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Abstract—We analyze the symbol error probability (SEP) of
M -ary pulse amplitude modulation (M -PAM) receivers equipped
with optimal low-resolution quantizers. We first show that the
optimum detector can be reduced to a simple decision rule. Using
this simplification, an exact SEP expression for quantized M -
PAM receivers is obtained when Nakagami-m fading channel
is considered. The derived expression enables the optimization
of the quantizer and/or constellation under the minimum SEP
criterion. Our analysis of optimal quantization for equidistant M -
PAM receiver reveals the existence of error floor which decays
at a double exponential rate with increasing quantization bits, b.
Moreover, by also allowing the transmitter to optimize the con-
stellation based on the statistics of the fading channel, we prove
that the error floor can be eliminated but at a lower decay expo-
nent than the unquantized case. Characterization of this decay
exponent is provided in this paper. We also expose the outage per-
formance limitations of SEP-optimal uniform quantizers. To be
more precise, its decay exponent does not improve with b. Lastly,
we demonstrate that the decay exponent of a quantized receiver
can be complemented by receive antenna diversity techniques.

Index Terms—Low-Resolution Quantization, Symbol Error
Probability, Optimization, Fading, Diversity Order

I. INTRODUCTION

H IGH-speed and high-resolution analog-to-digital converters
(ADCs) are identified as one of the primary power

consumers in a radio frequency (RF) receiver chain. Theoretical
models for ADCs present power consumption as a quantity that
scales exponentially with bit resolution and scales linearly with
sampling rate [1]. Given this, one straightforward approach in
solving the power consumption bottleneck of an RF chain is to
simply reduce the sampling rate. However, the current trend in
wireless research is geared towards the use of large bandwidths
such as in millimeter wave (mmWave) cellular networks [2]
so using a low sampling rate would not be suitable for such
systems. Thus, most studies on low-power receivers, such as
[3]–[7], have focused on designing practical detection strategies
and analyzing the performance limits of receiver architectures
with low-resolution ADCs.

A number of research results have shown that the use of
low-precision ADCs in various communication systems offers
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substantial improvement in energy-efficiency and hardware cost
while having little or negligible loss in achievable rate [8].
One of the earliest works on this topic has demonstrated that
an M -PAM receiver with 2-3 quantization bits can already
achieve 80-90% of its unquantized channel capacity [9]. There
also exists a rich body of literature [10]–[13] showing that
other receiver design functionalities (e.g. timing recovery, gain
control, channel estimation) can be implemented in the low-
resolution ADC regime with acceptable performance. The low-
resolution ADC design approach is further justified by the
hardware scaling laws observed in massive MIMO systems –
that is, for some fixed hardware quality, increasing the number of
antennas reduces the impact of hardware distortion on the overall
spectral efficiency (SE) performance [14]. In fact, the extreme
case of using 1-bit ADCs in MIMO systems has been gaining
significant research interest over the past few years due to its low-
cost and scalable implementation [15]–[17]. Aside from large-
scale MIMO systems, communication with low-precision ADCs
has also found a niche in energy-constrained applications such as
wireless sensor networks and Internet-of-Things (IoT) [18], [19].

Several information-theoretic studies [20]–[22] have estab-
lished capacity limits of single-input single-output (SISO) chan-
nels with 1-bit ADC under various conditions. However, analysis
of multi-bit quantization is much less tractable and analytical
results are mostly based on simplified models. These models
represent the inherent nonlinear characteristics of a quantizer as
an additive noise. However, such models become inaccurate in
the high SNR regime or when there are few antenna elements
with coarsely quantized outputs [8]. Discrepancies between
analytical and numerical results under these cases are mentioned
in recent studies [9], [23]–[25]. Traditional analytical models
also assume either a mean square error (MSE)-optimal scalar
quantizer [26] or a uniform quantizer. However, such design
choices are not necessarily optimal if we intend to maximize the
input-output mutual information or minimize the error rate of
a communication link [8]. For example, a bit error rate (BER)-
optimal ADC can have better error resiliency than a uniform or
MSE-optimal quantizer even if the former has less quantization
bits [27]. Studies on rate-optimal quantizer design also revealed
that scalar quantization which maximizes information rate are
not given by uniform and MSE-optimal quantizers [28].

This paper investigates symbol error probability (SEP)-optimal
quantization for communication over a general fading channel
when the receiver is equipped with coarsely quantized ADC. In
contrast to other works on communication systems equipped with
low-resolution ADCs, the quantizer is designed based only on
the statistics of the fading channel and does not need to adapt to
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Figure 1. Coherent Detection of M -PAM Transmission over Fading Channel w/ Quantization

small-scale fading variations. An essential aspect of our analysis
is that we do not rely on simple additive noise models. Here, we
deal with the nonlinear characteristics of the quantizer in order to
gain some understanding on how the quantizer structure affects
error performance. A simple SISO model is considered wherein
the transmitter sends symbols drawn from an M -PAM constella-
tion and a coherent receiver is equipped with a symmetric b-bit
ADC. Error probability of an M -PAM receiver with finite ADC
word length has been analyzed in [29] and [30]. However, the
quantization process in these studies is modeled as an additive
uniform noise and results are only applicable to uniform quantiza-
tion. Uncoded error performance of quantized channels has been
investigated previously for single-input multiple-output (SIMO)
multiple access channel (MAC) [31]. However, MSE-optimal
quantizer is assumed and their result holds only for asymptotically
large number of transmitters. Our motivation for investigating the
coherent M -PAM case is to understand SEP-optimal quantization
in fading channels in a single dimension and draw some insights
that may aid in the analysis of more complex system models.
Our main contributions are summarized as follows:

• For M -PAM signaling with M≥4, we obtained an exact
average SEP expression of the optimum maximum likeli-
hood (ML) detector as a function of the quantizer structure
and M -PAM amplitudes. The derived expression for the
Nakagami-m fading case is minimized numerically by
optimizing the quantizer structure and/or the amplitudes of
the M -PAM symbols. This result is presented in Theorem 1.

• For equidistant M -PAM signaling, we prove in Theorem 2
that, with sufficient quantization bits, the lowest achievable
SEP of the M -PAM receiver decreases exponentially with
the shape parameter m and double exponentially with
quantization bits b. However, the SEP only goes down
exponentially with increasing b if the quantizer structure
is restricted to uniform quantization (Theorem 3).

• By allowing the transmitter and receiver to jointly optimize
the constellation and quantizer using statistical channel state
information (CSI), we show that the error floor of a finite-
resolution M -PAM receiver can be removed as long as
2b>M−2 (Lemma 3). We prove that the decay exponent
(or diversity order1) of a low-resolution M -PAM receiver
equipped with SEP-optimal quantizer is m 2b−(M−2)

2b
when

the M -PAM constellation is also optimized. This property,
however, does not extend to uniform quantization. In fact,
increasing the number of quantization bits does not improve
the decay exponent of SEP-optimal uniform quantization.

1Diversity order is the asymptotic slope of the error probability as a function
of SNR. Refer to equation (24).

These results are presented in Theorem 4 and Theorem 5.
The reader is referred to Table I in Section VII for a summary
of these results. Finally, we give some insights in Section VI
on how to extend the results to multiple antennas.

II. SYSTEM MODEL AND ML DECISION RULE FOR QUANTIZED
OBSERVATIONS OF M -PAM

We consider a discrete-time SISO baseband channel model
where a random complex-valued channel gain h= |h|e−jφ is
applied to the transmitted signal x drawn from some M -PAM
constellation set X . As illustrated in Figure 1, the signal is
corrupted by a circularly-symmetric complex-valued Gaussian
noise w ∼ CN

(
0,σ2

)
. Analog phase synchronization is then

applied to the channel output by multiplying a ejφ phase shift2.
This can be implemented in practice using analog phase-locked
loop (PLL)-based circuit for rapid PAM carrier recovery such as
Costas loop or a squaring loop [32, 198-199]. The discrete-time
baseband equivalent signal r′ can be expressed as

r′= |h|x+w′, where w′=ejφw∼CN (0,σ2). (1)

The real part of r′ is then discretized by a b-bit ADC (i.e. y=
Qb(Re{|h|x+w′})). In this work, we will only consider symmet-
ric constellation sets and symmetric quantizers (i.e. q−y=−qy).
The explicit quantization boundaries of the b-bit ADC are some
real values {q±y}y=2b−1−1

y=1 and implicit quantization boundaries
are placed at q0 =0 and q±2b−1 =±∞. The ADC chooses y=k
whenever Re{|h|x+w′} falls inside the interval (qk−1,qk). We
also assume that perfect CSI is available at the receiver. This
assumption is justified by a previous work [12] which showed that
accurate channel estimation is possible with low-precision ADC.
Moreover, the receiver can use a high-precision ADC during
channel estimation phase and then switch to a low-resolution
ADC during data transmission phase. There will still be signifi-
cant energy savings in this approach since the data transmission
phase typically occupies a much larger portion of a coherence
block [33]. The likelihood of the ADC output y given |h| and x is

L
(
x
∣∣|h|,y)=Q

(
qy−1−|h|x√

σ2/2

)
−Q

(
qy−|h|x√
σ2/2

)
, (2)

where Q(·) is the tail probability of the standard Gaussian
random variable. The ML detector for this quantized system
chooses x̂=x∗ if

x̂∗=argmax
x∈X

L
(
x
∣∣|h|,y). (3)

2The purpose of this is to analyze how quantization and fading jointly impact
SEP in 1-D case. Notwithstanding, the use of Nakagami-m in the analysis
readily extends the results to when synchronization is absent. This is explained
in Section III.
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The detector, in its current form, is quite complex to use due to the
Q-function terms. A simpler but equivalent detector is presented
below which has no special functions or integration involved.

