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Abstract

Over-the-air computation (AirComp) is a disruptive technique for fast wireless data aggregation in

Internet of Things (IoT) networks via exploiting the waveform superposition property of multiple-access

channels. However, the performance of AirComp is bottlenecked by the worst channel condition among

all links between the IoT devices and the access point. In this paper, a reconfigurable intelligent surface

(RIS) assisted AirComp system is proposed to boost the received signal power and thus mitigate the

performance bottleneck by reconfiguring the propagation channels. With an objective to minimize the

AirComp distortion, we propose a joint design of AirComp transceivers and RIS phase-shifts, which

however turns out to be a highly intractable non-convex programming problem. To this end, we develop

a novel alternating minimization framework in conjunction with the successive convex approximation

technique, which is proved to converge monotonically. To reduce the computational complexity, we

transform the subproblem in each alternation as a smooth convex-concave saddle point problem, which

is then tackled by proposing a Mirror-Prox method that only involves a sequence of closed-form updates.

Simulations show that the computation time of the proposed algorithm can be two orders of magnitude

smaller than that of the state-of-the-art algorithms, while achieving a similar distortion performance.
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I. INTRODUCTION

Driven by the increasing advancement of wireless communication technologies and the de-

creasing manufacturing costs, Internet of Things (IoT) is expected to support ubiquitous con-

nectivity and automatic transmission for billions of devices equipped with sensing and commu-

nication capabilities [2]. With limited spectrum resources, it is generally challenging to achieve

efficient wireless data aggregation over a large volume of IoT devices, which is critical for un-

leashing the potential of the distributed sensory data. The conventional “transmit-then-compute”

approach requires an access point (AP) to successfully receive the data from each IoT device and

then compute a specific function (e.g., arithmetic mean) of the received data. This is, however,

not spectrum-efficient, especially when the number of IoT devices is large. Fortunately, over-the-

air computation (AirComp), which integrates the communication and computation processes, has

the potential to achieve ultra-fast wireless data aggregation in IoT networks. This is accomplished

by enabling the concurrent data transmissions from all IoT devices over the same radio channel

and exploiting the waveform superposition property of multiple-access channels (MACs) at the

AP [3], [4], yielding a revolutionary paradigm of “compute when communicate”.

The study of AirComp can be traced back to the seminal work [5], which showed that a fast

function computation can be achieved by enabling concurrent analog transmissions. There is a

growing body of studies concentrated on the transceiver design for AirComp to enable efficient

wireless data aggregation [6]–[10]. In particular, the authors in [6], [7] proposed optimal transmit

power control strategies for AirComp in single-input single-output (SISO) wireless networks

with energy-constrained IoT devices. The authors in [8] studied AirComp in multiple-input

single-output (MISO) wireless networks, where a novel uniform-forcing transmit design was

proposed to compensate the non-uniform channel fading among IoT devices. By integrating

multiple-input multiple-output (MIMO) with AirComp, the authors in [9] and [10] investigated

the transceiver design for multi-function computation and multi-modal sensing, respectively.

Meanwhile, the authors in [11] proposed a blind MIMO AirComp scheme to reduce the signaling

overhead for channel state information (CSI) estimation. By calibrating the transmission timing

of each IoT device, the synchronization issue of AirComp can be addressed. In case of non-

strict synchronization, the authors in [12] proposed an efficient matched filtering and sampling

scheme to facilitate misaligned AirComp. More recently, the authors in [13]–[15] exploited the

advantages of AirComp to develop a fast model aggregation scheme to accelerate the convergence
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of federated learning. According to the aforementioned studies, AirComp requires the magnitudes

of the signals to be aligned at the AP; thus, the performance of AirComp is bottlenecked by the

worst channel between the IoT devices and the AP.

Reconfigurable intelligent surface (RIS) is an emerging technology, which has recently been

proposed to tackle unfavorable channel conditions by reconfiguring the radio propagation en-

vironment [16]–[26]. An RIS is a man-made flat surface composed of many passive reflecting

elements, each of which can independently shift the phase of the impinging waves in a control-

lable way [16], [17], thereby constructing a favorable wireless radio propagation environment.

The authors in [18]–[20] demonstrated that RIS has the ability to significantly enhance the energy

efficiency and spectral efficiency of wireless networks. Owing to the aforementioned features,

RIS has been integrated with various wireless technologies, e.g., non-orthogonal multiple access

(NOMA) [21], massive IoT device connectivity [22], massive MIMO [23], millimeter-wave

communications [24], unmanned aerial vehicle communications [25], and wireless power transfer

[26], to further enhance the network performance and promote emerging applications.

To leverage the advantages of RIS for enhancing the quality of the worst channel between

the IoT devices and the AP and in turn mitigating the performance bottleneck of AirComp,

the authors in [1], [27] proposed an RIS-assisted AirComp system. In these two studies, the

alternating semi-definite relaxation (SDR) algorithm and the alternating difference-of-convex

(DC) algorithm were proposed to jointly optimize the receive beamforming vector at the AP

and the phase-shift matrix at the RIS. However, both algorithms suffer from high computational

complexity as they need to iteratively solve the semi-definite programming (SDP) problems.

Moreover, the optimization of the phase-shift matrix in [1], [27] involves feasibility detection

that cannot be accurately tackled by the SDR and DC algorithms. Hence, both algorithms are not

guaranteed to achieve monotonic convergence. This motivates us to develop a computationally

efficient algorithm with convergence guarantee to achieve efficient wireless data aggregation in

RIS-assisted AirComp systems.

A. Contributions

In this paper, we consider an RIS-assisted IoT network, where a multi-antenna AP aggregates

the sensory data from multiple IoT devices by using AirComp with the assistance of an RIS. We

evaluate the performance of AirComp in terms of the computation distortion, which is measured

by the mean-squared-error (MSE). The main objective is to develop a low-complexity algorithm
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with convergence guarantee to minimize the MSE of RIS-assisted AirComp systems. To this end,

it is necessary to jointly optimize the transmit scalars at the IoT devices, the receive beamforming

vector and the denoising factor at the AP, and the phase-shifts at the RIS. The main contributions

of this paper are summarized as follows:

• We formulate an MSE minimization problem for RIS-assisted AirComp systems, where

the transmit scalars at the IoT devices, the receive beamforming vector and the denoising

factor at the AP, and the phase-shift matrix at the RIS are jointly optimized. To tackle the

scalability and convergence issues of existing studies, we transform the original problem

into an equivalent min-max optimization problem. It turns out to be a highly intractable

non-convex optimization problem due to the non-convex objective function and the coupled

optimization variables.

• We propose an alternating minimization (AlterMin) framework to alternately optimize the

receive beamforming vector and the phase-shift vector. For each optimization problem in

the alternating procedure, we iteratively construct a convex surrogate for the non-convex

objective function by utilizing the successive convex approximation (SCA) technique. We

prove that the proposed framework is guaranteed to converge, which is a key difference

from the existing studies. As the subproblem in each SCA iteration is a non-smooth convex

problem, the conventional algorithms suffer from high computational complexity.

• As the objective function involves the pointwise maximum of affine functions, we equiv-

alently transform the resulting non-smooth convex problem into a smooth convex-concave

saddle point problem by using the primal-dual transformation. Subsequently, we adopt the

Mirror-Prox method to solve the aforementioned saddle point problem and derive a closed-

form expression for each update. As a result, the proposed Mirror-Prox based AlterMin

SCA algorithm enjoys a very low computational complexity.

