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ABSTRACT

Age of Information (AoI) and Peak AoI (PAoI) and their analytical models have recently drawn
substantial amount of attention in information theory and wireless communications disciplines, in
the context of qualitative assessment of information freshness in status update systems. We take a
queueing-theoretic approach and study a probabilistically preemptive bufferlessM/PH/1/1 queue-
ing system with arrivals stemming from N separate information sources, with the aim of modeling
a generic status update system. In this model, a new information packet arrival from source m is
allowed to preempt a packet from source n in service, with a probability depending on n and m. To
make the model even more general than the existing ones, for each of the information sources, we
assume a distinct PH-type service time distribution and a distinct packet error probability. Subse-
quently, we obtain the exact distributions of the AoI and PAoI for each of the information sources
using matrix-analytical algorithms and in particular the theory of Markov fluid queues and sample
path arguments. This is in contrast with existing methods that rely on Stochastic Hybrid Systems
(SHS) which obtain only the average values and in less general settings. Numerical examples are
provided to validate the proposed approach as well as to give engineering insight on the impact of
preemption probabilities on certain AoI and PAoI performance figures.

1 Introduction

Timely status updates are key for stable operation in networked control and monitoring systems. Lately, there has been
substantial amount of interest centered around Age of Information (AoI) and Peak AoI (PAoI) processes in the fields
of information theory and wireless communications in the context of qualitative assessment of information freshness
in status update systems [1, 2, 3, 4, 5, 6, 7, 8]. The survey [6] provides a relatively recent overview of the AoI concept
and its applications. AoI performance-related studies include those that propose analytical models for AoI [9, 10, 11]
or research focusing on optimization of AoI-related performance metrics [7, 12, 13, 14, 15]. Actually, the AoI metric
keeps track of the staleness of a remote monitor’s knowledge of a stochastic process randomly sampled and transmitted
(in the form of information packets) by an information source where the monitor and the source reside at two separate
points in a packet-based communications network. More formally, the AoI maintained at the monitor for a given source
is defined as the time elapsed since the generation of the last successfully received update packet. Consequently, the
AoI process turns out to be a cyclic process that increases in time with unit slope within a cycle with the exception
that the AoI process undergoes abrubt downward jumps at random status packet reception epochs. After such a jump,
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Figure 1: N information sources sending status update messages through a bufferless server to a remote monitor.

a new cycle begins. Under continuous-time stationary scenarios, the AoI process is a stationary continuous-time,
continuous-valued stochastic process for which our interest in this paper is in finding its exact marginal distribution
in a specific scenario to be detailed. A related equally important process is the discrete-time, continuous-valued PAoI
process that is obtained by taking the peak values during each cycle of the AoI process [16], the exact distribution of
which is also sought in this paper.

As the specific scenario, we consider the information update system in Fig. 1 consisting ofN information sources each
equipped with a sensor, a bufferless server local to the sources, and a remote monitor (or destination). The state of the
source-n, n = 1, . . . , N changes in time which is detected by its sensor and source-n generates packets according to a
Poisson process with intensity λn that contain sensed data along with a time stamp, to be immediately forwarded to the
server. Packets are sent by the server to the monitor via a communications network which introduces random delays,
i.e., service time of packets, and the monitor immediately sends back positive acknowledgments to the server. In this
paper, the server is assumed to be bufferless, i.e., no waiting room for information packets. A new arriving information
packet immediately starts to receive service if the server is idle, but is either discarded or allowed to preempt the packet
in service if the server is busy upon arrival. To make the model general, we assume the following:

• While the source-n information packet is in service, a new information packet arrival from source m,m =
1, . . . , N is allowed to preempt the packet in service with probability depending on both n andm. The matrix
composed of these preemption probabilities is called the preemption matrix of this system.

• The service time of each source has a PH-type distribution [17] and the requirements of sources are hetero-
geneous, i.e., each source has its own service time requirement.

• At the end of the service time needed for the delivery of an information packet, a packet error is said to occur
with a probability depending on the source of this packet. This corrupt packet will be retransmitted with
a per-source probability but is otherwise discarded. Therefore, when the server starts sending a packet, it
stores a copy locally to potentially retransmit it. However, the system is still called bufferless since it does
not provide a waiting room for new packets.

The above system is called the multi-source (probabilistically) preemptive M/PH/1/1 queue with packet errors,
which is the focus of this paper.

The AoI and PAoI processes will now be described for the bufferless server of interest followed by an illustrative
example. First, we define a successful information packet as one which receives service until the end of the service
time without preemption and without a packet error whereas other information packets are deemed unsuccessful. Let
t
(n)
j denote the arrival instant of the jth, j ≥ 1 successful source-n information packet arriving at the server and let

2



A PREPRINT - JULY 24, 2020

δ
(n)
j , j ≥ 1 denote the reception time at the monitor of the jth successful packet belonging to source n. We denote

by ∆(n)(t), t ≥ 0, the continuous-time random process with left-continuous sample paths representing the AoI for
source-n at time t with a given initial condition ∆(n)(0). At t = 0, ∆(n)(t) starts to increase linearly in time with
a unit slope until the first successful packet reception at t = δ

(n)
1 . The right limit ∆(n)(δ+

1 ) = lim
t↓δ(n)

1
∆(n)(t) is

set to D(n)
1 where D(n)

j = δ
(n)
j − t(n)

j is the time spent in service by the jth successful source-n information packet.
Subsequently, the process ∆(n)(t) increases with unit slope until the next successful class-n packet reception and the
pattern repeats forever. Let Φ

(n)
j = ∆(n)(δj), j ≥ 1, denote the PAoI process for source-n which is a discrete-time

continuous-valued random process associated with the AoI just at the epoch of packet receptions. Fig. 2 illustrates the
two sample paths of the random processes ∆(n)(t), n = 1, 2 in a two-source probabilistically preemptive bufferless
server system with packet errors with the initial conditions ∆(1)(0) = 0 and ∆(2)(0) = 5. The arrival epochs of the
information packets are denoted by arrows at the bottom. The arriving packets are indexed as a, b, . . .with the notation
(na),θ indicating the first arrival from source-n with a service time requirement of θ. Let us now study Fig. 2. The
first packet (1a) from source-1 arrives at t = 2 with a service time of 4. During its service time, no other arrivals take
place and at the end of the service time, the packet (1a) is received at t = 6 without transmission errors. Therefore,
in the time interval from t = 0 to t = 6, ∆(1)(t) rises from the value 0 to ∆(1)(6) = Φ

