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Abstract— This article studies the joint problem of
uplink-downlink scheduling and power allocation for controlling
a large number of control systems that upload their states to
remote controllers and download control actions over wireless
links. To overcome the lack of wireless resources, we propose a
machine learning-based solution, where only one control system
is controlled, while the rest of the control systems are actuated
by locally predicting the missing state and/or action information
using the previous uplink and/or downlink receptions via
a Gaussian process regression (GPR). This GPR prediction
credibility is determined using the age-of-information (AoI)
of the latest reception. Moreover, the successful reception is
affected by the transmission power, mandating a co-design of the
communication and control operations. To this end, we formulate
a network-wide minimization problem of the average AoI and
transmission power under communication reliability and
control stability constraints. To solve the problem, we propose a
dynamic control algorithm using the Lyapunov drift-plus-penalty
optimization framework. Numerical results corroborate that
the proposed algorithm can stably control 2x more number of
actuators compared to an event-triggered scheduling baseline
with Kalman filtering and frequency division multiple access,
which is 18x larger than a round-robin scheduling baseline.

Index Terms— Predictive control, Internet of Things (IoT), age
of information (AoI), Gaussian process regression (GPR), ultra-
reliable and low-latency (URLLC), beyond 5G (B5G), 6G.

I. INTRODUCTION

ULTRA-RELIABLE and low-latency communication
(URLLC) is a key enabler for ensuring the stability of
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wirelessly networked control systems in real-time [2], [3].
By physically decoupling sensors, actuators, and controllers,
the control system can exploit the recent progress in the
fifth generation (5G) connectivity [4], machine learning, and
edge computing [5], thereby spearheading many emerging
applications ranging from large-scale smart industrial internet
of things (IIoT) [6] to autonomous platooning [7]. The success
of these applications relies on addressing several fundamental
challenges emanating from unstable and intermittent wire-
less connectivity, which incurs distorted and delayed control
information receptions, degrading control stability. Wireless
resource allocation and scheduling are thus instrumental in
not only improving communication efficiency but also in
guaranteeing control stability.

Indeed, in the literature of wireless networked control sys-
tems (WNCS), resource allocation and scheduling of control
systems play an important role as we shall review next. Static
round-robin scheduling in [8], [9] is presumably the simplest
algorithm in which each sensor/controller periodically trans-
mits the state/action to a controller/actuator with fixed trans-
mission power in a predefined repeating order, ignoring the
communication and control dynamics. Dynamic round-robin
scheduling in [10], [11] improves this idea by additionally
adjusting the transmission power according to channel state
information (CSI) in a way that the power control minimizes
the system energy while ensuring communication reliability.
Nonetheless, it still relies on the round-robin scheduler that is
neither communication efficient nor control dynamics aware.
In fact, only faction of control systems that are currently unsta-
ble require immediate state/action updates, and prioritizing
them can significantly improve the communication efficiency
and control stability of the entire control systems under limited
wireless resources. To efficiently utilize wireless resources,
event-triggered scheduling in [12], [13] carries out dynamic
scheduling decisions in which each control system determines
whether to transmit its state/action or not based on its last state
and action information or the latest control dynamics.

Although effective in supporting a small number of con-
trol systems, the aforementioned frameworks [8]–[13] do
not jointly design the communication and control opera-
tions, which are thus hardly scalable as pointed out in [14].
Furthermore, the scheduling decisions [8], [9], [12], [13]
are not adaptive to CSI, which compromises the control
stability particularly in large-scale systems. To fill this
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void, communication and control co-design has been stud-
ied in [15]–[24]. To mention a few, opportunistic dynamic
scheduling in [19]–[21] adjusts the transmission power allo-
cations and scheduling decisions according to the given CSI
to minimize the total power consumption while ensuring con-
trol stability under limited wireless resources. However, they
ignore transmission latency, resulting in compromising the
overall system control stability or wasting wireless resources.
To fix this problem, control-aware scheduling in [22] car-
ries out the scheduling decisions, based on communication
reliability reflecting both control and channel states, thereby
minimizing the overall transmission latency of the scheduled
control systems.

Motivated by these prior works and recent advances in
machine learning, in this paper we aspire to further improve
the scalability and communication efficiency of WNCS to sup-
port a larger number of control systems under limited wireless
bandwidth and transmit power. To this end, departing from
the existing methods [15]–[24] whose control operations and
scheduling decisions are reactive to the current control stability
and CSI, we develop a predictive WNCS where the controller
and each actuator locally predict their future states and actions,
respectively, based on previously received data by individually
running the Gaussian process regression (GPR) mechanisms
at the controller and actuator, a Bayesian machine learning
framework [25]. The prediction uncertainty of GPR depends
significantly on the last received data’s freshness, i.e., age of
information (AoI) [26], in the uplink (UL) from each sensor
to the controller and in the downlink (DL) from the controller
to each actuator. To independently optimize the uncertainties
of the controller and each actuator, we consider a UL-DL
decoupled scheduler. In the UL, the scheduler serves only the
sensor of a control system whose state prediction uncertainty
and control instability are intolerable. Likewise, in the DL,
the scheduler serves only the actuator of a control system
whose action prediction uncertainty and control instability are
unacceptable. Without scheduling the rest of the sensors and
actuators, their corresponding control systems are operational
by using locally predicted states and actions, thereby sig-
nificantly reducing wireless resources without compromising
control stability. Here, control stability depends on the GPR
prediction uncertainty [27] that is determined by the AoI of
the latest received signal. Meanwhile, the reliability of the
received signal is dictated by the signal transmission power,
highlighting the importance of co-designing communication,
control, and machine learning operations.

Given the aforementioned predictive WNCS architecture,
we focus on the problem of jointly optimizing the UL-DL
scheduling and power allocation to minimize the network-
wide average AoI and transmission power, while guarantee-
ing communication reliability and control stability. To solve
the formulated non-convex stochastic optimization problem,
we develop a dynamic control algorithm using Lyapunov
optimization. Considering an inverted pendulum, numerical
results demonstrate that the proposed scheduling method can
stably support 2x more control systems compared to the event-
triggered scheduling with Kalman filtering and frequency
division multiple access (FDMA), which is 18x larger than

a time-triggered scheduling baseline. Furthermore, the results
show that the proposed predictive control algorithm is more
communication efficient while achieving faster control stabil-
ity than the time-triggered and event-triggered control base-
lines, highlighting the effectiveness of the UL-DL decoupled
scheduling and the use of two-way GPRs at both controller
and actuator sides.

Note that this work has been extended from its conference
version that has first proposed the GPR-based predictive
WCNS framework [1]. Compared to that preliminary study
where UL-DL scheduling is coupled, in this work we consider
a UL-DL decoupled scheduler that substantially changes the
analysis on communication reliability, control stability, and
GPR prediction uncertainty, all of which are intertwined.
Furthermore, the prior work only presents the analytic results
while omitting their proofs, and demonstrates a couple of
simulation examples. In contrast, in this work, we provide
not only the details of all the derivations but also extensive
simulation results and ablation studies including the compari-
son between analog and digital transmissions, which clarifies
the theoretical contributions of this work while advocating
the feasibility of the proposed WCNS framework and its
scheduling solution. The remainder of this paper is organized
as follows. In Section II, we specify the WNCS architecture
including the system models of the control, communication,
and GPR-based approach. In Section III, we formulate the
communication, control, GPR-based co-design optimization
problem and propose the stability-aware scheduling algorithm
by leveraging the Lyapunov optimization framework to solve
the co-design problem in Section IV. In Section V and
Section VI, we present simulation results, and conclude the
paper.

II. SYSTEM MODEL

A. Wireless Networked Control System Architecture

As depicted in Fig. 1, the WNCS architecture under study
consists of a set M of M independent linear control systems
over a shared wireless channel. Each control system comprises
a plant, a sensor that measures the plant’s state, and an
actuator that takes an action to control the plant’s state.
The action is computed by a remote controller based on the
control and channel states. To this end, the plant’s state is
received by the controller in the uplink, and the controller’s
action is received by the actuator in the downlink. To avoid
interference under limited communication bandwidth, each
UL or DL channel is allocated to a single sensor-controller
pair or controller-actuator pair per unit time, respectively.
The rest of the sensor-controller and controller-actuator pairs
without receptions locally predict their missing control states
and actions, respectively, based on their previously received
information, to be detailed in Sec. II-D. To be specific,
the plant’s state of control system i ∈ M at discrete control
time k ∈ Z+ is denoted by xu

i,k ∈ RD. For a received action
at an actuator ua

i,k ∈ RP based on the computed action at
controller ud

i,k ∈ RP , the state evolution of control system
i at time k is described by the discrete-time linearized state-
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Fig. 1. An illustration of M = 2 WNCSs operated via both state/action measurement by remote sensors/controllers and state/actions prediction by GPR.

space representation as follows:

xu
i,k+1 = Aixu

i,k + Biua
i,k + wk, (1)

where Ai ∈ RD×D is a fixed state transition matrix of
the i-th control system, Bi ∈ RD×P is a fixed control
action matrix of the i-th control system, and wk ∈ RD is
the plant noise at time k which is independent and identi-
cally distributed (IID) Gaussian noise with zero mean and
covariance matrix W. Note the plant noise also incorporates
an error that comes from the linearization of the non-linear
system dynamics. Here, to avoid a non-trivial problem, Ai is
assumed to be unstable, i.e., Ai’s spectral radius ρ(Ai) =
max{|λ1(Ai)|, · · · , |λD(Ai)|} is larger than unity, where
λD(Ai) is the D-th eigenvalue of Ai. This implies that the
plant’s state infinitely grows over time unless a proper control
action ua

i,k is provided. To stabilize such control system, each
time k, the following four phase operations are considered.

