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Abstract—TeraHertz (THz) wireless communication constitutes
a promising technique of satisfying the ever-increasing appetite
for high-rate services. However, the ultra-wide bandwidth of THz
communications requires high-speed, high-resolution analog-to-
digital converters, which are hard to implement due to their
high complexity and power consumption. In this paper, a deep
learning-assisted THz receiver is designed, which relies on single-
bit quantization. Specifically, the imperfections of THz devices,
including their in-phase/quadrature-phase imbalance, phase noise
and nonlinearity are investigated. The deflection ratio of the
maximum-likelihood detector used by our single-bit-quantization
THz receiver is derived, which reveals the effect of phase
offset on the demodulation performance, guiding the architecture
design of our proposed receiver. To combat the performance loss
caused by the above-mentioned distortions, a twin-phase training
strategy and a neural network based demodulator are proposed,
where the phase offset of the received signal is compensated
before sampling. Our simulation results demonstrate that the
proposed deep learning-assisted receiver is capable of achieving
a satisfactory bit error rate performance, despite the grave
distortions encountered.

Index Terms—TeraHertz communication, hybrid distortion,
single-bit receiver, phase compensator, deep feedforward neural
network

I. INTRODUCTION

Given the ever-increasing data transmission demands, Tera-
Hertz (THz) communication (from 0.1 to 10 THz), which pro-
vides ultra broad bandwidth reaching dozens or even hundreds
of GHz, has become a promising research area in wireless
communications [1]–[4], because it is capable of supporting
bandwidth-thirsty holographic video conferencing, ultra-high-
definition video transmission, fiber extender and other de-
manding applications [5]. Therefore, THz communication may
be viewed as one of the key technologies in next-generation
wireless communication systems [6].
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As the carrier frequency increases, THz signals tend to
suffer from more serve pass-loss than their counterparts op-
erating at lower frequencies, including both the free space
path-loss and the molecular absorption loss [7]. Moreover,
the imperfections of the radio frequency (RF) devices, in-
cluding the in-phase/quadrature-phase (I/Q) imbalance of the
RF chains [8], the nonlinearity of the power amplifier (PA)
[9], and the phase noise of the local oscillator (LO), becomes
more aware, imposing severe so-called hybrid distortions [10].
Moreover, given the extremely wide bandwidth, it is also hard
to digitize the THz signals, since high-speed high-resolution
analog-to-digital converters (ADCs) have a high complexity
and high power consumption, which is a key challenge of
THz receivers [11], [12].

Single-bit quantization, which can be realized by a fast
comparator, has the potential of reducing both the power
consumption and complexity [13], [14]. Therefore, single-
bit ADCs have been viewed as promising techniques of
facilitating ultra-high rate communications [12], [15]–[17]. For
instance, Hoyos et al. [15] proposed a matched-filter based
single-bit receiver for binary phase shift keying (BPSK) mod-
ulation, while Yin et al. [16] conceived an alternative digital
monobit-receiver architecture for impulse radio modulation.
As a further development, Wang et al. [17] took the impact of
I/Q imbalances into consideration in the design of single-bit
quadrature phase shift keying (QPSK) receivers. Neuhaus et
al. proposed a temporal oversampling based single-bit receiver
for THz communications, but the impact of hybrid distortions
has not been considered in [12]. Moreover, Yin et al. [17] have
shown that the phase offset has a significant effect on the
receiver performance both in additive white Gaussian noise
(AWGN) channels and multipath channels. But again, the
influence of phase offset has not been studied in as much detail
as the methodology of phase offset compensation in single-
bit receivers. Accordingly, the state-of-the-art phase synchro-
nization schemes designed for single-bit receivers, such as the
Bayesian scheme of [19], [20], fail to perfectly compensate
the phase offset under hybrid distortions. More particularly,
the phase offset, which is the dominant factor in degrading
the performance of single-bit receivers, cannot be adjusted,
once the signals have been digitized by the single-bit ADC.
As a result, the phase offset must be adjusted before sampling,
which is one of the key technical challenges in single-bit THz
receiver design.

Both the strong nonlinearities of single-bit quantization
and hybrid distortions of these high-frequency devices make
THz signals hard to process by state-of-the-art techniques.
Although Singh and Madhow [18] proposed a sophisticated
phase quantization technique for mitigating the I/Q phase
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TABLE I
CONTRASTING OUR CONTRIBUTION TO THE LITERATURE

[12] [15] [16] [17] [18] Proposed Work
Dual-ADC architecture X X X X X

Training based X X X X
Phase compensation X X

Hybrid distortion X X X
Correlated symbols X

Wideband communication X X X X X X

imbalance, their scheme required four single-bit ADCs, which
increases both the complexity and cost.

A. Background of Deep Learning

Benefiting from its superior ability in handling complicated
and nonlinear issues, deep learning, also known as deep neural
network, has been widely regarded as a promising direction
in solving intractable wireless communication problems [21].
Motivated by its promising potential, various deep-learning as-
sisted techniques [22]–[25] have been exploited for processing
the single-bit signals. For example, Balevi and Andrews [22]
developed a novel deep learning based single-bit receiver for
orthogonal frequency division multiplexing (OFDM), where
generative supervised deep neural networks and unsupervised
autoencoder detection methods are utilized for estimating the
channel and detecting the signal, respectively. Balevi and An-
drews [23] also transformed the design of hand-crafted channel
codes into the learning of a specially designed autoencoder
relying on single-bit quantization. Jeon et al. [24] utilized
reinforcement learning, while Zhang et al. [25] used deep
learning, respectively, for signal detection and for channel esti-
mation in multiple-input multiple-output (MIMO) systems. In
a nutshell, by relying on deep learning assisted techniques, the
signals quantized by single-bit ADCs can be more beneficially
processed than by conventional techniques.

In this work, deep feedforward neural network (DFNN)
[26] is utilized to realize efficient single-bit receiver over
THz channel. Specifically, a DFNN typically consists of a
cascade of an input layer, L hidden layers and an output
layer. All the layers of the DFNN are fully connected, and
the output of one layer becomes the input to its subsequent
layer. Mathematically, the output xl of the l-th hidden layer
can be expressed as

zl =Wlx
l−1 + bl, (1)

xl =f
(
zl
)
, (2)

where Wl and bl are the weight matrix and the bias vector
of the l-th layer, respectively, while f (·) denotes the element-
wise activation function. Based on DFNN, it is capable of
approximating a mapping between the received signal and the
demodulation result, which facilitates our single-bit receiver.

