ADCA) presented in [22]. The idea is that
from the current and previous iterates denoted by Xn

and Xn−1 respectively, we compute an extrapolated
point Zn using the Nesterov’s acceleration technique:

Xn + (tk − 1)/tk+1

(
Xn − Xn−1

)
. Since Cs(X) is possibly

non-convex for a general MIMO WTC, Zn can be a bad
extrapolation and a monitor is required. Specifically, if Zn

is better than one of the last q iterates, then Zn is considered
a good extrapolation and thus will be used instead of Xn to
generate the next iterate. Thus, the ADCA is generally non-
monotone. The algorithmic description of ADCA for solving
(3) is outlined in Algorithm 1. Note that the subproblem in
(15) is achieved by linearizing fe(X) around Vn and omitting
the associated constants that do not affect the optimization.
In Algorithm 1, q is any non-negative integer and γn is the
minimum of the secrecy rate of the last q iterates. We remark
that the case when q = 0 reduces to the conventional DCA,
which is exactly the same as the AO method in [17].

Algorithm 1 ADCA for Solving (3)

1: Initialization: V0 = X0 ∈ X , t = 1+
√

5
2 , q: integer.

2: for n = 1, 2, . . . do
3: Update:

Xn = argmax
X∈X

fb(X) − tr
(∇fe(Vn−1)X

)︸ ︷︷ ︸
f̄(X;Vn−1)

(15)

where ∇fe(X) = H†
e

(
I + HeXH†

e

)−1
He

4: tn+1 =
1+

√
1+4t2n
2

5: Zn = Xn + tn−1
tn+1

(
Xn − Xn−1

)
6: γn = min

(
Cs(Xn), Cs(Xn−1), . . . , C(X[n−q]+)

)
7: Vn =

{
Zn if Cs(Zn) ≥ γn

Xn otherwise
8: end for
9: Output: Xn

Before proceeding further we also note that Algorithm 1 in
our paper is not a traditional first-order Taylor method. In par-
ticular, we apply an extrapolated point which is numerically
shown to improve the convergence rate.

B. Convergence Analysis

The convergence analysis of the ADCA is studied in [22]
where the involved functions are assumed to be strongly
convex. In the considered problem, this assumption does not
hold for fb(X) and fe(X) in general. A weaker convergence
is stated in the following lemma.

Lemma 2: Let {γn} be the sequence generated by Step 6 of
Algorithm 1. Then it holds that γn+q ≥ γn−1. If the objective
f̄(X;Vn−1) is strictly concave. e.g. when H†

bHb is invertible,
then, every limit points of Algorithm 1 is a critical point of 3.

Proof: Please refer to Appendix B.

C. Solving the Subproblem for Joint SPC and PAPC:
CoMirror Algorithm

To implement Algorithm 1, we need to solve (15) efficiently.
We remark that for the case of SPC only, waterfilling-like
solution to (15) is possible. We skip the details here for the
sake of brevity. Thus we focus on the joint SPC and PAPC
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case, i.e. X = Xspc ∩ Xpapc where Xspc and Xpapc are defined
in (4) and (5), respectively. Since (15) is a convex program,
convex solvers can be used to solve it. However, the incurred
complexity (including the memory requirement) is very high
when Nt is large, which is the case for massive MIMO.
Our goal in this section is to derive a more efficient method
for solving (15). To this end we note that the spectrahedron
Xspc is simple in the sense that the projection onto it can be
computed efficiently as shall be seen shortly. To exploit this
fact, we resort to the CoMirror algorithm presented in [23] to
solve (15).

To simplify the notation we will ignore Vn−1 and write
f̄(X) instead of f̄(X;Vn−1) onward. Let gi(X) = [X]i,i−Pi.
Then (15) is equivalent to

maximize
X∈Xspc

f̄(X) (16a)

subject to gi(X) ≤ 0, i = 1, 2, . . . , Nt (16b)

The operation of the CoMirror algorithm is as follows.2

For a given iterate Xk, if the constraint (16b) is satisfied,
then we move along the direction ∇f̄t(X) with a step size
ηk to maximize the objective, generating the next iterate.
If (16b) is violated, set m = argmax

1≤i≤Nt

gi(X) and move

along −∇gm(X) = − diag(em) to reduce gm(X), hoping to
achieve a feasible solution in the next iteration. The CoMirror
algorithm for solving (15) is summarized in Algorithm 2. The
convergence of Algorithm 2 and other relevant discussions are
provided in Appendix C.

Algorithm 2 CoMirror Algorithm for Solving (15)

1: Initialization: X0 ∈ Xspc; Ω = 1√
2

max
X∈Xspc

∥∥X− X0
∥∥;

2: for k = 1, 2 . . . do
3: Xk = PXspc

(
Xk−1 + ηkEk−1

)
where

Ek−1 =

{∇f̄(Xk−1) max
i=1,2,...,Nt

{gi(Xk−1)} ≤ 0

− diag(em) otherwise

and

ηk =
Ω∥∥Ek−1

∥∥√k

4: end for
5: Output: Xk

The following remarks are in order regarding the implemen-
tation of Algorithm 2. First, in this paper we use the complex
gradient of f̄(Xk−1) defined in [24] and thus ∇f̄(Xk−1) is
given by

∇f̄(Xk−1) = H†
b(I + HbXk−1H

†
b)

−1Hb − Γn−1.