We conduct extensive simulations to demonstrate the monotonic convergence and the superior

performance of the proposed algorithm for RIS-assisted AirComp systems. Results will show that

the computational time of the proposed algorithm can be two orders of magnitude smaller than

that of the alternating SDR and alternating DC algorithms [1], [27], while achieving a similar

data aggregation distortion performance in terms of MSE as these state-of-the-art algorithms.

Moreover, the performance gain of the proposed algorithm in terms of the computation time

increases when the dimensions of the system parameters (e.g., number of IoT devices, AP’s
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Fig. 1: Illustration of an RIS-assisted IoT network, where an AP aggregates the data from multiple IoT devices using AirComp.

antennas, and RIS’s reflecting elements) become larger.

B. Organization and Notations

The reminder of this paper is organized as follows. Section II describes the system model

and the problem formulation. Section III presents an AlterMin SCA framework for solving the

formulated problem. Section IV provides the Mirror-Prox method to solve the subproblems in

each SCA iteration. The performance of the proposed algorithm is illustrated in Section V.

Finally, we conclude this paper in Section VI.

Notations: Matrices, vectors, and scalars are denoted by boldface upper-case, boldface lower-

case, and lower-case letters, respectively. (·)H and (·)T stand for conjugate transpose and trans-

pose of a matrix or a vector, respectively. ‖ · ‖1, ‖ · ‖, and ‖ · ‖∞ denote the l1, l2, and l∞ norm

operators, respectively. <[·] and =[·] represent the real and imaginary parts of a complex matrix,

vector, or scalar, respectively. E [·] denotes the expectation of a random variable.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first present the system model of an RIS-assisted AirComp system and

formulate an AirComp distortion minimization problem that requires the joint optimization of

the transmit scalars at the IoT devices, the receive beamforming vector and the denoising factor

at the AP, and the phase-shift matrix at the RIS. Subsequently, we discuss the limitations of the

existing methods, which motivate us to reformulate an equivalent min-max optimization problem.

A. System Model

We consider the uplink transmission of an RIS-assisted single-cell IoT network consisting of

K single-antenna IoT devices, an AP with M antennas, and an RIS equipped with N passive
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reflecting elements, as shown in Fig. 1. We denote K = {1, 2, . . . , K} as the index set of IoT

devices. We consider the scenario that the AP, as a fusion center, is interested in receiving

an aggregation (e.g., geometric mean, arithmetic mean) of the sensory data (e.g., temperature,

humidity) from all IoT devices, rather than the individual data from each IoT device [9]. This

process is generally referred to as wireless data aggregation in IoT networks. By integrating the

computation and communication processes via exploiting the waveform superposition property

of MACs, AirComp is adopted in this paper to achieve ultra-fast data aggregation by enabling

concurrent transmissions from multiple IoT devices. We denote zk ∈ C as the representative

information-bearing data at IoT device k. Before transmission, IoT device k normalizes data zk

as information symbol sk ∈ C. Without loss of generality, we assume that {sk}Kk=1 have zero

mean and unit power, and are independent of each other, i.e., E[sk] = 0, E[sks
∗
k] = 1, and

E[sks
∗
i ] = 0, ∀ k 6= i [6], [7]. The target function that the AP aims to recover is the summation

of the data from all IoT devices, i.e.,

g =
∑
k∈K

sk. (1)

Based on the principle of AirComp, we assume that all IoT devices are synchronized and

transmitted concurrently to the AP [9]. With universal frequency reuse, the signal received at

the AP from all IoT devices is given by

y =
∑
k∈K

(hd,k +GΘhr,k)wksk + n, (2)

where wk ∈ C denotes the transmit scalar of IoT device k, Θ = diag
{
ejθ1 , ejθ2 , . . . , ejθN

}
denotes the diagonal phase-shift matrix of RIS with 0 ≤ θi < 2π, ∀ i, hd,k ∈ CM×1,G ∈ CM×N ,

and hr,k ∈ CN×1 denote the channel coefficients of the links from device k to the AP, from the

RIS to the AP, and from device k to the RIS, respectively, and n ∼ CN (0, σ2IM) is the additive

white Gaussian noise (AWGN) with zero mean and variance σ2. Each device has a maximum

transmit power, denoted as P . Hence, we have |wk|2 ≤ P, ∀ k ∈ K. As various effective channel

estimation methods have been proposed for RIS-assisted wireless networks [28], [29], we assume

that perfect CSI is available in our work, as in [1], [18]–[27]. Besides, we consider block-fading

channels, where the channel gain of each link remains invariant within one time slot but varies

independently across different time slots. The estimated function at the AP is given by [13]

ĝ =
1
√
η
mHy =

1
√
η
mH

∑
k∈K

(hd,k +GΘhr,k)wksk +
1
√
η
mHn, (3)
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where m ∈ CM and η denote the receive beamforming vector and the denoising factor at the

AP, respectively.

We adopt MSE to measure the distortion between the estimated function (i.e., ĝ) and the target

function (i.e., g), which quantifies the performance of AirComp, given by

MSE(ĝ, g) = E
(
|ĝ − g|2

)
=
∑
k∈K

∣∣∣∣ 1
√
η
mH(hd,k +GΘhr,k)wk − 1

∣∣∣∣2+
σ2‖m‖2

η
. (4)

Motivated by [8], [9], [30], we adopt the following zero-forcing design1 to determine the transmit

scalars of IoT devices

w?k =
√
η

(mH(hd,k +GΘhr,k))
H

‖mH(hd,k +GΘhr,k)‖2
, ∀ k ∈ K. (5)

Due to the maximum transmit power constraint of IoT devices, i.e., |wk|2 ≤ P , η can be set as

η = P min
k∈K
‖mH(hd,k +GΘhr,k)‖2. (6)

Therefore, the MSE at the AP can be further written as

MSE(m,Θ) =
‖m‖2σ2

P mink∈K ‖mH(hd,k +GΘhr,k)‖2
. (7)

The MSE given in (7) is determined by the transmit signal-to-noise ratio (SNR) P
σ2 , the receive

beamforming vector m at the AP, and the composite channel coefficients hd,k +GΘhr,k, ∀ k.

Remark 1. According to (7), the MSE of AirComp is bottlenecked by the worst channel between

the IoT devices and the AP. Without RIS, i.e., Θ = 0, the channel quality is only determined

by the direct link. In this case, we can only adjust the transmit power of IoT devices to tackle

the detrimental effects of severe channel fading and path loss. With the assistance of RIS, the

composite channel condition of each link (e.g., hd,k +GΘhr,k) can be adaptively adjusted by

reconfiguring the phase-shift matrix Θ, which is able to enhance the channel quality of the link

with the worse channel condition. As a result, the ability of RIS to reconfigure the propagation

environment can be exploited to effectively mitigate the performance bottleneck of AirComp.

Our goal is to jointly optimize the phase-shift matrix Θ and the receive beamforming vector

m to minimize MSE(m,Θ) in (7). It is formulated as the following problem

min
m,Θ

‖m‖2σ2

P mink∈K ‖mH(hd,k +GΘhr,k)‖2

s.t. 0 ≤ θi < 2π,∀ i.
(8)

1It is clear that MSE(ĝ, g) ≥ σ2‖m‖2
η

. Given m and Θ, the equality is achieved when {wk}Kk=1 are set according to (5),

which enforces
∑
k∈K

∣∣∣ 1√
η
mH(hd,k +GΘhr,k)wk − 1

∣∣∣2 to be zero.



