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Abstract

In this paper, we propose a deep learning-based beam tracking method for millimeter-wave (mmWave)

communications. Beam tracking is employed for transmitting the known symbols using the sounding

beams and tracking time-varying channels to maintain a reliable communication link. When the pose

of a user equipment (UE) device varies rapidly, the mmWave channels also tend to vary fast, which

hinders seamless communication. Thus, models that can capture temporal behavior of mmWave channels

caused by the motion of the device are required, to cope with this problem. Accordingly, we employ

a deep neural network to analyze the temporal structure and patterns underlying in the time-varying

channels and the signals acquired by inertial sensors. We propose a model based on long short term

memory (LSTM) that predicts the distribution of the future channel behavior based on a sequence of

input signals available at the UE. This channel distribution is used to 1) control the sounding beams

adaptively for the future channel state and 2) update the channel estimate through the measurement

update step under a sequential Bayesian estimation framework. Our experimental results demonstrate

that the proposed method achieves a significant performance gain over the conventional beam tracking

methods under various mobility scenarios.
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Deep Learning-based Beam Tracking for

Millimeter-wave Communications under

Mobility

I. INTRODUCTION

Millimeter wave (mmWave) communication has attracted significant attention for achieving

the continuously increasing data throughput requirement of advanced wireless systems [1]–

[3]. However, several challenges should be addressed to enable seamless communication over

mmWave-band channels. In particular, the received signal power of mmWave communication

systems experiences significant attenuation. A potential solution is to employ directional transmit

(Tx) and receive (Rx) beamforming antennas, which direct highly directional beams in the

desirable directions to enhance the signal power. Such beams are formed by appropriately

adjusting the phase and amplitude of the signal for each antenna element [4], [5].

Consider a base-station (BS) equipped with Nb antennas and a user equipment (UE) with Nm

antennas. In down-link scenarios, the BS uses a beamforming vector to transmit the data symbols

to the UE and the UE applies a combining vector to receive the transmitted data symbols. These

beamforming and combining vectors determine the directions of the beams, which should be

chosen to maximize the data throughput. The channel state information should be known to

both the BS and UE to determine the directions of the beams. The procedure for acquiring the

channel information using pilot symbols is called beam training [6], [7]. In beam training, the

pilot symbols are transmitted using specifically designed Tx and Rx beams. These beams are

often called sounding beams [8]. The BS and the UE use the combinations of Mb Tx sounding

beams and Mm Rx sounding beams to obtain the channel information. Consequently, the Mb ·Mm

pilot symbols are transmitted. Given the absence of prior knowledge about the channel, both Mb

and Mm should be sufficiently large to cover a wide range of directions.

Beam tracking techniques have been proposed to reduce the amount of radio resources required

for beam training. When the beam tracking is enabled, the BS transmits the pilot symbols using

fewer sounding beams after the initial acquisition step. (see Fig. 1.) The number of sounding
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Fig. 1. Illustration of beam tracking protocol

beams can be reduced without significantly by exploiting the temporal channel correlation. The

BS and UE can use the information on the angles of arrival (AoAs) and angles of departure

(AoDs) obtained in the previous beam transmissions to direct only a few beams toward the

directions that ensure good channel estimation performance.

Two key design issues exist in implementing beam tracking systems. First, both Tx and Rx

sounding beams should be determined in response to the time-varying AoAs and AoDs. Note that

such beam control should be predictive to steer the sounding beams toward the future channel

state in advance. Second, the UE needs to update the channel estimate by using the received

pilot symbols and exploiting the temporal channel correlation.

Various channel tracking methods have been proposed thus far. In [9], the authors proposed

a beam tracking algorithm that exploits the temporal correlation between AoDs and AoAs.

However, adapting to rapid channel variations was challenging, as omni-directional training

beams were used. In [10]–[14], various types of Kalman filters were employed to track time-

varying channels. In [15], an optimal beam training protocol design scheme was derived based on

the partially observable Markov decision process framework. Compressed sensing (CS) recovery

algorithms [16] were also used to estimate the AoDs and AoAs of multi-path channels in [3],

[8], [17] and were extended to utilize the temporal channel correlation in [9], [18], [19]. In [20],

[21], channel tracking was formulated as a maximum likelihood estimation problem. Sensor-

aided beam tracking methods have been proposed recently [22]–[24]. These methods attempted

to use an inertial measurement unit (IMU) sensor to assist beam alignment and channel tracking
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in mmWave systems. However, modeling different types of data acquired from sensor and

communication signals to design beam tracking methods is difficult. Thus, applying traditional

model-based approaches for sensor-based beam tracking is a significant challenge.