B. Contributions

Against this background, we develop a novel deep learning
assisted single-bit receiver architecture. Our main contribution-
s are boldly and explicitly contrasted to the state-of-the-art in
Table I at a glance as well as in more detail below:

• We analytically analyze the receiver performance of the
optimal single-bit receiver operating in THz channels in
the face of hybrid distortions with the help of the so-
called deflection ratio, which reveals the effect of phase
offsets on the demodulation performance and guides the
design of the single-bit THz receiver. Accordingly, a
new phase offset difference estimator is newly developed,
which is capable of facilitating the phase offset com-
pensation before sampling, thus improving the overall
detection performance.

• We design the overall architecture of a THz receiver,
which is capable of coping with severe hybrid distortions,
despite using low-resolution quantization. The receiver
consists of four modules, namely the phase estimator,
phase compensator, single-bit ADCs, and the demodula-
tion network. In contrast to the state-of-the-art single-bit
receiver, the phase offset is compensated before sampling
for realizing reliable demodulation.

• In order to reliably detect the single-bit quantized THz
signals, we propose a twin-phase training strategy, where
the phase offset is compensated before training the neu-
ral network based demodulator. In particular, a deep
learning-assisted single-bit detection methodology is pro-
posed, which significantly improves the demodulation
performance by fitting an accurate mapping between the
single-bit sampling sequence and the likelihood informa-
tion without relying on the distribution of each sample.

Notation: Matrices and vectors are denoted by uppercase
and lowercase boldface letters. The real part is denoted by
<(·), and j =

√
−1. The expectation operator is represented by

E(·), (·)T denotes the transpose operation, and ∼ denotes the
equality in a distribution, while ∗ is the convolution operation.
The m ×m identity matrix is denoted by Im, 1m denotes a
1 ×m vector with all components one, and [a]i denotes the
i-th element of a.

II. SYSTEM MODEL

As shown in Fig. 1, we consider an end-to-end THz com-
munication system, where both the transmitter and receiver
are equipped with a single Cassegrain antenna to provide high
antenna gain [27], [28].

Gray-coding is utilized to map the information bits to the
QPSK symbols. Let sk = ejg(dk1,dk0) be the k-th transmitted
symbol corresponding to the information bits dk1 and dk0,
which are equally likely to be 1 and 0. The QPSK mapping
function g (dk1, dk0) is defined by g(0, 0) = π/4, g(0, 1) =
3π/4, g(1, 0) = −π/4, and g(1, 1) = −3π/4. The complex
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Fig. 1. System model.

baseband transmit signal can be expressed as

sB(t) =
∞∑
k=0

skptr (t− kTs) , (3)

where ptr(t) is the signalling pulse, and Ts is the symbol
duration. Given a perfectly I/Q-balanced carrier modulator and
the perfect PA, the transmitted RF signal can be expressed as

sRF(t) =
√

2<
(
ej2πfctsB(t)

)
, (4)

where fc is the carrier frequency.
Under perfectly I/Q-balanced carrier demodulation, the re-

ceived RF signal is first down-converted and then filtered by
a low-pass filter (LPF) to yield the baseband received signal:

rB(t) =
∞∑
k=0

ske
j∆θpref (t− kTs) + nB (t) , (5)

where pref (t) = pr(t)∗h(t)∗ptr denotes the reference signal,
with h(t) and pr(t) representing the channel impulse response
(CIR) and the impulse response of the LPF, respectively. Fur-
thermore, ∆θ is the carrier phase offset between the transmitter
and the receiver, which is unknown to the receiver, and nB(t)
is the baseband-equivalent complex Gaussian noise.

A. Hybrid Distortion of THz Devices
Due to the serious imperfections of THz devices, the signals

will be distorted both at the transmitter and receiver. Let us
now discuss the components of the hybrid distortion one by
one.

1) : Firstly, practical carrier modulation is imperfect. Specif-
ically, the mismatch between the two RF branches imposes I/Q
imbalance, which can be modeled by the following expression

T =

[
1 εT sin (φT )
0 εT cos (φT )

]
, (6)

where εT and φT are the amplitude and phase imbalances
between the I and Q branches, respectively. If we denote
the inphase and quadrature signals of the perfect RF signal
sRF(t) as sI(t) and sQ(t), respectively, the actual inphase and
quadrature signals xI(t) and xQ(t) of the carrier modulated
signal are given respectively by

xI(t) =sI(t) + εT sin (φT ) sQ(t), (7)
xQ(t) =εT cos (φT ) sQ(t). (8)

2) : Secondly, due to the PA nonlinearity, the signal suffers
from nonlinear distortion, which includes both amplitude com-
pression and phase rotation. We adopt the dual-input nonlinear
amplifier model to relate the input and output signals of the
PA, which can be expressed as [29]

∇L
[
xI(t)
xQ(t)

]
=

[
∇Ix(t)
∇Qx(t)

]
, (9)

where x(t) = [xI(t), xQ(t)]T , ∇L represents the overall
nonlinear operator of the PA, while ∇I and ∇Q denote the
nonlinear operators for the inphase and quadrature signals, re-
spectively. In particular, the odd-order memoryless polynomial
(MLP) model is utilized to describe the nonlinear distortion
of the inphase and quadrature-phase branches, given by [10]

∇ixi(t) =

Ki∑
k=1, k is odd

αi,k1k

(
x(t)⊗ · · · ⊗ x(t)︸ ︷︷ ︸

The number of x(t) is k.

)
, (10)

where Ki is the order of nonlinearity and αi,k are the real-
valued model parameters, for i = I or Q. ⊗ denotes the
Kronecker product, given by

[
x1

x2

]
⊗
[
y1

y2

]
=


x1y1

x1y2

x2y1

x2y2

 . (11)

Taking into account the carrier modulation I/Q imbalance
and PA nonlinearity, therefore, the actual transmitted RF
inphase and quadrature signals can be modeled as ∇LTsRF(t)

with sRF(t) =
[
sI(t) sQ(t)

]T
.