(1)
1 = 6 and ∆(1)(6+) is set

to 4 which is the age of this packet, i.e., current time minus the time stamp on this packet. At t = 8, packet (2a)
arrives and immediately starts to receive service with a service time requirement of 5, but the packet (1b) arriving at
t = 12 preempts the service of (2a) with a service time of 3. At t = 15, this packet is received with packet error and
is retransmitted with a service time of 3. At t = 16, the new arrival (2b) is discarded. At t = 18, the packet (1b) is
successfully received. In the time interval from t = 6 to t = 18, the AoI process ∆(1)(t) rises from the value 4 to
Φ

(1)
2 = 16 after which ∆(1)(16+) is set to 6 which is the sum of two service times 3 and 3 required for transmission

of the successfully received packet (2b). For source-2, the first successfully received packet is (2c) which arrives at
t = 19 with a service time requirement of 4 and is not preempted by the packet (1c) and is successfully received at
t = 23 without error. Therefore, ∆(2)(t) rises from its initial value 5 to Φ

(2)
1 = 28 after which ∆(2)(23+) is set to the

age of this particular packet at t = 23. These patterns repeat for both these processes.

We use the notation ∆(n), Φ(n), and D(n) to denote the steady-state random variables associated with the processes
∆(n)(t), Φ

(n)
j , and D(n)

j , respectively. For the general N -source probabilistically preemptive M/PH/1/1 system
with packet errors (an illustration of which is given in Fig. 2 for N = 2), we are interested in finding the following
steady-state cdfs (cumulative distribution function) for the random variables ∆(n) and Φ(n), respectively:

F∆(n)(x) = lim
t→∞

Pr{∆(n)(t) ≤ x}, x ≥ 0, (1)

FΦ(n)(x) = lim
j→∞

Pr{Φ(n)
j ≤ x}, x ≥ 0. (2)

Note that F∆(n)(0) and FΦ(n)(0) must be zero since there can not be a probability mass at the origin for these two pro-
cesses. Also, let f∆(n)(x) and fΦ(n)(x) for x ≥ 0 denote the corresponding steady-state pdfs (probability distribution
function) with the corresponding non-central moments:

E
[
(∆(n))i

]
=

∫ ∞
0

xif∆(n)(x)dx, (3)

E
[
(Φ(n))i

]
=

∫ ∞
0

xifΦ(n)(x)dx. (4)

We observe from Fig. 2 that each cycle of the AoI process ∆(n)(t) consists of a linear curve with unit slope that starts
at value D(n)

j for some successful packet index j for source-n and terminates at the peak value Φ
(n)
j+1. Subsequently,

the sample path of the AoI process ∆(n)(t) consists of an ordered concatenation of infinitely many cycles each of
which behaves as described above. For obtaining the distribution of the AoI and PAoI processes, we propose to use
the theory of Markov Fluid Queues (MFQ) [18, 19, 20]. Existing steady-state MFQ solvers that we propose to use
are matrix analytical and they rely on numerically stable and efficient vector-matrix operations. The main idea is
that we construct MFQs that produce sample paths whose certain parts coincide with the sample cycles of the AoI
process. Additionally, these MFQ-produced cycles contain sample values that coincide with the sample values of the
PAoI process. Hence, the exact distributions of the AoI and PAoI processes given in (2) can be obtained out of the
steady-state solution of certain MFQs, the construction of which is the main focus of this paper. The main contribution
of this paper is to obtain the exact distribution of AoI and PAoI processes in a very general M/PH/1/1 framework
representative of bufferless servers arising in information status update systems using the theory of MFQs.

3



A PREPRINT - JULY 24, 2020

(1a),4

(1) ( )t

t

(2a),5 (1b),3 (2b),5 (2c),4 (1c),6 (1d),4

(2) ( )t

(2d),2 (1e),5 (1f),6

(1a) 

successful

(1b) preempts (2a)

(1b) errored and 

retransmitted with service 

time of 3

(1b) successful

(1c) discarded

(1d) starts 

service

(1d) 

successful

(2e),1

(1e) 

discarded

(1f) starts 

service

(1f) successful

(2c) 

successful

(2c) starts 

service

(2d) starts 

service

(2d) errored 

and retransmitted with 

service time of 5

(2d) successful

(2e) starts 

service

(2e) 

successful

(1)

1


(1)

2


(1)

3


(1)

4


(2)

1


(2)

2


(2)

3


(2b) 

discarded

Figure 2: A sample path for the two AoI processes ∆(1)(t) and ∆(2)(t) in a 2-user bufferless system.

The main contributions of this paper are the following:

• We present an analytical model for bufferless servers arising in status update systems that can be globally pre-
emptive, self-preemptive, non-preemptive, etc. with a unifying probabilistic preemption framework. Besides
unification, probabilistic preemption can be optimum depending on how rewards or costs are defined.

• Packet errors and heterogenous service time requirements across sources makes the model even more general
than the existing ones.

• Most existing results use SHS and cope with less general settings while providing means to obtain the aver-
age AoI and PAoI values while falling short in most of the cases in obtaining their exact distributions (see
subsection 2.2). In this paper, we obtain the exact distributions of the AoI and PAoI processes numerically
which can be crucial for system design.

The organization of the paper is as follows. In Section 2, related work is presented. Section 3 presents the notation
throughout the paper as well as preliminaries on PH-type distributions and MFQs. Section 4 presents the analytical
model. In Section 5, we provide numerical examples to validate the proposed approach as well as examples to study the
impact of preemption probabilities on system performance with respect to certain AoI- and PAoI-related performance
metrics. Finally, we conclude in Section 6.