Most UEs are hand-held devices. The pose (i.e., location and orientation) of UE devices

can vary based on the motion of their human users. This results in dynamic and instantaneous

channel variations. In practice, this could cause frequent beam tracking failures. This necessitates

the execution of expensive channel acquisition procedures to recover from failures. Thus, beam

tracking algorithms should handle dynamically-varying channels to reduce beam tracking failures

and consequently save resource overhead. However, the performance of most existing beam

tracking algorithms is limited because they rely on somewhat simple prior linear models to

describe time-varying channels. In fact, channels often exhibit structured temporal behavior due

to the motion of the UE device. Therefore, channel models that represent such temporal behavior

well are required.

Recently, deep neural networks (DNNs) have received considerable attention owing to their

ability to find an abstract representation of high-dimensional data [25]. DNNs can model complex

non-linear relationships using multiple layers of an artificial neural network. DNNs have achieved

state-of-the-art performance in various challenging machine learning tasks. They have been

particularly effective for applications in which the existing analytical models cannot adequately

describe the distribution of the data. Thus, a DNN can be a suitable candidate for modeling the

temporal behavior of mmWave channels caused by the motion of a UE device. Recently, a DNN

has been applied for beam tracking in mmWave systems in [26]–[28].

In this paper, we propose an enhanced beam tracking method, that models rapidly-varying

mmWave channels using DNNs. We employ a long short-term memory (LSTM) architecture to

describe the temporal evolution of the AoAs and AoDs, using the information available in a

UE device. Specifically, the LSTM predicts the distribution of the AoA and AoD states for the

current beam transmission cycle based on the sequence of the previous channel estimates and

IMU sensor signals. This distribution is used for two main beam tracking operations. First, the

distribution of the AoAs and AoDs is used to determine the Rx and Tx sounding beams to be

used in the current beam transmission cycle. Second, the predicted channel distribution is used as

prior information to update the channel estimate. The proposed LSTM-based prediction model is

incorporated into a sequential Bayesian estimation framework, in which the channel information
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is updated through a prediction update step and measurement update step in an alternating

manner. Note that the proposed method uses the LSTM-based prediction model to update the

channel distribution in the prediction update step. This distribution is then used as the prior

channel information in the subsequent measurement update step. We evaluate the performance

of the proposed beam tracking method via computer simulation. Our results demonstrate that

the proposed method achieves significant performance gains over conventional beam tracking

methods under various high-mobility scenarios.

The contributions of this paper are summarized as follows;

• Our method uses a DNN to enhance the beam tracking performance in mmWave systems.

As compared with widely used simple linear models, the DNN model can capture the

complex temporal channel behavior caused by the motion of a device, thereby offering an

enhanced beam tracking performance. The superiority of the proposed DNN-based beam

tracking scheme over the existing methods is confirmed via numerical evaluation.

• We incorporate our DNN-based channel model into the sequential Bayesian filtering frame-

work. The role of machine learning models is restricted to modeling the temporal behavior of

channels only and we use the analytical model describing the relation from the transmitted

beam to the measurements in the measurement update step. This is consistent with the

design principles of respecting established models for well-known physical processes and

using data-driven approaches only where the actual physical process is barely known (e.g.,

temporal channel evolution under mobility environment). This approach contrasts with the

end-to-end modeling of beam tracking proposed in [26].

• Recently, a DNN-based channel tracking has been proposed in [26]. The method in [26]

directly estimates the AoA using the DNN, whereas the proposed method predicts the future

distribution of AoA. The predicted AoA information is then used to update the channel

estimate based on the measurement model. Another key difference from the aforementioned

method is that the proposed method utilizes various types of signals acquired by motion

sensors for beam tracking.

II. MMWAVE BEAM TRACKING SYSTEMS

In this section, we describe the mmWave channel model and introduce the widely used beam

tracking protocol.
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A. MmWave Channel Model

Recall that the BS and UE have antenna arrays of sizes Nb and Nm, respectively. The downlink

channel from the BS to the UE can be expressed as the matrix Ht of size Nm ×Nb, where the

(i, j)th element of Ht represents the channel gain from the jth antenna of the BS to the ith

antenna of the UE. The subscript t represents the tth beam transmission period. The channel

Ht is assumed to be constant within the tth beam training period. The mmWave channel can be

represented in the angular domain as [3], [17]

Ht =

L∑

l=1

αl,ta
(m)(θ

(m)
l,t )

(
a(b)(θ

(b)
l,t )
)H

, (1)

where L is the total number of paths, αl,t is the channel gain for the lth path, and θ
(b)
l,t and

θ
(m)
l,t are the AoD and AoA, respectively. The AoD and AoA are obtained from θ

(b)
l,t = sin(φ

(b)
l,t ),

θ
(m)
l,t = sin(φ

(m)
l,t ), where φ

(b)
l,t and φ

(m)
l,t ∈ [−π

2
, π
2
] are the AoD and AoA in radians, respectively.