3) : Similarly, due to the imbalance of the two RF branches
and the phase noise of the receiver’s voltage-controlled oscil-
lator (VCO), the received RF signal is further distorted during
demodulation, and the distortion can be expressed as

R =

[
1 εR sin (φR)
0 εR cos (φR)

]T [
cos (θ) − sin (θ)
sin (θ) cos (θ)

]
, (12)

where εR and φR are the amplitude imbalance and phase im-
balance between the I and Q branches at the receiver, respec-
tively, while θ is the phase shift caused by the phase noise at
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the transmitter and the VCO of the receiver.1 Specifically, we
assume that the phase noise θ follows a block-based random
walk model, which will change once per transmission block2.
Hence, the phase noise can be expressed as θk+1 = θk + δθk,
where θk is the phase noise of the k-th block and δθk is the
change of the phase noise between adjacent blocks, which is
a Gaussian random variable with zero mean and variance ϑ2,
i.e., δθk ∼ N

(
0, ϑ2

)
.

As a result, after demodulation and low-pass filtering, the
baseband signal received over the THz channel under hybrid
distortions can be expressed as

rB(t) =R (H∇LTsB(t) + nB(t)) , (13)

where rB(t) =
[
rBI

(t) rBQ
(t)
]T

with the complex baseband
received signal rB(t) = rBI

(t) + jrBQ
(t), and sB(t) =[

sBI
(t) sBQ

(t)
]T

with the complex baseband transmit signal
sB(t) = sBI

(t) + jsBQ
(t), while nB(t) =

[
nBI

(t) nBQ
(t)
]T

with the low-pass filtered complex channel AWGN nB(t) =
nBI

(t) + jnBQ
(t). Both nBI

(t) and nBQ
(t) have power σ2

0 .
Furthermore, the overall channel response H can be expressed
as

H =αPLe
jκI2, (14)

where αPL denotes the path loss, which includes the impact
of antenna misalignment, frequency dependent loss, and fre-
quency dispersion index, while κ denotes the phase shift of
the channel.

For notational simplification, by omitting the baseband
subscript B from rB(t), sB(t) and nB(t) as well as defining
Σ = RH∇LT and nr(t) = Rn(t), (13) can be rewritten as

r(t) =Σs(t) + nr(t), (15)

with r(t) =
[
rI(t) rQ(t)

]T
. Before sampling, the received

signal is rotated by ∆2θ̂ for improving the demodulation
performance, where the residual phase offset can be calculated
as ∆θ = θ+κ+∆2θ̂. As a result, the received baseband signal
is given by

r̃(t) =

 cos
(

∆2θ̂
)
− sin

(
∆2θ̂

)
sin
(

∆2θ̂
)

cos
(

∆2θ̂
)  r(t), (16)

with r̃(t)=
[
r̃I(t) r̃Q(t)

]T
. Next, the received baseband signal

is sampled by the single-bit ADCs, where every pulse is
represented by Ns samples, that is, the sampling period T
satisfies T = Ts/Ns. Then the n-th sample of the I and Q
branches of the k-th symbol can be expressed as

rI,k,n =

{
+1, r̃I (kTs + nT ) > 0,
−1, r̃I (kTs + nT ) ≤ 0,

(17)

rQ,k,n =

{
+1, r̃Q (kTs + nT ) > 0,
−1, r̃Q (kTs + nT ) ≤ 0,

(18)

1For a typical VCO, the phase noise increases with the square of the center
frequency, hence it cannot be ignored for a high-frequency THz receiver.

2Random-walk model is commonly utilized to describe strong phase noise,
whereby the phase noise varies per transmission due to the ultra-high rate of
THz communication [30].

for 1 ≤ n ≤ Ns. The single-bit sampling sequence of the k-th
symbol can be expressed as

rk =
[
rT
Ik

rT
Qk

]T
, (19)

with rT
Ik

= [rI,k,1 · · · rI,k,Ns ] and rT
Qk

= [rQ,k,1 · · · rQ,k,Ns ].

B. Optimal Single-bit Receiver

Since dk1 and dk0 are equally likely to be 1 and 0, the
maximum-likelihood (ML) detector is the optimal detector
for the single-bit sampling sequence rk [17]. The likelihood
function of the k-th single-bit sampling sequence, denoted as
Λ (rk|dk1, dk0), can be expressed as

Λ (rk|dk1, dk0) = (20)
Ns∑
n=1

(
log
(

1 +
(

1− 2Q
(
γ̃dk1,dk0

I,n

))
rI,k,n

)
+ log

(
1 +

(
1− 2Q

(
γ̃dk1,dk0

Q,n

))
rQ,k,n

))
− 2Ns log (2) ,

where the Q function Q(·) is given by Q(x) =
1√
2π

∫∞
x
e−t

2/2dt and we have

γ̃dk1,dk0

I,n =
1

σ0

(
∇I
(
xdk1,dk0
n

)
cos ∆θ −∇Q

(
xdk1,dk0
n

)
sin ∆θ

)
,

(21)

γ̃dk1,dk0

Q,n =
1

σ0

(
∇I
(
xdk1,dk0
n

)
εR sin (φR + ∆θ)

+εR cos (φR + ∆θ)∇Q
(
xdk1,dk0
n

))
, (22)

with

xdk1,dk0
n = (23)[

((1− 2dk0) + εT sinφT (1− 2dk1)) pref (nTs/Ns)
εT cosφT (1− 2dk1) pref (nTs/Ns)

]
.

When the distorted received symbol rk is obtained, it is de-
modulated according to the likelihood function Λ (rk|dk1, dk0)
of the conventional ML demapper as(

d̃opt
k1 , d̃

opt
k0

)
= arg max

dk1,dk0∈{0,1}
Λ (rk|dk1, dk0) . (24)

To evaluate the performance of the ML receiver, the de-
flection ratio under QPSK modulation relying on single-bit
sampling is defined by [31]

D =

(
E
(
λ̃k|dk1 = 1, dk0 = 1

)
− E

(
λ̃k|dk1 = 1, dk0 = 0

))2

Var
(
λ̃k

) ,

(25)

where λ̃k = Λ (rk|dk1 = 1, dk0 = 1) is the decision statistic
of the ML detector and Var (λk) denotes the variance of λ̃k.
The higher D is the better demodulation performance.