1) Sensing and Uplink Transmission (at a Sensor): A
centralized scheduler located at the base station (BS)
shared among all control systems decides which sensor-
controller pair is scheduled to transmit and close its
sensing loop based on both the channel and control
states. Then, the scheduled sensor transmits its state
to its controller over a wireless UL fading channel
using analog uncoded communication to be elaborated
in Sec. II-B.

2) State Reception or Prediction (at a Controller): If the
sensor-controller pair is scheduled, the controller obtains
the current estimated state using the minimum mean
square error (MMSE) estimator, and predicts the next
state via GPR to be discussed in Sec. II-D. Otherwise,
the controller directly predicts the current and the next
states based on the state history using GPR. The current
predicted state by GPR is fed to the linear quadratic
regulator (LQR) to calculate the action unless the esti-
mated state by the MMSE estimator is provided. The
future predicted state is fed to the centralized scheduler
to make the scheduling decisions.

3) Action Computation and Downlink Transmission (at a
Controller): For a given control state, the controller com-
putes the optimal action using LQR [28]. The controller
transmits the computed action to the scheduled actuator
over a wireless DL fading channel using analog uncoded
communication to be elaborated in Sec. II-B.

4) Action Reception or Prediction (at an Actuator): If
the controller-actuator pair is scheduled, the actuator
obtains the currently estimated action using the MMSE
estimator, and predicts the next action via GPR to be
discussed in Sec. II-D. Otherwise, the actuator directly
predicts the current and next actions based on the action
history using GPR. For a given action, the actuator takes
an action and subsequently, the plant’s state is updated
according to the control system dynamics in (1).

B. State and Action Communications

The UL state and DL action communications are elaborated,
in terms of the received signal, signal-to-noise ratio (SNR),
scheduling, and age-of-information (AoI) as follows.

Noisy State and Action Receptions: At the control time
slot k, the received signal yl

i,k at the l-th communication at
the receiver of control system i is represented as

yl
i,k =

√
P l

i,kCiHl
i,kq

l
i,k + nl

k, (2)

where l ∈ {u, d} represents a communication indicator
between the transmitter-receiver pair in which l = u refers
to the UL state communication between the sensor-controller
pair while l = d refers to the DL action communication
between the controller-actuator pair. The transmitted signal,
in the UL state communication (i.e., q = x and l = u),
xu

i,k = [xu
i,k(1) · · ·xu

i,k(D)] is the plant’s state transmitted
by the sensor of a control system i at time k such that
E{|xu

i,k(ι)|2} = 1, ∀ι ∈ {1, · · · , D}. The transmitted signal,
in the DL action communication (i.e., q = u, l = d),
ud

i,k = [ud
i,k(1) · · ·ud

i,k(P )] is the action transmitted by the
controller to an actuator of a control system i at time k
such that E{|ud

i,k(p)|2} = 1, ∀p ∈ {1, · · · , P}. The matrix
Hl

i,k ∈ RF×F represents the wireless channel of the l-
th communication between the transmitter-receiver pair of a
control system i at time k, and F ∈ {D, P} represents the
dimensions of the transmitted state or action, respectively. The
channel is modeled as a Rayleigh block fading which is static
and flat-fading within either UL or DL transmission time. The
channel information is assumed to be known at the transmit-
ters and receivers through the standard channel probing and
estimation methods [29], while the channel estimation error
analysis is deferred to future work, and P l

i,k ∈ [0, P l
max

]
is

the transmission power of control system i at time k with
total transmission power P l

max. Lastly, nl
k is the additive white
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Gaussian noise at the receiver with zero-mean and covariance
matrix E{nlT

k nl
k} = N0IF , where N0 is the measurement

noise power spectral density, and IF is the F × F identity
matrix. The matrix Ci ∈ RF́×F́ is the observation matrix of
the control system i that equals F×F identity matrix in the DL
action communication while equals F́ ×F rectangular matrix
in the UL state communication to characterizes the minimum
states that fully describes the control system. The measurement
noise nl

k and the plant noise wk in (1) are uncorrelated zero-
mean Gaussian noise with unit variance. Hence, the SNR at
the receiver of the l-th communication of a control system i
at time k is

SNRl
i,k =

P l
i,k‖Hl

i,k‖2

N0 ω
, (3)

where ω is the bandwidth and the SNR in (3) is equivalent to
the signal-to-distortion ratio (SDR) as a result of the channel
theoretical limit in which the rate-distortion function of the
source equals the channel capacity and the number of source
samples is matched to the number of channels under analog
uncoded communications [30]. In this work, we consider
analog uncoded communications, in which the discrete-time
continuous amplitude source samples are amplified and trans-
mitted to the receiver over wireless channels. Compared to
digital coded communications, uncoded communications are
favorable for achieving low latency thanks to skipping channel
encoding, at the cost of increasing the transmission power
to ensure communication reliability [30], [31]. Furthermore,
analog uncoded communication is robust to channel conditions
and performs well at different SNRs compared to digital
communication that is sensitive to any degradation in chan-
nel conditions. To ensure reliable communication for control
stability, the successful detection of the transmitted signal is
described by the indicator function I{SNRl

i,k≥SNRl
th} for a target

SNR threshold SNRl
th.

Scheduling and AoI: At the time k, the centralized sched-
uler located at the BS and shared among all control systems
schedules at most one sensor-controller pair of control system
i in the UL state communication, and most one controller-
actuator pair of the control system i in the DL action com-
munication, while the unscheduled pairs are controlled by
utilizing the GPR at the controller/actuator sides. Let αl

i,k ∈
{0, 1} be the scheduling variable of the l-th communication
of the control system i at time k, where αl

i,k = 1 when the
transmitter-receiver pair of the l-th communication of control
system i is scheduled at time k and αl

i,k = 0 otherwise.
The freshness of the received information is measured using

AoI, i.e., the elapsed time since the generation of the latest
received information [26]. AoI is composed of the inter-
arrival time that is defined as the time elapsed between two
consecutive update generations and the service time defined
as the transmission time of update information. In analog
uncoded communications, AoI depends only on the inter-
arrival time since the service time is deterministic based on
channel bandwidth. Hence, the AoI of the l-th communication
of the control system i at the receiver linearly increases with
time if it is not scheduled or its SNR is below a threshold.
Formally, the AoI of the l-th communication of control system

i at the receiver is given as:

βl
i,k =

{
1 + βl

i,k−1, if ξl
i,k = 0,

1, o.w.s.,
(4)

where βl
i,k ∈ Z++ is the AoI of the l-th communication of

the control system i at time k at the receiver, and ξl
i,k =

αl
i,k I{SNRl

i,k
≥SNRl

th
} is the transmission indicator variable of

l-th communication of control system i at time k that depends
on both scheduling variable and SNR indicator function.

C. State and Action Estimation Over Noisy Communications

The UL received states and DL received actions are dis-
torted by Rayleigh fading channels. The transmitted signals
are estimated using the MMSE estimator as detailed next.
When one transmitter-receiver pair of the l-th communication
of control system i is scheduled, i.e., αl

i,k = 1, the receiver
applies the MMSE estimator to restore the transmitted signal
from the noisy received signal in (2). The resultant estimated
signal q̃l

i,k is given as

q̃l
i,k = E{ql

i,k|yl
i,k} = Gl

i,ky
l
i,k = ql

i,k + vl
i,k, (5)

where Gl
i,k ∈ RF×F is the linear MMSE matrix at the receiver

of the l-th communication of the control system i at time k that
minimizes the mean-squared error (MSE) between the original
and estimated signals as [32]

Gl
i,k =

√
P l

i,kSqHlT

i,k

(
P l

i,kH
l
i,kSqHlT

i,k + N0IF
)−1

(6)

The term vl
i,k in (5) is the MMSE estimation error following

a zero-mean Gaussian random vector with the covariance
matrix Vl

i,k ∈ RF×F . Following [33], we assume that ql
i,k

follows a zero-mean Gaussian distribution with the covariance
matrix Sq ∈ RF×F , then we have

Vl
i,k = E{vl

i,kv
lT

i,k} = E

{ (
q̃l

i,k − ql
i,k

) (
q̃l

i,k − ql
i,k

)T }
= Sq − Gl

i,k

√
P l

i,kH
l
i,kSq (7)

D. State and Action Prediction Without Communication

When one transmitter-receiver pair of the l-th communi-
cation of the control system i at time k is not scheduled,
i.e., αl

i,k = 0, a receiver applies parallel GPRs proportional
to the missing signal dimensions to predict both the missing
current signal and the next signal using the previously received
signals. Each individual GPR learns the functional relationship
g ∈ R between the control discrete-time k′ ∈ Z+ and
each output of the received signal. This means that each
output of the MMSE estimated signal q̃l

i,k′ in (5) is the
state observation x̃u

i,k′ ∈ RD in the UL and the action
ũd

i,k′ ∈ RP in the DL. This is accomplished by assum-
ing the latent function g is a random variable and drawn
from a Gaussian distribution, as well as, any finite subset
of these random variables that are taken from a Gaussian
distribution has a joint Gaussian distribution. In this way,
we learn a latent function of the following regression model
q̃l
i,k′(j) = gj(k′) + ε, j ∈ {1, · · · ,F}, ∀i, l, k′, where
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q̃l
i,k′ (j) ∈ R is the j-th output of the estimated signal of

the l-th communication of the control system i at time k′,
gj is a j-th output latent function, and ε ∼ N (0, σ2

n

)
is an IID Gaussian noise distribution with zero mean and
variance σ2

n that accounts for the measurements or modeling
errors [34]. Specifically, to predict the missing received signal
q̃l

i,k of the l-th communication of the control system i at
test time k, we exploit F individual GPRs, and feeding each
individual GPR with a training set Dl,j

i,nl
of each output of the

previously received signals associated with its observation time
k′, given as Dl,j

i,nl
= {(k′, ξl

i,k′ q̃l
i,k′ (j))| j = 1, · · · ,F , k′ =

1, · · · , nl, i = 1, · · · , M, l ∈ {u, d}}. Here, nl =
∑

k′ ξl
i,k′

counts the number of received signals of the l-th communica-
tion until time k′ in the training set of the control system
i. Hence, the last time instant in which the transmitter of
the l-th communication of the control system transmitted its
observation to the receiver is given as ñl = k′ − βl

i,k′ + 1.
It is obvious that a large value of AoI decreases the number
of observations at the receiver that affects the signal prediction
credibility at a particular level.