8

Problem (8) can be equivalently expressed as

min
m,Θ

max
k∈K

‖m‖2σ2

P‖mH(hd,k +GΘhr,k)‖2

s.t. 0 ≤ θi < 2π,∀ i.
(9)

Since Θ is a diagonal matrix and hr,k is a vector, we rewrite hd,k + GΘhr,k as hd,k +

Gdiag(hr,k)v, where v = [v1, v2, . . . , vN ] with vi = ejθi , ∀ i. As σ2

P
is a constant, problem (9)

is further equivalent to the following problem in the sense of having the same optimal solution

min
m,v

max
k

‖m‖2

‖mH(hd,k +Gdiag(hr,k)v)‖2

s.t. |vi| = 1,∀ i.
(10)

B. Limitations of State-of-the-Art Methods

Most of the existing studies [1], [21], [27] on the joint design in RIS-assisted wireless networks

adopted the alternating SDR and alternating DC algorithms. According to [1], problem (10) can

be equivalently transformed to problem (11) as follows

min
m,v
‖m‖2

s.t. |mH(Gdiag(hr,k)v + hd,k|2 ≥ 1,∀ k,

|vi| = 1, ∀ i.

(11)

Problem (11) can be tackled by alternately solving the following two subproblems

min
m
‖m‖2

s.t. |mHhek|2 ≥ 1,∀ k,
(12)

and

find v

s.t. |aH
k v + ck|2 ≥ 1, ∀ k,

|vi|2 = 1,∀ i,

(13)

where hek = Gdiag(hr,k)v+hd,k, aH
k = mHGdiag(hr,k), and ck = mHhd,k. The two non-convex

quadratically constrained quadratic programming (QCQP) problems, i.e., (12) and (13), were then

converted into two SDP problems with rank-one constraints by using the matrix lifting approach.

An intuitive solution is to apply the SDR technique [31] to convexify the problems by directly

dropping the rank-one constraints, yielding the alternating SDR algorithm [27]. As an alternative,
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based on the fact that the rank-one constraint of a positive definite matrix is equivalent to the

zero-difference between the spectral norm and trace norm, a DC technique [32] was proposed

to tackle the rank-one constraint, yielding the alternating DC algorithm [1]. The existing studies

that adopted the aforementioned framework suffer from two limitations, i.e., non-guaranteed

convergence and high computation complexity. Specifically, the optimization of phase-shift vector

v involves a feasibility detection problem, i.e., (13). According to the analysis in [33], both

the alternating SDR and alternating DC algorithms are not guaranteed to converge. Besides,

AirComp is expected to support wireless data aggregation in high-density IoT networks, where

the number of IoT devices would be large. However, the aforementioned state-of-the-art methods,

i.e., alternating DC and alternating SDR algorithms, are not scalable because of their high

computational complexity. Especially for the alternating DC algorithm, a series of SDP problems

generated by the SCA technique need to be solved by the standard interior-point method [34] at

each alternating iteration. The computation time consumption would be an unaffordable burden

when the aforementioned algorithms are applied to solve large-scale optimization problems. The

limitations of the existing studies motivate us to develop a low-complexity algorithm with a

theoretical convergence guarantee for RIS-assisted AirComp systems.

C. Problem Transformation

To mitigate the aforementioned limitations, in this subsection, we reformulate problem (10)

as a min-max optimization problem, which is presented in the following proposition.

Proposition 1. Problem (10) is equivalent to the following min-max QCQP problem:

min
m,v

max
k

{
− ‖mH(hd,k +Gdiag(hr,k)v)‖2

}
s.t. |vi| = 1,∀ i,

‖m‖2 = 1.

(14)

Proof. Please refer to Appendix A.

As can be observed from (14), both optimization variables m and v are involved in the

objective function. This transformation enables us to eliminate the feasibility detection problem

as in [1], and allows us to exploit the monotonicity of the objective function during alternating

minimization. Problem (14) is still a challenging non-convex optimization problem. Specifically,

solving problem (14) faces the following three challenges. First, the optimization variables v
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and m are coupled in the objective function. Second, the unit-modulus constraint on vi, ∀ i

and the unit receive power constraint on m are non-convex. Third, the pointwise maximum

of quadratic terms, i.e., the objective function, is non-convex and non-smooth. To tackle these

issues, we shall propose an alternating minimization method in conjunction with SCA to solve

problem (14) in the following section.

III. PROPOSED ALTERMIN SCA FRAMEWORK

In this section, we propose an alternating minimization method to alternately optimize the

receive beamforming vector m and the phase-shift vector v, resulting in two non-convex sub-

problems with respect to m and v, respectively. We then construct convex approximations for

the two yielded subproblems by using SCA.

A. Phase-Shift Vector Optimization

When the receive beamforming vector m is fixed, problem (14) is reduced to the following

subproblem that requires the optimization of phase-shift vector v

min
v

max
k

{
−‖mH(hd,k +Gdiag(hr,k)v)‖2

}
s.t. |vi| = 1,∀ i = 1, . . . , N.

(15)

By denoting ck = mHhd,k and aH
k = mHGdiag(hr,k), problem (15) can be rewritten as

min
v

max
k

{
−‖ck + aH

k v‖2
}

s.t. |vi| = 1,∀ i.
(16)

For simplicity of algorithm design, we further convert problem (16) from the complex domain

to the real domain. By denoting ṽ = [<{v}T,={v}T]T ∈ R2N , we obtain the following problem

min
ṽ

max
k

{
ṽTÃkṽ − 2ṽTbk − |ck|2

}
s.t. ṽ2

i + ṽ2
i+N = 1,∀ i,

(17)

where bk = [<{ckak}T,={ckak}T]T and

Ãk =

<{−akaH
k

}
−=

{
−akaH

k

}
=
{
−akaH

k

}
<
{
−akaH

k

}
 .

Problem (17) aims to minimize the pointwise maximum of concave quadratic terms. Solving

problem (17) is challenging due to the non-convex constraints and the non-convex objective
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function. In the following, we tackle the non-convex constraint by utilizing the convex relaxation

technique. Specifically, we relax the unit modulus constraint to ṽ ∈ V , where V = {ṽ | ṽ2
i +

ṽ2
i+N ≤ 1, ∀ i = 1, . . . , N}, yielding the following relaxed problem

min
ṽ

max
k

{
ṽTÃkṽ − 2ṽTbk − |ck|2

}
s.t. ṽ ∈ V .