Proposition 1 (ML Detector for Finite-Resolution M -PAM
Receiver). Consider the model in Equation (1). For a given
channel realization h and ADC output y, x̂∗, is

x̂∗=argmin
x∈X

∣∣∣qy+qy−1

2
−|h|x

∣∣∣. (4)

In other words, |h|x̂∗ is closest to the midpoint of the quantization
interval (qy−1,qy). Moreover, if qy−1 =−∞ or qy=+∞, the
midpoint is defined to be −∞ and +∞, respectively.

Proof. See Appendix A.

We note that Proposition 1 simplifies the scalar version of the
ML detector given in [34, Equation (13)] to a minimum distance
detector. This proposition is used in the next section to derive
the exact SEP of a finite-resolution M -PAM receiver. Analytical
and simulation results are provided to illustrate the optimum
SEP performance of low-resolution M -PAM receivers.

III. SYMBOL ERROR PROBABILITY OF M -PAM WITH b-BIT
ADC

To gain insight on the error performance of a low-resolution
M -PAM system, a simple case of M -PAM transmission (where
M ≥ 4 is a power of 2) and a coherent receiver with b-bit
ADC is analyzed. We assume a real-valued constellation set
X :{±ρ0,±ρ1,···,±ρM

2 −1}. The SNR is the ratio of the average
transmitted signal energy and additive noise and can be written as

SNR=
E[x2]

E[w′2]
=
Es
σ2
, where Es=

2
∑M

2 −1
i=0 ρ2

i

M
. (5)

Suppose the quantization boundaries of the b-bit ADC are
{±qy}Ky=1∪{0,±∞} where K= 2b−1−1. We let q0 = 0 and
±qK+1 =±∞. Since the constellation and quantizer are both
symmetric, we can limit our analysis to the positive region.
The ML rule is to pick a point closest to the midpoint of the
quantization region. Let ρi−1, ρi, and ρi+1 be three positive
adjacent PAM symbols in the constellation and y > 0 is the
ADC output. We pick ρi if∣∣∣qy−1+qy

2
−|h|ρi

∣∣∣< ∣∣∣qy−1+qy
2

−|h|ρi−1

∣∣∣︸ ︷︷ ︸
condition A

and ∣∣∣qy−1+qy
2

−|h|ρi
∣∣∣< ∣∣∣qy−1+qy

2
−|h|ρi+1

∣∣∣︸ ︷︷ ︸
condition B

since ρi is closer to the midpoint of (qy−1,qy) compared to its
neighboring symbols. Only condition A (condition B) is needed
to be satisfied x=ρM

2 −1 (x=ρ0). We can define decision regions
Dy,i, which chooses symbol x=ρi if the ADC output is y, as

Dy,i : DL
y,i< |h|2<DU

y,i, (6)

such that when y∈ [1 ..K], we have

DL
y,i=


(
qy−1+qy
ρi+ρi+1

)2

, i∈ [0 .. M2 −2]

0 , i= M
2 −1

and

DU
y,i=


(
qy−1+qy
ρi+ρi−1

)2

, i∈ [1 .. M2 −1]

+∞ , i=0
.

Furthermore, DK+1,i∈[0..M2 −2] =∅ and DK+1,M2 −1 =[0,+∞).
To obtain a general result about the SEP of the quantized receiver,
we use a Nakagami-m fading distribution for |h|. Suppose
|h| ∼Nakagami(m,Ω), then Z = |h|2 ∼Gamma

(
m, Ω

m

)
and

has a probability distribution function (pdf)

fZ(z)=
mmzm−1e−

mz
Ω

Γ(m)Ωm
where Γ(m)=

∫ ∞
0

tm−1e−t
2

dt.

m and Ω are the shape and spread parameters of the distribution,
respectively. We first prove a key lemma that simplifies the
derivation of the SEP of a low-resolution b-bit M -PAM receiver.

Lemma 1. Suppose we define Hm,Ω(b,c,zlo,zhi) as the integral
expression

Hm,Ω(b,c,zlo,zhi)=

∫ zhi

zlo

Q(−c+
√
bz)fZ(z)dz. (7)

Then, Hm,Ω(b,c,zlo,zhi) has an exact finite series representation
given by

when c>0:

Q(−c+
√
bzlo)

Γ
(
m,mΩ zlo

)
Γ(m)

−Q(−c+
√
bzhi)

Γ
(
m,mΩ zhi

)
Γ(m)

−
m−1∑
r=0

2r∑
l=0

(
m
Ωb

)r(2r
l

)
exp
(
− c22

(
2m
Ωb

2m
Ωb +1

))
c2r−lF(uhi,ulo,l)

√
2πr!

(
2m+Ωb

Ωb

)2r−0.5(l−1)

when c=0:

Q(
√
bzlo)

Γ
(
m,mΩ zlo

)
Γ(m)

−Q(
√
bzhi)

Γ
(
m,mΩ zhi

)
Γ(m)

−
m−1∑
r=0

(
m

Ωb+2m

)r√
Ωb

Ωb+2mF(uhi,ulo,2r)
√

2πr!

where

uhi=
−c+

(
2m
Ωb +1

)√
bzhi√

2m
Ωb +1

and ulo=
−c+

(
2m
Ωb +1

)√
bzlo√

2m
Ωb +1

for m∈Z . Γ(m,x)=
∫∞
x
tm−1e−t

2

dt is the upper incomplete
Gamma function. The function F(a,b,l) is

F(a,b,l)=

∫ a

b

ule−
u2

2 du

=


−sgn(u)l+1

[
Γ
(
l+1
2 ,u

2

2

)
2

1−l
2

−
√
π(l−1)!!√

2

]∣∣∣∣a
b

,l is even

−sgn(u)l+1

[
Γ
(
l+1
2 ,u

2

2

)
2

1−l
2

]∣∣∣∣a
b

,l is odd

(8)
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Figure 2. Symbol Error Probability vs. q1 for Ω={0.5,1.0,2.0} and m=1
(2-bit 4-PAM case) (ΩSNR = 10 dB)

for l∈Z and a,b∈R. sgn(·) and (·)!! are signum and double
factorial functions, respectively.

Proof. See Appendix B.

We now derive an exact analytical expression of the SEP
in terms of Hm,Ω(·).

Theorem 1 (Average SEP of Finite-Resolution M -PAM
Receiver). Let qy be the y-th quantization boundary, Es be
the average symbol energy, and σ2 be the noise variance. The
average SEP of a low-resolution b-bit receiver architecture with
M -PAM and Nakagami-m fading is given by

Pe =1− 2

M

2b−1∑
y=1

M
2 −1∑
i=0

{
Hm,Ω

(
SNRi,

√
2qy
σ

,DL
y,i,DU

y,i

)

−Hm,Ω
(
SNRi,

√
2qy−1

σ
,DL
y,i,DU

y,i

)}
,

where SNRi=
2ρ2
iSNR
E2
s

and m∈Z.

Proof. The general expression for the SEP is

Pe(SNR)=1− 2

M

2b−1∑
y=1

M
2 −1∑
i=0

∫
Dy,i

f(y|z,x=ρi)fZ(z)dz︸ ︷︷ ︸
P{correctly detecting x=ρi}

, (9)

where

f(y|z,x=ρi)=Q

(
−
√

2qy
σ

+

√
2zρ2

iSNR

Es

)

−Q
(
−
√

2qy−1

σ
+

√
2zρ2

iSNR

Es

)
.

The integral term in (9) has the same form as (7). Thus, the
average SEP expression can be simplified to an exact finite
series by applying Lemma 1 on equation (9).

While our exact expression in Theorem 1 generalizes only
to integer values of m, equation (9) can be used to numerically
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Figure 3. (a) SEP curve of optimized 2-bit receiver for different m and (b)
corresponding q∗1

compute the SEP for any m ≥ 1
2 . We also point out that

Theorem 1 can be applied to M -PAM receivers without analog
carrier recovery prior to the ADC stage provided they know
Re{h}. The receiver can simply invert the numbering of the
quantization regions whenever Re{h}<0. The analysis above
still holds but |h| is replaced with |Re{h}|, which is still a
Nakagami random variable with lower shape parameter [35, eq.
23a and 23b]. This, however, incurs performance degradation
since the signal energy placed along the quadrature component
due to channel phase rotation is thrown away.