In each individual GPR, according to the Gaussian process
(GP) characteristics where any finite subset of random vari-
ables taken from a realization of a GP follows a joint Gaussian
distribution, each j-th output latent function gj of the vector-
valued latent function g(k) = [g1(k) · · · gF(k)] is assumed
to follow a GP as gj (k) ∼ GP (mj (k) ,Rj(k, k′)), where
mj (k) is the mean function of the j-th output of the missing
received signal which is usually taken as zero without loss
of generality [25], and Rj(k, k′) is the covariance function
of the j-th output of the missing received signal between the
outputs at time k and k′ that defines the correlation between
the outputs according to the input times. It is noted that the
stationary covariance function between the outputs is based
on the difference between their corresponding input times
|k − k′| in which the two outputs are strongly correlated
if their corresponding input times are sufficiently close to
each other. Since we focus on time-series data, we utilize
information from previously received signals to describe the
current data depending on the past observations. Hence, we use
a squared exponential kernel function coupled with a periodic
kernel function, to model the correlation between the outputs
according to their temporal behaviors, as defined in [25]

R(k, k′) = h2
q exp

[
− (k − k′)2

2h2
k

]

+ exp
{−2 sin2 [νπ (k − k′)]

}
, (8)

where the first term represents the stationary covariance func-
tion that depends on when the signal |k − k′| was received
with hk and hq being hyperparameters representing the time-
scaling and output-scaling of a squared exponential function,
respectively, and the second term gives the periodicity with
hyperparameter ν representing frequency. For a set of j-th
output observations q̃l

i(j) = {q̃l
i,1(j), · · · , q̃l

i,nl
(j)}T and the

associated observation times k′ = {1, · · · , nl}T , the joint dis-
tribution of the j-th output past observations q̃l

i,k′ (j) together

with the j-th output gj(k) at test time k is given as[
q̃l

i(j)
gj(k)

]
∼ N

([
0
0

]
,

[
Rj(k′,k′) rj(k′, k)
rj(k,k′) Rj(k, k)

])
, (9)

where Rj (k, k) ∈ R is the prior covariance function of
j-th output observation at a test time k, and Rj(k′,k′) ∈
Rnl×nl is the symmetric and positive semi-definite covari-
ance matrix of j-th output past observations with the ele-
ments Rj (k′(a),k′(b)) for a, b = 1, · · · , nl. Following [34],
we treat the prediction mean as the j-th output predicted signal
q̂l
i,k(j), the posterior distribution of gj (k) at test time k based

on the training set Dl,j
i,nl

can be analytically derived as

Pr
(
gj (k) |Dl,j

i,nl
, k,Θj

)
∼ N (q̂l

i,k(j), σ2
i,k(j)

)
. (10)

Following [34], the j-th output prediction mean q̂l
i,k (j),

and the j-th output prediction variance σ2
i,k(j) are respectively

given as

q̂l
i,k(j) = rj(k,k′)T Rj(k

′,k′)−1q̃l
i(j) = ql

i,k(j) + el
i,k(j), (11)

σ2
i,k(j) = E{el

i,k(j)elT

i,k(j)}
= E

{ (
q̂l
i,k(j) − ql

i,k(j)
) (

q̂l
i,k(j) − ql

i,k(j)
)T }

= Rj(k, k) − rj(k,k′)Rj(k′,k′)−1rj(k,k′)T , (12)

where rj(k′, k) ∈ Rnl×1 is j-th output observation covariance
between the outputs at the nl observation times and a test
time k, and the term el

i,k(j) is j-th output prediction error
defined as the difference between true and predicted outputs.
Moreover, Θj in (10) is the j-th output hyperparameters of
the covariance function R. Finally, the predicted signal at the
receiver of the l-th communication of control system i at time
k and its prediction error covariance matrix are

q̂l
i,k = {q̂l

i,k(1) · · · q̂l
i,k(F)}T = ql

i,k + el
i,k, (13)

J l
i,k =

⎡
⎢⎣

σ2
i,k(1) · · · 0

...
. . .

...
0 · · · σ2

i,k(F)

⎤
⎥⎦ . (14)

E. Action Computation and Actuation

By feeding the estimated or predicted state, the con-
troller computes the action using LQR. Then, the actuator
applies the estimated or predicted action to stabilize state as
detailed next.

Action Computation After State Estimation/Prediction:
For a given estimated state (i.e., MMSE output) in (5) or pre-
dicted state (i.e., GPR output) in (13), at time k, the state
xc

i,k available at the controller based on the UL transmission
indicator variable is given as

xc
i,k = ξu

i,kx̃
u
i,k +

(
1 − ξu

i,k

)
x̂u

i,k. (15)

The received state xc
i,k is used in the LQR located at the

controller, and the optimal action of a control system i at time
k is given by the following linear feedback control law as

ud
i,k = −Φixc

i,k, (16)

where ud
i,k ∈ RP is the computed action at the controller,

Φi =
(
Zu + BT

i PBi

)−1
BT

i PAi is the feedback gain matrix
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of the control system i, Zs ∈ SD×D
+ is a positive semi-definite

weight matrix of the state deviation cost, and Zu ∈ SP×P
++ is

a positive definite weight matrix of the action cost. The term
P = AT

i PAi − AT
i PBi

(
BT

i PBi + Zu
)−1

BT
i PAi + Zs is

the unique positive definite matrix which satisfies the discrete-
time algebraic Riccati equation (DARE). Then, the controller
transmits the computed action ud

i,k in (16) to an actuator of
control system i at time k in the DL, if ξd

i,k = 1, as discussed
in Sec. II-B.

1) Actuation After Action Estimation/Prediction: For
a given estimated control action (i.e., MMSE output)
in (5) or predicted action (i.e., GPR output) in (13), at time
k, the action ua

i,k available at the actuator based on the DL
transmission indicator variable is given as

ua
i,k = ξd

i,k ũd
i,k +

(
1 − ξd

i,k

)
ûd

i,k. (17)

Note that the UL and DL transmission indicator variables
are periodically generated by the centralized scheduler in
which, within each unit control time duration, the UL state
communication can be firstly activated for sensing the plant’s
state based on the UL transmission indicator variable. Then,
the DL action communication can be activated for actuation
based on the DL transmission indicator variable. Consequently,
for a given pair of UL and DL transmission indicator variables
with (15) and (17), the actuator takes a control action that
changes the plant’s state of the control system i at time k
in (1) into four cases of state evolution as follows:

xo
i,k+1 = Aixu

i,k − Bi(Φix̂u
i,k + ed

i,k) + wk, (18)

xs
i,k+1 = Aixu

i,k − Bi(Φix̃u
i,k + ed

i,k) + wk, (19)

xa
i,k+1 = Aixu

i,k − Bi(Φix̂u
i,k + vd

i,k) + wk, (20)

xc
i,k+1 = Aixu

i,k − Bi(Φix̃u
i,k + vd

i,k) + wk. (21)

where the open-loop in (18) holds if ξu
i,k = 1 and

ξd
i,k = 0, the sensing-loop in (19) holds if ξu

i,k = 1 and
ξd
i,k = 0, the actuating-loop in (20) holds if ξu

i,k = 0 and ξd
i,k =

1, and the closed-loop in (21) holds if ξu
i,k = 1 and ξd

i,k = 1.
Timing Diagram: Based on the UL and DL transmission

indicator variables within each unit control time duration,
the timing diagram of a control system is illustrated in Fig. 2.
The centralized scheduler shared among all control systems,
within each unit control time duration, primarily transmits the
UL and DL transmission indicator variables to the sensor,
controller, and actuator sides of all control systems. Then,
the state is only transmitted by the sensor if the control
system has a reliable UL communication and has valuable
information affecting the control stability (i.e, ξu

i,k = 1) which
results in saving wireless communication resources. After that,
LQR located at the controller computes the action based on
the state available at the controller in (15) in which the
predicted state, if ξu

i,k = 0, is applied to the LQR. Lastly,
the action is transmitted by the controller if it has reliable DL
communication and valuable information affecting the control
stability (i.e, ξd

i,k = 1). This is a result of assuming that the
UL and DL transmission indicator variables as being period-
ically transmitted by the centralized scheduler every control
time duration, the controller periodically calculates the action

depending on the available state, and the actuator periodically
applies the action depending on the available action. Moreover,
the discrete-time control time k equals the continuous-time
control time duration unit Δk comprising the UL and DL
transmission times while ignoring the computational delay.