Second, for a given point X̄, the projection PXspc(X̄) is
mathematically stated as

maximize
X�0

∥∥X− X̄
∥∥2

F
(17)

tr(X) ≤ P0. (18)

2Specifically, we particularize the CoMirror algorithm in [23] for the
Euclidean setting and adapt the description to fit the maximization context.

Let X̄ = Udiag(σ̄)U† be the eigenvalue decomposition of
X̄ and σ̄ ∈ RNt is the vector of the eigenvalues of X̄. Further,
let σ̄+ = max(σ̄, 0). Then the solution to the above problem
is given by

X = Udiag(PΔ(σ̄+))U† (19)

where Δ denotes the full simplex is defined as

Δ = {t ∈ R
Nt |
∑Nt

i=0
ti ≤ P0, ti ≥ 0, ∀i = 1, 2, . . . , Nt}

(20)

and PΔ(σ̄+) is given by

PΔ(σ̄+) =

{
σ̄+ if 1Tσ̄+ ≤ P0

σ̄+ − τ otherwise
(21)

where τ is the unique number such that
∑Nt

i=1 max(
[
σ̄+

]
i
−

τ, 0) = P0. Several efficient methods to compute τ are
presented in [37]. Overall the per-iteration complexity of
Algorithm 2 is dominated by that of the EVD of an Nt × Nt

Hermitian matrix, which is similar to that of the subgradi-
ent method proposed in [17]. However, we demonstrate in
Section VI that Algorithm 2 requires much fewer iterations to
converge.

Remark 1: To conclude this section we remark that the
above proposed algorithms can be easily modified to find the
optimal signaling of MIMO WTC subject to joint SPC and
IPC, i.e. when X = Xspc ∩ Xipc. The details are skipped for
the sake of brevity.

V. PARTIAL BEST RESPONSE METHOD FOR SOLVING (8)

We now turn our focus on solving the equivalent minimax
reformulation of the secrecy capacity problem given in (8).
We can view (8) as a concave-convex game. In a pure best
response algorithm, X and K individually maximize their own
goal, given the response of the other. However, since X and
K are coupled, the best response algorithm (i.e. alternatively
optimizing X and K) may fail to convergence. In this paper
we propose what so called a partial best response algorithm
(PBRA) which works as follows.

Suppose Kn is available computed at the n-th iteration.
Then Xn is found as

Xn = arg max
X∈X

f(Kn,X)

= arg max
X∈X

log |Kn−1 + HXH†| − log |I + HeXH†
e|.

(22)

In words, Xn is the best response to Kn−1 as usual. From
the minimax reformulation in (8), it is obvious that we need
to find the worst noise to achieve the capacity. The idea of
the proposed PBRA is to compute a “worse noise” after each
iteration. To this end, we adopt the DCA again where the non-
convex part is linearized. More specifically, given Xn, due to
the concavity of the term log |K + HXH†|, the following
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inequality holds

f(K,Xn) ≤ log |Kn−1 + HXnH†| + tr(Ψn(K− Kn−1))
− log(K) − log |I + HeXnH†

e|, ∀K ∈ K.

(23)

� f̄(K,Xn). (24)

where Ψn = (Kn−1 + HXnH†)−1. The inequality is tight
when K = Kn−1. Next, Kn is obtained as

Kn = argmin
K∈K

f̄(K,Xn) = argmin
K∈K

tr(ΨnK) − log |K|
(25)

That is to say, Kn is found be the best response to Xn using
an upper bound of the objective. The proposed solution for
finding the secrecy capacity is summarized in Algorithm 3.
The solutions to the X and K updates are described in the
next two subsections.

Algorithm 3 PBRA for Solving (8)
1: Input: K1 ∈ K, ε1 > 0
2: for n = 1, 2 . . . do
3: Update Xn according to (22)
4: Update Kn+1 according to (25)
5: end for
6: Output: Xn

A. Efficient Solution for Solving (22)

To implement the proposed PBRA, we need to solve (22).
There are two ways to do this. First, for a given Kn−1 � 0,
(22) is equivalent to

Xn = argmax
X∈X

log |I + K−1/2
n−1 HXH†K−1/2

n−1 |

− log |I + HeXH†
e|. (26)

It is now obvious that the above maximization can be
reformulated as a standard convex problem using Lemma 1
by simply replacing Hb by K−1/2

n−1 H. The second method
is to modify Algorithm 2 to solve (22), which can be done
straightforwardly. In this regard the gradient of f(Kn−1,X)
is given by

∇f(Kn−1,X) = H†(Kn−1 + HXH†)−1
H

−H†
e

(
I + HeXH†

e

)−1
He.