The steering vectors a(b)(θ) and a(m)(θ) are expressed as

a(b)(θ) =
1√
Nb

[
1, e

j2πdbθ

λ , e
j2π2dbθ

λ , · · · , e
j2π(Nb−1)dbθ

λ

]T

a(m)(θ) =
1√
Nm

[
1, e

j2πdmθ
λ , e

j2π2dmθ
λ , · · · , e

j2π(Nm−1)dmθ

λ

]T
,

where db and dm are the distances between adjacent antennas for the BS and UE, respectively and

λ is the signal wavelength. In practical scenarios, L tends to be small because only a few paths

exhibit dominant energy. Note that the mmWave channel is determined by the set of parameters

γt = [α1,t, θ
(m)
1,t , θ

(b)
1,t , ..., αL,t, θ

(m)
L,t , θ

(b)
L,t]

T .

B. Beam Tracking Protocol

Fig. 1 illustrates a typical beam tracking protocol. Without prior knowledge about the channel,

the initial channel acquisition is performed using the Tx and Rx sounding beams, whose direc-

tions are distributed over a wide range. The beam tracking mode starts once the initial channel

acquisition is completed. At the tth beam transmission period, the beam tracking method uses

the channel knowledge to transmit the pilot symbols using significantly fewer sounding beams

directed at certain desired directions. After beam transmission, the UE updates the channel

estimate based on the measurements. These channel estimates are fed back to the BS through

a feedback channel or used for data demodulation. This beam tracking procedure is repeated
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in each beam transmission cycle. A similar protocol is observed in the 5G standard, where the

SS-burst slot and CSI-RS slot are reserved for the initial channel acquisition and beam tracking,

respectively [29].

C. mmWave Channel Estimation

At the tth beam transmission, the BS transmits Mb ·Mm pilot symbols to the UE using Mb Tx

beams and Mm Rx beams. Let ft,1, ..., ft,Mb
represent the beamforming vectors used for the Tx

beams and wt,1, ...,wt,Mm
represent the combining vectors for the Rx beams. When an analog

beamformer is used, the beamforming and combining vectors are expressed as ft,i = a(b)(µ
(b)
t,i )

and wt,j = a(m)(µ
(m)
t,j ), respectively, where µ

(b)
t,i and µ

(m)
t,j are the corresponding directions of the

sounding beams. The vector received in the tth beam transmission cycle is expressed as

yt,(i−1)Mm+j = wH
t,jHtft,ist,i + nt,(i−1)Mm+j, (2)

for 1 ≤ i ≤ Mb and 1 ≤ j ≤ Mm, where st,i is the pilot symbol and nt,(i−1)Mm+j is the

additive noise. Without losing generality, we let st,i = 1 in the sequel. Note that, for each

Tx sounding beam, Mm Rx sounding beams are swept, resulting in Mm · Mu transmissions.

Combining the received signals in a vector yt as yt = [yt,1, ..., yt,MbMm
]T and using the angular

channel representation in (1), we obtain

yt = vec(WH
t HtFt) + nt, (3)

= vec

(
L∑

l=1

αl,tW
H
t a

(m)
(
θ
(m)
l,t

)(
a(b)(θ

(b)
l,t )
)H

Ft

)
+ nt, (4)

where vec(·) is the vectorization operation1, nt = [nt,1, ..., nt,MbMm
]T , Wt =

[
wt,1 ... wt,Mm

]
,

and Ft =
[
ft,1 ... ft,Mb

]
. We assume that the channel gains α1,t, ..., αL,t vary slowly so that they

can be assumed as being estimated accurately. For specified Ft and Wt, the channel estimation

problem is equivalent to the determination of the set of parameters γt = [γT
1,t, ..., γ

T
L,t]

T =

[[θ
(m)
1,t , θ

(b)
1,t ], ..., [θ

(m)
L,t , θ

(b)
L,t]]

T . Accordingly, we formulate the following state-space equation:

• State evolution model

γt = Atγt−1 + vt, (5)

1For example, vec









1 2

3 4







 = [1, 3, 2, 4]T .
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where At is the auto-regressive parameter and vt is a complex Gaussian vector CN(0, Vt).