(18)

On the other hand, the SCA technique is applied to tackle the non-convexity of the objective

function maxk

{
ṽTÃkṽ−2ṽTbk−|ck|2

}
. In particular, due to the concavity of {ṽTÃkṽ−2ṽTbk−

|ck|2}, we construct its linear upper bound based on the first-order Taylor approximation as

ṽTÃkṽ − 2ṽTbk − |ck|2 ≤
(
p

(n)
k

)T
ṽ + q

(n)
k ,

where p
(n)
k = 2(Ãkṽ

(n) − bk), q(n)
k = −(ṽ(n))TÃkṽ

(n) − |ck|2, and ṽ(n) is the solution obtained

at the n-th iteration. As a result, we have

max
k

{
ṽTÃkṽ − 2ṽTbk − |ck|2

}
≤ max

k

{(
p

(n)
k

)T
ṽ + q

(n)
k

}
. (19)

Therefore, at the (n+1)-th iteration, we can replace the non-convex objective function in problem

(18) by its convex surrogate maxk

{(
p

(n)
k

)T
ṽ + q

(n)
k

}
. Specifically, at the (n+1)-th iteration,

problem (18) is approximated by the following subproblem

min
ṽ

max
k

(
p

(n)
k

)T
ṽ + q

(n)
k

s.t. ṽ ∈ V .
(20)

To efficiently solve problem (18), we resort to iteratively solve its non-smooth convex approxi-

mation problem (20).

B. Receive Beamforming Vector Optimization

When the phase-shift vector v is fixed, (14) can be formulated as an optimization problem

with respect to the receive beamforming vector m as follows

min
m

max
k

{
−‖mH(hd,k +Gdiag(hr,k)v)‖2

}
s.t. ‖m‖2 = 1.

(21)

By denoting hk = hd,k +Gdiag(hr,k)v, (21) can be represented as

min
m

max
k

{
−‖mHhk‖2

}
s.t. ‖m‖2 = 1.

(22)
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The constraint in (22) is non-convex. According to [35], problem (22) is equivalent to the

following problem

min
m

max
k

{
−‖mHhk‖2

}
s.t. ‖m‖2 ≤ 1.

(23)

This is because that the constraint should be met with equality at the optimal point for problem

(23). Otherwise, m could be scaled up to reduce the objective value, thereby contradicting the

optimality. By defining m̃ = [<{m}T,={m}T]T ∈ R2M , we convert problem (23) from the

complex domain to the real domain to facilitate the algorithm design

min
m̃

max
k

m̃TH̃km̃

s.t. m̃ ∈M,

(24)

where M = {m̃ | ‖m̃‖2 ≤ 1} and

H̃k =

<{−hkhH
k

}
−=

{
−hkhH

k

}
=
{
−hkhH

k

}
<
{
−hkhH

k

}
 .

To tackle the non-convexity of the objective function of problem (24), we shall apply SCA

to construct its local convex approximation. Due to the similar structure of problem (18) and

problem (24), the derivation here is similar to that presented in Section III-A. For completeness,

we sketch the main procedures for solving problem (24). Starting from an initial point m̃(0) ∈M,

SCA is applied to generate a sequence of solutions {m̃(n)} as follows. With the approximated

solution m̃(n) obtained at the n-th iteration, the concave quadratic function m̃TH̃km̃ can be

upper bounded by its linear majorization. Specifically, we have the following inequality

m̃TH̃km̃ ≤ (2H̃km̃
(n))Tm̃− (m̃(n))TH̃km̃

(n).

By denoting p̄
(n)
k = 2H̃km̃

(n) and q̄(n)
k = −(m̃(n))TH̃km̃

(n), we have

max
k

{
m̃TH̃km̃

}
≤ max

k

{
p̄

(n)T
k m̃+ q̄

(n)
k

}
. (25)

Then, m̃(n+1) can be obtained by solving the following non-smooth convex approximation

problem

min
m̃

max
k

p̄
(n)T
k m̃+q̄

(n)
k

s.t. m̃ ∈M.

(26)
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C. Convergence Analysis

We recall that problem (14) is decomposed into two problems (18) and (24) with respect ṽ

and m̃, respectively, which are then alternately solved by using SCA. Finally, we project ṽ to

V1 = {ṽ | ṽ2
i + ṽ2

i+N = 1,∀ i}, so as to compensate the relaxation on ṽ. The overall AlterMin

SCA algorithm for solving problem (14) is summarized in Algorithm 1. The convergence of

Algorithm 1 is presented in the following proposition.

Proposition 2. The convergence property of Algorithm 1 consists of two parts:

i) In the inner loop (Steps 4-7 and Steps 10-13), i.e., SCA iteration, the objective values of

problems (18) and (24) achieved by sequences {ṽ(n)
(l) }∞n=0 and {m̃(n)

(l) }∞n=0 establish non-increasing

convergent sequences;

ii) In the outer loop (Steps 2-16), i.e., alternating minimization iteration, the objective value of

problem (14) achieved by the sequence {ṽ(0)
(l) , m̃

(0)
(l) }∞l=0 establish a non-increasing convergent

sequence.

Proof. Please refer to Appendix B.

D. Algorithm Discussion

To efficiently solve problem (14), we still need to design an efficient algorithm to solve

problem (20) and problem (26). However, the objective function maxk{(p(n)
k )Tṽ + q

(n)
k } of

problem (20) is convex but non-smooth. Intuitively, the subgradient algorithm as a first-order

method can be applied. However, it requires O
(

1
ε2

)
iterations to attain an ε-optimal solution

[36]. Besides, the Nesterov’s smoothing technique in conjunction with the accelerated gradient

algorithm can also be employed to solve problem (20). It attains an ε-optimal solution with

O
(√

1
εµs

)
iterations [37], where µs is the smoothness parameter. Notice that the convergence

performance of Nesterov’s approach is very sensitive to the smoothness parameter (i.e., µs),

whose optimal value is, in general, difficult to determine. In addition, by introducing an auxiliary

variable s, problem (20) can be equivalently formulated as the following convex QCQP problem

min
ṽ,s

s

s.t.
(
p

(n)
k

)T
ṽ + q

(n)
k − s ≤ 0,∀ k,

ṽ ∈ V , s ∈ R.

(27)
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Algorithm 1: AlterMin SCA for problem (14)

Input: Initial point ṽ(0)
(0) , m̃

(0)
(0) and threshold ε;

1 Set: l = 0;

2 repeat

3 Set: n = 0;

4 repeat

5 Update ṽ(n+1)
(l) by solving problem (20);

6 n← n+ 1;

7 until the decrease of objective value of ṽTÃkṽ − 2ṽTbk − |ck|2 less than ε;

8 Set: ṽ(0)
(l+1) = ṽ

(n)
(l) ;

9 Set: n = 0;

10 repeat

11 Update m̃(n+1)
(l) by solving problem (26);

12 n← n+ 1;

13 until the decrease of objective value of m̃TH̃km̃ less than ε;

14 Set: m̃(0)
(l+1) = m̃

(n)
(l) ;

15 l← l + 1;

16 until the decrease of objective value
{
− ‖mH(hd,k +Gdiag(hr,k)v)‖2

}
less than ε;

17 Project ṽ to set V1.

Problem (27) can be solved by using the interior-point method [34], which attains an ε-optimal

solution with only O
(√

N +K log 2(N+K)
ε

)
iterations. However, the time complexity of each

iteration is O ((N +K)N2 +N3) [34]. As problem (20) and problem (26) have a similar form,

the above analysis also applies to problem (26). Hence, all of the aforementioned algorithms

cannot efficiently solve our problem when the number of optimization variables is large. This

motivates us to exploit the underlying structure of problems (20) and (26) to develop a highly

efficient algorithm with a fast convergence rate and low iteration cost in the following section.