2 Related Work

The AoI concept was first introduced in [2] in the context of a single-source, single-server M/M/1 queueing model.
This model is then extended to multiple sources in [21] and since then the single-server model in Fig. 1 for AoI has
extensively been used for status update systems in the literature [2, 6]. There are many variations of this single-server
queueing system studied in the recent literature depending on

• Whether there is a single-source or multiple sources, feeding the queue with information packets,
• Whether there is a transmission error or not,
• Whether the interest in on the mean AoI and PAoI values, or their exact distributions are sought,
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• Generality of the distributions assumed for the interarrival times and service times,
• Queue capacity which represents the maximum number of packets that are allowed to be in the system,

including those in the waiting room and the one in service,
• Scheduling discipline to be used whether it be First Come First Serve (FCFS), Preemptive Last Come First

Serve (P-LCFS), Non-preemptive LCFS (NP-LCFS), etc.
• Use of buffer management schemes in charge of packet dropping at the server.

The related work on AoI analytical models is summarized below first in the single-source setting. Subsequently,
related work will be presented regarding the existing multi-source queueing models.

2.1 Single-source Queueing Models

In [2], the mean AoI is obtained for the single-source M/M/1, M/D/1, and D/M/1 queues with infinite buffer
capacity and FCFS scheduling. In [22], expressions are derived for the LST transform of the stationary distributions
of the AoI and the PAoI processes in M/GI/1 and GI/M/1 queues. Despite the fact that relatively large buffers and
FCFS scheduling are the de-facto choices in operational packet-switched communication networks, such choices have
been shown to give rise to poor AoI performance in moderate to high load regimes. The reference [10] studies the
AoI and PAoI distributions for small buffer systems, including the conventional M/M/1/1 and M/M/1/2 queues, as
well as the so-called M/M/1/2∗ queue, for which the packet waiting in the queue is to be replaced by a newer packet
arrival, which actually is a non-preemptive LCFS system. The mean AoI and PAoI figures in the pre-emptive LCFS
M/G/1/1 queueing system is studied in [23] where a new arrival preempts the packet in service and the service
time distribution is assumed to follow a more general gamma distribution. Exact PAoI expressions are derived in
an M/M/1 queueing system with packet delivery errors using different scheduling policies such as FCFS, P-LCFS,
and NP-LCFS in [11]. Exact expressions for the stationary distributions of AoI and PAoI for a very wide class of
single-source information update systems are given in [9]. A recent work in [24] also obtains the exact distributions
of AoI and PAoI in bufferless systems with probabilistic preemption and PH-type distributions for both interarrival
and service times. A similar model is also proposed in [24] for a single-buffer queueing system with Poisson packet
arrivals and PH-distributed service times allowing probabilistic replacement of the waiting packet by a newer packet
arrival. A discrete-time queueing model with Bernoulli arrivals and geometric service times, using FCFS and non-
preemptive LCFS scheduling is presented in [25] with expressions for the mean AoI and PAoI values. In addition
to exact methods, a number of studies provide bounds for certain AoI-related metrics of interest. The reference [26]
derives upper bounds for the mean AoI for the G/G/1/1 queue as well as its preemptive version while showing that
the bounds are close to actual values. Similarly, the authors of [27] present a method for obtaining upper bounds for
the AoI violation probability for both GI/GI/1/1 and GI/GI/1/2∗ systems, in addition to some exact closed-form
expressions for some sub-cases.

2.2 Multi-source Queueing Models

The reference [12] derives the mean PAoI expression for M/G/1 and M/G/1/1 systems with heterogeneous service
time requirements which enables one to optimize system cost, as a function of mean PAoI, by choice of the update
interval. The authors of [8] study the multi-source M/M/1 model with FCFS as well as two variations (preemptive
and nonpreemptive with replacement) of LCFS using the theory of SHS and obtain exact expressions for the mean AoI.
A preemptive M/G/1/1 queue is considered in [28] with a common service time for all sources in which expressions
for the mean AoI and PAoI are derived. A similar preemptive M/G/1/1 system is studied in [29] allowing packet
delivery errors. The authors [29] allow preemption of a source in service by a newly-arriving packet from the same
source and derive the mean AoI expressions for each source using SHS technique. The reference [30] considers a two-
source M/M/1/2 queueing system in which a packet waiting in the queue can be replaced only by a newly-arriving
packet from the same source, again using SHS techniques. A non-preemptiveM/M/1/m with common service times
across sources is again studied by the SHS technique in [31] and mean AoI expressions are derived. A more general
hyperexponential (H2) service time distribution for each class is considered in [32] for an M/H2/1/1 nonpreemptive
bufferless queue to derive an expression for the mean AoI per class.

3 Preliminaries

Uppercase bold letters are used to denote real-valued matrices. Lowercase bold (plain) letters or symbols are used to
denote real-valued vectors (scalars). The (i, j)th th entry of A is denoted by Ai,j and the jth entry of a row or column
vector α is αj . The notations 0k×`, Im, and 1n are used to denote the matrix of zeros of size k × l, identity matrix of
size m, and a column matrix of ones of size n, respectively. When used without a subscript, it is left to the reader to
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infer the size information from the context. LetA be an n×m matrix andB a p× q matrix. The Kronecker product
of the matricesA andB is denoted byA⊗B which is of size np×mq. The notation diag{A,B} denotes the block
diagonal concatenation of the matrices A and B and is diagonal if the individual matrices A and B are diagonal. A
square matrix is said to be stable (anti-stable) if each of its eigenvalues has negative (non-negative) real parts. The
notation [α,β] is used for the concatenation of the two row vectorsα and β. The function u(x) refers to the Heaviside
step function, also known as the unit step function, whereas δ(x) stands for the Dirac delta function, also known as
the unit impulse function.

