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Abstract—Novel sparse reconstruction algorithms are proposed
for beamspace channel estimation in massive multiple-input
multiple-output systems. The proposed algorithms minimize a
least-squares objective having a nonconvex regularizer. This reg-
ularizer removes the penalties on a few large-magnitude elements
from the conventional ℓ1-norm regularizer, and thus it only forces
penalties on the remaining elements that are expected to be zeros.
Accurate and fast reconstructions can be achieved by performing
gradient projection updates within the framework of difference
of convex functions (DC) programming. A double-loop algorithm
and a single-loop algorithm are proposed via different DC decom-
positions, and these two algorithms have distinct computational
complexities and convergence rates. An extension algorithm is
further proposed by designing new step sizes for the single-
loop algorithm. The extension algorithm has a faster convergence
rate and can achieve approximately the same level of accuracy
as the proposed double-loop algorithm. Numerical results show
significant advantages of the proposed algorithms over existing
reconstruction algorithms in terms of reconstruction accuracies
and runtimes. Compared with the benchmark channel estimation
approaches, the proposed algorithms can achieve smaller channel
reconstruction error and higher achievable spectral efficiency.

Index Terms—DC programming, gradient projection, massive
MIMO, nonconvex optimization, sparse channel reconstruction

I. INTRODUCTION

As a key technology for the fifth-generation and beyond

communication systems, massive multiple-input multiple-

output (MIMO) heavily relies on accurate knowledge of

channel state information (CSI) to reap potential performance

benefits from a large number of antennas. However, acquiring

downlink CSI in a resource-efficient manner is problematic

for frequency division duplex (FDD) systems where uplink

and downlink channels operate in different spectrum bands.

For such a system, downlink channels are estimated at the

user equipments (UEs) and then the UEs send back the

estimated CSI to the base station (BS); both the overheads

of downlink pilot and CSI feedback are proportional to

the number of BS antennas, which can be large for mas-

sive MIMO systems. To reduce the overhead of downlink

CSI acquisition, one can develop sparse channel estimation

methods by exploiting channel sparsity in certain domains.

More specifically, the unknown massive MIMO channels can

be represented as high-dimensional sparse vectors in certain

basis [1]. Based on valid sparse representations of massive
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MIMO channels, transmitting pilots over the channel can be

regarded as a linear mapping of sparse channel vectors onto a

compact subspace to obtain lower-dimensional observations.

Then, the full-dimensional channel vectors are expected to

be reconstructed from the lower-dimensional observations. In

such sparse channel estimation methods, the length of pilot

sequence for each antenna is no longer proportional to the

number of BS antennas, but depends on the sparsity level

of the channel. Thus, the length of downlink pilot sequences

can be much less than the number of BS antennas, and the

CSI acquisition overhead for FDD massive MIMO will be

substantially reduced.

Sparse channel estimation [2] has been proposed for many

traditional communication applications such as orthogonal

frequency-division multiplexing systems [3], ultra-wideband

communications [4], pulse-shaping multicarrier systems [5]

and underwater acoustic communications [6]. The channels

in these applications typically have sparse impulse responses

because the corresponding multipath channel has a large delay

spread and a small number of nonzero taps [2]. Nowadays,

sparse channel estimation has been increasingly investigated

for massive MIMO systems. Due to a limited number of

scattering clusters and the small angular spread for each scat-

tering cluster, the massive MIMO channel in angular-domain

(beamspace) exhibits a sparse feature [7], i.e., the majority

of channel energy is occupied by a few dimensions and

most channel coefficients are either zero or nearly zero. Vari-

ous compressive sensing-based beamspace channel estimation

schemes have been developed for massive MIMO [8]–[17]

and millimeter-wave (mmWave) massive MIMO [18]–[26].

Several orthogonal matching pursuit (OMP) based algorithms

have been proposed for sparse channel estimations of mmWave

massive MIMO [20]–[23]. The quantized compressive sens-

ing technique has been applied to the channel estimation

for mmWave massive MIMO with few-bit analog-to-digital

converters [24]. The image reconstruction technique has been

applied to mmWave MIMO channel estimation to develop

an SCAMPI 1 algorithm based on the approximate message

passing algorithm [26].

Apart from the compressive sensing-based channel estima-

tion scheme, there are other channel estimation schemes such

as the codebook-based method [27], the parametric channel

estimation [28] and the subspace decomposition-based channel

1The SCAMPI algorithm is the sparse noninformative parameter estimator-
based cosparse analysis approximate message passing for imaging algorithm
[26].
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estimation [29], [30]. The codebook-based beamforming [27]

only estimates the CSI implicitly; however, explicit CSI is

often required for general beamforming tasks. The parametric

channel estimation can achieve super-resolutional channel esti-

mation without a discrete angular-domain channel assumption,

but it requires the array manifold as a priori. Moreover, real-

time CSI acquisition is challenging when using the parametric

channel estimation in a high-mobility environment, since it

is time-consuming to acquire the angle of arrivals (AoAs),

angle of departures (AoDs) and path gains of all channel

paths. The subspace decomposition-based channel estimation

requires iterative channel sounding operations between the BS

and UEs, and this echo process accumulates noise and thus can

degrade channel estimation accuracy.

Among various channel estimation methods, the compres-

sive sensing-based channel estimation is attractive since it can

obtain instantaneous CSI based on the channel sparsity feature,

without requiring statistical priori. Therefore, we focus on

the compressive sensing-based scheme and aim to develop

efficient algorithms for sparse channel reconstruction in mas-

sive MIMO systems. Sparse channel reconstruction requires

the reconstruction of high-dimensional sparse channel vec-

tors from lower-dimensional pilot observations. The ultimate

sparse reconstruction problem is an NP-hard ℓ0-minimization

optimization problem [31]. One approach is to replace the

ℓ0-norm by other simple functions to seek approximate so-

lutions. For this approach, the most popular method is to use

the ℓ1-norm to approximate the ℓ0-norm, and this method is

known as ℓ1-relaxation or convex relaxation. Various well-

known ℓ1-relaxation algorithms have been proposed such as

the l1 ls [32], Bregman iterative regularization [33], gradi-

ent projection for sparse reconstruction (GPSR) [34], sparse

reconstruction by separable approximation (SpaRSA) [35],

iterative shrinkage-thresholding algorithm (ISTA) [36] and the

fast iterative shrinkage-thresholding algorithm (FISTA) [37].

These ℓ1-relaxation algorithms solve convex optimizations to

guarantee global optimal solutions; however, an ℓ1-norm is a

loose approximation of ℓ0-norm, leading to biased estimates.

To achieve tighter approximations, nonconvex functions have

been proposed such as the ℓq-norm for 0 ≤ q ≤ 1 [38] and the

difference of two continuous functions [39]. Another popular

method is the greedy approach, including some representative

algorithms such as OMP [40], [41], CoSaMP [42] and the

least angle regression (LARS) [43]. These greedy methods

work well for sufficiently sparse vectors, but the reconstruction

accuracies and speeds degrade severely when the sparsity of

reconstructing vectors reduces.

In this paper, we propose to use the classic difference of

convex functions (DC) programming and gradient projection

descent algorithm to solve the fundamental sparse recovery

problem. We develop novel algorithms that are applied to

beamspace channel estimation for massive MIMO systems.

Instead of approximating the ℓ0-norm, we represent exactly

the ℓ0-norm constraint by introducing the top-(K, 1) norm

[44]2, which is simply the sum of K largest-magnitude el-

ements of a vector in terms of absolute values. Thus, the

original ℓ0-minimization sparse reconstruction problem can

be equivalently transformed into a least squares optimization

penalized by a nonconvex regularizer. The nonconvex regu-

larizer is more favorable than the ℓ1-regularizer because it

removes the penalties on large-magnitude elements. Although

the resulting optimization problem is nonconvex, we can solve

it by employing the DC programming framework to transform

the problem into a list of convex subproblems, and then we

elegantly apply a gradient projection descent method to solve

these convex subproblems. We propose three different DC gra-

dient projection sparse reconstruction (DC-GPSR) algorithms.