We first investigate how SEP is affected by the quantizer
structure. We consider the simple case of 2-bit 4-PAM receiver
with quantization boundaries {−q1,0,+q1} and constellation
X = {±1,±3}. Figure 2 depicts the SEP of the receiver as a
function of q1 under different spread parameter Ω (here, ΩSNR
is held fixed at 10 dB). The theoretical results are generated
using the analytical expression in Theorem 1. For completeness,
Monte-Carlo simulation is also done following the ML detector in
Proposition 1. It can be observed that a receiver with ill-placed
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quantization boundaries can have worse performance than a
receiver equipped with an optimal quantizer even if the former has
higher Ω than the latter. This emphasizes the importance of proper
quantizer design in communication systems. Moreover, varying
Ω does not change the optimal SEP (denoted as SEP∗) of the
system; just the position of the quantization boundary where this
SEP∗ occurs. Thus, we can limit our analysis of SEP∗ to Ω=1.

The SEP∗ curves under different m and the optimal q1

(denoted as q∗1 ) that produced those curves are shown in Figure
3a and 3b, respectively. q∗1 is obtained numerically using the
gradient-based fmincon() MATLAB function with multiple start
points. We set the objective function to be minimized as the
Pe in Theorem 1. The optimal quantizer in Figure 3b, together
with the ML detector, is used to generate the simulation results.
Lower SEP∗ is observed as the value of the shape parameter m is
increased (i.e. less severe fading). As m increases, q∗1 approaches
the midpoint of +

√
E[|h|2]a and +3

√
E[|h|2]a in the low SNR

regime. This is the optimum ML decision boundary in an AWGN
channel (m→∞). Moreover, it can be seen that the shape
parameter m does not affect the optimal placement of q1 in the
SNR regime where noise is practically negligible. In fact, we will
show in Section IV-A that the optimal quantization boundaries
are affected by Ω but not by m in the noiseless scenario.

Next, we analyze the impact of ADC resolution on the SEP∗

curve when fading is Rayleigh-distributed (m=1). SEP∗ curves
for optimized 2, 3, and 4-bit 4-PAM receivers are plotted in
Figure 4a. Similar to the previous numerical result, fmincon()
is used to identify the optimal set of quantization boundaries
(depicted in Figure 4b). These quantization boundaries are used
to generate the simulation results. The SEP curves when AQNM
assumption is used are also superimposed in Figure 4a for compar-
ison with our analytical model. The expression for these curves is

P (AQNM)
e (SNR)=

M−1

M

(
1−
√

SINR

Es+SINR

)
, (10)

where
SINR=

αEs
σ2+(1−α)Es

.

The values for α are obtained from [25, Table I]. Moreover,
α→1 when b→∞. A gap between our SEP expression and that
of the AQNM assumption is observed in the high SNR regime.
This can be attributed to the limitations of AQNM mentioned in
Section I. From Figure 4a, it can be seen that there is a small loss
in the uncoded error performance at ≤15 dB SNR when only
3-bit quantizer is used but the SEP curve eventually reaches an
error floor when SNR is increased further. Addition of a single
quantization bit allows the receiver to approach the SEP of the
unquantized receiver at 40 dB. Thus, during symbol detection,
it is possible to use few-bit ADCs and significantly reduce
the power consumption with small loss in SEP performance.
However, an SEP floor is still observed at high SNR even if b is
increased further. Given these observations, we dedicate the next
section in examining how the error floor is affected by m and b.

IV. ANALYSIS OF FINITE-RESOLUTION M -PAM RECEIVER
AT INFINITE SNR REGIME

The exact average SEP of the optimum detector for M -PAM
is analyzed in the infinite SNR regime (i.e. when σ2 = 0).

Without loss of generality, Es= 2
M so that

∑M
2 −1
i=0 ρ2

i =1. We
first prove a lemma about the Q function.

Lemma 2. For µA<µB , we have

lim
σ→0

Q

(
x−µB
σ

)
−Q

(
x−µA
σ

)
=

{
1, µA<x<µB

0, otherwise
.

Proof. The proof follows directly from the fact that Gaussian
pdf with mean µ approaches a Dirac-Delta positioned at µ for
arbitrarily small variance and the integral of a Dirac-Delta is
a unit step function.

Applying Lemma 2 on equation (9) and letting Ay,i be the

region
(
q2
y−1

ρ2
i
,
q2
y

ρ2
i

)
gives us

Pe,∞ =1− 2

M

2b−1∑
y=1

M
2 −1∑
i=0

∫
Dy,i∩Ay,i

fZ(z)dz, (11)

where the new decision region Dy,i∩Ay,i is given by (12). Note
that the dependence of (11) on {qy} is only through the integral
bounds

[
D∩A

]
y,i

. We introduce a non-equidistant M -PAM
constellation, Xg(ρ), with symbols

Xg(ρ)={±CρM2 −i}
M
2 −1
i=0 , s.t. C2

M
2∑
i=1

ρ2i=1, ρ<1. (13)

Here, C is a normalizing constant and depends on ρ. As such, the
position of the PAM symbols is controlled solely by the parameter
ρ. We prove an optimality condition about the structure of the
optimum quantizer when the transmitter uses the constellation
Xg(ρ).

Proposition 2 (Optimality Condition of Quantizer at In-
finite SNR Regime for Xg(ρ)). Given Xg(ρ) (described in
equation (13)) and Z∼Gamma

(
m, Ω

m

)
, the quantization bound-

aries {qy}2
b−1−1
y=2 of a b-bit symmetric quantizer should satisfy

q∗y−1

q∗y
=ρ (14)

to be SEP-optimal when σ2 =0.

Proof. See Appendix C.

Proposition 2 can be observed in Figure 4b for the 3-bit and
4-bit case. The adjacent quantization boundaries for the 4-PAM
constellation X ={±1,±3} have ratio qy−1

qy
= 1

3 at high SNR.
The introduction of Xg(ρ) and Proposition 2 will be essential
later in the proofs. For now, we go back to general M -PAM
constellation X and gain some intuition about the behavior of
optimum SEP floor P ∗Me,∞(m,b) with respect to m and b. We
define some functions, fL(m,b) and fU(m,b), such that

fL(m,b)≤P ∗Me,∞(m,b)≤fU(m,b).

For fU(m,b), we assume that the quantization boundaries satisfy

R=
qy
qy−1

= min
i∈[0..M/2−2]

{
ρi+1

ρi

}
. (15)

This relationship is optimal for M = 4 due to Proposition
2 but not for M > 4 and general X . Using this relationship
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Figure 4. (a) SEP∗ vs. SNR for different receiver resolutions b (4-PAM, m=1) and (b) their corresponding
{
q∗y
}2b−1−1

y=1
for the 3-bit and 4-bit case. The

optimal quantizer for 2-bit case and m=1 is already provided in Figure 3b.

of the quantization boundaries, an error occurs whenever |h|
places two or more symbols inside (0,q1) or (q2b−1−1,∞). An
expression for fU(m,b) can be obtained as follows

P ∗Me,∞≤
2

M

[M
2 −2∑
i=0

(
M

2
−1−i

)
P(|h|ρi>q2b−1−1)

+

M
2 −1∑
i=1

iP(|h|ρi<q1)

]

≤ 2

M

[
P

(
Z>

q2
2b−1−1

ρ2
M
2 −2

)M
2 −2∑
i=0

(
M

2
−1−i

)

+P
(
Z<

q2
1

ρ2
1

)M
2 −1∑
i=1

i

]

=

(
M

4
− 1

2

)[
P
(
Z<

q2
1

ρ2
1

)
+P

(
Z>

q2
2b−1−1

ρ2
M
2 −2

)]
(16)

The first line follows from the fact that the error terms with
exactly n symbols inside a quantization region will occur n
times in the expression. The inequality is due to the assumption
on the quantization boundaries. The second line follows from

letting Z= |h|2 and noting that

P
(
Z<

q2
1

ρ2
1

)
=max

i 6=0

{
P
(
Z<

q2
1

ρ2
i

)}
and

P

(
Z>

q2
2b−1−1

ρ2
M
2 −2

)
= max
i 6=M

2 −1

{
P

(
Z>

q2
2b−1−1

ρ2
i

)}
.

The third line follows from evaluating the summation terms.
Equality between P ∗Me,∞(m,b) and fU(m,b) is achieved when
M=4. For fL(m,b), we simply use the expression in (16) but
replace the coefficient

(
M
4 − 1

2

)
with 2

M . That is,

fL(m,b)=
2

M

[
P
(
Z<

q2
1

ρ2
1

)
+P

(
Z>

q2
2b−1−1

ρ2
M
2 −2

)]
. (17)

We consider four scenarios in the remainder of this section.
The analysis on the behavior of the error floor with increasing
b or m when the receiver is equipped with (A) SEP-optimal
quantizer or a (B) uniform quantizer is first presented in Section
IV-A. We then show in Section IV-B that, for M≥4, error floor
can be eliminated by (C) allowing the transmitter and receiver
to jointly optimize the constellation and quantizer. There are
some limitations, however, when (D) joint optimization of
constellation and quantizer is restricted to uniform quantization.