• Measurement model

yt = vec

(
L∑

l=1

αl,tW
H
t a

(m)
(
θ
(m)
l,t

)(
a(b)(θ

(b)
l,t )
)H

Ft

)
+ nt. (6)

Owing to the nonlinearity of the state-space equation, we can use nonlinear Bayesian filtering

algorithms. A popular method used in this regard is the extended Kalman filter (EKF)

1) Prediction update step

γ̂t|t−1 = Atγ̂t−1|t−1

Pt|t−1 = AtPt−1|t−1A
H
t +Vt, (7)

2) Measurement update step

Kt = Pt|t−1O
H
t

(
OtPt|t−1O

H
t + σ2

t I
)−1

Pt|t = (I −KtOt)Pt|t−1

γ̂t|t = γ̂t|t−1 +Kt

(
yt − q(γ̂t|t−1)

)
, (8)

where the vector q(γt) and Jacobian matrix Ot are expressed as

q(γt) =

L∑

l=1

vec

(
αl,tW

H
t a

(m)
(
θ
(m)
l,t

)(
a(b)(θ

(b)
l,t )
)H

Ft

)

Ot =
∂q(γt)

∂γt

∣∣∣∣
γt=γ̂t|t−1

.

The expression for Ot is provided in Appendix A. As the prior channel model in (5) captures

only the first-order dynamics of channel variations, EKF often fails to track the complex channel

dynamics in the prediction update step, resulting in a large linearization error in the measurement

update step.

III. REVIEW OF LSTM MODEL

The LSTM is a DNN architecture widely used to analyze time-series data. Fig. 2 depicts

the structure of the LSTM. The LSTM uses recurrent connections to extract features from

sequence data and stores them in a memory called cell state. When unfolded in time, the

connection from the input to the output in the LSTM is deep in time. This enables an efficient
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Fig. 2. Structure of the basic LSTM model

representation of long sequences. The LSTM has been successfully applied to various machine-

learning problems, e.g., natural language processing, speech recognition, and machine translation.

The LSTM consists of a cell state, and input, output, and forget gates. The input, output, and

forget gating functions can control the information flows entering and leaving the cell state.

These gating functions are designed to address the vanishing gradient problems, in which the

gradient signals attenuate considerably in learning long-term dependency [30]. Whenever the

input xt is fed into the LSTM, the cell state ct at the time step t is updated according to the

following recursive equations

it = σ(Wxixt +Whiht−1 + bi) (9)

ft = σ(Wxfxt +Whfht−1 + bf ) (10)

ot = σ(Wxoxt +Whoht−1 + bo) (11)

gt = tanh(Wxcxt +Whcht−1 + bc) (12)

ct = ft ⊙ ct−1 + it ⊙ gt (13)

ht = ot ⊙ tanh(ct), (14)

where

• σ(x) = 1
1+e−x : sigmoid function

• a⊙ b: element-wise product
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• Wxi,Whi,Wxf ,Whf ,Wxo,Who,Wxc,Whc: weight matrices for linear transformation

• bi, bf , bo, bc: bias vector

• it: input gating vector

• ft: forget gating vector

• ot: output gating vector

• gt: state update vector

• ht: output hidden state vector.

The output ht of the LSTM contains the feature required to perform the specified task. The

desired output can be determined from the feature ht through an additional neural network. The

LSTM is trained to minimize the appropriately designed loss function using the back-propagation

through time (BPTT) algorithm.

IV. PROPOSED DEEP LEARNING-BASED BEAM TRACKING

In this section, we describe the proposed beam tracking method. The structure of the overall

system is depicted in Fig. 3. The LSTM-based prediction model predicts the distribution of

the channel state at the tth beam training period based on all the previously available channel

estimates and IMU sensor signals. The prediction model produces the mean and covariance

matrix of AoD and AoA separately for each path. Note that the parameters of each model are

shared among L paths. As shown in Fig. 3, the output of the prediction model is used to steer

both Tx and Rx sounding beams and update the channel estimates based on the received beams.

A. LSTM-based Channel Prediction

The input to the LSTM-based prediction model includes

• γ̂l,t−δ:t−1 =
[
γ̂T
l,t−δ, ..., γ̂

T
l,t−1

]T
: the sequence of the previous δ channel estimates acquired

before the tth beam transmission period begins.

• st−δ:t−1 = [sTt−δ, ..., s
T
t−1]

T : the sequence of the previous sensor signal samples of J types.

For example, with J = 3, the vector st−i contains the velocity, angular velocity and angular

acceleration samples acquired from the IMU sensor. As the sampling frequency of these

signals can be different from that of the beam transmissions, the sensor signals can be

resampled to produce K samples for each beam transmission cycle. Finally, the vector st−i

is filled with KJ signal samples.

December 5, 2022 DRAFT



10

⋯

� � �

�

⋯

⋯

�������
��	�
�������

��
���	���
����������

� � �

��	�
�������
� � �

��	�
��	���������

���

�	�����

⋯ � � �

��
���	���
����������

� � �

⋯

��	�
�������
� � �

⋯ ⋯

⋯

⋯

�


�


����,�|���, ��,�|����

����,�|���, ��,�|����

����,�|�, ��,�|��

����,�|�, ��,�|��

���,���|���

���,���|���

����,���|���, ��,���|����

����,���|���, ��,���|����

⋯

������
��
���������	���

Fig. 3. Block diagram of the proposed beam tracking method

• Ct: the vector that represents contextual information such as the location and activity of

the UE. Although it does not represent sequential data, contextual information provides

supplementary information on the channels.