III. COMMUNICATION CONTROL CO-DESIGN

A. Control-Constrained Problem Formulation

Our objective is to minimize the total communication cost
per control system subject to ensuring communication reli-
ability and control stability. The total communication cost
incorporates the AoI and transmission power since the AoI
indirectly affects the control stability through the GPR pre-
diction stability and wireless resources consumption, while
transmit power affects communication reliability and energy
consumption. Formally speaking, we have:

C
(
{β̄l

i}, { ¯̂
P l

i }
)

= ωβl

M∑
i=1

Gβ(β̄l
i) + ωPl

M∑
i=1

GP ( ¯̂
P l

i ), (22)

∀l ∈ {u, d}, where the non-decreasing concave functions
Gβ(β) = log(1 + β) and GP (P̂ ) = log(1 + P̂ ) are propor-
tionally fair cost functions of the AoI and the transmission
power function for each control system, respectively [35]. The
transmission power function that depends on the scheduling
variable is given as P̂ l

i,k = αl
i,kP l

i,k, and the given positive
weights ωβl

and ωPl
adjust the relative importance of the cor-

responding cost functions. Throughout this work, the following
notation for the long-term time-averaged of any quantity z is
defined as z̄ � lim sup

K→∞
1
K

∑K
k=1 z. In particular, β̄l

i and ¯̂
P l

i are

the long-term time-averaged of βl
i and P̂ l

i , respectively.
To evaluate control stability, we consider the quadratic

Lyapunov function that measures the performance of each
control system as a function of the state expressed as

L(xu
i,k) = xuT

i,k Z xu
i,k, ∀Z ∈ SD

++, (23)

where Z ∈ SD
++ is a unique positive definite solution to the

discrete Lyapunov equation AcT

i Z +ZAc
i = −ID, and Ac

i is
a closed-loop state transition matrix defined as Ac

i = Ai −
BiΦi. Because the centralized scheduler has only access to
the predicted state, the expected current value of L(xu

i,k) is
calculated in the following lemma.

Lemma 1: Given the predicted state x̂u
i,k and the state

prediction error covariance matrix J u
i,k at the controller,

the expected current value of L(xu
i,k) is given as

E
[L(xu

i,k)|x̂u
i,k

]
=‖x̂u

i,k‖2

Z 1
2
+Tr

[Z J u
i,k

]
, ∀Z ∈ SD

++. (24)

Proof: Please refer to Appendix.A
Note that the expected current value of L(xu

i,k) of the con-
trol system i at time k naturally grows as the predicted state,
and the prediction error get larger as a result of increasing AoI
and/or the insufficiency of received observations number in the
training set. Control stability requires that the expected future
value of L(xu

i,k+1) should decrease at a given rate ζi ∈ (0, 1]
of its expected current value of L(xu

i,k), which means the
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Fig. 2. Timing diagram of the control system. First diagram illustrates the
UL and DL transmission indicator variables generated by scheduler, second
diagram illustrates uniform sampling by a sensor, third diagram illustrates the
received/predicted state and calculated action at a controller. Fourth diagram
illustrates the received/predicted action at an actuator.

state of the control system is monotonically decreasing along
trajectories, as

E
[L(xu

i,k+1)|x̂u
i,k, ûd

i,k,Hu
i,k,Hd

i,k, Pu
i,k, P d

i,k

]
≤ ζiE

[L(xu
i,k)|x̂u

i,k

]
, (25)

where the expectation in the right-hand side of (25) is with
respect to the plant noise wk in (1), the signal estimation
error vl

i,k defined in (7), and the signal prediction error
el

i,k defined in (13). According to the objective function
in (22) and the control stability constraint in (25), the control-
constrained optimization problem can be formulated
as follows:

(P1) Minimize
al

k
,Pl

k

C
(
{β̄l

i}, { ¯̂
P l

i }
)

(26a)

subject to: 0 ≤ P l
i,k ≤ P l

max, (26b)

‖Hl
i,k‖2 P l

i,k/N0 ω ≥ SNRl
th, (26c)

αl
i,k ∈ {0, 1}, (26d)
M∑
i=1

αl
i,k ≤ 1, (26e)

(25),

∀l ∈ {u, d}, i ∈ M, k, where al
k = {αl

i,k : ∀l ∈
{u, d}, i ∈ M} and Pl

k = {P l
i,k : ∀l ∈ {u, d}, i ∈ M}

are the UL-DL scheduling vector at time k, and the UL-
DL transmission power vector at time k, respectively. The
constraint in (26b) bounds the UL-DL transmission power
allocation of a control system i at time k by the total
transmission power P l

max, while the constraint in (26c) ensures
the communication reliability that is based on SNR or SDR
in analog uncoded communications. The constraints in (26d)-
(26e) ensure at most one transmitter-receiver pair of a control
system i is scheduled at time k. The constraint in (25)
ensures the state is decreasing along trajectories to satisfy the
control stability. It is noted that the control stability constraint

in (25) is independent of communication constraints in (26b)-
(26e). However, the control stability constraint is affected and
determined by the communication and scheduling variables,
hence the original control-constrained problem P1 is rewritten
after directly reflecting the communication control relationship
of the constraint (25) in the following lemma.

Lemma 2: Given predicted state x̂u
i,k , state prediction error

covariance matrix J u
i,k, the predicted action ûd

i,k, the action
prediction error covariance matrix J d

i,k , the channel between
the sensor-controller pair Hu

i,k, the channel between the
controller-actuator pair Hd

i,k, the UL transmission power Pu
i,k,

and the DL transmission power P d
i,k , the control stability

constraint in (25) is satisfied IFF the following conditions on
the transmission indicator variables hold, i.e.,

lim sup
K→∞

1
K

K�
k=1

ξu
i,k ≥ lim sup

K→∞
1
K

K�
k=1

Ai,k + Bi,k + Mi,k + Tr[ZW]
Ji,k − Ki,k

, (27)

lim sup
K→∞

1
K

K�
k=1

ξd
i,k ≥ lim sup

K→∞
1
K

K�
k=1

Ai,k + Bi,k + Mi,k + Tr[ZW]
Mi,k − Ni,k

, (28)

lim sup
K→∞

1
K

K∑
k=1

ξu
i,kξd

i,k

≥ lim sup
K→∞

1
K

K∑
k=1

Ai,k + Bi,k + Mi,k + Tr [ZW]
[Ji,k − Ki,k] + [Mi,k − Ni,k]

. (29)

where we have further defined the following terms Ai,k :=
‖ (Ac

i − ζiID) x̂u
i,k‖2

Z 1
2

, Bi,k := Tr
[(

AT
i ZAi − ζiZ

)J u
i,k

]
,

Ji,k := Tr
[
(BiΦi)

T Z (BiΦi)J u
i,k

]
, Ki,k :=

Tr
[
(BiΦi)

T Z (BiΦi)Vu
i,k

]
, Mi,k := Tr

[
BT

i ZBiJ d
i,k

]
,

Ni,k := Tr
[
BT

i ZBiVd
i,k

]
.

Proof: Please refer to Appendix. B
Note that the conditions on the UL and DL trans-

mission indicator variables in (27) and (28), respectively,
ensure the control stability constraint in (25) in a decou-
pled scheduling between the UL and DL communications
based on the current predicted control and channel states,
while the condition on both the UL and DL scheduling
variables in (29) ensures control stability in a coupled
scheduling between the UL and DL communications. Intu-
itively, the growth of AoI at a controller/actuator leads to
an increasing in the state/action prediction error due to an
outdated training set. Therefore, the transmitter-receiver pair
of a control system should be scheduled when it has a
reliable communication and the state/action prediction error
is greater than the state/action estimation error to ensure
control stability.

The actuator is physically decoupled from the centralized
scheduler and the controller which is co-located at BS, and the
DL indicator variable at the centralized scheduler relies on the
action prediction error at the actuator. Hence, the controller
leverages another GPR, where the input of this GPR is the
discrete-time associated with the generated action by LQR
plus the action estimation error as ūdc

i,k′ = ud
i,k′ + vd

i,k′ .
As a result of the applied input to this GPR that yields a
training set similar to the one at the actuator as Ddc

i,nd
=
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{(k′, ξd
i,k′ ūdc

i,k′ )| k′ = 1, · · · , nd, i = 1, · · · , M}, we obtain
the action prediction error similar to the one generated at
actuator side.

B. Joint Communication and Control Problem

According to the UL and DL transmission indicator vari-
ables constraints in (27)-(29) that result from the control
stability constraint in (25) in problem P1, problem P1 is
rewritten as

(P2) Minimize
al

k,Pl
k

C
(
{β̄l

i}, { ¯̂
P l

i }
)

(30a)

subject to: ᾱu
i ≥ Ḡlb

(
mu

i,k

)
, (30b)

ᾱd
i ≥ Ḡlb

(
md

i,k

)
, (30c)

αu
i αd

i ≥ Ḡlb (mi,k) , (30d)

(26b) − (26e),

∀i ∈ M, where ᾱu
i and ᾱd

i are the time-averaged of the UL
and DL scheduling variables, respectively, mu

i,k, md
i,k, mi,k

are the lower-bound stability of the uplink, downlink, and
coupling transmission indicator variables of a control system
i at time k in (27), (28), and (29) respectively. Ḡlb is the time-
averaged of the lower-bound function Glb that is defined as
Glb (.) = max [min (., 1) , 0] to ensure the feasibility of the
scheduling constraints. The transmission indicator variables
in (27)-(29) are only written as a function of the scheduling
variables since the SNR indicator function is satisfied in (26c).
The stochastic problem P2 is a mixed-integer non-convex
problem where the source of stochasticity is due to the
observed channel and predicted state at each time k. Moreover,
the scheduling decision constraint in (26d) not only depends
on its own decision but on all others scheduling decisions.
Hence, to obtain the optimal scheduling decisions and optimal
transmission power variables of problem P2 in an interpretable
closed-form, the Lyapunov optimization framework is utilized
rather than the reinforcement learning (RL) approach.