3.1 Phase-type Distributions

In the context of queueing systems, Phase-type (PH-type) distributions are often used for modeling independent and
identically distributed (iid) non-exponential interarrival and/or service times [17]. Using PH-type distributions gives
rise to algorithmically tractable methods for finding both the steady-state and transient solutions of such queueing
systems; see [33] and the references therein. For rigorous description of PH-type distributions, we first define a
Markov process on the state-space S = {1, 2, . . . ,m,m+1} withm transient states, one absorbing statem+1, initial
probability vector [σ, σ0], and an infinitesimal generator of the form[

S ν
0 0

]
,

where σ is a row vector of size m, σ0 = 1− σ1 is a scalar, the sub-generator S is m×m, and ν is a column vector
of size m such that ν = −S1. The time to absorption to the absorbing state m + 1, say X , is said to be PH-type
characterized with the pair (σ,S), i.e., X ∼ PH(σ,S). In most typical scenarios, σ0 is zero. The cdf and the pdf of
X ∼ PH(σ,S), denoted by FX(x) and fX(x), respectively, are given as:

FX(x) = (1− σeSx1) u(x), fX(x) = −σeSxS1 u(x) + σ0 δ(x). (5)

PH-type distributions are dense in the field of all positive-valued distributions and therefore they can principally be
used to approximate any positive-valued distribution [34]. Given sample data or an arbitrary pdf, one can use one of the
existing algorithms, such as the Expectation Maximization (EM) algorithm of [33] for maximum likelihood estimation,
or the moment-matching algorithm of [35], or the statistical inference-based algorithm of [36], to construct a PH-type
distribution that matches data or accurately approximates the given pdf.

3.2 Markov Fluid Queues

We describe an MFQ by a joint Markovian process X(t) = (Xf (t), Xm(t)), t ≥ 0, where 0 ≤ Xf (t) < ∞ is the
continuous-valued fluid level in the buffer and Xm(t) ∈ S = {1, 2, . . . , n} is the modulating phase process Xm(t)

which behaves as a Continuous Time Markov Chain (CTMC) with state space S and generatorQ (Q̃) whenXf (t) > 0
(Xf (t) = 0). The parameter n is the system size. The drift (rate of fluid change) of the MFQ equals ri when the
modulating process Xm(t) visits state i and R is defined as the diagonal matrix of drifts: R = diag{r1, r2, . . . , rn}.
When Xf (t) = 0 and Xm(t) = i with ri < 0, Xf (t) sticks to the boundary at zero. The process X(t) is said to be
characterized with the matrix triple (Q, Q̃,R), i.e., X(t) ∼ MFQ(Q, Q̃,R). In most existing studies, Q = Q̃, for
which stationary solutions are derived by [20],[18] by using the eigendecomposition of a certain matrix and also by [37]
using the matrix sign function avoiding the computation of the eigenvectors, a problem known to be ill-conditioned
[38]. The more generalQ 6= Q̃ case turns out to be a sub-case of multi-regime MFQs whose steady-state solutions can
be obtained through the ordered Schur decomposition, again avoiding ill-conditioned eigendecompositions [39]. For
other eigendecomposition-free numerically efficient and stable algorithms for solving multi-regime MFQs, we refer
the reader to the matrix-analytical approaches of [40] and [41].

We assume ri 6= 0, 1 ≤ i ≤ n and ri > 0, i ≤ b and ri < 0, i > b, since otherwise states can always be reordered
for this purpose. We are interested in finding the steady-state joint pdf vector

f(x) = [f1(x), f2(x), . . . , fn(x)] , (6)

fi(x) = lim
t→∞

d

dx
Pr{Xf (t) ≤ x,Xm(t) = i}, x > 0, (7)

and the steady-state probability mass accumulation (pma) vector at zero:

c = [c1, c2, . . . , cn] , ci = lim
t→∞

Pr{Xf (t) = 0, Xm(t) = i}. (8)

We now describe the method of [39] without proof, in three steps, adapted to MFQs described above, to find the
quantities of interest in (7) and (8), when they exist. In Step 1, we find an orthogonal matrixU such that the following

6



A PREPRINT - JULY 24, 2020

holds:

UTQR−1U =

[
Ψa×a ∗

0 Ab×b

]
, UT =

[
∗

Hb×n

]
, (9)

for an anti-stable matrix Ψ with an eigenvalue at the origin, stable matrix A, and ∗ denoting an arbitrary sub-matrix.
The well-known ordered real Schur form (available in Lapack, Matlab, and Octave software packages) can be used
towards obtaining the decomposition (10) [38]. In Step 2, we solve for the 1× b vector g and 1× a vector d from the
following linear matrix equation:

[ g d ]

[
HR −A−1H1n
−Q̃∗ 1a

]
= [ 01×n 1 ] , (10)

with Q̃∗ denoting the matrix composed of the last a rows of Q̃. Finally, in Step 3, we write

f(x) = geAxH u(x) + c δ(x), fi(x) = geAxhi u(x) + ci δ(x), (11)

where hi denotes the ith column ofH .

4 Analytical Model for the Multi-source Preemptive M/PH/1/1 Queue

We consider the status update system in Fig. 1 with N sources, a server, and a monitor. The source n, n = 1, . . . , N
generates packets that carry status update information, according to a Poisson process with intensity λn. The traffic
intensity vector is denoted by λ = (λ1, . . . , λN ). We define the total arrival rate λ =

∑N
n=1 λn. A source-n

information packet immediately starts to receive service from the server when it finds the server idle upon arrival
and its service time Θ(n) ∼ PH(σ(n),S(n)) with order `n, ν(n) = −S(n)1, and E[Θ(n)] = 1

µn
. Let the per-source

load be defined as ρn = λn

µn
and the total load ρ =

∑N
n=1 ρn. We define the total order `T =

∑N
n=1 `n. We are given a

preemption matrixP so that while the source-n information packet is in service, a new information packet arrival from
source m,m = 1, . . . , N is allowed to preempt the packet in service with probability Pn,m. The following sub-cases
of a general preemption matrix P have been studied in the literature:

• P = 0 refers to a non-preemptive system [6],

• P = 1N1T
N case is referred to as global preemption in [8],

• P = I case is referred to as self preemption in [29].