After some manipulations, the deflection ratio of the optimal
single-bit THz receiver, which depends on the residual phase
offset ∆θ and Ns, can be derived as shown in (26),with
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D (∆θ,Ns)=

(
Ns∑
n=1

(
log

(
$1,1

I,n

$1,0
I,n

)
$1,1
I,n+log

(
ω1,1

I,n

ω1,0
I,n

)
ω1,1
I,n+log

(
$1,1

Q,n

ω1,0
Q,n

)
$1,1
Q,n+log

(
ω1,1

Q,n

$1,0
Q,n

)
ω1,1
Q,n

))2

Ns∑
n=1

(
ω1,1
I,n$

1,1
I,n log2

(
$1,1

I,n

ω1,1
I,n

)
+ ω1,1

Q,n$
1,1
Q,n log2

(
$1,1

Q,n

ω1,1
Q,n

)) . (26)

ωdk1,dk0

I,n = Q
(
γ̃dk1,dk0

I,n

)
, $dk1,dk0

I,n = 1 − Q
(
γ̃dk1,dk0

I,n

)
,

ωdk1,dk0

Q,n = Q
(
γ̃dk1,dk0

Q,n

)
, and $dk1,dk0

Q,n = 1−Q
(
γ̃dk1,dk0

Q,n

)
.

Proof: See Appendix A.

III. ANALYSIS OF PHASE OFFSET

Observe from (26) that the performance of the opti-
mal ML receiver depends on both the weight tuple w =(
ωdk1,dk0

I,n , $dk1,dk0

I,n , ωdk1,dk0

Q,n , $dk1,dk0

Q,n

)
and Ns, where the

weight tuple w is determined by the phase offset ∆θ. As
a result, the phase offset is the dominant factor determining
the performance of the single-bit THz receiver. Therefore,
in this section, we first investigate the impact of the phase
offset on the demodulation performance and then propose
a phase compensation method to adjust the phase offset of
the received baseband signal r(t) in order to enhance the
achievable demodulation performance.

A. Effects of Phase Offset

To investigate the effects of the phase offset ∆θ on the
demodulation performance, the deflection ratio of (26) en-
countered in the THz channel at Eb/N0 = 5 dB with the
oversampling ratio Ns ∈ {1, 5, 10, 20} is plotted in Fig. 2 (a)
as a function of ∆θ, where Eb denotes the transmit energy
per bit and N0 is the power spectral density of the channel
noise. Specifically, the distortion parameters of THz channel
are εT = εR = 1.2, φT = φR = 2◦, and the parameters of the
dual-input nonlinear PA model are KI = 5 in conjunction with
αI,1 = 1.521, αI,3 = −0.5626, αI,5 = 0.0402, and KQ = 7
along with αQ,1 = 2.138, αQ,3 = −2.749, αQ,5 = 2.787,
αQ,7 = −1.179. For comparison, we also plot the deflection
ratio curve for the AWGN channel at Eb/N0 = 5 dB with
Ns ∈ {1, 5, 10, 20} in Fig. 2 (b), where εT = εR = 1,
φT = φR = 0◦, and the parameters of the dual-input nonlinear
PA model are KI = 1 in conjunction with αI,1 = 1 and
KQ = 1 along with αQ,1 = 1. Three observations can be
drawn from Fig. 2.

Firstly, it can be seen from Fig. 2 (b) that the deflection ratio
of the AWGN channel is maximized when the phase offset is
∆θ = 0, and the deflection ratio decreases significantly, when
∆θ deviates from 0. This is because for transmission over
the AWGN channel the deflection ratio decreases significantly,
when the amplitude difference between the I and Q branches
is large. However, in contrast to the AWGN channel, the
magnitude of the received constellation points of the signals
is time-variant in the THz channel. As a result, the optimal
phase offset to attain the maximum deflection ratio for the THz
channel is not 0. As can be seen from Fig. 2 (a), the deflection
ratio for the THz channel simulated reaches the maximal value
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(b) AWGN channel

Fig. 2. Deflection ratio versus phase offset parameterized by oversampling
ratio Ns.

when ∆θ is close to 0.04π, and the deflection ratio decrease
significantly, when ∆θ is different from 0.04π.

Secondly, at the same Eb/N0 and Ns, the deflection ratio
of the THz channel is lower than that of the AWGN channel,
explicitly reflecting the adverse effect of hybrid THz distor-
tions.

Thirdly, the deflection ratio increases with the increase of
Ns, which demonstrates that the demodulation performance
can be improved by increasing the oversampling ratio Ns.
Nevertheless, a higher oversampling ratio increases the device
cost and power consumption. Hence, it is always important
to realize an appropriate performance versus cost trade-off in
practice.
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B. Phase Compensation

The above analysis demonstrates that there exists an optimal
phase offset ∆θ? that optimizes the demodulation perfor-
mance, that is, the deflection ratio is maximized. However,
due to the random nature of both the phase noise and the
THz channel, the actual phase offset ∆θ of the THz channel
is unknown and different from the optimal phase offset ∆θ?.
Therefore, it is necessary to compensate for the actual phase
offset, i.e., adjusting ∆θ into ∆θ?, in order to attain the
optimal demodulation performance.

Note that ∆θ? can always be estimated. This is because
although the weight tuple w is unknown, it can be estimated
by utilizing a phase offset training sequence according to

ω̂dk1,dk0

I,n =
1

2
− 1

2Ndk1,dk0
t

N
dk1,dk0
t∑
k=1

rI,k,n, (27a)

ω̂dk1,dk0

Q,n =
1

2
− 1

2Ndk1,dk0
t

N
dk1,dk0
t∑
k=1

rQ,k,n, (27b)

$̂dk1,dk0

I,n =
1

2
+

1

2Ndk1,dk0
t

N
dk1,dk0
t∑
k=1

rI,k,n, (27c)

$̂dk1,dk0

Q,n =
1

2
+

1

2Ndk1,dk0
t

N
dk1,dk0
t∑
k=1

rQ,k,n, (27d)

where Ndk1,dk0
t is the length of the sequence in terms of the

received symbols (dk1, dk0). Substituting the estimated weight
tuple ŵ =

(
ω̂dk1,dk0

I,n , ω̂dk1,dk0

Q,n , $̂dk1,dk0

I,n , $̂dk1,dk0

Q,n

)
into (26),

the estimated deflection ratio D̂
(

∆θ̃, Ns

)
of the optimal ML

receiver with the phase offset ∆θ̃ can be obtained without
relying on the knowledge of the channel information. An
estimate of the optimal phase offset can then be obtained as
the solution of the following optimization

∆θ̂? = arg max
∆θ̃

D̂
(

∆θ̃, Ns

)
. (28)

However, what the phase compensation needs is the difference
between the optimal phase offset ∆θ? and the unknown phase
offset ∆θ of the received signal, which is denoted as

∆2θ = ∆θ? −∆θ. (29)