B. Closed-Form Solution to (25)

We now show that the K update admits closed-form solu-
tion. To proceed, we first partition Ψn into

Ψn =
[
Ψn,11 Ψn,12

ΨH
n,12 Ψn,22

]
(27)

where Ψn,12 ∈ CnR×nE . To lighten the notation, we will drop
the subscript n in this subsection. Next let h(K̄) be defined
as

h(K̄) = tr
(
Ψ12K̄†)+ tr

(
Ψ21K̄

)− log
∣∣I − K̄K̄†∣∣. (28)

Then problem (25) is equivalent to the following program

minimize
K̄

h(K̄) (29a)

subject to I − K̄K̄† � 0. (29b)

The following lemma is in order.
Lemma 3: Let Ψ12Ψ

†
12 = UΨΣ̄ΨU†

Ψ be the
eigenvalue decomposition of Ψ12Ψ

†
12 and Σ̄Ψ =

diag(σΨ1 , σΨ2 , . . . , σΨNr
). Then the optimal solution to

(29) is given by

K̄ = −UΨΞΨU†
ΨΨ12 (30)

where

ΞΨ = 2 diag
( 1

1 +
√

1 + 4σΨ1

,
1

1 +
√

1 + 4σΨ2

, . . . ,
1

1 +
√

1 + 4σΨNr

)
.

Proof: Please refer to Appendix D.
Lemma 3 implies that Kn � 0 for all n and thus the

X-update is well defined.
To conclude this subsection we note that a similar solu-

tion was proposed in our previous work of [14]. However,
the method in [14] is a double-loop iterative algorithm. More
precisely, the outer loop was used to approximate the objective
in (22) and the inner loop was used to find a saddle-point of
the resulting approximate minimax subproblems. In contrast,
the PBRA is a single-loop iterative algorithm where the
maximization over X is done exactly.

C. Convergence Analysis

The convergence of Algorithm 3 is stated in the following
lemma.

Lemma 4: Let {(Xn,Kn)} be the iterates generated by
Algorithm 3. Then the following statements hold

• f(Xn,Kn) ≥ 0, f(Xn,Kn) ≥ f(Xn+1,Kn+1) and
thus {f(Xn,Kn)} is convergent.

• {(Xn,Kn)} contains at least a convergent subsequence.
• Every limit points of {(Xn,Kn)} is a saddle point of

(8).
Proof: Please refer to Appendix E

We again note that Algorithm 3 can find the secrecy
capacity but not necessarily the optimal signaling. To achieve
optimal signaling a further bisection search can be employed
in a similar way to [38, Algorithm 2]. More specifically,
after using Algorithm 3 to solve (8), the secrecy capacity
is known. The idea is to carry out a bisection search over
the total transmit power P0 (while other power constraints
are fixed) until the obtained saddle point objective approaches
the secrecy capacity up to a given error tolerance. We refer
the interested readers to [38] for further details. It is also
interesting to note that in our extensive numerical experiments,
both Algorithms 1 and 1 give the same objective, meaning
that the solution return by Algorithm 1 is indeed the optimal
signaling.
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VI. NUMERICAL RESULTS

In this section we provide numerical results to evaluate the
proposed algorithms. As mentioned previously the SPC only
case has been studied extensively and thus we concentrate
on the secrecy capacity of MIMO WTC for the case of
joint SPC and PAPC. We adopt the Kronecker model in our
numerical investigation [39], [40]. Specifically, the channel
between Alice and Bob Hb is modeled as Hb = H̃bR

1/2
b ,

where H̃b is a matrix of i.i.d. complex Gaussian distribution
with zero mean and unit variance and Rb the corresponding
a transmit correlation matrix. Here we adopt the exponential
correlation model whereby [Rb]i,j =

(
rejφb

)|i−j| for a given
r ∈ [0, 1] and φb ∈ [0, 2π) [41]. The channel between Alice
and Eve is modeled as He = γH̃eR

1/2
e for a given γ > 0 and

H̃e and Re are generated in the same way. The purpose of
introducing γ is to study the secrecy capacity of the MIMO
WTC with respect to the relative average strength of Hb and
He. The codes of all algorithms in comparison were written in
MATLAB and executed in a 64-bit Windows PC with 16GB
RAM and Intel Core i7, 3.20 GHz. Note that since the noise
power is normalized to unity and thus P0 is defined to be the
signal to noise ratio (SNR) in this section. The PAPC is set to
Pi = 1.2P0/Nt, ∀i = 1, 2, . . . , Nt which makes the joint SPC
and PAPC problem nontrivial.

In all simulations results, the parameter q for Algorithm 1
is taken as q = 5. The initial point for both Algorithm 1 and
the AO algorithm is taken as X0 = P0

2 I which satisfies both
SPC and PAPC. For Algorithm 3 K0 is set to identity.

A. Convergence Results

In the first experiment we compare the convergence rate
of the proposed ADCA with the AO method in [25] for the
following channels.