[
D∩A

]
y∈[1..K],i∈[1..M2 −2]

: max

{
qy−1+qy
ρi+ρi+1

,
qy−1

ρi

}2

<z<min

{
qy−1+qy
ρi+ρi−1

,
qy
ρi

}2

(12a)

[
D∩A

]
y∈[1..K],0

: max

{
qy−1+qy
ρ0+ρ1

,
qy−1

ρ0

}2

<z<
q2
y

ρ2
0

(12b)

[
D∩A

]
y∈[1..K+1],M2 −1

:
q2
y−1

ρ2
M
2 −1

<z<min

{
qy−1+qy

ρM
2 −1+ρM

2 −2

,
qy

ρM
2 −1

}2

. (12c)
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A. Optimizing Quantizer for an Equidistant M -PAM
Constellation

In this subsection, we use Xeq(ρ) = {±(2i+1)ρ}
M
2 −1
i=0 for

the constellation of equidistant M -PAM. The parameter ρ
controls the power of the transmitted constellation. To analyze
the error floor behavior, we first define a mathematical notation
for asymptotic equivalence.

Definition 1. We use ∼ax to denote asymptotic equivalence. We
say that

f(x)∼ax g(x)⇐⇒ lim
x→a

f(x)

g(x)
=1. (18)

This definition readily extends to multiple variables. For
example, f(x,y)∼a,bx,y g(x,y)⇐⇒ lim

x→a
lim
y→b

f(x,y)
g(x,y) =1. The next

two theorems establish the asymptotic behavior of the optimum
error floor when equidistant M -PAM constellation is used.

Theorem 2 (b-bit SEP-optimal Non-uniform Quantizer,
Equidistant M -PAM). For any M ≥ 4 equidistant PAM
constellation and sufficiently large b, the SEP floor of a b-bit
M -PAM receiver goes down at an exponential rate with
increasing m and double exponential rate with increasing b
if SEP-optimal quantizer is used. More formally,

P ∗Me,∞(m,b)=O
(

2−[(2b−1)m−b]
)
, (19)

if

b> log2

[
log2

([
M−3

3

]2)
log2

([
M−1
M−3

]) +2

]
+1.

Proof. See Appendix D.

Theorem 3 (b-bit SEP-optimal Uniform Quantizer, Equidis-
tant M -PAM). For any M≥4 equidistant PAM constellation
and sufficiently large b, the SEP floor of a b-bit M -PAM receiver
goes down at an exponential rate with increasing m or increasing
b if optimized uniform quantizer is used. More formally,

P ∗Me,∞(m,b) =O
(
2−2bm

)
, (20)

if

b> log2

(
M−3

3
+1

)
+1.

Proof. See Appendix E.

Remark: The design of the optimal quantizer for the
noiseless fading environment is dependent of the spread Ω and
ADC resolution b but is independent of the shape m (See (43)
and (47)). This is consistent with what was observed in Figure
3b. However, the lowest achievable SEP becomes dependent
of m and b but is independent of Ω.

One notable difference between the two theorems is how the
error floor behaves with the number of quantization bits. To
illustrate this, the lowest achievable SEP floors of the optimum
4-PAM receiver for different m are plotted as a function of the
ADC resolution b in Figure 5a. Equations (42) and (46) are used
to generate the results for non-uniform and uniform quantizer,
respectively. Note that fU(m,b) coincides with fL(m,b) for
M = 4 so these plots are exact. A performance measure for

quantized systems with error floor was introduced in [34] which
relates the outage performance of the receiver to the number
of its quantization bits. This measure is given by

DQ= lim
b→∞

− log2Pe,∞(b)

b
, (21)

where Pe,∞(b) is the error probability as a function of b
in the noiseless case. Analyzing the asymptotic behavior of
SEP-optimal non-uniform and uniform quantization gives us
DQ values of +∞ and 2m, respectively. While increasing b
lowered the error floors for both SEP-optimal uniform and
non-uniform quantization, larger improvements are observed in
the latter due to the double exponential dependence of the SEP
floor on quantization bits. This improvement, however, is not
captured by the DQ metric proposed in [34] which hints about
the limited applicability of the said metric. Figure 5b depicts
the lowest achievable SEP floor of optimum 4-PAM receiver
for different ADC resolutions as a function of shape parameter
m. log(Pe,∞) has a downward sloping trend to an increase in
m. The slope becomes steeper when higher ADC resolution is
employed and/or when there is a design shift from uniform to
non-uniform quantizer. In fact, in terms of error floor reduction
in the 4-PAM case, a 4-bit SEP-optimal non-uniform quantizer
even outperforms a 10-bit SEP-optimal uniform quantizer.

B. Joint Optimization of Quantizer and M -PAM Constellation

We saw in the previous subsection that error floor cannot be
eliminated with finite ADC resolution and fixed constellation. Can
we do better if statistical CSI is granted at the transmitter? We
assume that the transmitter can adjust its constellation X based
on the statistics of the channel under the constraint

∑M
2 −1
i=0 ρ2

i =1.
We prove the following lemmas about the SEP of b-bit M -PAM
receiver under this scenario. Lemma 3 states that the error
floor of finite-resolution M -PAM equipped with SEP-optimal
quantizer can be removed if 2b >M −2. On the other hand,
Lemma 4 says that if we confine the quantizer to have a uniform
structure, we can remove the error floor for M=4 and b>1.

Lemma 3. Suppose PMe,∞(m,b,q(ρ),X (ρ)) is the SEP of b-bit
M -PAM receiver when the channel is subjected to Nakagami-m
fading at infinite SNR regime (σ2 =0). The quantization bound-
aries, q(ρ), and M -PAM constellation, X (ρ), are dependent
on some parameter ρ>0. Then, for any ε>0 and 2b>M−2,
there exists δ>0, X (ρ), q(ρ) such that ρ<δ and PMe,∞(·)<ε.

Proof. Consider the constellation Xg(ρ) given in (13). The
optimal quantization boundaries should satisfy Proposition 2.
Thus, qyρy−1 =q1 and we only need to optimize on q1. Then,
PMe,∞ can be upper bounded by equation (16).

PMe,∞≤
(
M

4
− 1

2

)[
P
(
Z<

q2
1

C2ρM−2

)
+P
(
Z>

q2
1

C2ρ2b

)]

=

(
M

4
− 1

2

)γ(m,mΩ q2
1

C2ρM−2

)
+Γ
(
m,mΩ

q2
1

C2ρ2b

)
Γ(m)

, (22)
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Figure 5. SEP Floor of Optimal Quantizer vs. (a) ADC resolution b and (b) Shape Parameter m (4-PAM)

where γ(m,x)=
∫ x

0
tm−1e−t

2

dt is the lower incomplete gamma
function. The upper bound of PMe,∞ can be set to an arbitrarily
small value if we can find a function q1(ρ)>0 such that

lim
ρ→0

q2
1(ρ)

C2ρM−2
=0 and lim

ρ→0

q2
1(ρ)

C2ρ2b
=∞.

A solution exists if lim
ρ→0

ρM−2−2b =∞ which is satisfied when

2b>M−2. One such family of functions is q1(ρ) =
√
C2ρa

where a∈(M−2,2b).

Lemma 4. Suppose PM,unif
e,∞ (m,b,∆q(ρ),X (ρ)) is the SEP of

M -PAM receiver equipped with b-bit uniform quantizer when
the channel is subjected to Nakagami-m fading at infinite
SNR regime (σ2 =0). The quantization step, ∆q(ρ), and PAM
constellation, X (ρ), are dependent on some parameter ρ>0.
Then, for any ε>0, M=4, and b>1, there exists δ>0, X (ρ),
∆q(ρ) such that ρ<δ and P 4,unif

e,∞ (·)<ε.
Proof. Consider the constellation Xg(ρ) given in (13).
Following the approach in Lemma 3, an upper bound of the
error probability of SEP-optimal uniform quantization is

PM,unif
e,∞ ≤

(
M

4
− 1

2

)[γ(m,m ∆2
q

C2ρM−2

)
Γ(m)

+

Γ

(
m,m

(2b−1−1)2∆2
q

C2ρ4

)
Γ(m)

]
. (23)

The upper bound of PM,unif
e,∞ can be set to an arbitrarily small

value if we can find a function ∆q(ρ)>0 such that

lim
ρ→0

∆2
q(ρ)

C2ρM−2
=0 and lim

ρ→0

(2b−1−1)2∆2
q(ρ)

C2ρ4
=∞,

and a solution exists if lim
ρ→0

ρM−6 =∞ which is satisfied when

M<6. Since we are considering M≥4 is a power of 2, this
is satisfied by 4-PAM and 2b−1−1>0 (or b>1).

Although we proved that the SEP can be made arbitrarily
small for M=4 in the uniform quantizer case, we conjecture
that error floor will be present when M>4. Nonetheless, we
analyze in the next section the decay exponent of SEP-optimal
uniform quantization if M=4.