For each source n, we define the total intensity of traffic that can preempt a source-n packet in service as λ̄n =∑N
m=1 λmPn,m. In these systems, preemption may potentially be beneficial for two different purposes: (i) a new

information packet always carries more timely information than the one in service, (ii) sources can be differentiated
from each other by proper choice of preemption probabilities. At the end of the service time of a source-n packet, a
transmission error is detected at the monitor with probability en. We also denote the successful transmission probabil-
ity of a source-n packet by qn = 1−en. An errored class-n packet (irrespective of how many times it was transmitted)
is retransmitted with probability rn whereas it will be discarded with probability dn = 1 − rn. Recall that an infor-
mation packet which receives service until the end of the service time without preemption and without a packet error
is called a successful packet.

We tag a specific source, say source 1, for which the exact distributions of the AoI and PAoI processes are to be
obtained. If the interest is on another information source-n where n 6= 1, the same procedure can be repeated by
renumbering the sources. For this purpose, we construct an MFQ processX(t) = (Xf (t), Xm(t)) by which we have
a single fluid level trajectory of infinitely many cycles where each cycle comprises four stages, namely stages 1-4,
that are described as follows. Every cycle begins with stage 1 at which the service of a source-1 packet begins. If
this packet is preempted or errored, we go back to stage 1 through stage 4. When a source-1 packet is eventually
received successfully, we transition from stage 1 to stage 2 while ensuring that the fluid level at this transition epoch
is distributed according to D(1) which actually is the system time of successful source-1 packets. In stage 2, we wait
for the next packet arrival from any one of the sources upon which we transition to stage 3. In stage 3, we are within
the service time of a source-n packet for some source n. If a source-1 service is successfully over, we end the cycle
by transitioning to stage 1 again through stage 4. If a source-n service for n 6= 1 is successfully over during stage
3, we go back to stage 2 waiting for a new packet arrival. In the case of preemption or transmission error followed
by retransmission during stage 3, we stay at stage 3. For the case of error for a source-n packet with discarding, a
transition to stage 2 occurs. More formally,

7
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• During stage 1, the modulating process Xm(t) visits states j, 1 ≤ j ≤ `1 that keep track of the phase of the
service time of the source-1 packet.

• Stage 2 consists of one single state 0 waiting for an information packet arrival from one of the information
sources.

• During stage 3, Xm(t) visits the states (i, j), where 1 ≤ i ≤ N keeps track of the source index of the packet
in service and j, 1 ≤ j ≤ `i keeps track of the phase of the service time of the packet in service.

• Stage 4 consists of one single final state −1 by which we prepare for starting the next cycle.

Let us now describe the operation of the MFQX(t). A cycle ofX(t) begins with a visit to a state in stage 1 when the
fluid level is zero. During stage 1, the fluid level rises with a unit slope. Let us assume that we are at state j, 1 ≤ j ≤ `1
in stage 1 during which the arrival processes of all sources are turned on. There are five possible transitions:

• with rate S(1)
j,k , a transition to state k occurs,

• with rate λ̄1 =
∑N
n=1 P1,nλn, the source-1 packet is preempted by a new arrival; and a transition to state −1

occurs,

• with rate ν(1)
j e1d1, the service time of the packet is over but the packet is errored and discarded; and a

transition to state −1 occurs,

• with rate ν(1)
j e1r

(1)σ
(1)
k , the service time of the packet is over and it is errored and retransmitted; and a

transition to state k occurs,

• with rate ν(1)
j q1, the service time is over and the packet is successful and a transition to state 0 occurs.

With the transitions described above, we ensure that when we are at the beginning of state 0, the fluid level has risen
to a level distributed according to D(1). During state 0, the fluid level rises with unit slope and with rate λ(i)σ

(i)
j , a

transition to state (i, j) occurs in stage 3.

Let us now assume that we are at state (i, j) in stage 3 during which the fluid level continues to rise again with unit
slope. Therefore, a source-i packet is in service and we are in phase j of its service time. We have the following
transition possibilities from state (i, j):

• with rate S(i)
j,k, a transition to state (i, k) occurs,

• with rate Pi,nλn, the source-i packet is preempted by a new information packet from source n and a transition
to state (n, l) occurs with rate Pi,nλnσ

(n)
l ,

• with rate ν(i)
j eidi, the service time of the packet is over but the packet is errored and discarded; and a transition

to state 0 occurs,

• with rate ν(i)
j eiriσ

(i)
k , the service time of the packet is over and it is errored and retransmitted; and a transition

to state (i, k) occurs,

• when i 6= 1, with rate ν(i)
j qi, the service time of the source-i packet is over and is successful; a transition to

state 0 occurs,

• when i = 1, with rate ν(1)
j q1, the service time of the source-1 packet is over and is successful giving rise to a

transition to state −1.

When at state −1, the fluid level always drops with a rate of minus one without any state changes until the fluid level
zero is hit. The arrival process is turned off in this stage and the only way to escape from this particular state is through
a transition to state i with transition rate σ(1)

i . With the lexicographical ordering of the states from stages 1 to 4,
X(t) ∼MFQ(Q, Q̃,R) with system size `T + `1 + 2 whereQ equals to the matrix given in Eqn. (12)

8
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Q =



S(1) − λ̄1I
+e1r1V

(1) q1ν
(1) 0 0 · · · 0

λ̄11
+e1d1ν

(1)

0 −λ λ1σ
(1) λ2σ

(2) · · · λnσ
(N) 0

0 e1d1ν
(1)

S(1) − λ̄1I
+λ1P1,1F

(1)

+e1r1V
(1)

λ2P1,2F
(2) · · · λNP1,NF

(N) q1ν
(1)

0
q2ν

(2)

+e2d2ν
(2) λ1P2,1F

(1)
S(2) − λ̄2I

+λ2P2,2F
(2)

+e2r2V
(2)

· · · λNP2,NF
(N) 0

...
...

...
...

. . .
...

...