Hb =

⎡
⎢⎢⎣
−0.3974 + j0.5641 −0.0939 + j0.2532
−0.0216 + j0.8051 −0.6734 + j0.2605
−1.1903− j0.3939 −0.9728− j0.4468
0.2017− j0.6897 −0.9450− j0.7306

⎤
⎥⎥⎦

He =

⎡
⎣−0.2015 + j0.3127 −0.6178− j1.048
−0.0559− j0.3000 −0.3858− j0.2817
0.6935 + j0.05587 −0.5064− j0.1443

⎤
⎦

which are generated randomly. The convergence rates of
the algorithms in comparison are illustrated in Fig. 1(a)
for different values of SNR. For Algorithm 1 and the AO
algorithm we plot the secrecy rate Cs(Xn) where Xn is the
solution return at the nth iteration. For Algorithm 3 we plot
the objective f(Kn,Xn) in (8). It can be seen clearly from
Fig. 1(a) that Algorithm 1, being an accelerated version of
DCA, converges much faster than the AO method proposed
in [25], especially in the high SNR regime. As discussed
earlier, since Cs(X) is not concave, the extrapolation can
be bad which may decrease the objective. This point is also
observed in Fig. 1(a) where Algorithm 1 is not monotonically
increasing as compared to the AO method. Thus, a reasonable
stopping criterion for Algorithm 1 is when the best objective
is not improved during the last, say 10, iterations. We can
also see that f(Kn,Xn) is indeed an upper bound of Cs(Xn)

TABLE I

COMPARISON OF RUN-TIME (IN SECONDS) BETWEEN THE PROPOSED

METHOD FOR DEGRADED CHANNELS

and it keeps decreasing until convergence as expected. It is
also interesting, but not surprising, that at the convergence,
all algorithms in comparison yield a secrecy capacity equal to
that return by the minimax barrier method proposed in [18],
meaning that a globally optimal solution has been actually
achieved. In Fig. 1(b) we demonstrate the convergence rate
of Algorithms 1 and 3 where all three types of constraints:SPC,
PAPC and IPC are included. Particularly, we consider the
scenario described in Example 3 in [38], where Alice also
needs to ensure that the interference to two primary receivers
is below a pre-determined threshold. It is said in [38] the
involved channels are non-degraded with negative eigenmodes
dominating and are “hard” to optimize. More specifically,
a Taylor-based algorithm was reported to be trapped in a bad
solution. However this is not the case for the our proposed
ADCA as seen in Fig. 1(b). The initial point in the ADCA
in Fig. 1(b) is the trivial all zero matrix. Surprisingly, our both
proposed algorithms converge very fast to the optimal solution
despite the fact that this case is considered hard to optimize.
Although we only show the convergence of our proposed
algorithms to the optimal solution for two representative values
of SNR in Fig. 1(b), our proposed ADCA indeed always
returns the optimal solution for all values of SNRs considered
in 1(b).

We now demonstrate the usefulness of the convex refor-
mulation of the secrecy capacity problem for the degraded
case. Note that in Fig. 1, the convergence rate of the proposed
algorithms is shown in terms of iteration counts and the per-
iteration complexity is not taken into account. To achieve
a more meaningful comparison, we report in Table I the
average actual run time of different methods for solving (3)
when the MIMO WTC is degraded, i.e. H†

bHb � H†
eHe.

In this case, the power convex solver MOSEK [33] can be
used to solve the convex reformulation and is included for
comparison. The average run time in Table I is obtained
from 1000 random channel realizations. For Algorithm 1 we
use Algorithm 2 to solve the subproblem in each iteration.
Similarly, for Algorithm 3 we modify Algorithm 2 to solve
(22). The stopping criterion for Algorithms 1 and 3 is when
the increase during the last 100 iterations is less than 10−5.
For comparison purpose, we also report the run time of the
barrier method presented in [18]. It can be seen that MOSEK
is faster to compute the optimal signaling for systems of small
sizes. On the other hand, Algorithm 1 becomes more efficient
when the size of the system increases.