Throughout this section, we have only discussed optimum
quantization and error floors at infinite SNR regime. The
following corollary about ρ extends Lemma 3 and Lemma
4 to high SNR regime with finite SNR. To be more precise, we
can have a vanishing error probability at arbitrarily small σ if
the parameter ρ in Lemma 3 and 4 is also made arbitrarily small.

Corollary 1. Suppose PMe (m,b,q(ρ),X (ρ),σ) and
PM,unif
e (m,b,q(ρ),X (ρ),σ) are the SEP of b-bit M -PAM

receiver at high SNR regime (arbitrarily small σ) for non-uniform
and uniform quantization, respectively. Then, for any ε>0 and
2b>M−2, there exists δ>0, X (ρ), q(ρ) such that

√
ρ2+σ2<

δ and PMe,∞(·)<ε. Similarly, for any ε>0 and b>1, there exists
δ>0, X (ρ), ∆q(ρ) such that

√
ρ2+σ2<δ and P 4,unif

e,∞ (·)<ε.
Proof. Since our SEP expression for finite SNR given in Theo-
rem 1 is a continuous function, then assuming that the corollary
does not hold will contradict Lemma 3 and Lemma 4.

V. IMPACT OF QUANTIZATION ON DIVERSITY ORDER OF
M -PAM:THE CASE OF STATISTICAL CSIT

We have shown the existence of an irreducible SEP floor with
ML detection of equidistant M -PAM transmission with CSIR and
having knowledge of statistical CSI at the transmitter can elim-
inate this SEP floor by allowing it to optimize the constellation.
In this section, we analyze the decay exponent of finite-resolution
M -PAM receiver with jointly-optimized constellation and quan-
tizer for a Nakagami-m fading channel. Without loss of generality,
we restrict our analysis to Ω=1. The decay exponent is defined as

DVO=− lim
SNR→∞

logPe(SNR)

logSNR
= lim
σ2→0

logPe
(

1
σ2

)
logσ2

. (24)

We use the term DVO to denote diversity order, which is the
asymptotic slope of the error probability as a function of SNR.



9

Decay exponent and diversity order is used interchangeably
in this paper. In addition, we use the special symbol .

=
to denote exponential equality, a concept introduced in
Diversity-Multiplexing Trade-off (DMT) analysis [36]. We say
that f(SNR)

.
=SNRb (or f

(
1
σ2

) .
=
(

1
σ2

)b
) if

lim
SNR→∞

logf(SNR)

logSNR
=b ⇐⇒ lim

σ2→0

logf
(

1
σ2

)
logσ2

=−b.

The transmitter sends symbol x ∈ X = {±ρi}
M
2 −1
i=0 and its

knowledge of statistical CSI allows it to strategically allocate
energy. Before we head straight to the derivation of the decay
exponent, we first present two key properties of exponential
equality. Lemmas 5.i and 5.ii show the summation property and
scaling invariance property of exponential equality, respectively.

Lemma 5. Suppose we have f(SNR)
.
= SNRd and

fi(SNR)
.
=SNRdi . Then,

(i)
N∑
i=1

fi(SNR)
.
=SNRdmax , where dmax= max

i∈[1,N ]
di

(ii) For any α>0, αf(SNR)
.
=SNRd

Proof. See proof of [33, Lemma 2]

Using the properties of exponential equality stated in Lemma
5, we reduce the exact SEP to a simpler but exponentially
equivalent expression in Lemma 6. We then present a function
f0

(
1
σ2 ,ρ(σ),A,B,C

)
in Lemma 7 which has a DVO expressed

in terms of A,B, and C.

Lemma 6. Let PMe
(

1
σ2

)
be the error probability of M -PAM

with constellation {±ρi}
M
2 −1
i=0 (where |ρi| < |ρi+1|) over

Nakagami-m fading, where m≥ 1
2 . Then,

PMe

(
1

σ2

)
.
=

[
σ2

ρ2
0

]m
+

M
2 −1∑
i=0

M
2 −1∑

n=0,n6=i
P(x̂=+ρn|x=+ρi).

Proof. To prove this, we expand the SEP expression as follows

PMe

(
1

σ2

)
=

2

M

M
2 −1∑
i=0

P(x̂ 6=+ρi|x=+ρi)

=
2

M

M
2 −1∑
i=0

[
P(y≤0|x=+ρi)

+

M
2 −1∑

n=0,n6=i
P(x̂=+ρn|x=+ρi)

]

.
=

M
2 −1∑
i=0

[
σ2

ρ2
i

]m
+

M
2 −1∑
i=0

M
2 −1∑

n=0,n6=i
P(x̂=+ρn|x=+ρi),

(25)

where we used the asymptotic SEP expression of a BPSK
system {−ρi,+ρi} over Nakagami-m fading at high SNR [37]
for P(y≤0|x=ρi). This substitution is valid since an error is
committed in a BPSK system if the received signal falls in the
negative region given the positive symbol is transmitted. This
corresponds to an ADC output y≤0. The coefficients of each

term in the right-hand side are dropped due to Property (ii)
of Lemma 5. To simplify the first summation term, we observe
the relative growth of ρ0 compared to symbol ρi, i>0.

lim
σ2→0

[
ρ2
i

mσ2

]−m
[
ρ2

0

mσ2

]−m =

[
ρ2

0

ρ2
i

]m
.

Since 0<ρ0<ρi, then
[
ρ2

0

ρ2
i

]m
is finite. Using Lemma 5.i on

(25) completes the proof.

Lemma 7. Suppose we have a function f0

(
1
σ2 ,ρ(σ),A,B,C

)
defined as

f0

(
1

σ2
,ρ(σ),A,B,C

)
=

[
σ2

{ρ(σ)}B
]C

+{ρ(σ)}A (26)

for some A,B,C,σ>0, and ρ(σ)>0 is a function that depends
on σ. Then,

(i) lim
σ→0

ρ∗2(σ)

σ2
=∞

(ii) f0

(
1

σ2
,ρ∗(σ),A,B,C

)
.
=

[
1

σ2

]− AC
A+BC

if C <A+BC. ρ∗(σ) is the optimum choice of ρ for some
value of σ.

Proof. For simplicity of notation, we refer to
f0

(
1
σ2 ,ρ(σ),A,B,C

)
as f0(·). We can get an expression

that relates σ2 and the optimum ρ by differentiating f0(·) with
respect to ρ and equating the result to 0. That is,

∂f0(·)
∂ρ

=0=−BC
ρ

[
σ2

ρB

]C
+AρA−1,

which implies that

ρ∗(σ)=

[
BC

A

] 1
A+BC [

σ2
] C
A+BC (27)

It can be observed that the function ρ∗(σ) decreases as σ
decreases. Moreover,

lim
σ→0

ρ∗2(σ)

σ2
= lim
σ→0

[
BC

A

] 1
A+BC [

σ2
] C
A+BC−1

=∞

since C
A+BC < 1. This proves claim (i). Substituting the

expression of ρ∗(σ) in f0(·) gives

f0

(
1

σ2
,ρ∗(σ),A,B,C

)
=

[
A

BC

] C
A+BC

[
1

σ2

]− AC
A+BC

+

[
BC

A

] A
A+BC

[
1

σ2

]− AC
A+BC

.
=

[
1

σ2

]− AC
A+BC

, (28)

where the last line is obtained using Lemma 5.i and 5.ii. This
completes the proof of claim (ii).

Theorem 4 and Theorem 5 describe the diversity order of a
b-bit M -PAM receiver. The former is for SEP-optimal quantizer
and the latter is when we restrict the quantizer structure to
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Figure 6. (a) Optimum SEP of low-resolution 4-PAM receiver with joint quantizer and constellation optimization. Theoretical DVO values are also shown
in the plot. (b) Numerically-computed quantizer and constellation for non-uniform 2-bit, 3-bit ADCs.

be uniform. In this context, an optimized constellation and
quantizer minimizes SEP. While we are only able to show that
uniform quantization can only eliminate error floor for M=4,
the DVO for the 4-PAM case is still derived for comparison
with the SEP-optimal quantizer.

Theorem 4 (DVO of Jointly-optimized Constellation and
Non-uniform Quantizer). Suppose the transmitter can
optimize the constellation using statistical CSI. Then, the decay
exponent of a b-bit M -PAM receiver equipped with SEP-optimal
quantizer is

DVO=m
2b−M+2

2b
(29)

for Nakagami-m fading and 2b>M−2.

Proof. See Appendix F.

Theorem 5 (DVO of Jointly-optimized Constellation and
Uniform Quantizer). Suppose the transmitter can optimize
the constellation using statistical CSI. Then, the decay exponent
of a b-bit 4-PAM receiver equipped with optimized uniform
quantizer is

DVO=
m

2
(30)

for Nakagami-m fading and b≥2.

Proof. See Appendix G.