The proposed algorithms can achieve similar reconstruction

accuracies with different time complexities.

The proposed DC-GPSR algorithms have the following

advantages in solving a sparse reconstruction problem com-

pared with conventional sparse recovery algorithms. First,

while conventional algorithms approximate the ℓ0-constraint

by ℓ1-relaxation, we can represent exactly the ℓ0-norm con-

straint using a DC function, i.e., subtracting the top-(K, 1)
norm from the ℓ1-norm of the reconstructing vector. Second,

we formulate the sparse recovery as a nonconvex optimization

problem whose objective function can be decomposed into

DC functions, so that we can naturally adopt the classic DC

programming for the remaining optimization tasks. Further-

more, we can perfectly incorporate the gradient projection

descent algorithm into the DC programming framework. On

one hand, both the gradients of top-(K, 1) norm and ℓ1-norm

can be easily and quickly calculated. On the other hand, we

transform the convex subproblem into a bound-constrained

quadratic program (BCQP) with a nonnegativity constraint so

that the orthogonal projection operation is simple to compute.

Finally, we show that by different DC decompositions and

step size strategies we can derive different algorithms that can

achieve similar accuracies with different convergence rates.

More specifically, the proposed Algorithm 1 has a normal

double-loop procedure of the DC programming algorithm,

while Algorithm 2 simplifies the double-loop procedure to

be a simple single-loop algorithm by using a special DC

decomposition. Based on Algorithm 2, which has a fixed step

size, we further design new step sizes and propose Algorithm

3 that has a single loop and an accelerated convergence rate.

The contributions of this paper are summarized as follows:

• We propose a double-loop DC-GPSR algorithm (Algo-

rithm 1), which has been reported in our preliminary

study [45]. Incorporated by gradient projection descent,

the DC programming framework leads to a double-

loop DC-GPSR algorithm that shows high accuracy and

robustness.

• We propose a single-loop DC-GPSR algorithm (Algo-

rithm 2), which applies a special DC decomposition to the

2The top-(K ,1) norm was previously introduced to solve several ℓ0-
constrained optimization problems [44]. In this work, we consider the sparse
reconstruction problem by formulating an ℓ0-constranined problem. While
our solution starts with the same top-(K ,1) norm technique, different from
[44], our approach incorporates the classic gradient descent into the DC
programming framework to formulate novel sparse recovery algorithms, which
are our main contributions.
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objective function such that the convex subproblem in the

DC programming has a closed-form solution. Compared

to Algorithm 1, Algorithm 2 avoids inner loops and solves

the DC programming subproblem in a one-step update.

• We make an important observation that an update of the

single-loop DC-GPSR algorithm can be interpreted as

an update of gradient projection descent with a required

step size. Thus, we adopt the Barzilai-Borwein (BB) step

size to generalize the basic single-loop DC-GPSR algo-

rithm and propose Algorithm 3 to improve convergence

significantly. Compared to Algorithm 1, the runtime of

Algorithm 3 is demonstrated to be about 1.5 times faster

in noiseless scenarios and about 20 times faster in noisy

scenarios for wide-range signal-to-noise (SNR) values.

II. SYSTEM MODEL

We consider a downlink massive MIMO system having Nt

transmit antennas at the BS and Nr receiver antennas at the

UE. Assuming the block-fading narrowband multipath channel
3, the channel can be represented by the Saleh-Valenzuela

model 4 as [45]

Hs =
√

NrNt

Np∑

l=1

αlαr(θr,l)α
H
t (θt,l) (1)

where Hs ∈ CNr×Nt is the channel matrix, Np is the

number of paths, l denotes the multipath index, αl is the

complex channel gain of the lth path, αr(θr,l) and αt(θt,l)
are respectively the array steering vectors of receiver and

transmitter array for the lth path, and the corresponding

angle of arrival (AoA) and the angle of departure (AoD)

are θr,l and θt,l. An array steering vector represents the

array phase profile as a function of physical AoA or AoD.

For a one-dimensional uniform linear array (ULA) consisting

of N elements, the array steering vector can be expressed

as α(θ) = 1√
N
[1, e−j2πϑ, e−j4πϑ, ..., e−j2πϑ(N−1)]T , where

ϑ ∈ [−1, 1] is the normalized spatial angle, which is related

to the physical angle θ ∈ [−π/2, π/2] by ϑ = d
λ
sin (θ), and

where d = λ/2 is the antenna spacing and λ is the wavelength.

The channel matrix Hs can be represented using a two-

dimensional Fourier transformation of the angular-domain

channel matrix Ha by [7]

Hs = UrHaU
H
t

=

Nr−1∑

i=0

Nt−1∑

j=0

Ha(i, j)αr(θr,i)α
H
t (θt,j) (2)

3In this work, we consider narrowband block-fading channels of massive
MIMO. It is worth mentioning that our proposed algorithms are generic sparse
reconstruction algorithm that can be conveniently applied to other types of
sparse channels as long as the channel has sparse representations in certain
domains. For example, our proposed algorithms can be applied to channel
estimation of wideband time-varying channels for massive MIMO systems.
The only required modification is to exploit the channel sparsity in a virtual
angular-delay-Doppler domain.

4For simplicity, we adopt the basic Saleh-Valenzuela channel model by
assuming that the each scattering cluster consists of a single path. Our
proposed approach can also be applied to the extended Saleh-Valenzuela
channel model, where each cluster consists of multiple sub-paths.

where Ut ∈ CNt×Nt and Ur ∈ CNr×Nr are

unitary digital Fourier transform (DFT) matrices,

and they can be expressed using array steering

vectors as Ut = [αt(θt,0),αt(θt,1), ...,αt(θt,Nt−1)]
T ,

Ur = [αr(θr,0),αr(θr,1), ...,αr(θr,Nr−1)]
T , where

{θt,0, ..., θt,Nt−1} and {θr,0, ..., θr,Nr−1} are the virtual

AoDs and AoAs defined by array elements of transmitter

and receiver. The beamspace channel Ha is sparse due to the

limited number of multiple paths and the high dimensionality

of massive MIMO channels [45].

By transmitting the known pilots P ∈ CNt×L from the BS

through the channel, we have the pilot signal received at UE

as

R̃ = HsP+ W̃ (3)

where R̃ ∈ CNr×L is the received pilot observations, and

where L is the length of training pilot sequence for each

antenna; Hs ∈ CNr×Nt is the channel matrix in the spatial

domain, P is the transmitted pilot matrix; W̃ ∈ C
Nr×L

is the additive white Gaussian noise matrix whose elements

are independent identical distributed (i.i.d.) complex Gaussian

random variables having a mean of zero and a variance of σ2
n.

Conventional estimation methods such as the linear minimum

mean square error (LMMSE) or the least squares (LS) require

L ≥ Nt to obtain accurate estimates, whereas the beamspace

channel estimation can reconstruct Ĥs for L≪ Nt. From (2),

we have Hs = UrHaU
H
t , which can be substituted in (3) to

have

R̃ = UrHaU
H
t P+ W̃. (4)

By taking the transposes and right multiplications with UH
r

on both sides of (4), we have

R̃TUH
r

︸ ︷︷ ︸

R

= PTU∗
t

︸ ︷︷ ︸

S

HT
aUrU

H
r

︸ ︷︷ ︸

H

+W̃TUH
r

︸ ︷︷ ︸

W

(5)

We simply write (5) as

R = SH+W (6)

where R = R̃TUH
r ∈ CL×Nr , H = HT

aUrU
H
r ∈ CNt×Nr ,

W ∈ CL×Nr , and the matrix S = PTU∗
t ∈ CL×Nt . The

beamspace channel estimation Ĥ = ĤT
a can be obtained by

solving the linear equation (6) given the known measurement

matrix S and measurements R. To this end, both an efficient

sparse recovery algorithm and a proper measurement matrix

are essential to the estimation performances. Eq. (5) suggests

that the pilot matrix P depends on the measurement matrix S.