In the next numerical experiment we compare the conver-
gence rate of Algorithm 2 with a subgradient method for
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Fig. 1. Convergence results of iterative algorithms for different SNRs and
different combination of types of power constraints.

solving (15). In particular, we plot the convergence of both
algorithms for the first subproblem (i.e. n = 1) in Algorithm 1.
The channels are the same as in Fig. 1(a). To make relevant
reference to Fig. 1(a), we plot Cs(X), the lower bound of the
secrecy capacity given by

Cs(X) = f̄(X;V0) + log
∣∣I + HeV0H†

e

∣∣− tr
(∇fe(V0)V0

)
≤ Cs(X)

instead of the objective in (15). That is we include the
constants omitted when deriving (15). If Cs(X) < 0, it is
replaced by 0. We note that Algorithm 2 and the subgradient
method are not monotone in general. To make the convergence
of these two algorithms easier to visualize, we plot the best
Cs(X) at each iteration. For the subgradient method we use a
constant step size rule. It can be seen clearly that Algorithm 2
converges much faster than the subgradient method in the two
considered values of SNR. Furthermore, our extensive numer-
ical results show that the convergence rate of Algorithm 2
is less sensitive to the considered settings and it becomes
stabilized very quickly. We also observe that the convergence
of the subgradient method depends heavily on the choice of
the step size. In Fig. 2 we choose a step size such that the
subgradient method produces a good convergence performance

Fig. 2. Convergence comparison of algorithm 2 and the subgradient
method [17] for solving (15) for different SNRs.

for the considered setting. However, it cannot guarantee its
convergence in many other cases.

B. Impact of Bob-Eve Correlation

In the next numerical experiment, we investigate the effect
of the channel correlation between Bob and Eve on the
achieved MIMO secrecy capacity. To this end we fix φb =
0 and vary φe and the correlation coefficient r is set to
r = 0.9. We remark that the transmit correlation matrix of
Bob’s channel is Rb = E{H†

bHb} and of the Eve’s channel
is R′

e = E{H†
eHe}E{H†

eHe} = γ2Re. The correlation
between Bob’s channel and Eve’s channel can be measured
by the following quantity [42, Section 3.1.1]

dcorr = 1 − tr(RbR′
e)∥∥Rb

∥∥
F

∥∥R′
e

∥∥
F

= 1 − tr(RbRe)∥∥Rb

∥∥
F

∥∥Re

∥∥
F

Note that the dcorr is a function of φe and independent of
γ. It is easy to see that if Rb and Re are identical (apart from
a scaling factor), then dcorr = 0. Roughly speaking, a small
value of dcorr indicates the two links are highly correlated.
On the other hand, if dcorr is close to 1 means that the two
links are highly uncorrelated.

Fig. 3 plots the secrecy capacity as a function of φe for
two cases of transmit correlation coefficient: r = 0.9 (highly
correlated antennas) and r = 0.2 (low correlated antennas).
For comparison purpose, we also include in Fig. 2 the capacity
between Alice and Bob when Eve is not present, and the
achieved secrecy rate obtained by the ZF method. Firstly and
as expected, the channel capacity in the absence of Eve is
always higher than the secrecy capacity. However, for highly
correlated antennas in Fig. 3(a), the gap is reduced when φe is
increased. To explain this, we note that by a direct correlation,
can see that dcorr increases from 0 to 0.96 when φe increases
from 0 to π. Thus, Bob’s channel and Eve’s channel become
more uncorrelated. Intuitively, we can view φe increasing from
0 to π as Eve will move further from Bob along a circular
arc. As a result, Alice can transmit information securely to
Bob through the eigenmodes of Hb, without being comprised
by the eigenmodes of He. That is, the information leakage is
reduced, which in turn increases the secrecy capacity. Secondly
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Fig. 3. Effect of channel correlation between Bob and Eve on secrecy
capacity for Nr = 4, Ne = 3.

we notice that the secrecy capacity is always higher than the
secrecy capacity rate achieved by the ZF precoding method,
and the gap is also reduced for the same reason as explained
above. We also observe that when the number of antennas at
Alice increases from Nt = 6 to Nt = 12, the gap between
the secrecy capacity and the secrecy achievable rate obtained
by the ZF is very marginal. The reason is that with additional
degree of freedom, Alice can now create multiple beams to
Bob without being overheard by Eve.

On the other hand, when the transmit antennas are low
correlated as considered in Fig. 3(b), the off-diagonal elements
of both Rb and Re are very small, compared to the diagonal
elements which are all unity. Thus, both Rb and Re are very
close to the identity matrix and thus dcorr is very small for
all considered values of φe. Intuitively, Bob’s link and Eve’s
link are highly correlated in this case. As a result, the gap
between the channel capacity in the absence of Eve and the
secrecy capacity is significant and the position of Eve has little
impact on the obtained secrecy capacity.

C. Impact of Transmit Antenna

We now study how the secrecy capacity scales with the
number of transmit antennas at Alice. Fig. 4 plots the average

Fig. 4. Secrecy capacity as a function of Nt for different values of Ne for
different combinations of power constraints. The number of receiver antennas
at Bob is Nr = 4.

secrecy capacity for various numbers of antennas at Eve for
different combinations of power constraints. The number of
receiver antennas at Bob is Nr = 4. The correlation coefficient
is set to r = 0.9 and the parameter γ is taken γ = 0.9. For
Fig. 4(b) we consider the scenario where Alice has to limit the
interference to a primary receiver (PR) below a threshold. The
channel between Alice and PR is modeled as Hp = γH̃pR

1/2
p ,

where H̃p and Rp are generated in the same way as explained
above for Bob’s and Eve’ channels, i.e. [Rp]i,j =