Figure 6a depicts the SEP∗ curves of the 4-PAM receiver
with optimized constellation and quantizer for different ADC
resolutions and m = 1. The SEP∗ curves are obtained by
numerically optimizing {ρ}M/2−1

i=0 and {qy}y=2b−1−1
y=1 in

the SEP expression given in Theorem 1 using MATLAB’s
fmincon(). The numerically-computed settings of the quantizer
and constellation are shown in Figure 6b3. For the uniform

3We omit the plots of the quantizer and constellation for the other cases
due to page limitation.

quantizer case, we simply optimize over a single parameter ∆q

and replace qy with y∆q . While no error floor is observed in
this case, the SEP∗ decays slower for low-resolution receivers
as we increase SNR. These decay exponents are given by (29)
and (30) in Theorem 4 and Theorem 5, respectively. Equation
(29) shows a trade-off between DVO and M for fixed number
of quantization bits. In addition, we see that an SEP-optimal
uniform quantizer has a fixed DVO for all ADC resolutions in
Figure 6a unlike the non-uniform quantizer case which gradually
approaches the DVO of unquantized receiver as b is increased.
Even the 10-bit SEP-optimal uniform quantizer eventually gets
a DVO of 1

2 at high SNR values. However, despite sharing the
same DVO, the performance gain in using more quantization bits
manifests as power offset at high SNR. We also see that ρ∗0→0
as SNR→∞ in Figure 6b. This is consistent with Corollary 1.

The above result gives further merit to the use of non-uniform
quantization in low-resolution receiver designs. This result is
also particularly useful for low-resolution M -PAM receivers
since they start to approach the error floor within practical
range of SNR values. Using statistical CSI to optimize the
constellation eliminates this error floor albeit at a lower decay
exponent. A system designer may opt to trade off reliability
to reduce the power consumption. Finally, we note that unlike
phase-quantized PSK receivers which achieve full diversity with
sufficient quantization bits [33], the DVO of finite-resolution
PAM receivers is strictly less than m.

VI. DIVERSITY ORDER OF QUANTIZED SIMO FADING
CHANNELS

Given the diversity order results in Theorems 4 and 5, we now
ask the following question: Do diversity gains from increasing
the number of antennas and quantization bits cumulate? We
briefly discuss the complementary roles of the number of receive
antennas and the number of quantization bits in improving
the diversity order of the system. We consider an extension
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Figure 7. Simulated SEP∗ curve of optimized 4-PAM receiver with
Nr = {1,2,3} antennas, b = {2,3}-bits, and i.i.d. Rayleigh fading (m = 1).
The constellation and quantizer used in the simulation are given in Figure 6b.

of the receiver in Figure 1 to the multiple antenna case. The
receiver is equipped with Nr receiver chains and the i-th ADC
takes the (phase-adjusted) signal Re{r′i}= |hi|x+Re{wi} as
input and produces the quantized observation yi. In this model,
Re{wi} ∼ N (0,σ2/2) is the noise at the i-th receiver chain
and |hi| is the Nakagami-distributed amplitude fading at the
i-th receiver chain. We further assume that the transmitter can
optimize its constellation using statistical CSI and the receiver
chains are equipped with identical SEP-optimal quantizers.
This assumption is reasonable in an i.i.d. fading environment.
With channel realizations known at the receiver, the goal of
the detector is to reliably recover the transmitted symbol from
the quantized observations y=[y1,···,yNr ].

Suppose the transmitter uses Xg in (13) and each quantizer
is designed based on Proposition 2. In the infinite SNR regime,
an error occurs if, for all receiver chains, |hi| placed two or
more symbols inside (0,q1) or (q2b−1−1,∞). Equivalently, the
SEP∗ at this regime can be upper bounded by

PM,Nr
e,∞ ≤

{(
M

4
− 1

2

)[γ(m,mΩ q2
1

C2ρM−2

)
Γ(m)

+
Γ
(
m,mΩ

q2
1

C2ρ2b

)
Γ(m)

]}Nr
, (31)

which can be made arbitrarily small with our choice of
constellation and quantizer structure. This comes from extending
equation (22) in the proof of Lemma 3 to Nr antennas. Following
the approach in the proof of Theorem 4, the SEP of the
multi-antenna M -PAM receiver with optimal b-bit quantization
(denoted as PM,Nr

e ) can be shown to be exponentially equal to

PM,Nr
e

(
1

σ2

)
.
=

[
σ2

ρM−2

]mNr
+ρmnNr , (32)

where n=2b−M+2, and 2b>M−2. The first term of (32) is
obtained from the asymptotic SEP of maximum ratio combining

(MRC) receiver over Nr i.i.d. Nakagami-m fading channels
[38] while the second term of (32) comes from the fact that
(31) is asymptotically equal to ρmnNr up to a scaling factor for
arbitrarily small ρ. By Lemma 7, the diversity order of (32) is

DVO=mNr
2b−M+2

2b
, if 2b>M−2. (33)

Thus, under the i.i.d assumption, the diversity gains from
increasing the quantization bits and increasing the number of
receive antennas cumulate. We demonstrate this property in
Figure 7. The simulated results are generated using the PAM
constellation and quantizer structure given in Figure 6b. The
receiver uses the ML rule

x̂∗= argmax
x∈X

Nr∏
n=1

{
Q

(
qyn−1−|hn|x√

σ2/2

)
−Q

(
qyn−|hn|x√

σ2/2

)}
to recover the transmitted symbol. Huge improvement in
the DVO of the SEP∗ curve is observed when both antenna
elements and quantization bits are increased simultaneously.

Before we conclude this section, we would like to emphasize
the significance of this result. That is, we were able to show
that the conventional definition of diversity order may still be a
sensible metric in some fading scenarios involving low-resolution
quantized receivers. This is not obvious in simplified analytical
models due to the existence of irreducible quantization noise
that causes an error floor. Extension of this result to the MIMO
case is also worth investigating. Can we show the existence/non-
existence of space-time codes and quantizer structure for MIMO
systems that achieve a non-vanishing diversity order? Existence
of such codes with unity code rate has been established in [39]
for a 2×2 MIMO system with 1-bit output through exhaustive
search. However, this has not been generalized to multi-bit
quantization or to more than two antennas.

VII. CONCLUSION

In this work, we analyzed the error rate of M -PAM receivers
subjected to fading and b-bit quantization. Optimum decision
rule and exact SEP expression for b-bit receiver subjected to
Nakagami-m fading were derived. By optimizing the quantization
boundaries under the minimum SEP criterion, we showed that
the SEP of unquantized M -PAM case be approached by a finite-
resolution receiver for up to some SNR value but eventually
reaches an error floor. This error floor goes down at a double
exponential rate as we increase the resolution of the SEP-optimal
quantizer and at an exponential rate as we increase m. We
proved that this trend holds for M≥4. The SEP floor analysis
is particularly interesting from a theoretical perspective since
it presents fundamental limits of a quantizer in doing symbol
detection. We also proved that the error floor can be eliminated
by allowing the transmitter to shape the constellation depending
on the statistical CSI. Characterization of the decay exponent
of jointly-optimized M -PAM constellation and quantization
revealed that a finite-resolution receiver has lower decay exponent
than its unquantized counterpart. The decay exponent can be
improved by increasing the number of quantization bits of the
SEP-optimal non-uniform quantizer. We also demonstrated the
complementary roles of quantization bits and number of antenna
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TABLE I
SUMMARY OF OUR MAIN RESULTS FOR DIFFERENT QUANTIZER STRUCTURES AND SCENARIOS

Equidistant M -PAM Constellation Optimized M -PAM Constellation

SEP-optimal Non-uniform
Quantization with b-bits

P ∗Me,∞(m,b)=O

(
2
−
[
(2b−1)m−b

])
if b> log2

[ log2

([
M−3

3

]2)
log2

([
M−1
M−3

]) +2
]
+1

DVO = m 2b−M+2
2b

, for 2b>M−2

SEP-optimal Uniform
Quantization with b-bits

P ∗Me,∞(m,b)=O
(
2−2bm

)
if b> log2

(
M−3

3
+1
)

+1
DVO = m

2
, for M =4

elements in improving the decay exponent. For the case of SEP-
optimal uniform quantization, we only proved that the error floor
can be eliminated for M =4 and the decay exponent is fixed
for any finite b≥2. These results are summarized in Table I.

It is worth mentioning that while only SISO and SIMO
M -PAM is considered in this work, the study provides an
insightful analytical approach on how to investigate the exact
error performance of a communication system equipped with
SEP-optimal quantizer over a fading channel. This work also
gives a link between the actual structure of the multi-bit amplitude
quantizer and the average symbol error rate of the communication
link over a fading environment which, to the best of our
knowledge, is still missing in the literature. This connection
is not apparent in simplified analytical models for quantized
receivers such as AQNM. We only considered coherent M -
PAM in this study to get some insights on the structure of
SEP-optimal quantizer in one-dimensional case but design of
optimal detectors and quantizers for complex-valued modulation
schemes is currently being investigated. For instance, we can
combine our result with that of [33] to investigate the SEP∗

performance of amplitude-phase shift keying (APSK)4 receiver
equipped with low-resolution polar quantizers. Our analysis of
the multiple antenna case simply considered independent fading.
The impact of antenna correlation on the optimal quantization
and detection strategy is worth studying. Lastly, It is also of
interest to analyze the capacity limits of such channel and design
quantizer and signaling schemes for coded systems.