The proposed prediction model aims to determine the distribution p(γl,t|γ̂l,t−1:t−δ, st−1:t−δ, Ct)
for each channel path for the given past channel estimates γ̂l,t−δ:t−1, sensor signals st−δ:t−1, and

context information Ct. We employ the LSTM to model the dependencies between the input

and the future channel state. The structure of the LSTM-based prediction model is depicted in

Fig. 4. The signal samples {γ̂l,t−δ, st−δ, Ct}, ..., {γ̂l,t−1, st−1, Ct} are encoded separately by the

input fully-connected (Fc) layers, i.e.,

νl,t−i = Fc({γ̂l,t−i, st−i, Ct}), (15)

where νl,t−i is the embedding vector obtained by the Fc layers. The embedding vectors are fed

to the LSTM one by one to update the cell state. After δ update of the LSTM, the output ht is

fed into the output Fc layers to produce the estimate γ̂l,t. That is,

γ̂l,t = Fc (LSTM({νl,t−δ, ..., νl,t−1})) . (16)

The parameters of the LSTM and Fc layers are determined in the training procedure. In

practice, the training data could be collected by deploying several reference UEs, that log
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Fig. 4. Structure of the LSTM-based prediction model

the channel states and sensor signals in real scenarios. The model is trained to minimize the

negative log-likelihood loss
∑ ‖γl,t− γ̂l,t‖2, where the ground truth γl,t can be obtained directly

from the training data. The prediction network is trained using the standard BPTT algorithm

with the ADAM optimization [31]. The model weights are updated over a minibatch of size

MINIBATCH. The training starts with the initial learning rate LEARNING RATE. The learning

rate decays by half in each DECAY EPOCH epochs. Note that the model is trained over a total

of TOTAL EPOCH epochs.

B. Channel Tracking

The sequential Bayesian estimation framework is widely used to estimate time-varying chan-

nels. The Bayesian principle involves updating the distribution of a channel based on all the

information available at each step. By adopting this principle, we update the mean γ̂l,t−1|t−1

and the covariance matrix Pl,t−1|t−1 by γ̂l,t|t−1 and Pl,t|t−1 through the prediction update step.

Subsequently, the measurement update step updates γ̂l,t|t−1 and Pl,t|t−1 by γ̂l,t|t and Pl,t|t. In the

prediction update step, the LSTM-based prediction model is used to obtain γ̂l,t|t−1 and Pl,t|t−1.

As the LSTM-based prediction model produces the point estimate of the future channel state, we

employ the unscented transformation (UT) [12], [32] to obtain the distribution. First, for given

γ̂l,t−1|t−1 and Pl,t−1|t−1, we generate 2P + 1 sigma vectors χi with the corresponding weights
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wi, i.e.,

χ0 = γ̂l,t−1|t−1 (17)

χi = γ̂l,t−1|t−1 +
(√

(L+ λ)Pl,t−1|t−1

)
i

i = 1, ..., P (18)

χi = γ̂l,t−1|t−1 −
(√

(L+ λ)Pl,t−1|t−1

)
i−P

i = P + 1, ..., 2P (19)

w
(m)
0 = λ/(L+ λ) (20)

w
(c)
0 = λ/(L+ λ) + (1− α2 + β) (21)

w
(m)
i = w

(c)
i = 1/(2(K + λ)), (22)

where λ = α2P − P is a scaling parameter, α = 10−3 determines the spread of the sigma

points around γ̂t−1|t−1, and β = 2 reflects the prior distribution of γl,t.
(√

(L+ λ)Pt−1|t−1

)
i

is

the ith row of the matrix square root. These sigma vectors are passed through the LSTM-based

prediction model, which generates 2P + 1 outputs ν0, ..., ν2P . Finally, the updated distribution

γ̂l,t|t−1 and Pl,t|t−1 are obtained by the weighted sums

γ̂l,t|t−1 =

2P∑

i=0

w
(m)
i νi (23)

Pl,t|t−1 =

2P∑

i=0

w
(c)
i (νi − γ̂l,t|t−1)(νi − γ̂l,t|t−1)

T . (24)

It was shown in [32] that the UT yields approximations that are accurate up to at least the second

order, with the accuracy of the third and higher-order moments determined by the selection of α

and β. After the prediction update step is completed, the measurement update step is performed

to obtain the statistics γ̂l,t|t and Pl,t|t from

Kt = Pt|t−1O
H
t

(
OtPl,t|t−1O

H
t + σ2

t I
)−1

Pl,t|t = (I −KtOt)Pl,t|t−1

γ̂l,t|t = γ̂l,t|t−1 +Kt

(
yt − q(γ̂l,t|t−1)

)
. (25)

Note that this measurement update step is equivalent to that of the EKF.