IV. DYNAMIC CONTROL ALGORITHM USING

LYAPUNOV OPTIMIZATION

In this section, we propose a dynamic control algorithm
using the stochastic Lyapunov optimization framework to
solve problem P2. However, the problem involves minimiz-
ing a weighted sum of non-decreasing concave functions of
the time-averaged AoI and transmission power. Based on
the dynamic stochastic optimization theory [36], it can be
transformed into an equivalent problem that involves mini-
mizing a time-averaged cost function of instantaneous AoI and
transmission power. This transformation is achieved through
the use of non-negative auxiliary variables γβl

i,k and γP l

i,k

and corresponding virtual queues Qβl

i,k and QP l

i,k with queue
dynamics as

Qβl

i,k+1 = max
{

Qβl

i,k − γβl

i,k, 0
}

+ βl
i,k, (31a)

QP l

i,k+1 = max
{

QP l

i,k − γP l

i,k, 0
}

+ P̂ l
i,k, (31b)

∀l ∈ {u, d}, i ∈ M, k, where P̂ l
i,k will be optimized at each

time k. Then, the transformed problem is given as

(P3) Minimize
al

k
,Pl

k
,rβl ,rP l

C
(
{γβl

i,k}, {γP l

i,k}
)

(32a)

subject to: β̄l
i ≤ γ̄βl

i , (32b)
¯̂
P l

i ≤ γ̄P l

i , (32c)

1 ≤ γβl

i,k ≤ Bmax, (32d)

0 ≤ γP f

i,k ≤ P l
max, (32e)

(26b) − (26e), (30b) − (30d),

∀l ∈ {u, d}, i ∈ M, where rβl

k = {γβl

i,k : l ∈ {u, d}, i ∈ M}
and rP l

k = {γP l

i,k : l ∈ {u, d}, i ∈ M} are the vectors of
the introduced auxiliary variables. The constraints in (32d)
and (32e) are introduced to bound the auxiliary variables.
These constraints can be satisfied by ensuring the stability of
their virtual queues since the lower bound of these constraints
can be viewed as the arrival rate of their virtual queues, while
the upper bound can be viewed as the service rate of such
virtual queues [36]. Following [36], the problem P2 and the
transformed problem P3 are equivalent in which the optimal
solution of P3 can be directly turned into an optimal solution
of P2.

To handle UL and DL scheduling variables constraints
in (30b)−(30d) associated with the control stability constraint
in (25), the virtual queues QCl

i,k and QC
i,k are introduced for

all control systems whose dynamics are

QCl

i,k+1 = max{QCl

i,k − αl
i,k, 0} + Glb(ml

i,k), (33a)

QC
i,k+1 = max{QC

i,k − αu
i,kαd

i,k, 0} + Glb(mi,k), (33b)

∀l ∈ {u, d}, i ∈ M, k, where αl
i,k will be optimized at

each time k. The constraints in (30b)−(30d) can be satisfied,
if their virtual queues are mean-rate stable, i.e., their time-
averaged arrival rate is not larger than its time-averaged service
rate [36]. At this point, the dynamic stochastic optimization
is applied to solve the transformed problem P3, which min-
imizes a weighted sum of the time-averaged cost function
of instantaneous AoI and transmission power subject to the
virtual queues stability constraints and the original problem
constraints in (26b)−(26e). In this regard, we define Qβl

k ,

QP l

k , QC
k , and QCl

k as a vector of all virtual queues Qβl

i,k, QP l

i,k,

QC
i,k, and QCl

i,k for all control systems, respectively. We denote
the combined queue vector of all virtual queues at time k

by Xk =
[
Qβl

k ,QP l

k ,QC
k ,QCl

k

]
, and express the conditional

Lyapunov drift-plus-penalty as

Δ (Xk)

= E

[
L (Xk+1) − L (Xk) + V C

(
{γβl

i,k}, {γP l

i,k}
) ∣∣∣Xk

]
,

(34)

where L (Xk) is the quadratic Lyapunov function of Xk that
measures the virtual queues congestion in a scalar metric and
is defined as L (Xk) = 1

2

∑M
i=1

[
(Qβl

i,k)2 +(QP l

i,k)2 +(QC
i,k)2+

(QCl

i,k)2
]
. V ≥ 0 controls the trade-off between minimizing
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the objective function and stabilizing the virtual queues. Sub-
sequently, plugging the inequalities (max [a − b, 0] + c)2 ≤
a2 + b2 + c2 − 2 a (b − c), ∀a, b, c ≥ 0, (max (a, 0))2 ≤ a2,
and all virtual queue dynamics into (34), we derive

(34) ≤ B + E

[ M∑
i=1

(
V ωβl

Gβ

(
γβl

i,k

)
− Qβl

i,kγβl

i,k

)
|Xk

]

+E

[ M∑
i=1

(
V ωPl

GP

(
γP l

i,k

)
− QP l

i,kγP l

i,k

)
|Xk

]

+E

[ M∑
i=1

Qβl

i,kβl
i,k|Xk

]
+ E

[ M∑
i=1

QP l

i,kP̂ l
i,k|Xk

]

−E

[ M∑
i=1

QC
i,k

(
αu

i,kαd
i,k − Glb(mi,k)

) |Xk

]

−E

[ M∑
i=1

QCl

i,k

(
αl

i,k − Glb(ml
i,k)
) |Xk

]
. (35)

The constant B details in (35) are omitted since it does not
affect the system performance in the Lyapunov optimization.
A solution to P3 can be obtained by minimizing the upper-
bound (35) at each time as

(P4) Minimize
al,Pl,rβl ,rPl

M∑
i=1

[(
V ωβl

Gβ

(
γβl

i,k

)
− Qβl

i,kγβl

i,k

)

+
(
V ωPl

GP

(
γP l

i,k

)
− QP l

i,kγP l

i,k

)
+ QP l

i,kP̂ l
i,k − QCl

i,k

(
αl

i,k − Glb(ml
i,k)
)

+ Qβl

i,kβl
i,k − QC

i,k

(
αu

i,kαd
i,k − Glb(mi,k)

) ]
(36a)

subject to: (26b) − (26e) and (32d) − (32e).

The optimality of problem P4 is asymptotically approached
by increasing V [36]. The problem P4 is of separable struc-
ture, which motivates us to determine the AoI auxiliary vec-
tor rβl

, transmission power auxiliary vector rP l

, scheduling
vector al, and transmission power vector Pl in an alternative
optimization form. Hence, the overall minimization problem
P4 can be decomposed into two separate sub-problems that
can be solved concurrently with the observation of the virtual
queues, control, and channel states.

1) Auxiliary Variable Sub-Problems: The first decomposed
sub-problem is the AoI auxiliary sub-problem, while the sec-
ond decomposed sub-problem is the transmission power aux-
iliary sub-problem. Since the auxiliary variables of such prob-
lems are separated and independent among different control
systems, their minimization sub-problems can be decoupled
to be computed for each control system separately as the
following convex problems

(P4.1) Minimize
γβl

i,k

V ωβl
Gβ

(
γβl

i,k

)
− Qβl

i,kγβl

i,k (37a)

subject to: 1 ≤ γβl

i,k ≤ Bmax, (37b)

(P4.2) Minimize
γPl

i,k

V ωPl
GP

(
γP l

i,k

)
− QP l

i,kγP l

i,k (38a)

subject to: 0 ≤ γP l

i,k ≤ P l
max. (38b)

The optimal auxiliary variables are obtained by differenti-
ating the objective functions of these problems. Let A(γβl

) =
V ωβl

log(1+γβl

)−Qβl

i,kγβl

i,k and γβl∗

i,k denotes the solution of

A(γβl

) as Á(γβl

) = V ωβl�
1+γβl

i,k

� − Qβl

i,k = 0, the optimal AoI

auxiliary variable of P4.1 is given as

γβl∗

i,k = min

⎧⎨
⎩max

⎧⎨
⎩V ωβl

− Qβl

i,k

Qβl

i,k

, 1

⎫⎬
⎭ , Bmax

⎫⎬
⎭ , (39)

∀l ∈ {u, d}, i ∈ M, k. Similarly, by letting A(γP l

) =
V ωP l log(1 + γP l

) − QP l

i,kγP l

i,k and γP l∗

i,k denotes the solution

of A(γP l

) as Á(γP l

) = V ω
P l�

1+γPl

i,k

� − QP l

i,k = 0, the optimal

transmission power auxiliary variable of P4.2 is given as

γP l∗

i,k = min

{
max

{
V ωP l − QP l

i,k

QP l

i,k

, 0

}
, P l

max

}
, (40)

∀l ∈ {u, d}, i ∈ M, k.
2) Scheduling Decision and Transmission Power Sub-

Problems: The optimal UL-DL scheduling variables and the
optimal UL-DL transmission power variables are obtained
by minimizing the remaining terms of the objective function
of problem P4 at each time subject to the scheduling and
transmission power constraints in (26b)−(26e), which is given

(P4.3) Minimize
al

i,k,Pl
i,k

M∑
i=1

Qβl

i,kβl
i,k + QP l

i,k P̂ l
i,k

−QCl

i,k

[
αl

i,k − Glb(ml
i,k)
]

−QC
i,k

[
αu

i,kαd
i,k − Glb(mi,k)

]
(41a)

subject to: (26b) − (26e),

which is a mixed-integer non-convex problem. Due to the
complexity of the exhaustive search for finding the optimal
solution, we propose a low-complexity two-stage sequential
optimization strategy to find a sub-optimal solution to the joint
power allocation and scheduling assignment problem. This
strategy firstly obtains the UL and DL transmission power,
followed by the UL and DL scheduling variables. The optimal
UL and DL transmission power for each control system,
determined by solving the following power allocation problem

(P4.4) Minimize
Pu

k ,Pd
k

M∑
i=1

αu
i,k

[
QS1

i,k + QP u

i,k Pu
i,k

]
+ Ql1

i,k (42a)

+ αd
i,k

[
QC1

i,k + QP d

i,kP d
i,k

]
− αu

i,kαd
i,kQC

i,k,

subject to:
SNRu

th N0 ω

‖Hu
i,k‖2

≤ Pu
i,k ≤ Pu

max,

(42b)
SNRd

th N0 ω

‖Hd
i,k‖2

≤ P d
i,k ≤ P d

max, (42c)

∀i ∈ M, k, where QS1
i,k = −Qβu

i,kβu
i,k−1 − QCu

i,k ,

QC1
i,k = −Qβd

i,kβd
i,k−1 − QCd

i,k , and Ql1
i,k = QCu

i,k Glb(mu
i,k) +

QCd

i,kGlb(md
i,k) + QC

i,kGlb(mi,k) + Qβu

i,k

(
1 + βu

i,k−1

)
+
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Qβd

i,k

(
1 + βd

i,k−1

)
are the constant terms defined in the

objective function of P4.4. The above problem P4.4 is a
generalized min-weight problem, which can be decoupled
into a series of independent sub-problems for each control
system separately. Hence, the optimal UL-DL transmission
power variables are given as

P l∗
i,k =

⎧⎪⎨
⎪⎩

SNRl
thN0 ω

‖Hl
i,k‖2

, if QP l

i,k ≥ 0

P l
max, if QP l

i,k < 0.