APPENDIX A
PROOF OF PROPOSITION 1

Suppose we received some value y and we are to choose
between two symbols xA and xB . Then, the ML detector will
choose xA if

Q

(
qy−1−|h|xA√

σ2/2

)
−Q

(
qy−|h|xA√

σ2/2

)

>Q

(
qy−1−|h|xB√

σ2/2

)
−Q

(
qy−|h|xB√

σ2/2

)
. (34)

Let x̃=xA−xB , ∆y = qy−qy−1, zA = |h|xA−qy+
∆y

2 , and
zB=qy−1−|h|xB+

∆y

2 . We can then express the decision rule

4In some text, this modulation scheme is also known as star-QAM

of ML detector as follows

Q

(
zB−∆y

2 −|h|x̃√
σ2/2

)
−Q

(
zB+

∆y

2 −|h|x̃√
σ2/2

)

>Q

(
zA−∆y

2 −|h|x̃√
σ2/2

)
−Q

(
zA+

∆y

2 −|h|x̃√
σ2/2

)
Define the function f(z) as

f(z)=Q

(
z−∆y

2 −|h|x̃√
σ2/2

)
−Q

(
z+

∆y

2 −|h|x̃√
σ2/2

)
, (35)

which has a maximum and is symmetric at z= |h|x̃. Its derivative,
f ′(z), is strictly positive (negative) for z < |h|x̃ (z > |h|x̃).
Thus, f(z) is higher as we go closer to z= |h|x̃. Equivalently,

f(zB)>f(zA)⇐⇒
∣∣zB−|h|x̃∣∣< ∣∣zA−|h|x̃∣∣,

which simplifies to∣∣∣∣qy−1+
∆y

2
−|h|xA

∣∣∣∣< ∣∣∣∣(qy−∆y

2

)
−|h|xB

∣∣∣∣. (36)

Note that qy−1 +
∆y

2 = qy− ∆y

2 = middle of the (qy−1,qy). If
qy=+∞, the detection rule is

Q

(
qy−1−|h|xA√

σ2/2

)
>Q

(
qy−1−|h|xB√

σ2/2

)
(37)

and the inequality holds if xA>xB because Q(·) is a monotic
decreasing function. This can be interpreted as choosing the
symbol closest to +∞. Similar argument can be used for
choosing the closest symbol to −∞ when qy−1 =−∞.

APPENDIX B
PROOF OF LEMMA 1

We marginalize Z ∼ Gamma
(
m, Ω

m

)
of Q(−c+

√
bz) for

some interval (zlo,zhi). Suppose we define tlo = −c+
√
bzlo,

thi =−c+
√
bzhi. Hm,Ω(b,c,zlo,zhi) becomes

Q(tlo)
Γ
(
m,mΩ zlo

)
Γ(m)

−Q(thi)
Γ
(
m,mΩ zhi

)
Γ(m)

−
∫ thi

tlo

e−
t2

2 Γ
(
m,mΩ

(t+c)2

b

)
√

2πΓ(m)
dt (38)

Since we limit our analysis to m∈Z, We can use the following
finite series representation

Γ
(
m,mΩ

(t+c)2

b

)
Γ(m)

=

m−1∑
r=0

(
m
Ω

(t+c)2

b

)r
r!

e−
m
Ω

(t+c)2

b (39)
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which is based from [40, eq. 5]. We consider two cases in our
analysis of the last integral term.
Case A (c=0): The integral term in (38) simplifies to

m−1∑
r=0

(
m
Ωb

)r
√

2πr!

∫ thi

tlo

t2re−
t2

2 ( Ωb+2m
Ωb ) dt

=

m−1∑
r=0

(
m

Ωb+2m

)r
√

2πr!

√
Ωb

Ωb+2m

∫ uhi

ulo

u2re−
u2

2 du, (40)

where we let u =
√

Ωb+2m
Ωb t, ulo =

√
Ωb+2m

Ωb tlo, and

uhi =
√

Ωb+2m
Ωb thi. The closed-form of the integral in the last

line of (40) is given in (8). Results in (38), (40), and (8) are
then combined to get the expression in Lemma 1 for c=0.
Case B (c>0): Suppose we let d= 2m

Ωb , u=
√
d+1t+ dc√

d+1
,

ulo =
√
d+1tlo + dc√

d+1
and uhi =

√
d+1thi +

dc√
d+1

. Then, the
integral in (38) simplifies to

m−1∑
r=0

(
d
2

)r
√

2πr!

∫ thi

tlo

(t+c)2re
− 1

2

(
t2+ 2m

Ω
(t+c)2

b

)
dt

=

m−1∑
r=0

(
d
2

)r
e−

dc2

2(d+1)

(
c

d+1

)2r

√
2πr!
√
d+1

∫ uhi

ulo

(√
d+1u

c
+1

)2r

e−
u2

2 du

=

m−1∑
r=0

2r∑
l=0

(
d
2

)r
e−

dc2

2(d+1)

(
c

d+1

)2r(
2r
l

)(√
d+1
c

)l
√

2πr!
√
d+1

∫ uhi

vlo

ule−
u2

2 du

(41)

The second line is obtained from the change of variable. The third

line is obtained by using binomial theorem on
(√

d+1u
c +1

)2r

(since 2r is an integer). By combining the results in (38), (8),
and (41), we obtain the expression in Lemma 1 for c>0.

APPENDIX C
PROOF OF PROPOSITION 2

Suppose q∗1 is known. The region
[
D∩A

]
1,i

is fixed for all
i. Since supp(Z) = [0,∞) and the dependence of (11) on the
quantization boundaries is only through the integration bounds[
D ∩ A

]
y,i

, choosing a set {q′y}2
b−1−1
y=2 that simultaneously

maximizes the range of
[
D∩A

]
y,i

for all i and y∈ [2 ..2b−1−1]
also maximizes the second term in (11). Consequently, Pe,∞ is
minimized and {q′y}2

b−1−1
y=2 ={q∗y}2

b−1−1
y=2 . Note, however, that

the range of
[
D∩A

]
y,i

for all i and y∈ [2 ..2b−1−1] cannot
always be simultaneously maximized for general X . In the
special case where X =Xg(ρ), the region

[
D∩A

]
y,i

given in
(12a) can be expressed as

max
{
qy−1+qy

1+ 1
ρ

,qy−1

}2

C2ρM−2i
<z<

min
{
qy−1+qy

1+ρ ,qy

}2

C2ρM−2i
.

By inspecting the upper and lower bound of
[
D∩A

]
y,i

, we see
that the region is largest ∀i∈ [1 .. M2 −2] and ∀y∈ [2 ..2b−1−1]
when qy−1

qy
=ρ. This result also holds for (12b) and (12c). Thus,

the optimal set of quantization boundaries for Xg(ρ) should
satisfy (14).

APPENDIX D
PROOF OF THEOREM 2

For an equidistant M -PAM, we have R = M−1
M−3 . We let

qy=q1(R)
y−1 to get the upper bound

fU(m,b)=

(
M

4
− 1

2

)[
P
(
Z<

q2
1

ρ2
1

)
+P

(
Z>

q2
1(R)

2b−4

ρ2
M
2 −2

)]

=

(
M
4 − 1

2

)
Γ(m)

[
γ

(
m,
m

Ω

q2
1

ρ2
1

)
+Γ

(
m,
m

Ω

q2
1(R)

2b−4

ρ2
M
2 −2

)]
.

(42)

The last line is obtained from the CDF of Z∼Gamma(m,m/Ω).
Optimum q1 is obtained by differentiating (42) with respect
to q1 and equating the result to 0. Doing this gives us

q∗1 =

√√√√ Ωρ2
1ρ

2
M
2 −2

ρ2
1R

2b−4−ρ2
M
2 −2

ln

(
ρ2

1R
2b−4

ρ2
M
2 −2

)
, (43)

and the optimum value of the upper bound fU(m,b) is

fU(m,b)=

(
M
4 − 1

2

)
Γ(m)

[
γ

(
m,

mρ2
M
2 −2

ρ2
1R

n−ρ2
M
2 −2

ln

(
ρ2

1R
n

ρ2
M
2 −2

))

+Γ

(
m,

mρ2
1R

n

ρ2
1R

n−ρ2
M
2 −2

ln

(
ρ2

1R
n

ρ2
M
2 −2

))]
,

where we let n= 2b−4. Suppose there is sufficiently large b
such that

R2b−4>

(
ρ2
M
2 −2

ρ2
1

)2

,

or equivalently,

b> log2

[
log2

(
ρ2
M
2 −2

)
−log2

(
ρ2

1

)
log2(R)

+2

]
+1. (44)

Then, fU(m,b) is asymptotically equivalent to

fU(m,b)∼∞,∞m,n

(
M
4 − 1

2

)
Γ(m)

[
γ

(
m,m

ρ2
M
2 −2

ρ2
1R

n
ln

(
ρ2

1R
n

ρ2
M
2 −2

))

+Γ

(
m,mln

[
ρ2

1R
n

ρ2
M
2 −2

])]

∼∞,∞m,n

(
M

4
− 1

2

)
m−

1
2 em−1

√
2π

{
ρ2
M
2 −2

ρ2
1R

n

}m

×
{

ln

[
ρ2

1R
n

ρ2
M
2 −2

]}m−1{
ln

[
ρ2

1R
n

ρ2
M
2 −2

]
+1

}

=O

(
2b−1m−

1
2 2m

R2bm

{
ln

[
1

R

]}m)
=O

(
2−[(2b−1)m−b]

)
(45)

The second line comes from the limiting behavior of the upper
and lower incomplete Gamma functions [41] (i.e. Γ(a,x)∼∞x
xa−1e−x and γ(a,x)∼0

x
xa

a ) and Stirling’s approximation of
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the factorial function. The third line is obtained by representing
the asymptotic behavior in terms of Big-O notation and noting
that n ∼∞b 2b. It is straightforward to show that fL(m,b) is
asymptotically equivalent to fU(m,b) up to a scaling factor.
Thus, P ∗Me,∞(m,b) also follows the same asymptotic behavior.