IV. MIRROR-PROX FOR NON-SMOOTH CONVEX PROBLEMS

In this section, we aim to develop a low-complexity algorithm to solve the non-smooth convex

problems (20) and (26). We equivalently convert problems (20) and (26) to the smooth convex-
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concave saddle point problems by using the primal-dual transformation, and then propose to use

the Mirror-Prox method [38] to solve the resulting problems.

A. Mirror-Prox Method for Non-smooth Convex Problem (20)

1) Smooth Saddle Point Problem Formulation: The objective function of problem (20) is

pointwise maximum of affine functions. We equivalently convert non-smooth problem (20) to a

smooth convex-concave saddle point problem in Lemma 1.

Lemma 1. (Primal-Dual Transformation) The non-smooth convex problem (20) is equivalent

to the following smooth convex-concave saddle point problem

min
ṽ

max
y

(
P(n)ṽ + q(n)

)T
y

s.t. ṽ ∈ V , y ∈ Y ,
(28)

where P(n) =
[
p

(n)
1 ,p

(n)
2 , . . . ,p

(n)
K

]T
, q(n) =

[
q

(n)
1 , q

(n)
2 , . . . , q

(n)
K

]T
, and y is the Lagrangian dual

variable with set Y = {y|y ≥ 0,1Ty = 1,y ∈ RK} being the feasible domain.

Proof. Please refer to Appendix C.

Different from the Nesterov’s smoothing technique discussed in Section III-D, which relies

on the smoothness parameter to balance the tradeoff between approximation accuracy and

computation efficiency, our proposed method is parameter-free and the resulting smooth saddle

point problem (28) is equivalent to the non-smooth problem (20) rather than an approximation. By

denoting ψ(n)(ṽ,y) :=
(
P(n)ṽ + q(n)

)T
y, solving non-smooth convex problem (28) is equivalent

to finding a saddle point for the smooth convex-concave function ψ(n)(ṽ,y) under V × Y .

2) First-Order Optimality Condition: By denoting (ṽ∗,y∗) as the saddle point of ψ(n)(ṽ,y),

we have

ψ(n) (ṽ∗,y) ≤ ψ(n) (ṽ∗,y∗) ≤ ψ(n) (ṽ,y∗) ,∀(ṽ,y) ∈ V × Y . (29)

The first-order optimality condition [39] of a saddle point for ψ(n)(ṽ,y) is given by ∇ṽψ
(n) (ṽ∗,y∗) (ṽ − ṽ∗) ≥0,

−∇yψ
(n) (ṽ∗,y∗) (y − y∗) ≥0,

∀ (ṽ,y) ∈ V × Y . (30)

By denoting z =
[
ṽT,yT

]T and

F(z) :=

 ∇ṽψ
(n)(ṽ,y)

−∇yψ
(n)(ṽ,y)

 =

 (P(n))Ty

−
(
P(n)ṽ + q(n)

)
 ,
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the first-order optimality condition (30) can be rewritten in a more compact form as follows

F (z∗)T (z − z∗) ≥ 0,∀ z ∈ V × Y . (31)

Lemma 2. The operator F(z) is monotone and L-Lipschitz continuous on space V ×Y , where

V is endowed with l2 norm, Y is endowed with l1 norm, and the Lipschitz parameter L =

maxk{‖p(n)
k ‖}.

Proof. Please refer to Appendix D.

Given the above, problem (28) is equivalent to the following variational inequality problem

with monotone and L-Lipschitz continuous operator:

find z∗

s.t. F (z∗)T (z − z∗) ≥ 0,∀ z ∈ V × Y ,

z∗ ∈ V × Y .

(32)

Remark 2. F(z) can be regarded as a gradient-type vector field on space V×Y . The variational

inequality F (z∗)T (z − z∗) ≥ 0 is similar to the first-order optimality condition for convex

constrained problems, where F resembles the gradient or subgradient. Hence, an intuitive solution

is to employ the generalized projected gradient method [40] to solve problem (32). However, the

classical gradient-type algorithm cannot monitor the local geometry in the non-Euclidean space

[41], thereby, weakening the algorithm performance. This motivates the Mirror-Prox method,

which we shall present as follows.

3) Mirror-Prox Method: The Mirror-Prox method was firstly proposed in [38] for solving the

Lipschitz continuous variational inequality problem with convergence rate O
(

1
t

)
. Specifically,

at each iteration, the Mirror-Prox method updates z through the following two steps

z′t+1 = arg min
z∈V×Y

{D (z, zt) + 〈γF (zt) , z〉} , (33a)

zt+1 = arg min
z∈V×Y

{
D (z, zt) +

〈
γF
(
z′t+1

)
, z
〉}
, (33b)

where D (z, zt) denotes the Bregman distance and γ is a parameter that is determined by the Lips-

chitz parameter of F(z). According to the analysis in [36], [38], we set γ = 1/
(

2 maxk{‖p(n)
k ‖}

)
to achieve the desired convergence rate. Besides, the use of Bregman distance D (z, zt) is to

monitor the local geometry for improving the algorithm performance [41]. Specifically, Bregman
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Fig. 2: Illustration of the two steps of the Mirror-Prox method in the t-th iteration.

distance D (z, zt) is induced by a mirror mapping function Φ(z) : R2N × RK → R for set

V × Y :

D (z, zt) = Φ(z)− Φ(zt)− 〈∇Φ(zt), z − zt〉 . (34)

We select the mapping function according to the structure of V×Y to attain the goal of capturing

the local geometry. In our work, Φ(z) : R2N × RK → R is defined as

Φ(z) =
1

2
‖ṽ‖2 +

K∑
k=1

yk log yk,

where the first item and the second item are the generally used mirror mapping function for an

Euclidean space, like V , and a simplex space, like Y , respectively. As a result, we have

D (z, zt) =
1

2
‖ṽ − ṽt‖2 +

K∑
k=1

yk log
yk

ykt
−

K∑
k=1

(yk − ykt ). (35)

Remark 3. The update of the Mirror-Prox method has an additional Step (33b) compared to

the mirror descent method that only requires Step (33a). The computation of z′t+1 in (33a) is

used to find a better direction F
(
z′t+1

)
than the mirror descent method which is further used to

update zt+1, i.e., (33b). This process is illustrated in Fig. 2. The Mirror-Prox method improves

the convergence rate from O
(

1√
t

)
achieved by mirror descent to O

(
1
t

)
by using a more accurate

update. We will show that the updates of (33a) and (33b) are of low complexity.

4) Implementation Details: At each iteration of the Mirror-Prox method, we need to efficiently

solve two optimization problems (33a) and (33b). Specifically, by introducing a variable w, the

update of z′t+1 in (33a) can be decomposed into the following three steps [36]

∇Φ(w) = ∇Φ(zt)− γF (zt) , (36a)

w = ∇Φ−1(∇Φ(zt)− γF (zt)), (36b)

z′t+1 = arg min
z∈V×Y

{D(z,w)} . (36c)
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It is clear that (36a) is easy to compute. Furthermore, w in (36b) can be obtained in a closed

form, since ∇Φ(·) and ∇Φ−1(·) can analytically be expressed as

∇Φ(z) =


ṽ

1 + log y1

...