(43)

Given the optimal UL and DL transmission power variables
in (43), the optimal UL and DL scheduling variables for
each control system that has a control state/action to transmit
are obtained by solving the following scheduling assignment
problem

(P4.5) Minimize
au

k ,ad
k

M∑
i=1

αu
i,k

[
QS1

i,k + QP u

i,k Pu∗
i,k

]
+ Ql1

i,k

+ αd
i,k

[
QC1

i,k+QP d

i,kP d∗
i,k

]
−αu

i,kαd
i,kQC

i,k, (44a)

subject to: (26d) − (26e).

The optimal UL and DL scheduling variables are obtained
as follows:

αu∗
i,k & αd∗

i,k

=

⎧⎪⎨
⎪⎩

αu
j1,k = 1, αd

j2,k = 1, if Q1
j1,k + Q2

j2,k < Qj3,k

αu
j3,k = 1, αd

j3,k = 1, if Q1
j1,k + Q2

j2,k > Qj3,k

αu
j,k = 0, αd

j,k = 0, ∀j /∈ {j1 & j2||j3 },
(45)

where Q1
i,k = QS1

i,k + QP u

i,k Pu∗
i,k , Q2

i,k = QC1
i,k + QP d

i,kP d∗
i,k ,

Q3
i,k = −QC

i,k, and Qj3,k = Q1
j3,k + Q2

j3,k + Q3
j3,k are

the terms defined in the objective function of problem P4.5.
Moreover, j1 = argmini∈M Q1

i,k, j2 = argmini∈M Q2
i,k,

and j3 = argmini∈M(Q1
i,k + Q2

i,k + Q3
i,k) are control system

indices. Finally, the procedures of the proposed stability-aware
scheduling approach to obtain the optimal solution of problem
P3 is outlined in Algorithm 1.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, the performance of the proposed stability-
aware scheduling algorithm is investigated in an inverted-
pendulum on a cart system with M = 2, and M =
20 inverted-pendulums, respectively. Each inverted-pendulum
system is described by a four-dimensional state vector as
xu

i,k =
[
xi,k, ẋi,k, θi,k, θ̇i,k

]
, where xi,k represents the cart’s

position along the horizontal axis, ẋi,k represents the cart’s
velocity, θi,k represents the pendulum angle along the vertical
axis, and θ̇i,k represents the pendulum’s angular velocity. The
initial state of the control systems i is xu

i,0 = [0 0 0.1 0]T .
The action ua

i,k is the horizontal force applied on the linear
cart. By applying a zeroth-order with a state sampling of 10ms
on the continuous dynamics of the inverted-pendulum system
and linearizing around the pendulum up-position, i.e., θi,k = 0,

we obtain the following discrete-time linear dynamics matri-
ces [22],

Ai =

⎡
⎢⎢⎣
1 0 0 0
0 2.055 −0.722 4.828
0 0.023 0.91 0.037
0 0.677 −0.453 2.055

⎤
⎥⎥⎦ ,Bi =

⎡
⎢⎢⎣

0.034
0.168
0.019
0.105

⎤
⎥⎥⎦ , (46)

Algorithm 1 Stability-Aware Scheduling Algorithm
Initialize V , ωβu , ωβd

, ωPu , ωPd and Xi,0 = 0, ∀i ∈ M;
while k ∈ [0, K] do

for i = 1 to M do
Observe the UL and DL channel states Hu

i,k and Hd
i,k;

Obtain the predicted state at the controller x̂u
i,k in (13);

Obtain the predicted action at the controller ûdc
i,k in (13);

Obtain γβu

i,k , γβd

i,k , γP u

i,k , and γP d

i,k by solving (39) and (40);
Obtain UL and DL scheduling αu

i,k and αd
i,k in (45);

Obtain the UL and DL transmission power P l
i,k in (43);

if αu
n,k = 1 & αd

n,k = 1 then
Control system n-th transmits both its state and action;
∀i

�
(i ∈ M∧ i �= n) −→ xu

i,k = x̂u
i,k & ua

i,k = ûd
i,k

�
;

else if αu
n,k = 1 & αd

m,k = 1 then
Control system n-th only transmits its state;
Control system m-th only transmits its action;
∀i

�
(i ∈ M∧ i �= n) −→ xu

i,k = x̂u
i,k

�
;

∀j
�
(j ∈ M∧ j �= m) −→ ua

j,k = ûd
j,k

�

else
∀i ∈ M −→ xu

i,k = x̂u
i,k & ua

j,k = ûd
j,k;

end if
Update the virtual queues vector Xi,k+1 according

to (31a)−(31b) and (33a)−(33b)
end for

end while

Since Ai’s largest eigenvalues {3.85, 0.42, 0.92, 1.00} is
greater than unity, the inverted-pendulum is unstable without
an appropriate control action [33]. To stabilize the control
system, the feedback gain matrix Φi is calculated at the
controller based on LQR in (16). The rest of the simulation
parameters are P l

max = 20 dBm/Hz, N0 = −20 dBm, ζi =
0.01, ω = 100kHz, V = 1000, ωβ = 1, ωP = 1, hk = 1,
hq = 1, μ = 1, and σ2

n = 0.01.
The performance of the proposed stability-aware

scheduling method is compared versus five scheduling
baselines. In Baseline 1. (Round-Robin Scheduling),
each sensor/controller periodically transmits its state/action
over a wireless channel with fixed transmission power
and a predefined repeating order [8], [9]. In Baseline 2.
(Opportunistic Scheduling), the sensor/controller
is scheduled under favorable channel conditions.
Otherwise, the controller/actuator applies the last received
state/action [10], [11]. In Baseline 3, (Event-triggered
Scheduling without FDMA), one control system with
the largest state discrepancy, i.e., the difference between the
current predicted state using Kalman filtering and the previous
received/predicted state is larger than a predefined threshold,
is scheduled at each time to transmit the state/action with fixed
transmission power [12], [13]. In Baseline 4. (Event-triggered
Scheduling with FDMA), each sensor/controller transmits its
state/action with fixed transmission power based on its stability
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Fig. 3. Average pendulum angle to the vertical center, i.e., average control error with M = 2 and M = 20 pendulum angle systems using the proposed
stability-aware, round-robin, opportunistic, event-triggered with and without FDMA.

condition, i.e., the difference between the current and previous
states is greater than a predefined threshold, using FDMA [37].
In Baseline 5. (Ideal Control Scheduling), all control systems
simultaneously transmit their states/actions with ultra-low
latency and high reliability over perfect channels [9]. Results
are collected over ten independent simulation runs, and each
simulation is run for K = 90 discrete-time steps.

A. Average Control Error vs. Control Systems

Fig. 3 illustrates the average pendulum angle to the vertical
center of each control system, i.e., the average control error of
each control system, during 90 control time steps. As shown
in Fig. 3(a), the proposed and baseline scheduling methods,
assuming a low number of control systems (M = 2), can keep
all the pendulums upright. Moreover, the proposed stability-
Aware with GPR and the event-triggered with FDMA keep
both pendulums close to zero ensuring both pendulums have
the same control performance. This is because the proposed
solution adapts to both channel and control states, i.e., the
control system is scheduled if it has a favorable channel
condition and an unstable control state needs to be stabilized.
Meanwhile, the event-triggered with FDMA has approximately
the same performance at the cost of wasting wireless com-
munication resources by transmitting with fixed transmission
power and high communication rate. The opportunistic sched-
uler without GPR has better control performance compared
to the event-triggered without FDMA and the round-robin
methods leveraging channel state in scheduling compared to
the scheduling baselines. This in turn reflects the connection
between the state estimation stability and control stability.

Fig. 3(b) plots the average control error of each control
system for the proposed and baseline scheduling methods. In
large numbers of control systems, the proposed stability-aware
with GPR and the event-triggered with FDMA scheduling
methods keep all pendulum upright, unlike the baselines.
Unlike the scheduling baselines except the event-triggered
with FDMA scheduling wherein at most one control sys-
tem is scheduled each time due to the limited bandwidth,
our proposed scheduling allows all control systems to oper-
ate simultaneously even without receiving either the current
state or action, highlighting the effectiveness of GPRs at
the controller and actuator thereby improving communica-
tion efficiency and control stability. Moreover, the proposed
scheme applies the AoI-Aware scheduling to maintain the GPR
prediction credibility and hence achieving control stability.
Meanwhile, the event-triggered with FDMA scheduling keeps
some pendulums upright at the cost of frequent transmissions
by equally dividing the available bandwidth between the
control systems, such that each control system receives a
fixed fraction fi of the total capacity fi = ω/M , affecting
transmission latency.

B. Communication Rate vs. Number of Control Systems

Fig. 4 presents a histogram of the achieved communication
rates for the sensing and actuating links for M = 20 during
90 control time steps. The sensing/actuating communication
rate is defined as the number of times the sensing/actuating
link of a control system is scheduled divided by the time
interval as nl/K . The proposed method achieves sensing
communication rates concentrated in the range from 0 to
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Fig. 4. Histogram of achieved communication rate in a large number of control system (M = 20) of the proposed stability-aware and event-triggered with
FDMA throughout 90 control time steps.