To design the pilot matrix, we can first determine a measure-

ment matrix S, and then obtain the pilot matrix by P = STUt,

where Ut is a DFT matrix. Due to ‖S‖2F = ‖PTU∗
t ‖

2
F ,

the power constraint on a pilot matrix ‖P‖2F = P can be

imposed via scaling the measurement matrix by S = P S′

‖S′‖2

F

,

where ‖·‖F represents the Frobenius norm of a matrix. Various

random matrices can be adopted as the measurement matrix.

After evaluating the proposed reconstruction algorithms that

adopt various random matrices (such as Gaussian, Bernoulli,

and partial Fourier matrices), we conclude that these random

matrices have similar reconstruction performances.
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To solve the multiple measurement vector (MMV) problem

(6), we propose the column-wise broadcasting vectorization

method to vectorize the channel matrix H. Thus, the MMV

problem (6) can be transformed into parallel single mea-

surement vector (SMV) problems. Therefore, although the

proposed algorithms are developed for an SMV model, they

can be extended to the MMV problem. We express the linear

equation (6) as

[r1, r2, ..., rNr
] = S[h1,h2, ...,hNr

] + [w1,w2, ...,wNr
](7)

where ri is the ith (1 ≤ i ≤ Nr) column of R; hi is the

ith (1 ≤ i ≤ Nr) column of H; wi is the ith (1 ≤ i ≤ Nr)

column of W. For the ith column of R,H and W in (6), we

have

ri = Shi +wi. (8)

We can further express (8) by an equivalent real-valued linear

equation as
[
ℜ(ri)
ℑ(ri)

]

︸ ︷︷ ︸
y

=

[
ℜ(S) −ℑ(S)
ℑ(S) ℜ(S)

]

︸ ︷︷ ︸

Φ

[
ℜ(hi)
ℑ(hi)

]

︸ ︷︷ ︸
x

+

[
ℜ(wi)
ℑ(wi)

]

︸ ︷︷ ︸
n

. (9)

Thus, we obtain an SMV problem (9). For the presentational

simplicity, we concisely express (9) as

y = Φx+ n. (10)

In the remainder of this paper, we uniquely refer the real-form

vector x = [ℜ(hi)
T ,ℑ(hi)

T ]T in (10) as the equivalent sparse

channel vector, since the vector x contains the equivalent

information of a complex beamspace channel hi. We omit the

subscript i since (10) is valid for arbitrary beamspace channel

hi for 1 ≤ i ≤ Nr.

III. DC REPRESENTATION FOR SPARSE CONSTRAINT

In this section, we first briefly review the sparse reconstruc-

tion optimization problem. Then, we introduce the top-(K, 1)
norm [44] to represent exactly the ℓ0-norm constraint in the

sparse reconstruction optimization problem. Also, we provide

a threshold to determine the range of the penalty parameter.

According to (10), reconstructing x from y and Φ using the

sparsity as a priori is an NP-hard ℓ0-minimization problem,

which is defined as [46]

min
x

‖x‖0

s.t. ‖y−Φx‖22 ≤ τ (11)

where τ is nonnegative and real. Problem (11) can be rewritten

in an equivalent form as [46]

min
x

‖y−Φx‖22

s.t. ‖x‖0 ≤ K (12)

where K is an upper bound for the number of nonzero

elements in x, and it is uniquely determined by the parameter

τ in (11).

Instead of using the common ℓ1-relaxation, we introduce

the top-(K, 1) norm to seek an equivalent expression for the

constraint ‖x‖0 ≤ K in the original problem (12). The top-

(K, 1) norm ‖x‖K,1 is defined as the sum of the largest K
elements of the vector x in terms of the absolute values,

namely

‖x‖K,1 := |x(1)|+ |x(2)|+ · · ·+ |x(K)| (13)

where |x(i)| denotes the element whose absolute value is the

ith-largest among the N elements of the vector x, i.e., |x(1)| ≥
|x(2)| ≥ · · · ≥ |x(N)|. The constraint ‖x‖0 ≤ K is equivalent

to the statement that the (K+1)th-largest element of the vector

x is zero, i.e., ‖x‖K+1,1 − ‖x‖K,1 = 0. Thus, we have an

equivalent relationship between the following two statements

[44]

‖x‖0 ≤ K ⇔ ‖x‖1 − ‖x‖K,1 = 0. (14)

Since both ‖x‖1 and ‖x‖K,1 are convex, we say the equality

‖x‖1 − ‖x‖K,1 = 0 is an exact DC representation for the

sparsity constraint. By replacing the sparsity constraint ‖x‖0 ≤
K in (12) using the DC constraint ‖x‖1 − ‖x‖K,1 = 0, we

rewrite the sparse reconstruction problem as

min
x

‖y −Φx‖22

s.t. ‖x‖1 − ‖x‖K,1 = 0. (15)

Using an appropriate Lagrange multiplier ρ, from (15) we

obtain the following unconstrained optimization problem

min
x

1

2
‖y−Φx‖22 + ρ(‖x‖1 − ‖x‖K,1) := F (x) (16)

where ρ is the regularization parameter that balances the

data consistency and the penalty term. Our formulated op-

timization problem (16) differs from the conventional ℓ1-

regularized sparse reconstruction 5 only in terms of the sub-

tracted top-(K, 1) norm ‖x‖K,1 in its penalty term. The regu-

larizer ρ(‖x‖1−‖x‖K,1) is better than an ℓ1-norm regularizer

because it removes the penalties on the K largest-magnitude

elements 6.

To ensure the equivalence between the unconstrained prob-

lem (16) and the constrained problem (15), the following

theorem specifies the range for the penalty parameter.

Theorem 1: Let xρ∗ be an optimal solution to (16) with

given ρ∗. Suppose there exists a constant q > 0 such that

‖xρ∗‖2 ≤ q for any ρ∗ > 0. Then xρ∗ is also optimal to (15)

if

ρ∗ ≥ max
i
{q(‖ΦTΦei‖2 + |(Φ

TΦ)ii|/2) + |(Φ
Ty)i|}

where 1 ≤ i ≤ Nt; ei represents the unit vector in which the

ith element is one while the other elements are zeros; (ΦTΦ)ii
represents the ith diagonal elements of matrix ΦTΦ; (ΦTy)i
indicates the ith element of the vector ΦTy.

Proof: See Appendix A.

Theorem 1 indicates that given a penalty parameter ρ having

a suitably large value, the optimal solution to (16) is also

the optimal solution to (15). To calculate the lower threshold

5min
x

1

2
‖y −Φx‖22 + λ‖x‖1

6In practice, if the sparsity level of reconstructing vector is already known,
we set K as the number of nonzero elements of reconstruction vectors;
otherwise, we can use cross validation to determine an approximation of K .



5

ρ∗, we can first estimate a constant q such that ‖xρ∗‖2 ≤ q.

In practice, to avoid high computational complexity of the

inequality in Theorem 1, we can use the cross validation to

select a suitable value for the penalty parameter ρ.

IV. DOUBLE-LOOP DC GRADIENT PROJECTION DESCENT

FOR SPARSE RECONSTRUCTION

We have formulated the sparse reconstructions into a non-

convex optimization problem (16). In this section, we use DC

programming and gradient projection descent to solve (16) and

propose a double-loop DC-GPSR algorithm.