0
qNν

(N)

+eNdNν
(N) λ1PN,1F

(1) λ2PN,2F
(2) · · ·

S(N) − λ̄NI
+λNPN,NF

(N)

+eNrNV
(N)

0

0 0 0 0 0 0 0



,

(12)

and
V (j) = ν(j) ⊗ σ(j), F (j) = 1⊗ σ(j), (13)

the matrix Q̃ is the same as Q except for the block entry in the south-west corner which is set to σ(1), and for the
scalar at the south-east corner which is set to −1. Moreover,

R = diag{I`T +`1+1,−1}. (14)

Fig. 3(a) illustrates one sample cycle of the AoI process ∆(1)(t) which starts to rise from the value D(1) to the PAoI
value Φ(1). Fig. 3(b) illustrates one sample cycle of the fluid level process Xf (t) which takes the value D(1) at the
epoch of transition from stage 1 to stage 2. The fluid level rises from the value D(1) to Φ(1) during stages 2 and 3.
Therefore, we observe that one sample cycle of the process ∆(1)(t) coincides with part of the sample cycle of the
process Xf (t) associated with stages 2 and 3 only. Moreover, one sample value of the process Φ(1) coincides with
one sample value of the process Xf (t) taken at the epoch of transition from stage 3 to stage 4. On the basis of these
observations, we are now ready to state the following theorem which provides an expression for the pdfs of the AoI
and PAoI processes in terms of the steady-state joint pdf vector f(x) of the MFQ X(t) given in the form (11) with
the matrixA being of size b = `T + `1 + 1 which is the number of positive drift states.

Theorem 1. Consider the processX(t) ∼MFQ(Q, Q̃,R) with order `T + `1 + 2 with the characterizing matrices
as defined in (12) and (14) with its steady-state joint pdf vector f(x) given in the form (11). Then, the pdf of the AoI
process, f∆(1)(x), and the pdf of the PAoI process, fΦ(1)(x), are given by the following closed form expression:

f∆(1)(x) = gAe
AxhA u(x), hA = H

 0`1×1

1
1`T
0

 , gA =
1

−gA−1hA
, (15)

fΦ(1)(x) = gP e
AxhP u(x), hP = H

 0(`1+1)×1

q1ν
(1)

0(`T −`1+1)×1

 , (16)

gP =
1

−gA−1hP
,

Moreover, the associated non-central moments of the AoI and PAoI processes are given as follows:

E
[
(∆(1))i

]
= (−1)i+1 i! gAA

−(i+1)hA, i = 1, 2, . . . , (17)

E
[
(Φ(1))i

]
= (−1)i+1 i! gPA

−(i+1)hP , i = 1, 2, . . . . (18)

The expression (15) stems from sample path arguments and requires censoring out the states in stages 1 and 4. This is
achieved by the choice of hA by which we sum up the joint pdfs in states belonging to stages 2 and 3 only. The choice

9
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Figure 3: A sample path of the AoI process ∆(1)(t) with emphasis on one of its sample cycles in given in subfigure
(a) whereas subfigure (b) presents a sample path of the fluid level process Xf (t) with emphasis on one sample cycle.
Observe that the sample cycle of the former coincides with part of that of the latter.

of gA is for normalization. The expression (15) similarly follows sample path arguments and requires the pdf of the
fluid level just at the epoch of a transition from a state in stage 3 to state -1 in stage 4. For this purpose, hP is chosen
so as to sum up the joint pdfs belonging to states in stage 3 that have a transition to state -1, namely the states (1, j) in
stage 3, according to the transition rate vector q1ν

(1). Again, the choice of gP is for normalization.

Remark. While obtaining the steady-state joint pdf vector f(x) of the MFQ X(t) through the algorithm defined in
three steps in (9)-(11), we need an orthogonal matrix U satisfying (9). Let v be a column vector of ones (of system
size) except for the last entry which is minus one. Note that v is a right eigenvector of the matrixQR−1. Also, letw be
a column vector of zeros except for the first entry which is one. Let u = v − ||v||2w. Then, the symmetric orthogonal
matrixU defined byU = I − 2uuT

uT u
gives rise to the factorization (9) with the matrix Ψ reducing to a scalar which is

actually zero. This process is called the Householder transformation in [38] and significantly reduces the complexity
of (9).

Remark. In the most general case, the MFQ X(t) has a system size of `T + `1 + 2. However, the system size
is significantly reduced in some important sub-cases. For example, consider the global preemption case, i.e., P =
1N1T

N and when the service time requirements of the sources are homogeneous, i.e., Θ(n) ∼ Θ ∼ PH(σ,S) for
n = 1, . . . , N with order ` and homogeneous transmission errors and retransmission policies, i.e., en = e, rn =
r, n = 1, . . . , N. From the perspective of AoI and PAoI of the tagged source-1, one can solve an auxiliary two-source
system where the second source in the auxiliary system stands for the superposition of all the sources indexed from
2 to N in the original system and P = 121T

2 . The arising MFQ will now have a system size of 3` + 2 which does
not depend on the number of users N . Similar reductions are possible for non-premptive systems with homogeneous
service time requirements.

10
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Figure 4: The cdf of both the AoI and PAoI processes of a system with 3 sources obtained by the proposed analytical
method and simulations (shown by markers) for three cases (a) self preemption, (b) global preemption, (c) prioritized
preemption, when (λ1, λ2, λ3) = (1, 2, 3), ρ = 2/3, and c2Θ = 1/4.

5 Numerical Results

5.1 Validation with Simulations

In the first set of numerical examples, we validate the proposed approach by comparing the obtained cdfs for AoI and
PAoI processes against the empirical cdfs obtained with simulations in the context of a system with 3 sources with
homogeneous service time requirements. For this purpose, we fix the intensity vector (λ1, λ2, λ3) and for the service
times, we use a PH-type distribution with mean ρ/λ for given system load ρ and the squared coefficient of variation
of the service times is fixed to a given value c2Θ according the following procedure. For c2Θ = 1/j ≤ 1 for a positive
integer j, the E(µ−1, j) distribution is used which refers to an Erlang distribution with mean µ−1 and with order j.
If j is not an integer, then we resort to a mixture of two appropriate Erlang distributions [42]. When c2Θ > 1, then
we propose to use a hyper-exponential distribution with balanced means to fit the first two moments [42]. In the first
example, we fix (λ1, λ2, λ3) to (1, 2, 3) and the system load ρ to 2/3. Moreover, we study three preemption policies:
global preemption, self preemption, and prioritized preemption in which a newcoming class-i packet preempts a class-
j packet in service if only if i ≤ j, P is a lower-triangular matrix of ones at and below the main diagonal. The cdfs of
the AoI and PAoI processes are depicted in figures 4 and 5, respectively, for the choice of c2Θ = 1/4 and c2Θ = 1/2,
respectively. We have the following observations:

• Perfect match with the simulation results are obtained in all cases.