We propose an algorithm to approximately estimate ∆2θ.
Specifically, the phase offset training sequence is divided into
Np subsequences, where the length of each subsequence is Nt.
An initial ∆2θ̃0 = 0 is set, an initial estimated deflection ratio
D̂0 = 0 is assumed, and a step size αθ for adjusting the phase
offset is provided. The t-th subsequence is rotated by ∆2θ̃t
before sampled by the receiver, where ∆2θ̃t = ∆2θ̃t−1 + αθ.
Substituting the sampled t-th subsequence into (27), the esti-
mated weight tuple ŵ is obtained, and the deflection ratio D̂t

can be calculated. If D̂t > D̂t−1, it indicates that ∆2θ̃t is ad-
justed in a correct direction (deflection ratio increasing) from
∆2θ̃t−1 by step size αθ. Therefore, to continue this direction,
∆2θ̃t+1 should also be adjusted by αθ from ∆2θ̃t. Otherwise,
∆2θ̃t+1 needs to be adjusted to the opposite direction by −αθ

Algorithm 1 Estimate the difference between optimal phase
offset and actual phase offset ∆2θ

1: Set initial estimated ∆2θ̃0 =0, step size to αθ, and initial
estimated deflection ratio D̂0 =0.

2: for t = 1 to Np do
3: Set ∆2θ̃t = ∆2θ̃t−1 + αθ.
4: Rotate the t-th phase offset training subsequence by

∆2θ̃t.
5: Sample the t-th phase offset training subsequence.
6: Calculate ŵ =

(
ω̂dk1,dk0

I,n , ω̂dk1,dk0

Q,n , $̂dk1,dk0

I,n , $̂dk1,dk0

Q,n

)
according to (27).

7: Substituting ŵ into (26) to obtain the estimated deflec-
tion ratio D̂t.

8: if D̂t > D̂t−1 then
9: Set αθ = αθ.

10: else
11: Set αθ = −αθ.
12: end if
13: end for
14: Calculate ∆2θ̂ = 1

Np−Np,i

∑Np

t=Np,i+1 ∆2θ̃t

from ∆2θ̃t. Clearly, the first a few ∆2θ̃t are far from the true
∆2θ, and it takes some iterations, say t = Np,i, for ∆2θ̃t to
converge. Also owing to the difference between ŵ and w,
the estimated deflection ratio is inaccurate. As a result, ∆2θ̃t
will naturally fluctuate. To achieve an accurate estimate, the
average value of the estimated ∆2θ̃t over Np,i ≤ t ≤ Np is
used as the estimate of ∆2θ. Algorithm 1 summarizes this
proposed estimator.

As ∆2θ̂ obtained by Algorithm 1 is an estimate of the
difference between the optimal phase offset and actual phase
offset, the received baseband signal r(t) can be compensated
for with ∆2θ̂, and how this is achieved will be elaborated
further in the next section. Appropriate values for Np, Nt,
Np,i and αθ will be investigated in Subsection V-C.

IV. LEARNING-ASSISTED SINGLE-BIT RECEIVER

In this section, we detail the proposed deep learning-assisted
single-bit THz receiver.

A. Single-bit Receiver Architecture

Fig. 3 depicts the overall architecture of our proposed deep
learning-assisted single-bit THz QPSK receiver. In contrast to
the conventional receiver shown of Fig. 1, which collects the
received signal by a pair of ADCs and demodulates the sam-
pling sequence directly, the phase offset is first compensated
by our proposed receiver before sampling and the single-bit
sampled sequence is demodulated by a deep learning based
demodulation network. Hence, our proposed single-bit receiver
consists of a phase estimator, a phase compensator, two single-
bit ADCs for the I an Q components, and a deep learning based
demodulation network. The function of each module is now
summarized.
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Fig. 3. The overall architecture of our proposed deep learning-assisted single-bit THz receiver.

1) Phase estimator: The phase estimator estimates the
difference between the optimal phase offset and the actual
phase offset of the received signal, ∆2θ, as detailed in Sub-
section III-B. This task is very challenging as it is implicitly
relying on the cost function value only.

2) Phase compensator: The phase compensator is utilized
to rotate the THz signal according to the feedback ∆2θ̂ from
the phase estimator. Typically, the rotation operation can be
realized by the local oscillator (LO), where the phase offset
can be directly controlled [32].

3) Single-bit ADCs: The two single-bit ADCs are utilized
for converting the I and Q components of the analog THz
signals r(t) into two single-bit sampled sequences rIk and
rQk

with the oversampling ratio of Ns.
4) Demodulation network: The demodulation network is

utilized for demodulating the received single-bit sampled
sequences of the THz signals. Note that given the hybrid dis-
tortions caused by the THz transceiver, Λ (rk|dk1, dk0) cannot
be characterized analytically. As a result, reliably detecting the
THz symbols digitized by single-bit ADCs is quite a challenge.
To tackle this problem, we propose a deep learning-assisted
single-bit THz receiver that is capable of efficiently solving
the ML demapper (24).

B. Deep Learning Based Demodulation

To demodulate the phase-compensated single-bit sampled
sequence {rk}, a DFNN having L hidden layers is adopted as
the demodulation network, which is capable of approximating
any measurable function at any desired degree of accuracy
[26]. The input layer feeds the (m0 =2Ns)-dimensional input
rk into the DFNN, and the signal propagates through the
network layer by layer until it reaches the output layer. The
number of the neurons in the l-th hidden layer is denoted as
ml for 1 ≤ l ≤ L. The dimension of the output layer of
the DFNN is equal to the size of modulation alphabet, i.e.,
the output layer has mo =4 neurons, and the likelihoods of rk
belonging to the four constellation points are the demodulation
output.

For demodulating the k-th symbol, denote the input to the
1st hidden layer as x0

k = rk ∈ Rm0×1. Specifically, the
sigmoid function [26] is used in the hidden layers as our

activation function, which is given by

f(z) =
1

1 + e−z
. (30)

As the demodulation results of our deep network are the
probabilities of the k-th symbol belonging to the QPSK
constellation points, the softmax function [26] is selected as
the activation function of the output layer. Specifically, based
on the activation zo

k ∈ R4×1 of the output layer, where
zo
k = WL+1x

L
k + bL+1 with the output layer’s weight matrix

WL+1 ∈ R4×mL and bias vector bL+1 ∈ R4×1, the output
vector pk ∈ R4×1 of the output layer is specified by

pi,j(k) =
[
pk
]
2i+j+1

= softmax
([

zo
k

]
2i+j+1

)
=

exp
([

zo
k

]
2i+j+1

)
∑1
i′=0

∑1
j′=0 exp

([
zo
k

]
2i′+j′+1

) , (31)

for i, j ∈ {0, 1}, where pi,j(k) defines the probability that the
single-bit sampling sequence rk belongs to (dk1, dk0) = (i, j).
As a result, the index

(̂
i?, ĵ?