C. Predictive Beam Control

The direction of the sounding beams needs to be determined based on the best available channel

information in the tth beam transmission cycle. Before the sounding beams are transmitted,
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the best available channel information is the statistics γ̂l,t|t−1 and Pl,t|t−1 obtained using the

UT. Based on the Gaussian approximation p(γl,t|γ̂l,t−1:t−δ, st−1:t−δ, Ct) ≈ N(γ̂l,t|t−1,Pl,t|t−1),

we determine the beam angles µ
(b)
t,1 , ..., µ

(b)
t,Mb

and µ
(m)
t,1 , ..., µ

(m)
t,Mm

, where ft,i = a(b)(µ
(b)
t,i ) and

wt,j = a(m)(µ
(m)
t,j ). The optimal beam angles can be determined by maximizing the expected

channel estimation performance with respect to the parameters µ
(b)
t,1 , ..., µ

(b)
t,Mb

and µ
(m)
t,1 , ..., µ

(m)
t,Mm

.

An in-depth study on the optimization of the sounding beams has been presented in [3], [15],

[33]. In our previous work [33], the problem of sounding beam adaptation was formulated as a

minimization of the Cramer-Rao lower bound (CRLB) of the channel estimation error over the

combinations of beam codebook indices. When only two sounding beams are used for Tx and

Rx, i.e., Mb = Mm = 2, the optimal beam directions could be determined by a two-dimensional

search over the beam codebook. In this study, adopting the method in [33], the CRLB is derived

for the given channel distribution N(γ̂l,t|t−1,Pl,t|t−1), and the optimal sounding beam angles

are determined. With the setup Mb = Mm = 2, we choose the values of the beam angles

µ
(b)
t,1 , µ

(b)
t,2 , µ

(m)
t,1 , µ

(m)
t,2 using two-dimensional search. Note that this beam control algorithm moves

the group of sounding beams toward the future AoD and AoA directions in advance.

D. Algorithm Summary

The proposed beam tracking algorithm is summarized in Algorithm 1.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed beam tracking algorithm.

A. Simulation Setup

1) MmWave System Setup: In our simulations, we considered 28GHz frequency band com-

munications with uniform linear array (ULA) antennas whose adjacent elements are spaced by

a half wavelength. We considered the communication between a single BS with Nb = 32 Tx

antennas and a single UE device with Nm = 32 Rx antennas. Following the 5G NR standard [29],

the symbol duration over which a single beam is transmitted was set to 8.93µs and 14 symbols

are included in each slot of duration 125µs. In the simulations, 4 sounding beams (Mb = 2 and

Mm = 2) were transmitted every TCSI slots. The periodicity of beam transmission TCSI was set

to 160 slots based on the 5G NR standard [29]. We use the beam codebook, which contains 64
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Algorithm 1 Proposed beam tracking algorithm

1: At the tth beam transmission cycle

2: Input: γ̂1,t−1|t−1, ..., γ̂L,t−1|t−1 and P1,t−1|t−1, ...,PL,t−1|t−1

3: Prediction update step:

4: for i = 1 to L ... do

5: Generate 2P + 1 sigma samples χ0, ..., χ2P according to γ̂l,t−1|t−1 and Pl,t−1|t−1.

6: Generate 2P + 1 output samples ν0, ..., ν2P using the LSTM prediction model.

7: Update γ̂l,t|t−1 and Pl,t|t−1 according to (23) and (24).

8: end for

9: Beam adaptation and transmission:

10: Determine the directions of the sounding beams using the method in [33] and transmit the

beams accordingly.

11: Measurement update step:

12: for i = 1 to L ... do

13: Update γ̂l,t|t and Pl,t|t according to (25).

14: end for

15: t← t+ 1 and go back to line 1.

beams with equally spaced angles. The symbol slots not used for beam tracking were allocated

for data transmission. The data symbols in each slot were modulated using binary phase-shift

keying (BPSK) modulation. The data precoding and combining matrices were obtained from the

left and right singular vectors of the channel matrix associated with the highest singular value,

respectively.