A. DC Programming Framework

For a nonconvex unconstrained optimization problem

min
x

f(x)− g(x) (17)

where f(x) and g(x) are two convex functions. The DC

programming method solves the following convex subproblem

at the tth-iteration,

min
x

f(x)− xT ∂g(xt−1) (18)

where the second convex function g(x) in (17) is linearized

by xT ∂g(xt−1) in (18), and where ∂g(xt−1) represents the

gradient (or subgradient) of g(xt−1) with respect to xt−1. The

DC algorithm framework can be outlined as follows:

1. Start: Given a starting point x0, and a terminate condi-

tion

2. Repeat: For t = 1, 2, ...
Compute the gradient (or subgradient) ∂g(xt−1).
Solve the convex subproblem (18) to obtain xt.

3. End: Until a terminate condition is satisfied.

The DC programming is an iterative algorithm framework

that can ensure global convergence, which means the DC

algorithm can converge from an arbitrary initial point 7.

B. A Double-Loop DC-GPSR Algorithm

Following the DC programming framework, we decompose

our objective function in (16) as the difference of the two

convex functions of f(x) and g(x)

min
x

1

2
‖y −Φx‖22 + ρ‖x‖1

︸ ︷︷ ︸

f(x)

− ρ‖x‖K,1
︸ ︷︷ ︸

g(x)

. (19)

At the tth-iteration, we solve the following convex subproblem

min
x

f(x)− ρxT∂‖xt−1‖K,1 (20)

where ∂‖xt−1‖K,1 denotes the subgradient of top-(K, 1) norm

of xt−1, and where the superscript t−1 indicates the (t−1)th

7The global convergence property has been comprehensively studied for
general DC algorithms, hence it is also valid for the proposed algorithms.
For the convergence properties and proofs of DC algorithms, we refer the
interested readers to [47, Sec. 3.2], the [48, Sec. 2], [31, p. 10], [49, pp. 5-8]
and the references therein.

update. The subgradient ∂‖x‖K,1 of the top-(K, 1) norm of x

is defined as [44]

∂‖x‖K,1 := argmax
w

{
N∑

i=1

xiwi

∣
∣
∣

N∑

i=1

|wi| = K,wi ∈ [−1, 1]

}

.

(21)

By substituting the f(x) defined in (19) into (20) and denoting

wt−1
x by a feasible value for the subgradient ∂‖xt−1‖K,1, we

write the subproblem (20) as

min
x

1

2
‖y −Φx‖22 + ρ‖x‖1 − ρxTwt−1

x (22)

where wt−1
x ∈ ∂‖xt−1‖K,1. A feasible subgradient wt−1

x can

be simply obtained by setting the signs of the first K largest

elements of |xt−1| to the corresponding elements of wt−1
x ,

i.e., (wx)
t−1
(i) = sign(xt−1

(i) ), where the subscript i indicates

the ith element of a vector, and setting the other elements of

wt−1
x to be zeros.

We obtain a convex subproblem (22). We will turn (22) into

a constrained quadratic problem so that we can solve it using

the gradient projection descent method. Specifically, we split

the positive and negative part of x, and represent x as the

difference of its positive part u and its negative part v, that is

x = u− v, u � 0,v � 0. (23)

where u = (x)+,v = (−x)+, and where (·)+ is the positive-

taking operation that retains the positive elements and sets the

other elements to be zeros. More precisely, (x)+ represents

for each element x in vector x we take (x)+ = max{0, x};
(−x)+ represents for each element −x in vector −x we take

(−x)+ = max{0,−x}. Noticing that ‖x‖1 = 1Tu+1Tv, the

subproblem (22) can be written as a BCQP problem

min
u,v

1

2
‖y −Φ(u− v)‖22 + ρ1Tu+ ρ1Tv

−ρuTwt−1
u − ρvTwt−1

v

s.t. u � 0,v � 0 (24)

where wt−1
u and wt−1

v , respectively, represent the positive

and negative part of wt−1
x , i.e., wt−1

u = (wt−1
x )+, wt−1

v =
(−wt−1

x )+. Let z denote the concatenation of u and v, i.e.,

z = [uT ,vT ]T , we rewrite (24) into a compact form

min
z

1

2
zTBz+ cT z := G(z),

s.t. z � 0 (25)

where

z =

[
u

v

]

, B =

[
ΦTΦ −ΦTΦ

−ΦTΦ ΦTΦ

]

,

c =

[
−ΦTy

ΦTy

]

+ ρ1T − ρwt−1
z

where 1T represents an all-ones column vector having the

same dimension as z, and wt−1
z = [(wt−1

u )T , (wt−1
v )T ]T .

Note that wt−1
z is a subgradient of ‖zt−1‖K,1, i.e., wt−1

z ∈
∂‖zt−1‖K,1. Since zt−1 � 0, a feasible subgradient wt−1

z can

be an indicator vector having either one-valued or zero-valued

elements, where the indices for the one-valued elements of
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wt−1
z correspond to the indices of the K-largest elements of

zt−1. Eq. (25) is an equivalent problem for the subproblem

(22). We apply the gradient projection descent method to solve

(25), thus the kth update is

z(k+
1

2
) = Proj

(

z(k) − αk∇G(z(k))
)

,

z(k+1) = z(k) + βk(z(k+
1

2
) − z(k)) (26)

where αk > 0 is the step size and it can be determined

by the BB step size, which can be calculated as αt =
‖zk−zk−1‖2

(zk−zk−1)T (G(zk)−G(zk−1))
; βk ∈ (0, 1] is another step size

to ensure the monotonic-decrease of the objective and it can

be calculated in closed-form as βk = (δk)T∇G(zk)
(δk)TBδk , where

δk = z(k+
1

2
) − z(k) [34]; Proj(·) represents the operation of

orthogonal projection that projects the vector onto the nonneg-

ative orthant 8; ∇G(z(k)) represents the gradient of G(z) de-

fined in (25) with respect to z(k). We have∇G(z(k)) = Bz+c,

which can be calculated by

∇G(z(k)) =

[
ΦTΦ(u(k) − v(k))
−ΦTΦ(u(k) − v(k))

]

+

[
−ΦTy

ΦTy

]

−ρwt−1
z + ρ1T . (27)

In a nutshell, the proposed algorithm computes the follow-

ing two steps iteratively until convergence:

(a) wt−1
z ∈ ∂‖zt−1‖K,1

(b) zt = argmin
z�0

{
1

2
zTBz+ cT z} (28)

where z, B and c are defined in (25). The step (b) in (28) is

calculated by applying the gradient projection descent updates

in (26). We summarize this double-loop DC-GPSR algorithm

in Algorithm 1.

Algorithm 1 Double-loop DC-GPSR (DlDC-GPSR)

Input: measurements y, measurement matrix Φ and a

small number ǫ
Output: reconstruction x̂

Initialization: u0, v0, z0 ← [(u0)T , (v0)T ]T

1: for t = 1, 2, . . . do

2: Compute a subgradient wt−1
z ∈ ∂‖zt−1‖K,1.

3: for k = 1, 2, . . . do

4: Compute gradient ∇G(z(k)) by (27).

5: Perform gradient projection descent (26) and ob-

tain z(k+1).

6: Check convergence, set z∗ ← z(k+1) and proceed

to Step 7 if convergence is satisfied; otherwise return to

Step 3.

7: end for

8: zt ← z∗

9: Check terminate condition ‖zt−zt−1‖2 ≤ ǫ and return

to Step 1 if not satisfied; otherwise, terminate with zt =
[(ut)T , (vt)T ]T , and obtain the reconstruction x̂ = ut −
vt.