)
of the element of pk having the

highest probability, i.e.,(̂
i?, ĵ?

)
= arg max

i,j∈{0,1}
pi,j(k), (32)

is the ML estimate of the information bits of the single-bit
sampled sequence rk.

Collect all the parameters of the DFNN as W =
{W1,b1, · · · ,WL,bL,WL+1,bL+1}, and denote the over-
all nonlinear mapping of the DFNN as g(·; W), which links
the single-bit sampling received sequence r to the demodula-
tion likelihood information p=

[
p0,0 p0,1 p1,0 p1,1

]T
:

p =g (r; W) . (33)

To optimize the performance of learning-assisted demodula-
tion, the task is to determine W by training the DFNN for
ensuring p approaches p?, where p? =

[
p?0,0 p

?
0,1 p

?
1,0 p

?
1,1

]T
represents the actual probability of the transmit symbol for
the single-bit sampling received sequence. Here, we adopt the
cross-entropy as the learning performance metric, given by

J(W) =− Er

 1∑
i=0

1∑
j=0

p?i,j log pi,j

 . (34)
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Fig. 4. The proposed transmission frame structure of THz communication system.

However, explicit p? is hard to obtain. To address this
issue, we construct an empirical probability vector pe =[
pe

0,0 pe
0,1 pe

1,0 pe
1,1

]T
. Specifically, pe

i,j = 1 and all the
other three elements of pe are zero, when the (2i+j+1)-th
constellation symbol point is transmitted, where i, j ∈{0, 1}.
Since E (pe) is close to p?, we use pe to replace the true target
p?. In practice, a block of training data

{
rk,p

e
k

}Nd

k=1
is used to

train the network by minimizing the empirical cross entropy,
given by

Je(W) =− 1

Nd

Nd∑
k=1

 1∑
i=0

1∑
j=0

pe
i,j(k) log pi,j(k)

 . (35)

Empirical cross entropy is commonly utilized in the study of
the DFNN for multi-classification problems, also called one-
hot code label, which has desired convergence properties and
accuracy for classification tasks [26].

C. Twin-Phase Training Strategy
To realize the expected function of each module, a twin-

phase training strategy is utilized to train the single-bit receiv-
er. In the first step, the phase estimator is trained for facilitating
the optimal phase offset. In the second step, the DFNN learns
the mapping between the phase-offset compensated single-bit
sampled sequence and the demodulation result. An advantage
of this training policy is that the adverse effect of phase
noise can be eliminated, which brings significant performance
improvements of the single-bit receiver. To implement this
twin-phase training, the transmission frame structure of Fig. 4
is designed, which is composed of the phase estimation field
(PEF), the DFNN training field (DTF) and the data segment.
In particular, the data segment consists of several data fields
(DF) and multiple phase tracking fields (PTF).

Estimating phase offset difference: The PEF is first trans-
mitted to search for the optimal phase offset difference, and the
process of estimating this phase offset difference is detailed
in Subsection III-B. The length of PEF is NpNt, where
Nt = N

(1,1)
t +N

(1,0)
t in which N

(1,1)
t and N

(1,0)
t are the

numbers of symbols corresponding to the bits (1, 1) and
(1, 0), respectively, in the transmitted training subsequnece.
We choose N (1,1)

t =N
(1,0)
t to ensure that equal numbers of the

bit patters (1, 1) and (1, 0) are transmitted. This in turn ensures

a balanced and more accurate estimation of the statistics
$1,1

I,n

$1,0
I,n

,
ω1,1

I,n

ω1,0
I,n

,
$1,1

Q,n

ω1,0
Q,n

and
ω1,1

Q,n

$1,0
Q,n

in (26). The estimated optimal phase
offset difference is then fed to the phase compensator, where
all the received symbols, including the DTF and data segment,
are rotated accordingly before sampling by the single-bit
ADCs.

Training demodulation network: Next, the DTF is trans-
mitted to train the demodulation network, which consists
of the DFNN training samples. In particular, each training
sample includes a phase-offset-compensated single-bit sam-
pled sequence rk labeled by its corresponding information
bits

(
dk1, dk0

)
. From

(
dk1, dk0

)
, the corresponding empirical

probability target pe
k is constructed. Let Nd be the length

of the DTF. The receiver collects the training dataset S =
{rk,pe

k}
Nd

k=1 to train the DFNN by minimizing the cost func-
tion (35) using the scaled conjugate gradient optimizer, which
is a well-known fast and efficient optimization algorithm for
large-scale optimization problems [33].

After training, the DFNN can be used for demodulating the
received single-bit sampled sequence during data transmission.
Specifically, during data transmission, each received sequence
rk is imported into the network. Then the output of the
DFNN provides the specific category or bit pattern estimate(
d̂?k1 = î?, d̂?k0 = ĵ?

)
of the current received sequence accord-

ing to (32).
The overall computational complexity of the proposed re-

ceiver is dominated by the training process of the DFNN.
Specifically, the scaled conjugate gradient algorithm for train-
ing the DFNN has a complexity per iteration on the order
of O

(
N2

tot

)
[34], where Ntot is the total number of adaptive

parameters in the DFNN, given by

Ntot =
(
2Ns + 1

)
m1 +

L∑
l=2

(
ml−1 + 1

)
ml +

(
mL + 1

)
4.

(36)

Tracking phase offset difference: Naturally, the phase shift
is time-variant, and hence the PTF is inserted into the data
segment for tracking the time-variant phase offset difference
to mitigate the effect of the phase noise. This is achieved by
the same phase offset difference estimator. The adjusted phase
offset difference is used by the phase compensator to rotate
the subsequent received data segment before sampling by the
single-bit ADCs for demodulation.

V. NUMERICAL ANALYSIS

This section presents numerical results for characterizing the
proposed single-bit THz receiver, including the performance
of phase compensation and deep learning based demodulation.
All the symbols are generated by the system model described
in Section II.
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Fig. 5. BER versus phase offset ∆θ and Eb/N0 given the oversampling
ratio Ns = 20 for communicating over a single-path THz channel having a
carrier frequency fc = 220 GHz.