0.4 and actuating communication rates ranging from 0 to
0.2. On the other hand, the event-triggered with FDMA
scheduling achieves wide sensing and actuating communi-
cation rates ranging from 0 to 1. The reason behind this
result is that the stability-aware with GPR scheduling is
adapting to both the channel and control states, and GPRs at
the controller and actuator sides compensate for the missing
received observations, hence improving the communication
efficiency. Meanwhile, each control system, in the event-
triggered with FDMA scheduling, only transmits its control
state/action based on its control stability condition without
taking into account channel states that result in increasing
state/action estimation uncertainty from the adverse channel
states, and in turn, affecting control stability. Hence, each
control system in the event-triggered with FDMA scheduling
requires frequent transmissions to ensure control stability by
applying appropriate action based on low communication
uncertainty. Note that the range of the sensing communication
rate is larger than that of the actuating communication rate
since some control systems fail to transmit their states at the
beginning affecting prediction credibility. However, the num-
ber of control systems that require frequent scheduling in the
actuating link is larger than that of the sensing link which
stems from the fast dynamics related to the inverted-pendulum
system that requires quick appropriate action.

C. State Trajectory and Controller/Actuator AoI vs. Time

To dive deeper into the benefits of the proposed stability-
aware with GPR scheduling, we present in Fig. 5 the state
trajectory, controller AoI, and actuator AoI of a randomly
chosen control system in low and large number control systems

regimes. In Fig 5(a), the state trajectory of the proposed
stability-aware with GPR scheduling and event-triggered with
FDMA scheduling, in a low number of control systems, are
extremely close to that of the ideal control system where their
pendulums remain upright over time. Meanwhile, the state
trajectory of the opportunistic without GPR scheduling is
slightly better than that of the event-triggered without FDMA
scheduling by keeping the pendulum upright over time due to
the scheduled control system with a favorable channel state.
Finally, the state trajectory of the round-robin without GPR
scheduling slightly matches the desired state at the cost of a
high communication rate and fixed transmission power.

As shown in Fig. 5(a), the controller and actuator AoI of the
proposed stability-aware scheduling equals one, i.e., the sens-
ing and actuating links of a control system are synchronously
scheduled, until 15 control time steps. This is to guarantee
that the received actions to action GPR has a low state/action
estimation uncertainty that affects the GPR state/action pre-
diction credibility and control stability. Then, the actuator AoI
starts increasing compared to the controller AoI that remains
at value one until 45 control time steps, i.e., the sensing
link of a control system is scheduled until 45 control time
steps while the actuating link is not scheduled. The rationale
behind this result is to schedule either the sensing link or/and
actuating link of a control system with favorable channel con-
ditions to ensure the state/action prediction credibility. Hence,
the transmitted action, when the sensing link of a control
system is not scheduled, depends on a credible predicted state.
This shows the impact of the decoupled scheduling between
the UL and DL communications compared to the coupled
scheduling in terms of improving communication efficiency
by reducing sensing and actuating communication rates while
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Fig. 5. Comparison of the state trajectory, controller AoI, and actuator AoI of a randomly chosen control system between the proposed stability-aware,
round-robin, Opportunistic, event-triggered with and without FDMA, and ideal control system.

guaranteeing control stability. For large numbers of control
systems shown in Fig. 5(b), the control error of the stability-
aware scheduling and event-triggered with FDMA scheduling
exponentially decay over time compared to the scheduling
baselines. Meanwhile, the other scheduling baselines are expo-
nentially growing over time due to the accumulated control
error in the absence of appropriate action.

D. Digital Transmissions vs. Analog Transmissions

Thus far, we have considered analog uncoded communica-
tion (AUC). To demonstrate its effectiveness, Fig. 6 compares
AUC and its digital coded communication (DCC) counter-
part, in terms of the average pendulum angle, i.e., average
control error, of a single control system for different values
of SNRth. Here, we assume the DL channels are ideal and
focus only on the UL with the 180 kHz channel bandwidth
of NB-IoT systems [38]. Following [39], we consider that the
signaling rate of the communication system is 10x higher than
the sampling rate of the control system, with the following
reasoning. To convey 12 symbols, it requires 12 orthogonal
sub-carriers that correspond to 1ms in NB-IoT systems [38].
By contrast, to convey the 256 bits of BCH(7, 4) coded control
states using the 16-QAM modulation, it requires transmitting
112 modulated symbols that result in around a 10ms delay.
Given this setting, for high SNRth (SNRth > 40), Fig. 6 shows
that AUC achieves the lowest average pendulum angle that
can be achieved by DCC using the BCH(7, 4) code with
256-QAM modulation. The rationale behind this result is that
DCC requires a high modulation order with a low coding

Fig. 6. Average control error of a single control system with analog uncoded
and digital communications vs. different SNRth.

rate to achieve low transmission latency for a given SNRth,
in contrast to AUC whose transmission latency depends only
on the bandwidth. In the practical range of SNRth (0 <
SNRth < 40), AUC achieves the lower average pendulum
angle for all DCC counterparts. The rationale can be explained
as follows. First, DCC has higher transmission latency than the
sampling period of the inverted pendulum system, affecting the
control stability. Second, DCC with BCH(7, 4) and 256-QAM
achieves the same transmission latency as that of AUC, yet it
requires either a high SNRth to achieve the bit error rate (BER)
of a designed point or a low coding rate to achieve the BER
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Fig. 7. Total number of supported control systems using stability-aware
with GPR, event-triggered with FDMA, round-robin, event-triggered without
FDMA, and opportunistic scheduling.

of the designed point at the cost of increasing the transmission
latency. Otherwise, the degradation of the channel conditions
in the conventional DCC leads to a system breakdown, and the
BER would diverge from the designed point. For low SNRth

(SNRth < 0), DCC with Cyclic(15, 4) and 16-QAM achieves
a slightly lower average pendulum angle than AUC, which
in turn concludes that DCC outperforms AUC only under
low SNRth.

E. Number of Served Control Systems vs. Time Interval

Fig. 7 presents the final capacity of the scheduled control
systems over two different time intervals. We assume that a
scheduling method successfully controls several control sys-
tems for all control systems within |θi,k| ≤ 0.05 error region
for 10 independent simulation runs. As observed in Fig. 7,
the proposed approach has a significant impact compared to
the baselines in terms of supporting a large number of control
systems over the time interval. The rationale behind this result
is due to exploiting two GPRs at the controller and actuator
sides and obtaining a sufficient number of observations in
the GPR training sets. This, in turn, enhances the prediction
credibility, communication efficiency, and control stability per-
formance while supporting a large number of control systems.

VI. CONCLUSION

In this work, we proposed a GPR-based predictive WNCS
architecture and its UL-DL decoupled scheduling algorithm
that ensures control stability, communication reliability, and
GPR prediction credibility. Extensive simulations corroborated
the effectiveness of the proposed framework in supporting a
larger number of inverted pendulum control systems without
compromising control stability, compared to existing commu-
nication and/or control aware schedulers without GPR pre-
diction, such as event-triggered and opportunistic schedulers.
To further improve the scalability, a possible extension of this
work is to incorporate advanced multiple access schemes such

as non-orthogonal and rate-splitting multiple access schemes.
For unknown control system dynamics, applying distributed
multi-agent reinforcement learning to multiple control systems
could be another interesting topic for future research.

APPENDIX A
PROOF OF LEMMA 1

Given the predicted state x̂u
i,k in (13) and the state prediction

error covariance matrix J u
i,k in (14), it holds that the expected

current Lyapunov value of the system is

E
[L(xu

i,k)|x̂u
i,k

]
= E

[
xuT

i,k Z xu
i,k|x̂u

i,k

]
= E

[ (
x̂u

i,k − eu
i,k

)T Z (x̂u
i,k − eu

i,k

) ]
= E

[
x̂uT

i,kZx̂u
i,k − x̂uT

i,kZeu
i,k − euT

i,kZx̂u
i,k + euT

i,kZeu
i,k

]
,

(47)

∀Z ∈ SD
++. In (47), the first term is a constant as the

expectation is taken w.r.t. the state prediction error eu
i,k, while

the cross-terms such as E[x̂uT

i,kZeu
i,k] and E[euT

i,kZx̂u
i,k] can be

canceled since the predicted state x̂u
i,k and the state prediction

error eu
i,k are uncorrelated. Hence, the expected current value

of L(xi,k) is given as

E
[L(xu

i,k)|x̂u
i,k

]
= x̂uT

i,kZx̂u
i,k + Tr

[
Z E[euT

i,keu
i,k]
]

= ‖x̂u
i,k‖2

Z 1
2

+ Tr
[Z J u

i,k

]
, (48)

∀Z ∈ SD
++, where the last term in (48) is obtained via the

expectation of the quadratic form E[euT

i,k Zeu
i,k] w.r.t the state

prediction error, i.e, E[euT

i,k Zeu
i,k]=(E[eu

i,k])T Z(E[eu
i,k])+Tr[Z J u

i,k].
It is observed in (48) that the expected current Lyapunov
value grows larger as the predicted state x̂u

i,k is near instability
and/or the prediction error covariance matrix J u

i,k is larger due
to lack of sufficient observations. �

APPENDIX B
PROOF OF LEMMA 2

As a result of the remote sensing-loop state evolution in (19)
and the open-loop state evolution in (18), the expected future
value of L(xu

i,k+1) in (25) of the UL transmission is given as

E
[L(xu

i,k+1)|x̂u
i,k, ûd

i,k,Hu
i,k, Pu

i,k

]
= ξu

i,k E
[L(xs

i,k+1)|x̂u
i,k, ûd

i,k,Hu
i,k, Pu

i,k

]
+
(
1 − ξu

i,k

)
E
[L(xo

i,k+1)|x̂u
i,k, ûd

i,k,Hu
i,k, Pu

i,k

]
, (49)