2) Mobility Model: We assume that the BS is located sufficiently far away from the UE and

the AoD does not change considerably in time. On the contrary, owing to the motion of the UE,

the AoA varies considerably. Thus, we assume that only AoA varies in time according to the

following dynamic model:

al,n = (1− ρ)aavg + ρal,n−1 + wt (26)

θ
(m)
l,n = θ

(m)
l,n−1 +∆t(al,n), (27)
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where n is the slot index, al,n denotes the angular velocity of AoA for the lth path, θ
(m)
l,n denotes

the AoA, aavg denotes the average velocity, ∆t = 125us is the symbol duration, ρ = 0.9999 is

the auto-regressive (AR) parameter, and wt ∼ N(0, 0.2(1− ρ2)). Note that the angular velocity

al,n is modeled by the AR process, and the AoA θ
(m)
l,n is generated by accumulating the velocity.

We assume that the channel gain and AoD are constant and known. The number of paths L was

set to 3. The AoAs were generated independently for each path. Fig. 5 shows the change in the

AoA and angular velocity with different values of aavg. A higher value of aavg leads to faster

motion and consequently more dynamic AoA variations. Note that aavg = 0.4π indicates that

the UE device rotates in approximately 2.5s.

3) LSTM-based Prediction Model: We present the detailed configurations of the proposed

prediction model. The length of the input sequence for updating the LSTM was set to δ = 3.

Each input vector consists of

• The previous channel estimate

• K = 4 samples of angular velocity sensor measurements (rad/s)

• K = 4 samples of angular acceleration sensor measurement (rad2/s).

The IMU sensor measurements were generated by computing the first and second sample

derivatives of the AoA and adding Gaussian noise. The signal-to-noise ratio (SNR) was set

to 5 dB when testing the prediction model. We assume that the sampling period of the IMU

sensor signals is K = 4 times lower than TCSI . The FC layers at the input and output have 16

and 32 hidden nodes, respectively. The LSTM uses the stacked cell states of size 32.

4) Training Procedure: The training configurations are as follows:

• MINIBATCH : 64

• INITIAL LEARNING RATE : 0.01

• DECAY EPOCH : 3

• DECAY RATE : 0.1

• TOTAL EPOCH : 30

• OPTIMIZER : Adam optimizer

A total of 3, 000, 000 data examples were generated for training and 1,000,000 examples were

used to evaluate the proposed beam tracking method. The training data were generated with a

random SNR uniformly distributed in the range [6, 15] dB. The SNR of the sensor signals was

also randomly determined from the same candidate set.
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Fig. 5. Variation of (a) AoA and (b) angular velocity for several values of the parameter aavg .

B. Experimental Results

In this section, we compare our method with the following mmWave channel tracking methods:

1) Compressive channel tracking [19]: Orthogonal matching pursuit [34] followed by off-grid

refinement was used to track the AoA.

2) EKF method [10]: The AoA was estimated using the EKF.

3) Least mean square (LMS) method [20]: The AoA was estimated by using the LMS filter.

4) LSTM based tracking [26]: The LSTM model directly estimates the AoA. It was trained
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Fig. 6. BER versus SNR of several channel tracking methods for (a) aavg = 0.1π, (b) aavg = 0.2π, and (c) aavg = 0.4π.

using the cosine loss function.

5) Proposed (CSI) method: Only previous AoA estimates were used to predict the future

channel state information (CSI). This method was evaluated to investigate the advantage

of using IMU sensors for beam tracking.

6) Proposed (CSI+IMU) method: The previous AoA estimates and IMU measurements were

used to predict the future channel distribution.

As the compressive channel tracking, LMS, and LSTM-based tracking methods do not produce

the distribution of AoA, we used Mm = 2 beams closest to the previous AoA estimate as the Rx
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Fig. 7. Normalized MSE versus SNR of several channel tracking methods for (a) aavg = 0.1π, (b) aavg = 0.2π, and (c)

aavg = 0.4π.

sounding beams. In contrast, like the proposed method, the EKF method yields the distribution

of the AoA, which is used to determine the Rx sounding beams. The normalized mean square

error (MSE) is defined as

MSE = 10 log10

∥∥∥Ht − Ĥt

∥∥∥
2

F

‖Ht‖2F
.

Fig. 6 shows the bit error rate (BER) performance as a function of SNR. The parameter aavg

indicates the extent of mobility of the UE. Fig. 6 (a), (b), and (c) show the performance curves

for aavg = 0.1π, 0.2π, and 0.4π, respectively. We observe that the proposed (CSI+IMU) method
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outperforms the existing methods for all the cases considered. When aavg is 0.1π rad/s, the

proposed method achieves a performance gain of approximately 1 dB over the EKF method at

the BER of 10−3. As aavg increases, the channel changes more dynamically and the performance

gain of the proposed method increases. With aavg = 0.2π, the proposed method achieves a gain

of more than 3 dB over other algorithms. Furthremore, with aavg = 0.4π, the performance gain

increases up to more than 10 dB. This indicates that the LSTM-based channel model provides

a more accurate model of time-varying AoAs, and thus, superior performance is achieved under

higher mobility. Fig. 6 also shows the advantage of using IMU sensors for beam tracking. The

proposed (CSI+IMU) method achieves a performance gain over the proposed (CSI) method,

especially in the low SNR range. This appears to be because the channel estimates obtained in

the previous beam transmission cycles would not be reliable in the low SNR range; thus, the

IMU sensor signals can compensate the degraded channel estimation. Note that, although both the

proposed and EKF methods perform the same measurement update step, the proposed method

achieves a better performance owing to its more accurate prediction results in the prediction

update step. Note also that, although both our method and the method in [26] employ DNN

for beam tracking, the proposed method performs better by leveraging the underlying domain

knowledge in the measurement model.