(
rejφp

)|i−j|

where φp = π
4 . The number of antennas at the PR is Np = 4

and the interference threshold at the PR is 5 dB. As can be seen
in Fig. 4, the secrecy capacity increases with the number of the
transmit antennas at Alice, which is expected. Simultaneously,
we also observe that the secrecy capacity is reduced when the
number of antennas at Eve increases. In particular, Eve can
significantly decrease the secrecy capacity when Ne is much
larger than Nt. This is because the null space of Hb will
increasingly intersect with the space spanned by He. It is also
clear from Fig. 4(b) that including the IPC can reduce the
secrecy rate.
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VII. CONCLUSION

We have proposed efficient numerical solutions for finding
the secrecy capacity of MIMO WTC subject to joint sum
power constraint and per antenna power constraint. This prob-
lem is non-convex in general, and thus, is difficult to find
an optimal solution. Our first contribution has been a convex
reformulation of the secrecy problem for the degraded MIMO
WTC. For non-degraded cases, we have proposed ADCA that
solves the secrecy problem directly and PBRA that solves
the equivalent convex-concave program. In particular, we have
also presented the CoMirror algorithm which efficiently solves
the subconvex problems resulting from the ADCA and the
PBRA. We have carried out numerical experiments to demon-
strate the effectiveness of the proposed solutions. In particular,
the convergence rate of the proposed algorithm is much faster
than a known solution. We have also shown that the transmit
antenna correlation at Alice and the number of antennas at Eve
have a significant impact on the secrecy capacity. We note
that artificial noise is a good technique to enhance physical
layer security. In this regard, it is interesting to see if the
proposed methods in this paper can be extended to deal with
this technology, which deserves a separate through study and
thus is left for future work.

APPENDIX

A. Proof of Lemma 1

To proceed, we first rewrite Cs(X) as

Cs(X) = ln
∣∣I + XH†

bHb

∣∣− ln
∣∣I + XH†

eHe

∣∣
= ln
∣∣I + XH†

eHe + XΔ
∣∣− ln

∣∣I + XH†
eHe

∣∣
= ln
∣∣I +
(
I + XH†

eHe

)−1
XΔ
∣∣

= ln
∣∣I + Δ1/2

(
I + XH†

eHe

)−1
XΔ1/2

∣∣ (31)

where we have used the fact that ln |I + AB| = ln |I + BA|.
Using the matrix inversion lemma [43, Fact 2.16.21], we have(

I + XH†
eHe

)−1 = I− XH†
e

(
I + HeXH†

e

)−1
He (32)

and thus Cs(X) is further equivalently expressed as

Cs(X)

= ln
∣∣∣I + Δ1/2

(
X− XH†

e

(
I + HeXH†

e

)−1
HeX

)
Δ1/2

∣∣∣
= ln
∣∣I+Δ1/2XΔ1/2−Δ1/2XH†

e

(
I+HeXH†

e

)−1
HeXΔ1/2

∣∣.
The proof is due to some collective results in [32,

Section 3.2]. Let F (X) = I+ Δ1/2XΔ1/2 −Δ1/2XH†
e

(
I +

HeXH†
e

)−1
HeXΔ1/2 which is a matrix-valued function of

X. It is easy to see that (3) is equivalent to

maximize
X�0,Y�0

ln |Y| (33a)

subject to F (X) � Y (33b)

X ∈ X (33c)

which is in fact a “�-epigraph” form of (3). Further note that
the constraint F (X) � Y is equivalent to

I+Δ1/2X−Y−Δ1/2XH†
e

(
I+HeXH†

e

)−1
HeXΔ1/2�0

which can be rewritten as (7b) using [32, Lemma 4.2.1] and
thus completes the proof.

B. Proof of Lemma 2

We adapt the arguments in [22] for the maximization
context. First note that Xn solves (15) and thus we have

fb(Xn) − tr
(∇fe(Vn−1)

)
Xn ≥ fb(Vn−1)

)
− tr
(∇fe(Vn−1)Vn−1 (34)

which equivalent to

fb(Xn) ≥ fb(Vn−1) − tr
(∇fe(Vn−1)

(
Vn−1 − Xn

))
(35)

The concavity of fe(X) implies

fe(Xn) ≤ fe(Vn−1) + tr
(∇fb(Vn−1)

(
Xn − Vn−1

))
(36)

Combining (35) and (36) yields

Cs(Xn) = fb(Xn) − fe(Xn) ≥ fb(Vn−1) − fe(Vn−1)
= Cs(Vn−1) (37)

It follows from Step 7 of Algorithm 1 that

C(Vn−1) ≥ min
(
Cs(Xn−1), Cs(Xn−2)

, . . . , C(X[n−1−q]+)
)

= γn−1. (38)

and thus we obtain

Cs(Xn) ≥ Cs(Vn−1) ≥ γn−1. (39)