For a given predicted state x̂u
i,k, state prediction error

covariance matrix J u
i,k , predicted action ûd

i,k, action prediction
error covariance matrix J d

i,k , wireless UL channel Hu
i,k, and

UL transmission power Pu
i,k, the expected future value of

L(xu
i,k+1) of the UL transmission in (49) is

E
[L(xu

i,k+1)|x̂u
i,k, ûd

i,k,Hu
i,k, Pu

i,k

]
(1)
= ξu

i,kE

[
xsT

i,k+1Zxs
i,k+1|x̂u

i,k, ûd
i,k,Hu

i,k, Pu
i,k

]
+
(
1 − ξu

i,k

)
E

[
xoT

i,k+1Zxo
i,k+1|x̂u

i,k, ûd
i,k,Hu

i,k, Pu
i,k

]
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(2)
= ξu

i,kE

[(
Ac

i x̂
u
i,k − Ac

ie
u
i,k − BiΦivu

i,k − Bied
i,k + wk

)T
×Z(Ac

i x̂
u
i,k − Ac

ie
u
i,k − BiΦivu

i,k − Bied
i,k + wk

)]
+(1 − ξu

i,k)E
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i x̂

u
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ie
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+wk
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u
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ie
u
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(3)
= ξu

i,k

[
‖Ac

i x̂
u
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Z 1
2

+ Tr
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AcT

i ZAc
iJ u
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]
+ Tr

[ZW
]

+Tr
[
(BiΦi)

T Z (BiΦi)Vu
i,k

]
+ Tr

[
BT

i ZBiJ d
i,k

]]
+(1 − ξu

i,k)
[
‖Ac

i x̂
u
i,k‖2

Z 1
2

+ Tr
[
AcT

i ZAc
iJ u

i,k

]
+Tr

[
(BiΦi)

T Z (BiΦi)J u
i,k

]
+ Tr

[
BT

i ZBiJ d
i,k

] ]
+Tr
[ZW

]
. (50)

Step (1) is a result of using the quadratic Lyapunov func-
tion. The step (2) holds when applying the remote sensing-
loop and open-loop state evolution in (19) and (18), respec-
tively. The step (3) holds using the expectation in (50) with
respect to the state estimation error eu

i,k, the action prediction
error ed

i,k, and the plant noise wk. As a consequence of
obtaining the expected current Lyapunov value in (48) and
the expected future Lyapunov value of the UL transmission
in (50), the control stability constraint in (25) for the UL
transmission is

ξu
i,kE

[L(xs
i,k+1)|x̂u

i,k, ûd
i,k,Hu

i,k, Pu
i,k

]
+(1 − ξu

i,k)E
[
L(xo

i,k+1)|x̂u
i,k, ûd

i,k,Hu
i,k, Pu

i,k

]
≤ ζiE

[L(xu
i,k)|x̂u

i,k

]
= ξu

i,k

[
Tr
[
(BiΦi)TZ(BiΦi)Vu

i,k

]
−Tr

[
(BiΦi)TZ(BiΦi)J u

i,k

]]
+‖Ac

i x̂
u
i,k‖2

Z 1
2

+ Tr
[
AT

i ZAiJ u
i,k

]
+ Tr

[
BT

i ZBiJ d
i,k

]
+Tr
[ZW

] ≤ ζi‖x̂u
i,k‖2

Z 1
2

+ ζiTr
[ZJ u

i,k

]
(51)

where we have defined the following terms Ji,k :=
Tr
[
(BiΦi)TZ(BiΦi)J u

i,k

]
, Mi,k :=

[
BT

i ZBiJ d
i,k

]
, Ki,k :=

Tr
[
(BiΦi)TZ(BiΦi)Vu

i,k

]
. After rearranging the terms

in (51), the constraint on the UL transmission indicator vari-
able is given as

ξu
i,k ≥ Ai,k + Bi,k + Mi,k + Tr [ZW]

Ji,k − Ki,k
. (52)

where we have further defined the following terms
Ai,k := ‖ (Ac

i − ζiID) x̂u
i,k‖2

Z 1
2

and Bi,k :=
Tr
[ (

AT
i ZAi − ζiZ

)J u
i,k

]
. To capture the overall state

evolution of each control system in the UL over time interval
of length K , according to the time-averaged Lyapunov [40],
(53) is summed over time k ∈ {0, · · · , K − 1}, then the
result is divided by K and taking the limit as time tends to
infinity. This yields the UL transmission indicator variable
constraint in (27).

Similarly, we obtain the DL transmission indicator variable
constraint in (28) according to the remote actuating-loop state

evolution in (20) and open-loop state evolution in (18). Finally,
the expected future Lyapunov value of the UL-DL coupled
transmission is obtained using the closed-loop state evolution
in (21) and the open-loop state evolution in (18) where

E

[
L(xu

i,k+1)|x̂u
i,k, ûd

i,k,Hu
i,k, Pu

i,k,Hd
i,k, P d

i,k

]
= ξu

i,k ξd
i,k E

[L(xc
i,k+1)|x̂u

i,k, ûd
i,k,Hu

i,k, Pu
i,k,Hd

i,k, P d
i,k

]
+
(
1 − ξu

i,k ξd
i,k

)
E
[L(xo

i,k+1)|x̂u
i,k, ûd

i,k,Hu
i,k, Pu

i,k,

Hd
i,k, P d

i,k

]
, (53)

For a given predicted state x̂u
i,k, the state prediction error

covariance matrix J u
i,k , the predicted action ûd

i,k, the action
prediction error covariance matrix J d

i,k, the wireless UL chan-
nel Hu

i,k, the wireless DL channel Hd
i,k, the UL transmission

power Pu
i,k , and the DL transmission power P d

i,k, the expected
future value of L(xu

i,k+1) of the UL-DL coupling transmission
in (53) is given as

E
[L(xu

i,k+1)|x̂u
i,k, ûd

i,k,Hu
i,k, Pu

i,k,Hd
i,k, P d

i,k

]
= ξu

i,k ξd
i,kE

[
xcT

i,k+1Zxc
i,k+1|x̂u

i,k, ûd
i,k,Hu

i,k, Pu
i,k,Hd

i,k, P d
i,k

]
+
(
1 − ξu

i,kξd
i,k

)
E

[
xoT

i,k+1Zxo
i,k+1|x̂u

i,k, ûd
i,k,Hu

i,k, Pu
i,k,

Hd
i,k, P d

i,k

]
= ξu

i,kξd
i,kE

[ (
Ac

i x̂
u
i,k−Ac

ie
u
i,k−BiΦivc

i,k−Bivd
i,k+wk

)T
×Z (Ac

i x̂
u
i,k − Ac

ie
u
i,k − BiΦivc

i,k − Bivd
i,k + wk

) ]
+(1 − ξu

i,kξd
i,k)E

[ (
Ac

i x̂
u
i,k − Ac

ie
u
i,k − BiΦieu

i,k

−Bied
i,k + wk

)T
×Z
(
Ac

i x̂
u
i,k − Ac

ie
u
i,k − BiΦieu

i,k − Bied
i,k + wk

)]
= ξu

i,kξd
i,k

[
‖Ac

i x̂
u
i,k‖2

Z 1
2

+ Tr
[
AcT

i ZAc
iJ u

i,k

]
+ Tr [ZW]

]
+Tr

[
(BiΦi)TZ(BiΦi)Vu

i,k

]
+ Tr

[
BT

i ZBiVd
i,k

]
+(1 − ξu

i,k ξd
i,k)
[
‖Ac

i x̂
u
i,k‖2

Z 1
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+ Tr
[
AcT

i ZAc
iJ u

i,k

]
+Tr
[
(BT

i Φi)TZ(BT
i Φi)J u

i,k

]
+ Tr

[
BT

i ZBiJ d
i,k

]
+Tr [ZW]

]
(54)

Given the expected current value of L(xu
i,k) in (48) and

future of L(xu
i,k+1) of the UL-DL coupled transmission

in (54), the control stability constraint in (25) for UL-DL
coupled transmission is

ξu
i,kξd

i,kE

[
L(xa

i,k+1)|x̂u
i,k, ûd

i,k,Hu
i,k, Pu

i,k,Hd
i,k, P d

i,k

]
+(1 − ξu

i,kξd
i,k)E

[
L(xo

i,k+1)|x̂u
i,k, ûd

i,k,Hu
i,k, Pu

i,k,

Hd
i,k, P d

i,k

]
≤ ζiE

[L(xu
i,k)|x̂u

i,k

]
= ξu

i,kξd
i,k

[
Tr
[
(BiΦi)TZ(BiΦi)Vu

i,k

]
+Tr
[
BT

i ZBiVd
i,k

]− Tr
[
(BiΦi)TZ(BiΦi)J u

i,k

]
−Tr
[
BT

i ZBiJ d
i,k

]]
+ ‖Ac

i x̂
u
i,k‖2

Z 1
2

+ Tr
[
AT

i ZAiJ u
i,k

]
+Tr

[
BT

i ZBiJ d
i,k

] ≤ ζi‖x̂u
i,k‖2

Z 1
2

+ ζiTr
[ZJ u

i,k

]
+ Tr

[ZW
]

(55)
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The UL-DL transmission indicator variable constraint after
rearranging the terms in (55) is given as

ξu
i,kξd

i,k ≥ Ai,k + Bi,k + Mi,k + Tr [ZW][
Ji,k − Ki,k

]
+
[
Mi,k − Ni,k

] (56)

where we have further defined the following term Ni,k :=
Tr
[
BT

i ZBiVd
i,k

]
. At last, we apply the time-averaged Lya-

punov [40] to obtain the overall state evolution per control
system in the UL-DL coupled transmission and UL-DL cou-
pled transmission indicator variable constraint in (29). �
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