10: end for

8Let Rn
+ = {x = (x1, x2, ..., xn)|x1 ≥ 0, x2 ≥ 0, ..., xn ≥ 0} be the

nonnegative orthant of Rn.

V. SINGLE-LOOP DC GRADIENT PROJECTION DESCENT

FOR SPARSE RECONSTRUCTION

In the proposed DlDC-GPSR algorithm, at each iteration we

solve a nonsmooth convex subproblem (22) using another it-

erative algorithm, i.e., the gradient projection descent updates.

This double-loop procedure can be computationally inefficient.

In this section, we derive a closed-form solution to the convex

subproblem by performing a special DC decomposition to

eliminate the inner iterations. Thus, we propose a basic single-

loop DC-GPSR algorithm. Interestingly, we observe that the

proposed basic single-loop DC-GPSR algorithm can be inter-

preted as simple gradient projection descent updates with a

required step size. Furthermore, we accelerate the single-loop

DC-GPSR algorithm using the BB step size and propose an

extension algorithm for the single-loop DC-GPSR.

A. A Basic Single-Loop DC-GPSR Algorithm

We first rewrite the least squares objective of problem (16)

in an equivalent form as

1

2
‖y −Φx‖22 =

l

2
‖x‖22 −

(
l

2
‖x‖22 −

1

2
‖y −Φx‖22

)

(29)

where l ≥ 0 is a Lipschitz constant of the least square objec-

tive. By substituting (29) into (16), we write the unconstrained

sparse reconstruction problem as

min
x

l

2
‖x‖22 −

(
l

2
‖x‖22 −

1

2
‖y−Φx‖22

)

+ ρ(‖x‖1 − ‖x‖K,1)

:= F (x). (30)

Then, we perform the following DC decomposition on the

objective F (x) defined in (30), and we have

min
x

l

2
‖x‖22 + ρ‖x‖1

︸ ︷︷ ︸

f(x)

−

(
l

2
‖x‖22 −

1

2
‖y−Φx‖22 + ρ‖x‖K,1

)

︸ ︷︷ ︸

g(x)

(31)

where the functions f(x) and g(x) are convex. The convexity

of g(x) can be ensured by confirming the convexity of
l
2‖x‖

2
2 −

1
2‖y −Φx‖22, which is given in Theorem 2.

Theorem 2: The least squares objective 1
2‖y − Φx‖22 is

smooth and its gradient function is Lipschitz continuous with

the Lipschitz constant l = λmax(Φ
TΦ), where λmax(·) denotes

the maximum eigenvalue of a matrix. Thus, the function

h(x) = l
2‖x‖

2
2−

1
2‖y−Φx‖22 for l = λmax(Φ

TΦ) is convex.

Proof : See Appendix B.

Writing the ℓ2-square terms in (31) by standard quadratic

forms, we have

min
x

l

2
xTx+ ρ‖x‖1

︸ ︷︷ ︸

f(x)

−

(
l

2
xTx−

1

2
xTΦTΦx+ (ΦTy)Tx+ ρ‖x‖K,1

)

︸ ︷︷ ︸

g(x)

.

(32)
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We split the positive and negative parts of x by letting u =
(x)+,v = (−x)+. By denoting z = [uT ,vT ]T , we express

(32) as

min
z

l

2
zT z+ ρ1T z

︸ ︷︷ ︸

f(z)

−

(
l

2
zT z−

1

2
zTBz+ qT z+ ρ1T

Kz

)

︸ ︷︷ ︸

g(z)

s.t. z � 0 (33)

where

z =

[
u

v

]

, B =

[
ΦTΦ −ΦTΦ

−ΦTΦ ΦTΦ

]

, q =

[
ΦTy

−ΦTy

]

and 1K is an indicator vector having either one-valued or zero-

valued elements, and the one-valued elements of 1K indicate

the K largest elements of z.

Following the DC algorithm framework to solve the problem

(33), we perform the following two steps repeatedly until

convergence:

(a) ∂g(zt−1) = lzt−1 −Bzt−1 + q+ ρ1t−1
K

(b) zt = argmin
z≥0

{
l

2
zT z+ ρ1T z− zT∂g(zt−1)} (34)

where the superscript t − 1 and t, respectively, indicate the

(t− 1)th and the tth update. The subproblem (b) of (34) has

a closed-form optimal solution. To derive it, we rewrite the

subproblem (b) of (34) as

min
z

l

2
zT z+ ρzT1− zT ∂g(zt−1)

s.t. z � 0 (35)

where ∂g(zt−1) = lzt−1 − Bzt−1 + q + ρ1t−1
K . Next, the

problem (35) can be expressed as

min
z

l

2
‖z−

1

l

(
∂g(zt−1)− ρ1

)
‖22

s.t. z � 0. (36)

The objective of problem (36) is to minimize the ‖z −
1
l

(
∂g(zt−1)− ρ1

)
‖2 over z � 0 with respect to vari-

able z. The solution is simply the Euclidean projection of
1
l

(
∂g(zt−1)− ρ1

)
onto the nonnegative orthant. Thus, the

gradient projection descent update has a closed-form optimal

solution

z∗= Proj

(
1

l

(
∂g(zt−1)− ρ1

)
)

=

(
1

l

(
∂g(zt−1)− ρ1

)
)

+

(37)

where the Proj(·) represents the Euclidean projection onto

the feasible set z � 0, which is simply the positive-taking

operation (·)+. Applying the closed-form solution (37) to the

subproblem (b) of (34), the DC programming procedure in

(34) is simplified to perform the following two single-step

computations repeatedly until convergence:

(a) ∂g(zt−1) = lzt−1 −Bzt−1 + q+ ρ1t−1
K

(b) zt =

(
1

l
(∂g(zt−1)− ρ1)

)

+

. (38)

We summarize the updates (38) as a single-loop DC gradient

projection algorithm in Algorithm 2. By avoiding the inner-

loop iterations, the computational complexity of Algorithm 2

for each iteration is largely reduced compared with Algorithm

1. However, we comment that if the parameter l is large,

Algorithm 2 can be slow to converge. Therefore, we will

further propose an accelerated algorithm in the following

section.

Algorithm 2 Single-loop DC-GPSR-Basic (SlDC-GPSR-

Basic)

Input: measurements y, measurement matrix Φ and a

small number ǫ
Output: reconstruction x̂

Initialization: u0, v0, z0 ← [(u0)T , (v0)T ]T

1: for t = 1, 2, . . . do

2: Compute the gradient ∂g(zt−1) = lzt−1 − Bzt−1 +
q+ ρ1t−1

K as (a) of (38).

3: Perform the optimal projection operation zt =
(
1
l
(∂g(zt−1)− ρ1)

)

+
as (b) of (38).

4: Check terminate condition ‖zt − zt−1‖2 ≤ ǫ, return

to Step 1 if not satisfied; otherwise, terminate with zt =
[(ut)T , (vt)T ]T , and return the reconstruction x̂ = ut −
vt.