1 + log yK

 ,∇Φ−1(ξ) =



ζ

exp(ν1 − 1)

exp(ν2 − 1)
...

exp(νK − 1)


,

where ξ = [ζT,νT]T. Subsequently, we show that the solution of problem (36c) also admits

a closed form, which involves a projection problem on V × Y . According to (35), we rewrite

problem (36c) as

arg min
z∈V×Y

{D(z,w)} = arg min
z∈V×Y

{1

2
‖ṽ − u‖2 +

K∑
k=1

yk log
yk

ek
−

K∑
k=1

(yk − ek)
}
, (37)

where w = [uT, eT]T. Problem (37) can be decomposed into two independent subproblems with

respect to ṽ and y, respectively, given by

ṽ′t+1 = arg min
ṽ∈V

{
1

2
‖ṽ − u‖2

}
, (38a)

y′t+1 = arg min
y∈Y

{
K∑
k=1

yk log
yk

ek
−

K∑
k=1

(
yk − ek

)}
. (38b)

Problem (38a) can be considered as a projection problem in an Euclidean space [39]. The optimal

(ṽt+1)i, ∀ i, admit the following expression

(ṽt+1)i =


ui

(u2i+u2N+i)
1
2
, u2

i + u2
N+i ≥ 1,

ui, otherwise.
(39)

Problem (38b) is a projection problem in a simplex space [36]. The optimal y is given by

y =

 e, e ∈ Y ,
e
‖e‖1

, otherwise.
(40)

The above derivation for problem (33a) can be directly applied to problem (33b). The details of

the proposed Mirror-Prox algorithm for solving problem (32) is summarized in Algorithm 2.
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Algorithm 2: Mirror-Prox method for Problem (20)

Input: Initial point z0 =
[
ṽT0 ,y

T
0

]T, threshold ε, and stepsize γ = 1

2 maxk{‖p
(n)
k ‖}

;

1 for t = 1, 2, . . . , do

2 F(zt) =
[(

(P(n))Tyt
)T
,−
(
P(n)ṽt + q(n)

)T]T;

3 ∇Φ(w) = ∇Φ(zt)− γF (zt);

4 w = ∇Φ−1(∇Φ(zt)− γF (zt));

5 z′t+1 = arg min
z∈V×Y

{D(z,w)};

6 ∇Φ(w) = ∇Φ(zt)− γF
(
z′t+1

)
;

7 w = ∇Φ−1(∇Φ(zt)− γF
(
z′t+1

)
);

8 zt+1 = arg min
z∈V×Y

{D(z,w)};

9 If D(zt, zt+1) less than ε, set z∗ = 1
T

∑T
t=1 zt, break; else go to Step 1;

10 end

B. Mirror-Prox Method for Non-smooth Convex Problem (26)

The method proposed for solving problem (20) can be readily applied to solve problem (26).

We next sketch the process of transforming problem (26) to its equivalent variational inequality

problem. According to Lemma 1, problem (26) is equivalent to the following problem

min
m̃

max
y

(
P̄(n)m̃+ q̄(n)

)T
y

s.t. m̃ ∈M, y ∈ Y ,
(41)

where P̄(n) =
[
p̄

(n)
1 , . . . , p̄

(n)
K

]T
, q̄(n) =

[
q̄

(n)
1 , . . . , q̄

(n)
K

]T
. By further denoting z̄ =

[
m̃T,yT

]T,

ϕ(n)(m̃,y) =
(
P̄(n)m̃+ q̄(n)

)T
y, and

F̄(z̄) :=

 ∇m̃ϕ
(n)(m̃,y)

−∇yϕ
(n)(m̃,y)

 =

 (P̄(n))Ty

−
(
P̄(n)m̃+ q̄(n)

)
 .

We denote the Lipschitz parameter of operator F̄(z̄) as L̄. According to Lemma 2, we have L̄ =

maxk{‖p̄(n)
k ‖}. Problem (41) can be further transformed to the following variational inequality

problem
find z̄∗

s.t. F̄ (z̄∗)T (z̄ − z̄∗) ≥ 0,∀ z̄ ∈M×Y ,

z̄∗ ∈M×Y .

(42)
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Algorithm 2 can be applied to solve problem (42) by replacing z, p
(n)
k , and F(zt) by z̄, p̄

(n)
k ,

and F̄(z̄t), respectively.

C. Computational Complexity

At each iteration of Algorithm 2, the computation complexity is dominated by Step 2. In

Step 2, we take a matrix-vector multiplication to update operator F(·). For the optimization of

phase-shift vector ṽ ∈ R2N , the computation cost of operator F(·) in Step 2 is O(NK). Besides,

according to [36], Algorithm 2 can obtain an ε-optimal solution within O
(
L log(N)

ε

)
iterations. As

a result, the computation complexity of Algorithm 2 is O
(
NKL log(N)

ε

)
. In a similar manner, we

can conclude that the computation complexity is O
(
MKL̄ log(M)

ε

)
for updating m̃. The specific

time savings in our problem achieved by the proposed algorithm will be further demonstrated

in the following section via simulations.

V. SIMULATION RESULTS

In this section, we present sample simulation results to illustrate the performance of the

proposed algorithm for minimizing the MSE of the RIS-assisted AirComp systems.

A. Simulation Settings

We consider a three-dimensional (3D) coordinate system. The AP and the RIS are, respectively,

located at (0, 0, 20) meters and (100, 0, 20) meters, while the IoT devices are uniformly located

within a circular region centered at (100, 20, 0) meters with radius 20 meters. The antennas at

the AP and the passive reflecting elements at the RIS are arranged as a uniform linear array and

a uniform planar array, respectively. In the simulations, we consider both large-scale fading and

small-scale fading for all the channels. The distance-dependent large-scale fading is modeled

as T0(d/d0)−α, where T0 is the path loss at the reference distance d0 = 1 meter, d denotes the

distance between the transmitter and the receiver, and α is the path loss exponent. We consider

Rayleigh fading for the direct channel. Besides, we consider Rician fading for the reflecting

links with Rician factor β. For the RIS-AP link (i.e., G), we have

G =
√
T0(dRA/d0)−αRA

(√
β

1 + β
GLoS +

√
1

1 + β
GNLoS

)
,

where GLoS and GNLoS denote the line-of-sight (LoS) and the non-line-of-sight (NLoS) compo-

nents, respectively, dRA is the distance between the RIS and the AP, and αRA is the path loss
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Fig. 3: Convergence behavior of the proposed algorithm when N = 50, M = 10, and K = 200.

exponent. The channel coefficient of the link between IoT device k and the RIS, i.e., hr,k ∀ k,

is generated in a similar manner as G. We set the path loss exponents of the device-AP links,

the device-RIS links, and the RIS-AP link as 3.8, 2.5, and 2.2, respectively. Unless specified

otherwise, we set β = 3, T0 = −30 dB, P = 30 dBm, σ2 = −90 dBm, and ε = 10−5.

B. Performance Evaluation

We investigate the convergence performance of the proposed Mirror-Prox based AlterMin SCA

algorithm in Fig. 3. It can be observed that the MSE of our proposed algorithm monotonically

decreases over the iterations and converges in a few iterations. In addition, the achieved MSE

values of the proposed algorithms before and after the projection of the phase-shift vector at

the RIS are almost the same. This is because, in the simulations, the obtained phase-shift vector

always meets the constraints |vi| = 1,∀ i before projection.

We compare the proposed algorithm with the following four baseline methods.

• Alternating SDR: This method leverages the SDR technique [18], [27], [31] to optimize

m and v alternately. The Gaussian randomization technique is applied when the solution

returned by the relaxed SDP problem does not meet the rank-one constraint. The number

of randomization is set to be 50.