APPENDIX E
PROOF OF THEOREM 3

We can think of an SEP-optimal uniform quantizer as a
special case of SEP-optimal quantization which has a constraint
∆q=qy−qy−1 ∀y∈ [1 ..2b−1−1]. We use qy=y∆q for the y-th
quantization boundary. The proof of Theorem 3 follows a similar
approach to that of Theorem 2. Using uniform quantization
and the CDF of Z∼Gamma(m,m/Ω), (16) specializes to

fU(m,b)=

(
M

4
− 1

2

)[γ(m,mΩ ∆2
q

ρ2
1

)
+Γ

(
m,mΩ

(2b−1−1)2∆2
q

ρ2
M
2

−2

)
Γ(m)

]
.

(46)

The optimal quantization step, ∆∗q , obtained by differentiating
(46) and equating the result to 0, is

∆∗q =

√√√√√ Ωρ2
1ρ

2
M
2 −2

ρ2
1(2b−1−1)2−ρ2

M
2 −2

ln

(ρ1(2b−1−1)

ρM
2 −2

)2
. (47)

If there is sufficiently large b such that

(2b−1−1)2>

(
ρM

2 −2

ρ1

)2

⇒ b> log2

(
ρM

2 −2

ρ1
+1

)
+1, (48)

then the asymptotic behavior of (46) for increasing m and b is

fU(m,b)∼∞,∞m,n

(
M
4 − 1

2

)
Γ(m)

[
γ

(
m,2m

ρ2
M
2 −2

n
ln

(
ρ1n

ρM
2 −2

))

+Γ

(
m,2mln

(
ρ1n

ρM
2 −2

))]

∼∞,∞m,n

(
M

4
− 1

2

)
m−

1
2 {2e}m−1

√
2π

{
ρM

2 −2

n

}2m

×
{

ln
ρ1n

ρM
2 −2

}m−1{
ln

ρ1n

ρM
2 −2

+
1

ρ2m
1

}
=O

(
2−2bm

)
(49)

where we let n= 2b−1−1 and used ∆∗q . Second line comes
from the limiting behavior of the upper and lower incomplete
Gamma functions [41] and Stirling’s approximation of the
factorial function. The third line is obtained by representing
the asymptotic behavior in terms of Big-O notation and
that n ∼∞b 2b. It is straightforward to show that fL(m,b) is
asymptotically equivalent to fU(m,b) up to a scaling factor.
Thus, P ∗Me,∞(m,b) also follows the same asymptotic behavior.

APPENDIX F
PROOF OF THEOREM 4

Suppose we use the M -PAM constellation in (13). By
Corollary 1, we proved that SEP can be reduced to zero if
2b>M−2. We start the proof with Lemma 6.

PMe

(
1

σ2

)
.
=

[
σ2

ρ2
0

]m
+

M
2 −1∑
i=0

M
2 −1∑

n=0,n6=i
P(x̂=+ρn|x=+ρi)︸ ︷︷ ︸

primarily affected by fading as σ2→0

.
=

[
σ2

C2ρM

]m
+κ

γ
(
m,

mq2
1

C2ρM−2

)
+Γ
(
m,

mq2
1

C2ρ2b

)
Γ(m)

.
=

[
σ2

C2ρM

]m
+
γ
(
m,

mq2
1

C2ρM−2

)
+Γ
(
m,

mq2
1

C2ρ2b

)
Γ(m)

,

(50)

where we note in the underbraces of the first line that the last
two terms are primarily affected by fading for arbitrarily large
SNR. Equation (22) is used for the second summation term
with some scaling factor κ ∈

[
2
M ,M4 − 1

2

]
. Using κ= 2

M and
κ= M

4 − 1
2 gives the lower bound and upper bound of (22),

respectively. The last line is obtained by using Lemma 5.ii.
q∗1(ρ) is obtained by differentiating equation (50) with respect
to q1 and equating the result to 0.

q∗1(ρ)=

√
ρ2bC2(2b−M+2)

1−ρ2b−M+2
ln

(
1

ρ

)
(51)

By Corollary 1, ρ should be arbitrarily small at high SNR regime
to make the SEP also arbitrarily small. Using q∗1 and n=2b−
M+2, the second term of (50) is asymptotically equivalent to

γ
(
m,

mq∗2
1

C2ρM−2

)
+Γ
(
m,

mq∗2
1

C2ρ2b

)
Γ(m)

∼0
ρ

[mn]
m−1

[
ln
(

1
ρ

)]m
ρmn

Γ(m)

(52)

By substituting (52) to the second term of the right-hand side
of (50) and applying Lemma 5.ii, we get

PMe

(
1

σ2

)
.
=

[
σ2

C2ρM

]m
+

[
ln

(
1

ρ

)]m
ρmn. (53)

This substitution is valid by Corollary 1. Note that
ln(x)≥1,∀x≥e and any polynomial P (x) with degree p>0
grows faster than logarithm function for arbitrarily large x.
Thus, the following inequality holds:

ρa≤
[
ln

(
1

ρ

)]m
ρa≤ ρa−mε (54)

for some a>0 and arbitrarily small ρ,ε. By squeeze theorem,
the expression simplifies to

PMe

(
1

σ2

)
.
=

[
σ2

C2ρM

]m
+ρmn

.
=

[
σ2

ρM−2

]m
+ρmn

(
since C2∼0

ρ

1

ρ2

)
.
=

[
1

σ2

]− mn
n+(M−2)

(by Lemma 7). (55)
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From the definition of decay exponent, the DVO of (55) is
mn

n+(M−2) = m 2b−M+2
2b

. The optimality of this DVO comes
from choosing ρ∗ depending on σ2 and optimizing q∗1 based on
ρ.

APPENDIX G
PROOF OF THEOREM 5

Suppose we use the constellation in (13) for M=4. We start
the proof with Lemma 6.

P 4
e

(
1

σ2

)
.
=

[
σ2

ρ2
0

]m
+

M
2 −1∑
i=0

M
2 −1∑

n=0,n6=i
P(x̂=+ρn|x=+ρi)︸ ︷︷ ︸

primarily affected by fading as σ2→0

.
=

[
σ2

C2ρ4

]m
+

[
γ
(
m,m

∆2
q

C2ρ2

)
Γ(m)

+

Γ

(
m,m

(2b−1−1)2∆2
q

C2ρ4

)
Γ(m)

]
, (56)

where we note in the underbraces of the first line that the last
two terms are primarily affected by fading for arbitrarily large
SNR. Equation (22) is used for the second summation term
but the coefficient is dropped in last line due to Lemma 5.ii.
∆∗q(ρ) is obtained by differentiating equation (56) with respect
to ∆q and equating the result to 0.

∆∗q =

√
2ρ4C2

(2b−1−1)2−ρ2
ln

[
2b−1−1

ρ

]
. (57)

By Corollary 1, ρ should be arbitrarily small at high SNR regime
to make the SEP also arbitrarily small. Using ∆∗q and n =
2b−1−1, the second term of (56) is asymptotically equivalent to

γ
(
m,m

∆∗2
q

C2ρ2

)
+Γ

(
m,m

(2b−1−1)2∆∗2
q

C2ρ4

)
Γ(m)

∼0
ρ

{2m}m−1
[
lnn+ln 1

ρ

]m
Γ(m)

[ ρ
n

]2m
. (58)

By substituting (58) to the second term of (56) and applying
Lemma 5.i and 5.ii, we get

P 4
e

(
1

σ2

)
.
=

[
σ2

C2ρ4

]m
+

[
ln

(
1

ρ

)]m
ρ2m. (59)

This substitution is valid by Corollary 1. Using (54) and the
fact that C2∼0

ρ
1
ρ2 , the expression simplifies to

P 4
e

(
1

σ2

)
.
=

[
σ2

ρ2

]m
+ρ2m

.
=

[
1

σ2

]−m2
(by Lemma 7). (60)

From the definition of decay exponent, the DVO of (60) is
m
2 when ρ∗ is used. The optimality of this DVO comes from

choosing ρ∗ depending on σ2 and optimizing q∗1 based on ρ.
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