• For symmetric preemption systems such as self preemption and global preemption, low intensity sources are
penalized in terms of AoI and PAoI. However, with preferential treatment to low traffic intensity sources by
means of non-symmetric policies such as prioritized preemption, this situation can be mitigated.

• When c2Θ increases, the overall performance of the system improves which can be inferred from the sharper
increase of the cdf curves for all the three sources in Fig. 5 than in Fig. 4.

5.2 Validation with Existing Results

In this subsection, we will compare our findings with existing closed-form expressions in the existing literature for
validation of the numerical accuracy of our proposed method. As the first example, the reference [8] provides closed
form expressions for the mean AoI for each of the sources in an M/M/1/1 system with homogeneous service time

11
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Figure 5: The cdf of both the AoI and PAoI processes of a system with 3 sources obtained by the proposed analytical
method and simulations (shown by markers) for three cases (a) self preemption, (b) global preemption, (c) prioritized
preemption, when (λ1, λ2, λ3) = (1, 2, 3), ρ = 2/3, and c2Θ = 1/2.

Table 1: Mean AoI for each of the three sources obtained with the closed-form expressions in Ref. [8] and the proposed
method for various choices of the traffic intensity vector and the load parameter ρ.

E[∆(1)] E[∆(2)] E[∆(3)]
(λ1, λ2, λ3) ρ Ref. [8] Proposed Ref. [8] Proposed Ref. [8] Proposed

(1, 2, 3) 0.50 1.5000 1.5000 0.7500 0.7500 0.5000 0.5000
0.75 1.7500 1.7500 0.8750 0.8750 0.5833 0.5833
1.00 2.0000 2.0000 1.0000 1.0000 0.6667 0.6667
1.25 2.2500 2.2500 1.1250 1.1250 0.7500 0.7500
1.50 2.5000 2.5000 1.2500 1.2500 0.8333 0.8333

(1, 4, 16) 0.50 1.5000 1.5000 0.3750 0.3750 0.0938 0.0938
0.75 1.7500 1.7500 0.4375 0.4375 0.1094 0.1094
1.00 2.0000 2.0000 0.5000 0.5000 0.1250 0.1250
1.25 2.2500 2.2500 0.5625 0.5625 0.1406 0.1406
1.50 2.5000 2.5000 0.6250 0.6250 0.1563 0.1563

requirements, global preemption, and no transmission errors. For two different choices of the traffic intensity vector,
and for various values of the load parameter ρ, the mean AoI values are tabulated in Table 1 using the expressions
in [8] and the proposed method for the case of global preemption. The two sets of results perfectly match up to four
digits. For a similar M/M/1/1 system allowing transmission errors and employing the self preemption policy, the
reference [29] provides closed form expressions for the mean AoI for each of the sources. For two different choices
of the traffic intensity vector, for various values of the load parameter ρ and the transmission error parameter e which
is intact for each source, the mean AoI values are tabulated in Table 2 using the expressions in [29] and the proposed
method for the case of self preemption with no retransmissions, i.e., rn = r = 0, n = 1, . . . , N . The two sets of
results perfectly match up to four digits except for one single instance in which the match is up to three digits.

5.3 Impact of Choice of Preemption Policies

In this subsection, we study the impact of the choice of preemption probabilities (using the analytical model only)
on the system cost C(α) for a two-source preemptive M/PH/1/1 system with homogeneous service times, which is

12
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Table 2: Mean AoI for each of the three sources obtained with the closed-form expressions in Ref. [29] and the
proposed method for various choices of the traffic intensity vector, the load parameter ρ, and the error parameter e
when the discarding parameter r is set to zero.

E[∆(1)] E[∆(2)] E[∆(3)]
(λ1, λ2, λ3) ρ e Ref. [29] Proposed Ref. [29] Proposed Ref. [29] Proposed

(1, 2, 3) 0.5 0.04 1.5839 1.5839 0.7971 0.7971 0.5319 0.5319
0.10 1.6880 1.6880 0.8492 0.8492 0.5667 0.5667
0.25 2.0214 2.0214 1.0159 1.0159 0.6778 0.6778

1.0 0.04 2.1429 2.1429 1.0833 1.0833 0.7222 0.7222
0.10 2.2817 2.2817 1.1528 1.1528 0.7685 0.7685
0.25 2.7262 2.7262 1.3750 1.3750 0.9167 0.9167

1.5 0.04 2.7042 2.7042 1.3688 1.3687 0.9109 0.9109
0.10 2.8778 2.8778 1.4556 1.4556 0.9688 0.9688
0.25 3.4333 3.4333 1.7333 1.7333 1.1540 1.1540

(1, 4, 16) 0.5 0.04 1.5699 1.5699 0.3965 0.3965 0.0990 0.0990
0.10 1.6740 1.6740 0.4225 0.4225 0.1055 0.1055
0.25 2.0074 2.0074 0.5059 0.5059 0.1264 0.1264

1.0 0.04 2.1050 2.1050 0.5370 0.5370 0.1334 0.1334
0.10 2.2439 2.2439 0.5717 0.5717 0.1421 0.1421
0.25 2.6883 2.6883 0.6829 0.6829 0.1699 0.1699

1.5 0.04 2.6423 2.6423 0.6780 0.6780 0.1675 0.1675
0.10 2.8159 2.8159 0.7214 0.7214 0.1784 0.1784
0.25 3.3714 3.3714 0.8603 0.8603 0.2131 0.2131

given in the following form:
C(α) = E[∆(1)] + αE[∆(2)], 0 ≤ α ≤ 1, (19)

which allows one to give more importance to source-1 over source-2 with a proper choice of the cost parameter α.
When α = 1, both sources are equally important whereas when α = 0, the age of the second source is irrelevant. For
a given traffic intensity vector, load ρ, and c2Θ for the homogeneous service times, we employ a preemption matrix
P such that P1,1 = P2,2 = Pd and we perform brute-force optimization to find the optimum choices of Pd, P1,2,
and P2,1, denoted by P ∗d , P ∗1,2, and P ∗2,1, respectively, so that the cost function in (19) is minimized for a given cost
parameter α (with a resolution of 0.05 for each parameter). Table 3 provides our findings. We have the following
observations:

• The optimum value P ∗d appears to depend on c2Θ and not on the specific choices of α and the traffic mix.
When c2Θ is small (large), P ∗d is zero (one).