• Alternating DC: This method was proposed in [1], which reformulates the rank-one con-

strained SDP problem as a DC programming problem, followed by using SCA to obtain the

rank-one solution via successively solving the convex approximation of the DC problem.

Our comparison with this algorithm is only conducted when the number of IoT devices is

small, i.e., low-density scenario, due to its high computational complexity.
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Fig. 4: MSE versus the number of antennas at AP when

K = 200 and N = 50.
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Fig. 5: Computation time versus the number of antennas at

AP when K = 200 and N = 50.

• Random phase shift: With this method, the phase-shift matrix Θ is randomly chosen and

kept fixed when optimizing the receive beamforming vector m via our proposed algorithm.

• Without RIS: In the method, the signals are transmitted only through the direct links, i.e.,

Θ = 0. We only optimize the receive beamforming vector m via our proposed algorithm.

As the alternating SDR and alternating DC algorithms are not guaranteed to converge, we

set their iteration numbers as the number of iterations required by our proposed algorithm to

converge for a fair comparison. Based on the number of IoT devices in the network coverage

area, we consider the high-density and low-density scenarios.

1) High-density Scenario: Fig. 4 shows the impact of the number of antennas at the AP

(i.e., M ) on the MSE when N = 50 and K = 200. As can be observed, for all methods

under consideration, the MSE of the RIS-assisted AirComp system monotonically decreases as

the number of antennas increases. This is because a greater diversity gain can be achieved by

deploying a larger antenna array. We can also observe that deploying an RIS significantly reduces

the MSE in the considered AirComp system. It shows that RIS is a promising technique that

can enhance the performance of AirComp. Besides, we observe that the proposed algorithm

outperforms the benchmark scheme with random phase-shift at the RIS, which reveals the

necessity of optimizing the phase-shifts vector in RIS-assisted AirComp systems. Moreover,

our proposed algorithm attains a similar performance as the alternating SDR algorithm. On the

other hand, as can be observed in Fig. 5, our proposed algorithm significantly outperforms the

alternating SDR algorithm in terms of the computation time. Besides, the advantage on the

computation time of the proposed algorithm increases as the number of antennas at the AP
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Fig. 6: MSE versus the number of reflecting elements at

RIS when K = 200 and M = 20.

30 40 50 60 70 80 90 100

0

500

1000

1500

Fig. 7: Computation time versus the number of reflecting

elements at RIS when K = 200 and M = 20.

becomes large. The reason is that the alternating SDR algorithm requires the execution of the

second-order interior point method at each iteration, while the proposed algorithm as a first-order

algorithm has a much lower computation complexity than the alternating SDR algorithm.

In Fig. 6, we investigate the impact of the number of the reflecting elements at the RIS on MSE

when the number of IoT devices K = 200 and the number of antennas at the AP M = 20. As

can be observed from Fig. 6, the proposed algorithm achieves almost the same MSE performance

for different number of reflecting elements against the benchmark, which confirms the capability

of our proposed algorithm to achieve high accurate AirComp. In addition, the MSE decreases

significantly as the number of reflecting elements at the RIS increases. This is due to the fact that

the RIS with more reflecting elements has more freedom for the reflection coefficient design. The

computation time of our proposed algorithm and the alternating SDR algorithm versus the number

of reflecting elements at the RIS is plotted in Fig. 7. As the number of reflecting elements at

the RIS increases, the computation time of the alternating SDR algorithm increases significantly.

Comparing with the alternating SDR algorithm, the proposed algorithm only consumes 1% and

16% of the computation time when N = 100 and N = 30, respectively.

The computation time of the considered algorithms versus the number of IoT devices is

illustratd in Fig. 8. It is obvious that, compared to the benchmark, our proposed algorithm has

a superior performance in terms of the computation time. In particular, the reduction ratios are

approximately 97% and 95% when K = 300 and K = 100, respectively. It can also be observed

that the superiority of the proposed algorithm in terms of the computation time enlarges as the

number of IoT devices increases. This indicates the potentials of our proposed algorithm in
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Fig. 8: Computation time versus the number of IoT devices when M = 20 and N = 50.
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Fig. 9: MSE versus the number of antennas at AP when

K = 10.
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Fig. 10: Computation time versus the number of antennas

at AP when K = 10 and N = 40.

high-density RIS-assisted AirComp systems.

2) Low-density Scenario: Due to the high computational complexity of the alternating DC

algorithm, we compare its performance with the proposed algorithm when K = 10 in terms

of the MSE and the computation time in Figs. 9 and 10, respectively. It can be observed from

Fig. 9 that the proposed algorithm achieves a lower MSE than the alternating SDR algorithm

and attains a slightly higher than MSE than the alternating DC algorithm. In addition, the MSE

performance of all algorithms decreases as the number of reflecting elements at the RIS increases

from 20 to 40. However, as shown in Fig. 10, our proposed algorithm is remarkably better than

the alternating SDR algorithm and the alternating DC algorithm in terms of the computation

time.
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VI. CONCLUSION

In this paper, we proposed to leverage the advantage of RIS to mitigate the performance

bottleneck of AirComp, thereby, achieving fast wireless data aggregation in IoT networks. We

formulated an MSE minimization problem that requires the joint optimization of the transmit

scalars at the IoT devices, the receive beamforming vector and the denoising factor at the AP,

and the phase-shift matrix at the RIS. To solve this problem, a novel alternating minimization

method in conjunction with the SCA technique was thus developed with convergence guarantee.

To further reduce the computational complexity, we proposed a Mirror-Prox method that only

involves a series of closed-form updates to solve the convex but non-smooth subproblem in each

alternation. Simulations showed that, compared to the existing alternating SDR and alternating

DC algorithms, the proposed algorithm can significantly reduce the computation time while

achieving a similar MSE performance.

APPENDIX

A. Proof of Proposition 1

For simplicity of notations, we denote

Fk(m,v) =
‖m‖2

‖mH(hd,k +Gdiag(hr,k)v)‖2
, ∀ k,

such that problem (10) can be rewritten as

min
m,v

max
k
Fk(m,v)

s.t. |vi| = 1,∀ i.
(43)

We then reformulate the problem into the following equivalent form:

min
m,v

max
k
Fk(m,v)

s.t. |vi| = 1,∀ i,
⇐⇒

max
m,v

(
max
k
Fk(m,v)

)−1

s.t. |vi| = 1,∀ i,

⇐⇒
max
m,v

min
k
F−1
k (m,v)

s.t. |vi| = 1,∀ i,

where F−1
k (m,v) = 1

Fk(m,v)
. As a result, problem (10) is equivalent to

max
m,v

{
min
k

‖mH(hd,k +Gdiag(hr,k)v)‖2

‖m‖2

}
s.t. |vn| = 1,∀ n = 1, . . . , N.

(44)
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Besides, we introduce an auxiliary variable τ = ‖m‖2. Problem (44) can be rewritten as the

following form

max
m,v,τ

{
min
k

‖mH(hd,k +Gdiag(hr,k)v)‖2

τ

}
s.t. |vn| = 1,∀ n = 1, . . . , N,

‖m‖2 = τ.

(45)

By denoting m̂ = m√
τ
, problem (45) can be represented as

max
m̂,v

{
min
k
‖m̂H(hd,k +Gdiag(hr,k)v)‖2

}
s.t. |vn| = 1,∀ n = 1, . . . , N,

‖m̂‖2 = 1.