A. Simulation System Parameters

The classic raised cosine signalling pulse is utilized [35],
where the transmit pulse is specified by

ptr(t) =
sin (πt/τ)

(πt/τ)

cos (βπt/τ)

1− β2t2/τ2
, (37)

where β is the roll-off factor and τ is the width of the pulse,
given by β= 0.5 and τ=0.01 ns.

Furthermore, directional Cassegrain antennas are used and
a single-path THz channel is considered, and the same hybrid
distortion parameters shown in Section III have been adopted
in this section.

B. Effect of ∆θ and Ns
Firstly, to verify the correctness of the analysis in Sub-

section III-A, the simulation based bit error rate (BER) per-
formance is presented in this subsection, where the symbols
satisfying Ts = 2τ are generated.

In Fig. 5, we plot the BER versus the phase offset ∆θ and
Eb/N0 for the oversampling ratio Ns = 20. It can be seen that
there exists a unique ∆θ that minimizes the BER performance
which also depends on Eb/N0. This demonstrates that it is
important to compensate the phase offset for improving the
BER performance.

Furthermore, in Fig. 6 we characterize the impact of the
phase offset on the achievable BER, given various Eb/N0

values and Ns = 20. Again, it can be seen that the BER is
minimized when the phase offset is around 0.04π. Moreover,
the simulation-based BER matches the analytical result of Sub-
section III-A, where the BER is reduced when the deflection
ratio is increased.

In Fig. 7, we further plot the BER versus Eb/N0 parame-
terized by Ns at ∆θ = 0. It is observed that as expected, the
BER performance over AWGN channels is better that over
the THz channel due to the hybrid distortions. We can see
that even the optimal receiver fails to demodulate the single-
bit sequence when Ns = 1. It is also observed that the BER
trend is consistent with the deflection ratio trend of Fig. 2.
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Fig. 6. BER versus phase offset ∆θ for different Eb/N0, given Ns = 20.
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Fig. 7. BER versus Eb/N0 for different Ns, given ∆θ = 0.

C. Phase Offset Difference Estimation Performance

We now present our simulation results for validating the ef-
ficiency of our proposed algorithm detailed in Subsection III-B
for estimating the phase offset difference. Throughout this
subsection, the initial phase offset is set to 0, and Eb/N0 =
5 dB. The optimal phase offset is approximately 0.04π as
shown in Fig. 2 (a). Thus the optimal phase offset difference
is ∆2θ? ≈ 0.04π.

To investigate the convergence properties of Algorithm 1,
we generate Nrun = 1000 independent phase offset training
sequences, and the length of each training sequence is NpNt,
given by Np = 1000 and Nt = 200. The step size is set to
αθ = 0.01π. The evolution of the population of the estimated
phase offset differences is shown in Fig. 8. Specifically, in
Fig. 8, we plot ∆2θ̃t,n versus t for all the Nrun realizations,
where ∆2θ̃t,n is the t-th estimated phase offset difference at
the t-th iteration of the n-th realization. Since the number of
training symbols is limited in each iteration and the estimated
weight tuple ŵ is realization dependent, the estimated phase
offset difference ∆2θ̃t,n naturally fluctuates from realization
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Fig. 8. Evolution of the population of the estimated differences between
optimal phase offset and actual phase offset over 1000 realizations given Nt =
200.
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Fig. 9. The estimated ∆2θ̂ versus Np,i parameterized by αθ given Nt =
200 and Np = Np,i + 100.

to realization, that is, it is stochastic. However, the expectation
of ∆2θ̃t,n, approximated by

∆2θt =
1

Nrun

Nrun∑
n=1

∆2θ̃t,n, (38)

does converge to the optimal phase offset difference 0.04π.
Also observe from Fig. 8 that ∆2θ̃t,n converges after t = 150.
Recall that in Algorithm 1, the final estimated phase offset
difference, denoted as ∆2θ̂n here, is obtained by averaging
∆2θ̃t,n over t = Np,i to Np to reduce the fluctuation of
∆2θ̃t,n. In this case, we can see that Np,i = 150 is appropriate.

Next we demonstrate that ∆2θ̂n converges to the optimal
phase offset difference, namely, the expectation of ∆2θ̂n is
the optimal phase offset difference. With Nt = 200 and
Np = Np,i+100, in Fig. 9, we plot the average of ∆2θ̃n over
the 1000 realizations, denoted as ∆2θ̂ here, as the function of
Np,i parameterized by αθ. It is observed that as the step size
αθ increases, the number of the subsequences Np,i for ∆2θ̂
to approach the optimal value decreases, thus decreasing the
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Fig. 10. The CDF of the estimated ∆2θ̂ parameterized by Nt given Np =
250 and Np,i = 150.

training overhead. However, the estimated ∆2θ̂ will fluctuate
more seriously as the step size αθ increases, which will limit
the accuracy of the estimated ∆2θ̂. Hence, it is important
to select an appropriate step size to realize an overhead
versus performance trade-off. In this case, we can see that
it is appropriate to utilize the average value over the last
Np−Np,i = 100 subsequences as the estimate of phase offset
difference with the step size set to αθ = 0.01π.

In Fig. 10, we plot the cumulative distribution function
(CDF) of the estimated phase offset difference obtained by
Algorithm 1, parameterized by Nt and given Np = 250 and
Np,i = 150. Observe that the estimated ∆2θ̂ is concentrated
around 0.04π, again indicating the effectiveness of Algorith-
m 1. Also as expected, as the length Nt of subsequence
increases, leading to more accurate estimate, the CDF curve
becomes steeper, that is, the probability that the estimated
phase offset difference is around 0.04π becomes higher.

Based on the above investigations as well as considering
training overhead and performance trade-off, Nt = 200,
Np = 250, Np,i = 150 and αθ = 0.01π are selected as
the algorithmic parameters of Algorithm 1 to compensate the
phase offset for the following demodulation operation. With
this set of algorithmic parameters, the training overhead or
the length of PEF field is NpNt = 50000 symbols, which
is acceptable considering huge throughput of THz systems,
while ensuring a sufficiently accurate phase compensation
performance.