5: end for

B. An Extension Algorithm for Single-loop DC-GPSR Using

Monotonic BB Step Size

A crucial observation on SlDC-GPSR-Basic (Algorithm 2)

is that we can interpret it as a simple gradient projection

descent method to solve a nonconvex optimization problem

with a guarantee of global convergence. This observation can

be obtained by substituting ∂g(zt−1) in (a) into (b) of (38)

such that Step 2 and Step 3 in Algorithm 2 can be combined

to be the tth update of zt

zt= Proj

(

zt−1 −
1

l

(
Bzt−1 − q− ρ1t−1

K + ρ1
)
)

=

(

zt−1 −
1

l

(
Bzt−1 − q− ρ1t−1

K + ρ1
)
)

+

. (39)

Thus, we can clearly see that the SlDC-GPSR-Basic is just

a gradient projection descent method to solve the following

nonconvex problem with the required step size 1/l for l =
λmax(Φ

TΦ)

min
z

1

2
zTBz− qT z− ρ1T

Kz+ ρ1T z := F (z)

s.t. z � 0 (40)

where z, B and q have been defined in (33). The prob-

lem (40) is an equivalent form of the sparse reconstruction

problem (16), but it uses a nonnegative double-sized variable

z = [(x)T+, (−x)
T
+]

T to express the sparse vector x. The

gradient projection descent is a mature method for convex

optimizations. However, its convergence is unguaranteed for

solving a nonconvex problem. Thus, in general, the gradient

projection descent method cannot be directly applied to a
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nonconvex problem. Interestingly, as shown, the proposed

SlDC-GPSR-Basic algorithm can be viewed as the gradient

projection descent method applied to nonconvex optimizations.

Since this algorithm is derived from DC programming, it

carries the same global convergence property as the other DC

programming algorithms [31].

Although the fixed step size 1/l ensures a global conver-

gence for the SlDC-GPSR-Basic algorithm, this step size can

be too small in practice. Thus, we design a variable step size

to accelerate the single-loop DC-GPSR algorithm. We denote

αt by a variable step size for the (t+1)th update, and extend

the update (39) to be a gradient projection descent update for

the problem (40) with step size αt, i.e.,

z̃t+1= Proj
(
zt − αt

(
∇F (zt)

))

=
(
zt − αt

(
Bzt − q− ρ1t

K + ρ1
))

+
(41)

where αt can be explicitly calculated by the BB step size

method by

αt =
‖zt − zt−1‖2

(zt − zt−1)T (F (zt)− F (zt−1))
. (42)

To prevent the step size being overly large, we employ a scaler

βt+1 ∈ (0, 1] to limit the update so that the objective will

descend monotonically

zt+1 = zt + βt(z̃t+1 − zt). (43)

We can calculate βt to minimize the objective F (zt+1) by

βt =
(δt)T∇F (zt)

(δt)TBδt
(44)

where δt = z̃t+1 − zt. We summarize the updates (41) and

(43) in Algorithm 3 and name it SlDC-GPSR-BB, which is an

extension of single-loop DC-GPSR algorithm since it extends

Algorithm 2 by introducing the BB step size.

Algorithm 3 Single-loop DC-GPSR with monotonic BB step

size (SlDC-GPSR-BB)

Input: measurements y, measurement matrix Φ and a

small number ǫ
Output: reconstruction x̂

Initialization: u0, v0, z0 ← [(u0)T , (v0)T ]T , α0

1: for t = 0, 1, 2, . . . do

2: Compute update z̃t+1 using (41).

3: Compute step size βt using (44).

4: Compute update zt+1 using (43).

5: Compute step size αt+1 using (42).

6: Check terminate condition ‖zt+1−zt‖2 ≤ ǫ, return to

Step 1 if not satisfied; otherwise, terminate with zt+1 =
[(ut+1)T , (vt+1)T ]T and return the reconstruction x̂ =
ut+1 − vt+1.

7: end for

VI. COMPLEXITY ANALYSIS

Table I shows the computational cost of the main computing

operations and compares the computational complexities of the

proposed algorithms. Common operations for all three algo-

rithms mainly contain matrix-vector multiplications, vector in-

ner products, vector sums, scaler-vector multiplications and the

subgradient of the top-(K, 1) norm for a nonnegative vector.

Among these operations, the computationally intensive terms

have the subgradient computation ∂‖z‖K,1 and the matrix-

vector product Bz whose computational costs are shown in

Table I. To analyze the overall time complexities of the

proposed algorithms, we consider both the computational costs

at each iteration and the convergence rates. The computational

costs at each iteration 9 for these algorithms are shown in Table

I, while the convergence rates will be illustrated in Section

VII.B. By taking into account of the convergence rates, we can

conclude that, among the three proposed algorithms, SIDC-

GPSR-BB has the lowest time complexity.

VII. NUMERICAL RESULTS

A. Experiment Setup and Performance Metrics

We consider a downlink massive MIMO system having

half-wavelength spaced ULA at the BS. The number of BS

antennas is set as Nt = 256. Without loss of generality, the

number of UE antennas is set as Nr = 1 12. We consider

the narrowband block-fading channels, and set a channel

coherence block as Lc = 600 symbols. We randomly generate

1, 000 channel vectors according to the Saleh-Valenzuela chan-

nel model described in (1), where the number of paths is set as

Np = 3. For each path, the complex channel gain αl follows a

complex Gaussian distribution; the AoA and AoD, i.e., θr,l and

θt,l, are uniformly distributed over [−π/2, π/2]. We transform

the generated channel vectors into the angular domain using a

DFT. To consider power leakage, we set the number of nonzero

channel coefficients as Ns = 16 by neglecting the small-value

beamspace channel coefficients 13. Unless stated otherwise,

we adopt the random Gaussian matrix as the measurement

matrix SG ∈ RL×Nt , and the pilot matrix can be obtained by

P = ST
GUt ∈ CNt×L. All the simulations were implemented

on a desktop computer equipped with a 3.2 GHz Intel Core

i7-8700 CPU with 8GB of physical memory.

We adopt the normalized mean squared error (NMSE) to

evaluate the channel reconstruction accuracy. The NMSE is

defined as NMSE = 1
N

N∑

i=1

‖Hi−Ĥi‖2

F

‖Hi‖2

F

, where N is the number

of channel samples. We use achievable spectral efficiency to

evaluate the influences of pilot overhead and SNR penalty

caused by imperfect channel estimation on data communi-

cation. The achievable spectral efficiency R/B is defined

as R/B = (1 − α)C(SNReff) [50, eq. (5.195)], where R

9To compare fairly, one iteration is considered from Step 2 to Step 5 for
DlDC-GPSR, Step 2 and Step 3 for SlDC-GPSR-Basic and from Step 2 to
Step 5 for SlDC-GPSR-BB.

12According to the proposed column-wise broadcasting method for vector-
izing beamspace channel matrix H ∈ CNt×Nr , to reconstruct H we simply
reconstruct its Nr columns independently.

13Although in practice the number of nonzero channel coefficients can be
unknown and uncertain, in the simulation we fix the number of nonzero
channel coefficients for fair performance comparisons. We set Ns = 16
because our observations revealed that the 16 largest-magnitude channel
coefficients can cover most of the energy of a channel vector, i.e., ‖hi‖22
for 1 ≤ i ≤ Nr .
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TABLE I: Computational costs for operations (left) and computational complexity per iteration for different algorithms

(right), n is the dimension of the sparse vector x, and 2n is the length of vector z, m is the dimension of the measurements y

Operation/Algorithm ∂‖z‖K,1 Bz DlDC-GPSR SlDC-GPSR-Basic SlDC-GPSR-BB

Time complexity O(2n log(2n)) 10 O(mn) I × O(mn) 11 O(mn) O(mn)
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Fig. 1: Channel magnitudes of a true channel sample xopt and the reconstruction x̂ by the conventional ℓ1-regularized GPSR

algorithm, the proposed algorithms DlDC-GPSR and SlDC-GPSR-BB. The normalized squared ℓ2-error is defined as

‖xopt − x̂‖22/‖xopt‖
2
2

is the achievable rate; B is the bandwidth; α is the ratio

of pilot training in a channel coherence block duration, and

it can be calculated as L/Lc, where Lc is the length of

channel coherence block; C(SNReff) is the channel capacity at

SNReff, and SNReff refers to the efficient SNR by considering

imperfect channel estimation [50]. According to the linear

equation R = SH + W in (6), we define the system SNR

as SNR =
‖SH‖2

F

‖W‖2

F

, where S is the measurement matrix, H is

the beamspace channel, and W is the noise.