(46)

We further transform problem (46) to its equivalent problem in the min-max form as follows

max
m̂,v

{
min
k
‖m̂H(hd,k +Gdiag(hr,k)v)‖2

}
s.t. |vn| = 1,∀ n = 1, . . . , N,

‖m̂‖2 = 1.

⇐⇒

min
m̂,v

{
−min

k
‖m̂H(hd,k +Gdiag(hr,k)v)‖2

}
s.t. |vn| = 1,∀ n = 1, . . . , N,

‖m̂‖2 = 1.

⇐⇒

min
m̂,v

max
k

{
−‖m̂H(hd,k +Gdiag(hr,k)v)‖2

}
s.t. |vn| = 1,∀ n = 1, . . . , N,

‖m̂‖2 = 1.

B. Proof of Proposition 2

We first prove property (i). Considering the l-th alternating iteration, for a given m̃(0)
(l) , we

denote the objective value of problem (18) as f v(l)(ṽ). We consider the SCA iteration that starts

from ṽ
(0)
(l) . By denoting f̂ v(l)(ṽ, ṽ

(n)
(l) ) as the objective value of problem (20), it satisfies

1) f̂ v(l)(ṽ
(n)
(l) , ṽ

(n)
(l) ) = f v(l)(ṽ

(n)
(l) ),

2) f v(l)(ṽ
(n+1)
(l) ) ≤ f̂ v(l)(ṽ

(n+1)
(l) , ṽ

(n)
(l) ),

3) f̂ v(l)(ṽ
(n+1)
(l) , ṽ

(n)
(l) ) ≤ f̂ v(l)(ṽ

(n)
(l) , ṽ

(n)
(l) ).

Inequality 1) holds since f̂ v(l)(ṽ, ṽ
(n)
(l) ) is a linear approximation of f v(l)(ṽ) at point ṽ(n)

(l) . According

to (19), f̂ v(l)(ṽ, ṽ
(n)
(l) ) is an upper bound of f v(l)(ṽ). As a result, we can establish inequality 2).
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Besides, inequality 3) holds as ṽ(n+1)
(l) = arg minṽ∈V f̂

v
(l)(ṽ, ṽ

(n)
(l) ). Hence, we obtain the following

chain inequalities

f v(l)(ṽ
(n+1)
(l) ) ≤ f̂ v(l)(ṽ

(n+1)
(l) , ṽ

(n)
(l) ) ≤ f̂ v(l)(ṽ

(n)
(l) , ṽ

(n)
(l) ) = f v(l)(ṽ

(n)
(l) ).

Besides, the continuous function f v(l)(ṽ) has a lower bound in the constrained set. As a result,

the non-increasing and lower bounded sequence {f v(l)(ṽ
(n)
(l) )} converges. Similarly, we can estab-

lish the non-increasing and convergent property for the objective value sequence achieved by

{m̃(n)
(l) }∞n=0. To this end, we have proved property i).

On the other hand, we can prove property ii) by iteratively utilizing property i).

C. Proof of Lemma 1

We have shown that problem (20) is equivalent to problem (27). We then rewrite problem

(27) in a more compact form as

min
ṽ,t

t

s.t. P(n)ṽ + q(n) − t1 � 0,

ṽ ∈ V , t ∈ R.

(47)

where 1 = [1, 1, . . . , 1]T ∈ RK . For a given vector y ∈ RK with non-negative components,

which is known as dual variable, the corresponding Lagrangian relaxed problem is given by

min
ṽ,t

t+ yT
(
P(n)ṽ + q(n) − t1

)
s.t. ṽ ∈ V , t ∈ R.

(48)

We reorganize the objective function of problem (48) as(
1− 1Ty

)
t+
(
P(n)ṽ + q(n)

)T
y.

The dual objective function of problem (47) is given by the optimal value of problem (48). If

1−1Ty 6= 0, then
(
1− 1Ty

)
t is not bounded from below, since

(
1− 1Ty

)
t→ −∞ if 1Ty > 1

and t→ +∞ or if 1Ty < 1 and t→ −∞.

Thus, we only need to consider y ∈ RK that satisfy y ≥ 0 and 1Ty = 1. For these y, the

dual objective function is given by minṽ∈V
(
P(n)ṽ + q(n)

)T
y. The dual problem is

max
y

min
ṽ

(
P(n)ṽ + q(n)

)T
y

s.t. ṽ ∈ V , y ∈ Y .
(49)
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Because the original problem is convex and set V is closed and compact, the strong duality

condition is satisfied. Hence, its dual problem is equivalent to itself. As the objective function(
P(n)ṽ + q(n)

)T
y is linear to ṽ and y, according to [39], problem (49) is equivalent to problem

(28), which is a smooth convex-concave saddle point problem [38].

D. Proof of Lemma 2

F(·) is a linear operator with well-defined monotonicity. For the L-Lipschitz property of F(·),

we need verify the following inequality:

a).
∥∥∇ṽψ

(n)(ṽ,y)−∇ṽψ
(n) (ṽ′,y)

∥∥ ≤ 0 · ‖ṽ − ṽ′‖ ,

b).
∥∥∇ṽψ

(n)(ṽ,y)−∇ṽψ
(n) (ṽ,y′)

∥∥ ≤ L · ‖y − y′‖1 ,

c).
∥∥∇yψ

(n)(ṽ,y)−∇yψ
(n) (ṽ,y′)

∥∥
∞ ≤ 0 · ‖y − y′‖1 ,

d).
∥∥∇yψ

(n)(ṽ,y)−∇yψ
(n) (ṽ′,y)

∥∥
∞ ≤ L · ‖ṽ − ṽ′‖ ,

where L = maxk{‖p(n)
k ‖}, ‖ · ‖ and ‖ · ‖∞ are the dual norm of ‖ · ‖ and ‖ · ‖1, respectively.

First, inequalities a) and c) hold due to the fact that

∇ṽψ
(n)(ṽ,y) = ∇ṽψ

(n) (ṽ′,y) = (P(n))Ty,

∇yψ
(n)(ṽ,y) = ∇yψ

(n) (ṽ,y′) = P(n)ṽ + q(n).

Inequality b) holds since∥∥∇ṽψ
(n)(ṽ,y)−∇ṽψ

(n) (ṽ,y′)
∥∥

= ‖(P(n))Ty − (P(n))Ty′‖ = ‖
K∑
k=1

p
(n)
k (yk − y′k)‖

≤
K∑
k=1

‖p(n)
k ‖ · |yk − y

′
k| ≤

(
max
k
‖p(n)

k ‖
)
·

(
K∑
k=1

|yk − y′k|

)
= L · ‖y − y′‖1.

Finally, inequality d) holds as∥∥∇yψ
(n)(ṽ,y)−∇yψ

(n) (ṽ,y′)
∥∥
∞

= ‖P(n)ṽ −P(n)ṽ′‖∞ = max
k

{∣∣∣∣(p
(n)
k

)T
(ṽ − ṽ′)

∣∣∣∣}
≤
(a)

(
max
k
‖p(n)

k ‖
)
· ‖ṽ − ṽ′‖

= L · ‖ṽ − ṽ′‖,

where (a) follows by applying the Cauchy-Schwarz inequality.
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