• The optimum values P ∗1,2 and P ∗2,1 appear to depend on c2Θ, α, and the traffic mix. All other input param-
eters being fixed, P ∗2,1 decreases and P ∗1,2 increases with increased cost parameter α but their actual values
themselves depend on the other parameters.

Table 3: Optimum preemption parameters P ∗d , P ∗1,2, and P ∗2,1, which minimize C(α) for various values of traffic
intensity vector, c2Θ, and α.

(λ1, λ2)
c2Θ α (1, 2) (1, 1) (2, 1)

P ∗d P ∗2,1 P ∗1,2 P ∗d P ∗2,1 P ∗1,2 P ∗d P ∗2,1 P ∗1,2
1/16 0.25 0.00 1.00 0.00 0.00 0.65 0.00 0.00 0.00 0.00

0.50 0.00 1.00 0.00 0.00 0.30 0.00 0.00 0.00 0.25
0.75 0.00 0.90 0.00 0.00 0.05 0.00 0.00 0.00 0.50
1.00 0.00 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.70

1/4 0.25 0.00 1.00 0.00 0.00 0.75 0.00 0.00 0.00 0.00
0.50 0.00 1.00 0.00 0.00 0.30 0.00 0.00 0.00 0.30
0.75 0.00 0.95 0.00 0.00 0.10 0.00 0.00 0.00 0.55
1.00 0.00 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.75

1 0.25 1.00 1.00 0.00 1.00 1.00 0.15 1.00 1.00 1.00
0.50 1.00 1.00 0.00 1.00 1.00 0.55 1.00 0.60 1.00
0.75 1.00 1.00 0.05 1.00 1.00 0.85 1.00 0.35 1.00
1.00 1.00 1.00 0.15 1.00 1.00 1.00 1.00 0.15 1.00
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Figure 6: The cost function C(α) as a function of the load parameter ρ for an M/M/1/1 system with four preemption
policies when µ = 1, r = 0.9, e = 0.1 for three values of α ∈ {0.1, 0.5, 1}. For the subfigures (a)-(c), ρ1 = ρ2

whereas for the subfigures (d)-(f), ρ2 = 2ρ1.

Finally, we depict the cost C(α) as a function of the system load ρ for four preemption policies, namely non-
preemptive, self-preemptive, globally preemptive, and optimum preemptive policies (as obtained using the brute-force
approach outlined above) in Fig. 6. We observe that optimum preemption significantly outperforms all the other poli-
cies with the level of performance improvement increases with decreased cost parameter α. When α = 1 and the
traffic mix is even, global preemption and optimum preemption yield the same performance. When α = 1 and the
traffic mix is not even, i.e., ρ2 = 2ρ1, then there is still a substantial gain attained with the optimum preemptive policy
when compared with the other preemption policies. For homogeneous exponential service times, we observe that
global preemption performs better than self preemption which also outperforms the non-preemptive policy for all the
cases we studied.
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6 Conclusions

In this paper, we propose a novel method to obtain the exact distributions of the AoI and PAoI for a probabilistically
preemptive bufferless heterogeneousM/PH/1/1 queueing system with packet errors using Markov fluid queues. This
model is more general than many recent existing models arising in status update systems and obtaining the distributions
in addition to mean values is the major contribution of this paper. Numerical examples are provided to validate
the proposed approach and its numerical accuracy. We also provide a number of examples for which probabilistic
preemption is substantially beneficial when compared to conventional non-preemptive, self-preemptive, or globally-
preemptive policies in terms of AoI. Such probabilistic schemes can also be used to provide source differentiation in
multi-source status update systems.
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[35] A. Horváth and M. Telek, “PhFit: a general phase-type fitting tool,” in Computer Performance Evaluation:

Modelling Techniques and Tools, T. Field, P. G. Harrison, J. Bradley, and U. Harder, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002, pp. 82–91.

[36] H. Okamura and T. Dohi, “Ph fitting algorithm and its application to reliability engineering,” Journal of the
Operations Research Society of Japan, vol. 59, no. 1, pp. 72–109, 2016.

[37] N. Akar and K. Sohraby, “Infinite- and finite-buffer Markov fluid queues: a unified analysis,” J. Appl. Probab.,
vol. 41, no. 2, pp. 557–569, 06 2004.

[38] G. H. Golub and C. F. van Loan, Matrix Computations. The Johns Hopkins University Press, 1996.
[39] H. E. Kankaya and N. Akar, “Solving multi-regime feedback fluid queues,” Stochastic Models, vol. 24, no. 3, pp.

425–450, 2008.
[40] A. da Silva Soares and G. Latouche, “Fluid queues with level dependent evolution,” European Journal of Oper-

ational Research, vol. 196, no. 3, pp. 1041 – 1048, 2009.
[41] G. Horvath and B. Van Houdt, “A multi-layer fluid queue with boundary phase transitions and its application to

the analysis of multi-type queues with general customer impatience,” in 2012 Ninth International Conference on
Quantitative Evaluation of Systems, 2012, pp. 23–32.

[42] H. C. Tijms, A First Course in Stochastic Models. West Sussex, England: John Wiley & Sons, Inc., 2003.

16


	1 Introduction
	2 Related Work
	2.1 Single-source Queueing Models
	2.2 Multi-source Queueing Models

	3 Preliminaries
	3.1 Phase-type Distributions
	3.2 Markov Fluid Queues

	4 Analytical Model for the Multi-source Preemptive M/PH/1/1 Queue
	5 Numerical Results
	5.1 Validation with Simulations
	5.2 Validation with Existing Results
	5.3 Impact of Choice of Preemption Policies

	6 Conclusions