Consequently the following inequality also holds

Cs(Xn+1)≥ γn =min
(
Cs(Xn), Cs(Xn−1), . . . , C(X[n−q]+)

)
(40a)

≥ min
(
Cs(Xn), Cs(Xn−1), . . . , C(Xn+1−q),

C(X[n−q]+), C(X[n−1−q]+)
)

(40b)

≥ min
(
Cs(Xn), γn−1

)
= γn−1. (40c)

By repeating this process we can easily see that

Cs(Xn+m) ≥ γn−1, m = 0, 1, . . . , q. (41)

Therefore we obtain

γn+q = min
(
Cs(Xn+q), Cs(Xn+q−1), . . . , C(Xn)

)
(42a)

≥ min
(
Cs(Xn+q), γn−1

)
= γn−1 (42b)

where (42b) follows from (41).
It is easy to check that the sequence {γn} is bounded

above and thus is convergent. Also, since the feasible set X
is compact and convex, there exist a convergent subsequence.
Let Xnj be the subsequence converging to a limit point X∗.
Without loss of generality, we assume that Vnj−1 converges
to a limit point V∗. Due to the strict concavity and continuity
of the objective in each subproblem, it must follow that
X∗ = V∗. Since Xnj is the solution to (15) we have

tr
(∇fb(Xnj ) −∇fe(Vnj−1)

)(
X− Xnj

) ≤ 0, ∀X ∈ X .

(43)

Let j → ∞ give tr
(∇fb(X∗) −∇fe(X∗)

)(
X − X∗) ≤ 0,

∀X ∈ X , meaning that X∗ is a critical point of (3) and thus
completes the proof.
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C. Convergence Analysis of Algorithm 2

Algorithm 2 is a special case of the CoMirror Algorithm
in [23] when the distance generating function (also known
as the kernel function of the mirror map) [44] is chosen as
Θ(X) = 1

2 ‖X‖2
F and the associated norm over Xspc is the

Frobenius norm. For a given initial point X0 ∈ Xspc, the
parameter Ω is defined as

Ω =
1√
2

max
X∈Xspc

∥∥X − X0
∥∥

F
.

If X0 = 0, then it is easy to see that Ω ≤ 1√
2
P0. In general

we can find of an upper bound of Ω as

Ω =
1√
2

max
X∈Xspc

∥∥X − X0
∥∥

F
=

1√
2

max
X∈Xspc

∥∥X − X0
∥∥

F

=
1√
2

max
X∈Xspc

√∥∥X∥∥2
F
− 2 tr

(
X0X

)
+
∥∥X0
∥∥2

F

≤
√

P 2
0 +
∥∥X0
∥∥2

F

2
.

The next step is show that ∇gm(X) = diag(em), where
m = argmax

1≤i≤Nt

gi(X) is a subgradient of the pointwise max-

imum g(X) = max
1≤i≤Nt

gi(X). This is a trivial result since

gm(X) is an active function at X (i.e. g(X) = gm(X)). It is
also easy to see that

∥∥∇gm(X)
∥∥

F
≤ 1 and thus is bounded.

The final step to establish the convergence of Algorithm 2 is
to show that

∥∥∇f̄(X)
∥∥

F
is bounded. To this end, we recall

that

∇Xf̄(X) = H†
b(I + HbXH†

b)
−1Hb − Γn−1 (44)

and thus∥∥∇Xf̄(X)
∥∥

F
≤ ‖Γn−1‖F +

∥∥H†
b(I + HbXH†

b)
−1Hb

∥∥
F

≤ ‖Γn−1‖F +
∥∥H†

bHb

∥∥
F

(45)

which holds because (I + HbXH†
b)

−1 � I for X � 0.

D. Proof of Lemma 3

A very brief proof of Lemma 3 was provided in [14].
Herein we present a more rigorous proof. The idea is based
on manipulating the Karush-Kuhn-Tucker (KKT) conditions
of problem 29. Since problem (29a) is convex and strong
duality holds, KKT conditions are necessary and sufficient for
an optimal solution. Let Z be the Lagrangian multiplier for
the constraint I − K̄K̄† � 0. Then the KKT conditions of
(29a) are given by

Ψ12 + (I− K̄K̄†)−1K̄ + ZK̄ = 0 (46a)

I− K̄K̄† � 0 (46b)

Z � 0 (46c)

tr
((

I − K̄K̄†)Z) = 0 (46d)

where we have used the results in [24] to obtain (46a). Let us
assume for the moment that I − K̄K̄† � 0. Then it follows
immediately from (46d) that Z = 0 and thus we have

(I− K̄K̄†)−1K̄ = −Ψ12 (47)

which yields

(I − K̄K̄†)−1K̄K̄†(I − K̄K̄†)−1 = Ψ12Ψ
†
12. (48)