B. Illustrations of Beamspace Channel Reconstructions and

Algorithm Convergence Property

In this subsection, we evaluate the reconstruction accuracies

and convergence rates of DlDC-GPSR (Algorithm 1) and

SlDC-GPSR-BB (Algorithm 3) 14 by reconstructing an arbi-

trary channel vector sample x and compare the performances

with conventional ℓ1-regularized GPSR algorithm [34]. For

fair comparisons, we adopt BB step sizes for the inner loops

of DlDC-GPSR. The pilot length is set as L = 128. Fig. 1

shows the magnitudes of the true sparse beamspace channel

14As we have shown, the SlDC-GPSR-Basic (Algorithm 2) has an inter-
esting theoretical interpretation as a pure gradient projection algorithm, but
the required step size 1/l is often too small to converge within a reasonable
period. Therefore, we do not consider Algorithm 2 in simulations.

and the reconstructions. We can see that the DlDC-GPSR

and SlDC-GPSR-BB algorithm can achieve perfect reconstruc-

tions with normalized squared ℓ2-errors 6.22 × 10−33 and

8.77×10−34, whereas the ℓ1-regularized GPSR reconstruction

has noticeable errors with the error 5.01×10−2. By setting the

termination condition as ‖x̂t − x̂t−1‖2 ≤ 10−30, the runtimes

are about 0.08, 0.08 and 0.05 seconds for ℓ1-regularized

GPSR, DlDC-GPSR and SlDC-GPSR-BB, respectively. To

show their convergence properties within runtimes, we plot

objective values versus iterations in Fig. 2. It should be noted

that the objective of the proposed DlDC-GPSR and SlDC-

GPSR-BB algorithms is 1
2‖y − Φx‖22 + ρ(‖x‖1 − ‖x‖K,1),

whereas the objective of conventional ℓ1-regularized GPSR

is 1
2‖y − Φx‖22 + ρ‖x‖1. For DlDC-GPSR algorithm, the

red dots indicate objective values for outer iterations, and

the blue solid line shows the objective values along all inner

iterations. We can see the proposed DlDC-GPSR algorithm

decreases its objective significantly after the sixth outer-step

and approaches the optimal value at the eighth step. The

SlDC-GPSR-BB algorithm has the fastest convergence and can

achieve almost the same objective value as the DlDC-GPSR

algorithm. On the contrary, the objective of ℓ1-regularized

GPSR converges to a relatively large value. Fig. 3 shows the

evolution of ℓ1-norm penalized least-square objective values,

i.e., ‖y −Φx‖22 + ρ‖x‖1. In Fig. 3, we also plot the optimal
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Fig. 2: Objective values versus iterations for reconstructing a

sample of beamspace channel vector. The evaluating

objectives are 1
2‖y−Φx‖22 + ρ(‖x‖1 − ‖x‖K,1) for

DlDC-GPSR and SlDC-GPSR-BB, and is
1
2‖y −Φx‖22 + ρ‖x‖1 for ℓ1-regularized GPSR
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Fig. 3: Objective values ( 12‖y−Φx‖22 + ρ‖x‖1) versus

iterations for the reconstruction of a sample of beamspace

channel vector

values of the penalty term ρ‖xopt‖1, where xopt represents

the true sample of a beamspace channel vector. We can see

that the DlDC-GPSR and SlDC-GPSR-BB algorithms can

arrive and stay at the objective value ρ‖xopt‖1, which is

the optimal value that the objective ‖y − Φx‖22 + ρ‖x‖1
can reach when ‖y − Φx̂‖22 = 0 and ρ‖x̂‖1 = ρ‖xopt‖1.

However, the ℓ1-regularized GPSR cannot achieve this optimal

value and has a noticeable gap from the optimal value. It is

meaningful to observe this minimum objective gap between

our proposed algorithms and the conventional ℓ1-regularized

GPSR algorithm, because this gap can provide important

insight into the approximation error introduced by relaxing

the ℓ0-norm as ℓ1-norm. Fig. 4 shows the normalized squared-

ℓ2 errors of reconstruction versus the number of iterations.
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Fig. 4: Reconstruction error (‖x̂− xopt‖
2
2/‖xopt‖

2
2) versus

iterations for the reconstruction of a sample of beamspace

channel vector

We observe that both the DlDC-GPSR and SlDC-GPSR-BB

algorithm can achieve accurate reconstructions having errors

on the order of 10−33 and 10−34, which is far more accurate

than the reconstruction by the conventional ℓ1-regularized

GPSR algorithm having an error on the order of 10−2.

C. Performance Comparisons With Other Algorithms

We compare the reconstruction performances of the pro-

posed algorithms with several existing sparse reconstruction

algorithms including the ℓ1-regularized GPSR [34], ISTA [36],

and OMP [41], as well as the existing state-the-art channel

estimation schemes including the SD 15 [25] and the SCAPMI

algorithms [26].
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Fig. 5: Channel reconstruction NMSE versus SNR (dB) with

training pilot length L = 128

In Fig. 5, we compare the channel reconstruction NMSE

with conventional channel estimation methods including the

15The SD algorithm is the support detection-based channel estimation
algorithm [25].
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TABLE II: Comparison of the average runtimes per channel sample reconstruction

Algorithm SlDC-GPSR-BB DlDC-GPSR ℓ1-regularized GPSR ISTA OMP

SNR = 40 dB 0.03s 0.67s 0.12s 0.61s 0.16s

SNR = 30 dB 0.07s 1.61s 0.19s 0.86s 0.21s

SNR = 18 dB 0.16s 2.39s 0.26s 1.89s 0.31s

LS and LMMSE, and popular sparse reconstruction algorithms

including the OMP, ISTA and ℓ1-regularized GPSR. For

conventional LS and LMMSE channel estimation methods,

we use the optimal pilot matrix that contains orthonormal

training pilot sequences having the length of L = 256. For

the sparse reconstruction algorithms including DlDC-GPSR,

SlDC-GPSR-BB, OMP, ISTA and ℓ1-regularized GPSR, we

set the training pilot length as L = 128. Fig. 5 shows that

the proposed DlDC-GPSR and SlDC-GPSR-BB algorithms

achieve approximately the same accuracy. Even consuming

more training pilots, both LS and LMMSE channel estimation

methods have higher channel reconstruction errors than the

sparse reconstruction methods. Also, the proposed algorithms

DlDC-GPSR and SlDC-GPSR-BB have higher accuracies

than the other sparse reconstruction algorithms. The average

runtimes required for reconstructing a channel sample are

summarized in Table II for different sparse reconstruction

algorithms.
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Fig. 6: Achievable spectral efficiency R/B versus training

pilot length L at SNR = 25 dB

For sparse channel reconstructions, increasing the pilot

length can improve reconstruction accuracy. However, longer

pilot length will also increase the training overhead and

subsequently degrade the spectral efficiency. In other words,

there exists a tradeoff between the training pilot overhead and

spectral efficiency. To illustrate this tradeoff and comparison

for different sparse reconstruction algorithms, we plot the

achievable spectral efficiency versus training pilot length L
for SNR = 25 dB and SNR = 40 dB in Fig. 6 and Fig.