D. Demodulation Performance

Let us now examine the detection performance of our
proposed learning based DFNN scheme against that of the
optimal and suboptimal demodulation schemes of [17], and the
eight-sector phase based scheme in [18]. In the simulations,
we note that 50,000 training symbols are sufficient for training
the weights of the optimal and suboptimal receiver [17] and
the eight-sector phase based receiver of [18] for it to reach
its full performance potential. Hence, increasing the number
of training symbols further does not improve the achievable
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Fig. 11. Performance comparison of the proposed learning-based DFNN de-
modulation scheme, the optimal demodulation scheme of [17], the suboptimal
demodulation scheme of [17] and the eight-sector phase scheme of [18] for
Ts = τ and Ts = 2τ .

performance. For a fair comparison, we also train our DFNN
with Nd = 50, 000 training symbols3. Note that a large
number of samples is required for the empirical cross entropy
(35) to approach the ensemble cross entropy (34), because
the underlying distribution of the demodulation process is
highly nonlinear and non-Gaussian. Hence it is advisable
to use a sufficiently long DTF field, and Nd = 50, 000 is
suitable. A DFNN having L = 4 hidden layers is utilized
for demodulating the received single-bit sequence, and the
numbers of neurons in the four hidden layers are (4, 4, 4, 4),
respectively. The total number of adaptive parameters for
this DFNN is Ntot = 244, given the oversampling ratio of
Ns = 20.

In Fig. 11, we plot the BER as a function of Eb/N0

associated with Ns = 20 and ∆θ = 0 for the four schemes
compared. It can be seen from Fig. 11 that all the schemes
perform equally well when Ts = 2τ , and the BER curves of
the optimal schemes, suboptimal scheme and our proposed
learning-based scheme are indistinguishable. Upon relying on
two extra analog branches, namely the I+Q and I-Q branches,
the BER performance of the eight-sector phase based receiver
[18] improves slightly, explicitly a 0.5 dB performance gain
can be obtained at the BER level of 10−2. However, the
receiver architecture of the eight-sector phase based scheme
becomes more complex compared to the other three schemes,
which requires two extra analog adders and single-bit ADCs.

When Ts=τ , however, the performance of the four schemes
degrade significantly. This is because the adjacent symbols are
no longer independent for Ts=τ and the correlation between
the symbols cannot be ignored. As a result, the distribution
of each sampling point will be different from the estimated
distribution obtained from the training samples. Note that the

3Based on [36] and [37], the correlation of phase noise can be guaranteed
when the frame length is smaller than ln(2)/(2π2T 2

s f
2
0 ), where f0 is the

corner frequency of the oscillator. Considering the oscillator of [38], the
maximum frame length satisfying the correlation of phase noise may be as
high as 3.5×106, which is higher than NpNt+Nd. Therefore, the efficiency
of our training solution can be guaranteed.

performance of the optimal scheme [17], of the suboptimal
scheme [17] and of the eight-sector phase based scheme [18]
become particularly limited for Ts=τ . By contrast, upon con-
sidering the change in distribution caused by the correlation
between symbols our learning based DFNN detection scheme
demodulates the single-bit sequence more accurately without
relying on the distribution of each sample. Specifically, at the
BER level of 10−2, our DFNN demodulation scheme offers
more than 2.5 dB Eb/N0 gain over both the optimal and the
suboptimal schemes of [17].

VI. CONCLUSIONS

In this paper, a deep learning-assisted demodulation scheme
has been proposed for single-bit THz QPSK receivers, which
consists of an estimator for the difference between the opti-
mal phase offset and the actual phase offset, a phase offset
compensator, two single-bit ADCs, and a deep learning based
demodulation network. Based on the deflection ratio of the
maximum-likelihood detector, which is the optimal detector
for the single-bit receiver, we have investigated the impact
of phase offset on the demodulation performance. This has
led us to develop an estimator for the phase offset difference
in order to compensate the phase offset accordingly before
sampling. A deep feedforward neural network has been pro-
posed to demodulate the phase offset compensated single-bit
sampled sequence. Moreover, a twin-phase training strategy
has been proposed for training the phase offset difference
estimator and the demodulation DFNN. The simulation results
have demonstrated that the proposed demodulation scheme
is capable of improving the BER of the THz receiver under
single-bit quantization and severe hybrid distortions.

APPENDIX A
PROOF OF (26).

Relying on the distribution of the sampling points, which
follows the Gaussian distribution due to the additive Gaussian
noise, the probability of each sampling point belonging to ±1
when the decision results of the information bits (dk1, dk0)
are (1, 1) can be expressed as

Pr(rI,n = 1|dk1 = 1, dk0 = 1) = 1−Q
(
γ̃1,1
I,n

)
,

Pr(rI,n = −1|dk1 = 1, dk0 = 1) = Q
(
γ̃1,1
I,n

)
,

Pr(rQ,n = 1|dk1 = 1, dk0 = 1) = 1−Q
(
γ̃1,1
Q,n

)
,

Pr(rQ,n = −1|dk1 = 1, dk0 = 1) = Q
(
γ̃1,1
Q,n

)
.

Furthermore, based on (20), the expectation of the decision
result can be calculated as

E
(
λ̃k |dk1 = 1, dk0 = 1

)
=

Ns∑
n=1

(
log
(

2− 2Q
(
γ̃1,1
I,n

))(
1−Q

(
γ̃1,1
I,n

))
+ log

(
2Q
(
γ̃1,1
I,n

))
Q
(
γ̃1,1
I,n

)
(39)

+ log
(

2− 2Q
(
γ̃1,1
Q,n

))(
1−Q

(
γ̃1,1
Q,n

))
+ log

(
2Q
(
γ̃1,1
Q,n

))
Q
(
γ̃1,1
Q,n

))
− 2Ns log (2) .
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Similar, E
(
λ̃k|dk1 = 1, dk0 = 0

)
can be calculated as

E
(
λ̃k |dk1 = 1, dk0 = 0

)
=

Ns∑
n=1

(
log
(

2− 2Q
(
γ̃1,0
I,n

))(
1−Q

(
γ̃1,1
I,n

))
+ log

(
2Q
(
γ̃1,0
I,n

))
Q
(
γ̃1,1
I,n

)
(40)

+ log
(

2Q
(
γ̃1,1
Q,n

))(
1−Q

(
γ̃1,1
Q,n

))
+ log

(
2Q
(
γ̃1,0
Q,n

))
Q
(
γ̃1,1
Q,n

))
− 2Ns log (2) .

Substituting (39) and (40) into (25), (26) can be obtained.
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