Let K̄K̄† = UK̄Σ̄K̄U†
K̄

and Ψ12Ψ
†
12 = UΨΣ̄ΨU†

Ψ be
the eigenvalue decomposition of K̄K̄† and ΨΨ†, respec-
tively, where UK̄ ∈ CNr×Nr and UΨ ∈ CNr×Nr are
unitary and Σ̄K̄ = diag(σK̄1

, σK̄2
, . . . , σK̄Nr

) Σ̄Ψ =
diag(σΨ1 , σΨ2 , . . . , σΨNr

). Note that σK̄i
and σΨi are the

eigenvalues of K̄K̄† and ΨΨ†, respectively. Then (48) is
equivalent to

UK̄(I − Σ̄K̄)−1Σ̄K̄(I − Σ̄K̄)−1U†
K̄

= UΨΣ̄ΨU†
Ψ. (49)

Thus we can set

UK̄ = UΨ (50a)

(I − Σ̄K̄)−1Σ̄K̄(I − Σ̄K̄)−1 = Σ̄Ψ (50b)

and the objective is to find Σ̄K̄ such that (50b) is satisfied.
It is easy to see that (49) gives

σK̄i

(1 − σK̄i
)2

= σΨi
, i = 1, 2, . . . , Nr (51)

Solving for σK̄i
yields

σK̄i
=

⎧⎪⎨
⎪⎩

0 σΨi = 0

0.5

{(
2 + 1

σΨi

)
−
√(

2 + 1
σΨi

)2

− 4

}
σΨi > 0.

(52)

We remark that 1 > σK̄i
, ∀i = 1, 2, . . . , Nr and thus

I − K̄K̄† � 0 as assumed above and it satisfies the KKT
conditions. After some algebraic steps we simplify the above
equation as

σK̄i
=

4σΨi(
1 +

√
1 + 4σΨi

)2 (53)

and thus

I− K̄K̄† = 2UK̄ diag
(

1
1 +

√
1 + 4σΨ1

,
1

1 +
√

1 + 4σΨ2

,

. . . ,
1

1 +
√

1 + 4σΨNr

)
U†

K̄
.

Multiplying both sides of (47) with I− K̄K̄† and using the
above equation results in which completes the proof.

E. Proof of Lemma 4

First we note that for a given Kn, Xn is the capacity achiev-
ing covariance matrix of the combined MIMO channel that
contains both Hb and He where Kn is the effective noise [8].
Thus, f(Xn,Kn) is always non-negative f(Xn,Kn) ≥ 0.
The main idea behind the proof of the monotonic decrease
of the objective sequence {f(Kn,Xn)} is to exploit the fact
that the term log |K + HXH†| − log |I + HeXH†

e| is jointly
concave with K and X. In this regard, the following inequality
is straightforward

f(K,X) ≤ log |Kn + HXnH†| + tr(Ψn(K − Kn))
+ tr(Φn(X− Xn)) − log |K|
− log |I + HeXnH†

e|, ∀K ∈ K. (54)
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where Φn = H†(Kn + HXnH†)−1
H − H†

e

(
I +

HeXnH†
e

)−1
He. The above inequality is nothing but an affine

approximation of log |K+HXH†|− log |I+HeXH†
e around

the point (Xn,Kn). Substituting (K,X) := (Kn+1,Xn+1)
into (54) we obtain

f(Kn+1,Xn+1)
≤ log |Kn + HXnH†| − log

(
Kn+1

)
− log |I+HeXnH†

e|+tr(Ψn(Kn+1−Kn))
+ tr(Φn(Xn+1 − Xn))

Since Xn is the solution to (22) the first order optimality
condition implies

tr
(
Φn

(
X − Xn

)) ≤ 0, ∀X ∈ X . (55)

Substituting X by Xn+1 yields

tr
(
Φn

(
Xn+1 − Xn

) ≤ 0, (56)

and thus

f(Kn+1,Xn+1)
≤ log |Kn + HXnH†| − log |Kn+1|

− log |I + HeXnH†
e| + tr(Ψn(Kn+1 − Kn)). (57)

Next we will turn our attention to the K update. Since Kn+1

solves (25), we have

tr(ΨnKn+1) − log |Kn+1| ≤ tr(ΨnK) − log |K|, ∀K ∈ K
(58)

which is true due to the fact that the optimal objective is
less than or equal to the objective of any feasible solution.
Substituting K := Kn into the above inequality gives

tr
(
ΨnKn+1

)−log
∣∣Kn+1

∣∣≤tr(ΨnKn) − log
∣∣Kn

∣∣, ∀K∈K
(59)

which is equivalent to

tr
(
Ψn

(
Kn+1 − Kn

))− log
∣∣Kn+1

∣∣ ≤ − log
∣∣Kn

∣∣ (60)

We note that the above inequality is strict if Kn+1 �= Kn.
Combining (57) and (60) we obtain

f(Kn+1,Xn+1) ≤ log |Kn + HXnH†| − log
∣∣Kn

∣∣
− log |I + HeXnH†

e| = f(Kn,Xn).
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