7, where the length of a channel coherence block is set as

Lc = 600 symbols, and the training pilot length is set as

L ∈ {32, 64, ..., 256}. We can see that the achievable spectral

efficiencies increase when the training pilot length L increases,

and then decrease after reaching the peak values. Since when

L has a small value, the channel estimation error can be
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Fig. 7: Achievable spectral efficiency R/B versus training

pilot length L at SNR = 40 dB

decreased by increasing the number of training symbols, such

that the efficient SNR (SNReff) increases and dominates the

achievable spectral efficiency. However, when L is sufficiently

large, a further increase of L will give a diminishing benefit

while the data communication ratio (1−α) decreases linearly,

where α = L/Lc is the ratio of pilot training overhead in a

coherence block of fading channels. Fig. 6 and Fig. 7 show that

the proposed DlDC-GPSR and SlDC-GPSR-BB algorithms

can attain higher achievable spectral efficiencies than the

ℓ1-regularized GPSR, ISTA and OMP sparse reconstruction

algorithms.
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Fig. 8: NMSE comparison between the SCAMPI algorithm

under uniform distribution with a lens antenna array in the

size of 16× 16, the SD algorithm and the proposed

SlDC-GPSR-BB and DlDC-GPSR algorithms with a ULA in

the size of 256 while using a training pilot length of L = 96
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Fig. 9: Comparison of the achievable spectral efficiency

R/B between the SCAMPI algorithm under uniform

distribution with a lens antenna array in the size of 16× 16,

the SD algorithm and the proposed SlDC-GPSR-BB and

DlDC-GPSR algorithms with a ULA in the size of 256 while

using a training pilot length of L = 96

We now compare the performances of the proposed algo-

rithms with the state-of-the-art beamspace channel estimation

methods including the SD and the SCAMPI algorithms. For

fair comparisons, we selected a 16 × 16 lens antenna array

size for SCAMPI, and chose Nt = 256 for the ULA antenna

number for both the SD and the proposed algorithms. The

training pilot length is set as L = 96. To allow the proposed

algorithms to be contrasted fairly with the SD and SCAMPI

algorithms, we constructed the same type of measurement

matrix used in [25] and [26]. The measurement matrix is

a Rademacher matrix, which contains entries drawn from

{+1,−1} with equal probabilities. Fig. 8 shows the results

of channel reconstruction NMSE versus SNR. At high SNR,

the SD and SCAMPI algorithms appear to reach an error

floor of approximately 10−2, while the proposed SlDC-GPSR-

BB and DlDC-GPSR algorithms achieve lower reconstruction

errors. Fig. 9 compares the achievable spectral efficiencies by

different channel estimation schemes. The proposed SlDC-

GPSR-BB and DlDC-GPSR algorithms achieve higher spectral

efficiency than the SD and SCAMPI algorithms.

VIII. CONCLUSION

We proposed three DC programming gradient projec-

tion sparse reconstruction algorithms for massive MIMO

beamspace channel estimation, and they are DlDC-GPSR,

SlDC-GPSR-Basic and SlDC-GPSR-BB. We derived these

algorithms by solving a least squares problem having a non-

convex regularizer. The regularizer is simply the difference

between an ℓ1-norm and a top-(K, 1) norm, which was in-

troduced to remove the penalties on K largest-magnitude ele-

ments of the reconstructing vector. We employed DC program-

ming and a gradient projection method to solve the nonconvex

sparse reconstruction, and derived different double-loop and

single-loop algorithms by different DC decompositions. The

double-loop DlDC-GPSR algorithm is simple, accurate, and

robust. The SlDC-GPSR-Basic algorithm has simple single-

loop updates, and it shares the same theoretical convergence

property as the other DC programming methods. We observed

that the SlDC-GPSR-Basic updates can be perfectly inter-

preted as a simple gradient projection descent update. Based

on this observation, we adopted the BB step-size strategy and

proposed an extension algorithm SlDC-GPSR-BB, which has

a significantly improved convergence rate and can achieve

approximately the same level accuracy as the double-loop al-

gorithm DlDC-GPSR. Several numerical demonstrations were

provided to show the advantages of the proposed algorithms,

such as high accuracies and fast computations.
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APPENDIX

A. Proof of Theorem 1:

Suppose that xρ∗ is an optimal solution to (16) with given

ρ∗, then xρ∗ is also optimal to (15) as long as ‖xρ∗‖0 ≤ K
(or ‖xρ∗‖1 − ‖xρ∗‖K,1 = 0) satisfies. Thus, we only need

to prove that ‖xρ∗‖0 > K is infeasible. We assume that xρ∗

is an optimal solution to (16) with ρ∗ > maxi{|(Φ
Ty)i| +

q(‖ΦTΦei‖2+|(Φ
TΦ)ii|/2)}. For ‖xρ∗‖0 > K , we construct

a feasible solution to (15) as x′ = xρ∗ − xiei, where

i represents the index of the (K + 1)th largest-magnitude

element of vector xρ∗ ; ei represents the unit vector in which

the ith element is one while the other elements are zeros;

xi represents the ith element of vector xρ∗ . By writing the

objective of (16) as

F (x) =
1

2
xTΦTΦx− (ΦTy)Tx+ ρ∗‖x‖1 − ρ∗‖x‖K,1

(45)

we have

F (xρ∗)− F (x′)

= F (xρ∗)− F (xρ∗ − xiei)

=
1

2
xT
ρ∗Φ

TΦxρ∗ − (ΦTy)Txρ∗

−
1

2
(xρ∗ − xiei)

TΦTΦ(xρ∗ − xiei)

+(ΦTy)T (xρ∗ − xiei) + ρ∗|xi|

= xie
T
i Φ

TΦxρ∗ −
1

2
x2
i (Φ

TΦ)i,i − xi(Φ
Ty)i + ρ∗|xi|

≥ −xie
T
i Φ

TΦxρ∗ −
1

2
x2
i (Φ

TΦ)i,i − xi(Φ
Ty)i + ρ∗|xi|

≥ −|xi|‖e
T
i Φ

TΦ‖2‖xρ∗‖2 −
1

2
|xi|‖xρ∗‖2|(Φ

TΦ)i,i|

−|xi| · |(Φ
Ty)i|+ ρ∗|xi|

= |xi|
(
ρ− ‖eTi Φ

TΦ‖2‖xρ∗‖2 −
1

2
‖xρ∗‖2|(Φ

TΦ)i,i|

−|(ΦTy)i|
)

> 0 (46)

which contradicts the assumption that xρ∗ is an optimal

solution to (16).
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B. Proof of Theorem 2:

We first derive the Lipschitz constant l = λmax(Φ
TΦ), then

we prove the convexity of h(x). We denote the least squares

objective by the function l(x). Since the least squares objective

w(x) = 1
2‖y − Φx‖22 is smooth if and only if its gradient

function is Lipschitz continuous, we assume there exists l <
∞, which is named as a Lipschitz constant, such that

‖∇w(x) −∇w(z)‖2 ≤ l‖x− z‖2. (47)

For w(x) = 1
2‖y−Φx‖22, we have

‖∇w(x) −∇w(z)‖2= ‖Φ
T (Φx− y) −ΦT (Φz− y)‖2

= ‖ΦTΦ(x− z)‖2

≤
∣
∣
∣
∣
∣
∣ΦTΦ

∣
∣
∣
∣
∣
∣
2
‖x− z‖2

= λmax(Φ
TΦ)‖x− z‖2 (48)

where |||·|||2 represents the spectral norm of a matrix, and

λmax(·) represents the largest eigenvalue of a matrix. Thus,

we obtain the Lipschitz constant l = λmax(Φ
TΦ).

For h(x) = l
2‖x‖

2
2 −

1
2‖y − Φx‖22, we have the Hessian

matrix ∇2h(x) as

∇2h(x)=
∂(∇h(x))

∂x

=
∂(lxT −ΦT (Φx− y))

∂x
= lI−ΦTΦ (49)

where I is the identity matrix. For l = λmax(Φ
TΦ), we have

lI − ΦTΦ � 0, which means that the Hessian matrix lI −
ΦTΦ of h(x) is semidefinite positive. Thus, h(x) is a convex

function of vector x.
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