Fig. 7 shows the normalized MSE as a function of SNR for several beam tracking methods.

The proposed method achieves a significant performance gain over the existing methods for all

the cases considered. The performance gain of the proposed method also increases with aavg.

The proposed method can track rapidly varying channels better by using the DNN and IMU

sensor measurements.

Fig. 8 illustrates the variation in the MSE performance with the beam transmission period

TCSI and the angular velocity aavg when the SNR is set to 9 dB. Fig. 8 (a) shows the plot

of MSE versus TCSI when aavg is fixed to 0.2π. As TCSI increases, the sounding beams are

transmitted less frequently, and the beam tracking method experiences larger channel variations.

With a small TCSI , the performance of the EKF method is comparable to that of the proposed

method. However, the performance of the EKF method severely deteriorates with TCSI , and

consequently, the performance gap between these two methods increases rapidly. Fig. 8 (b)

shows the plot of MSE versus aavg when TCSI is fixed to 160 slots. The performance of the

beam tracking algorithms degrades as the channel changes more dynamically owing to the fast
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Fig. 8. Normalized MSE versus (a) TCSI and (b) aavg .

motion of the UE. As aavg increases, the EKF method does not perform well because the linear

channel model used in the EKF method does not sufficiently capture the behavior of time-varying

channels. In contrast, the proposed method successfully models the complex channel behavior

for reliable beam tracking.
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VI. CONCLUSIONS

In this paper, we proposed a deep learning-based beam tracking method for mmWave com-

munication. The proposed beam tracking method was designed to track fast-varying AoD and

AoA due the motion of the UE device. We employed the LSTM to model the channel variation

and predict the future distribution of the channel state based on the sequence of the previous

channel estimates and IMU sensor measurements. Our method is based on a sequential Bayesian

estimation framework, in which the prediction model yields the prior distribution of the channel

in the prediction update step, and the predicted distribution is used to update the channel estimate

in the measurement update step. Thus, our method is a hybrid approach in that we used both

an LSTM-based channel model and an analytical measurement model for beam tracking. Our

simulation results showed that the proposed method achieved a significant performance gain

over the EKF baseline and outperformed the existing beam tracking methods, especially in high-

mobility scenarios.

VII. APPENDIX

A. Derivation of Jacobian Matrix

The Jacobian matrix Ot is expressed as

Ot =

[
∂q(γt)

∂θ
(b)
1,t

,
∂q(γt)

∂θ
(m)
1,t

, · · · , ∂q(γt)
∂θ

(b)
L,t

,
∂q(γt)

∂θ
(m)
L,t

]
,

whose elements in the (M(i − 1) + j)th row are given by

∂q(M(i−1)+j)

∂θ
(b)
l,t

=
αl,t

ntnr

kbe

(

kb(θ
(b)
l,t

−ν
(b)
t,i )

)

− kbNbe

(

kbNb(θ
(b)
l,t

−ν
(b)
t,i )

)

− kb(Nb − 1)e

(

kb(Nb+1)(θ
(b)
l,t

−ν
(b)
t,i )

)

(
1− e

(

kb(θ
(b)
l,t

−ν
(b)
t,i )

))2

× 1− e

(

kmNm(θ
(m)
l,t

−ν
(m)
t,j )

)

1− e

(

km(θ
(m)
l,t

−ν
(m)
t,j

)
)

∂q(M(i−1)+j)

∂θ
(m)
l,t

=
αl,t

ntnr

1− e

(

kbNb(θ
(b)
l,t

−ν
(b)
t,i )

)

1− e

(

kb(θ
(b)
l,t

−ν
(b)
t,i )

)

× kme

(

km(θ
(m)
l,t

−ν
(m)
t,j )

)

− kmNme

(

kmNm(θ
(m)
l,t

−ν
(m)
t,j )

)

− km(Nm − 1)e

(

km(Nm+1)(θ
(m)
l,t

−ν
(m)
t,j )

)

(
1− e

(

km(θ
(m)
l,t

−ν
(m)
t,j )

))2 ,

where kb = − j2πdb
λ

and km = − j2πdm
λ

.
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