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Abstract—A low-complexity parametric bilinear generalized
approximate message passing (PBiGAMP)-based receiver is con-
ceived for multi-carrier faster-than-Nyquist (MFTN) signaling
over frequency-selective fading channels. To mitigate the inherent
ill-conditioning problem of MFTN signaling, we construct a
segment-based frequency-domain received signal model in the
form of a block circulant linear transition matrix, which can be
efficiently calculated by applying a two dimensional fast Fourier
transform. Based on the eigenvalue decomposition of the block
circulant matrices, we can diagonalize the covariance matrix of
the complex-valued colored noise process imposed by the associ-
ated two dimensional non-orthogonal matched filtering. Building
on this model, a PBiGAMP-based parametric joint channel
estimation and equalization (JCEE) algorithm is proposed for
MFTN systems. In this algorithm, we introduce a pair of additive
terms for characterizing the interferences arising from adjacent
segments and employ the exact discrete a priori probabilities
of the transmitted symbols for improving the bit error rate
(BER) performance. To further enhance the system’s robustness
in the presence of ill-conditioned matrices, we develop a refined
PBiGAMP-based JCEE algorithm by introducing a series of
scaled identity matrices. Moreover, the proposed PBiGAMP-
based JCEE algorithms may be readily decomposed into GAMP-
based equalization algorithms, when the channel state informa-
tion is perfectly known. The overall complexity of the proposed
algorithms only increases logarithmically with the total number
of transmitted symbols. Our simulation results demonstrate
the benefits of the proposed PBiGAMP-based iterative message
passing receiver conceived for MFTN signaling.

Index Terms—Multicarrier faster-than-Nyquist signaling,
channel estimation, frequency-domain equalization, parametric
bilinear generalized approximate message passing, complex-
valued colored noise.

I. INTRODUCTION

Faster-than-Nyquist (FTN) signaling constitutes an inno-
vative spectrally efficient non-orthogonal signaling solution
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for high-speed wireless communication systems [1]–[3]. By
abandoning the orthogonality condition of different modulated
waveforms, FTN signaling becomes capable of improving
the transmission rate without requiring additional bandwidth.
Hence, it achieves higher capacity than Nyquist signaling [4].
Given its benefits, the concept of FTN has also been extended
to two dimensional (2D) multi-carrier transmission systems
for further improving its the bandwidth efficiency (BE) [5].

Explicitly, multi-carrier faster-than-Nyquist (MFTN) further
improves the BE by ‘squeezing’ the Nyquist interval of the
signaling pulse in the time domain (TD) and the minimum
orthogonal frequency spacing in the frequency domain (FD).
Hence, we can optimize the 2D distance between the signals
for maximizing the achievable BE [6]. In recent years, MFTN
signaling has been investigated both in satellite systems [7]
and high-capacity optical systems [8], [9]. However, the se-
vere inherent intersymbol interferences (ISIs) and intercarrier
interferences (ICIs) imposed by time-frequency packing lead
to a potentially excessive detection complexity, which may
limit the practical applications of MFTN systems.

Nonetheless, substantial research efforts have been dedi-
cated to designing efficient receivers for MFTN systems. In
[5], a maximum a posteriori (MAP) probability receiver based
on the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [10] was
proposed for approaching the bit error rate (BER) performance
of Nyquist systems, albeit at the expense of an exponen-
tially escalating complexity. An attraction 2D minimum mean-
squared error (MMSE)-based equalizer was designed for the
interference mitigation of MFTN signaling in [11], where
authors succeed in rendering the complexity independent of
both the number of subcarriers and of the constellation size.
However, its BER performance was significantly degraded in
severe ICI scenarios. To tackle this problem, a one dimen-
sional MMSE equalizer coupled with successive interference
cancellation (SIC) was also designed in [11] for approaching
the MAP-SIC equalizer’s performance in the high signal-
to-noise ratio (SNR) region. However, the scheme of [11]
still exhibited a high computational complexity owing to the
associated multiple matrix inversion operations. Note that
the aforementioned equalizers cannot deal with the colored
noise induced by the non-orthogonal matched filter of MFTN
systems. Recently, a parametric Gaussian message passing
receiver based on a novel truncated 2D trellis structure was
proposed for eliminating the severe 2D interferences encoun-
tered by MFTN signaling in frequency-selective channels [12],



2

TABLE I: Boldly and explicitly contrasting our proposed PBiGAMP-based receiver to the typical FTN receivers, where X and
the blank indicate the ability to deal with the challenges.

Themes of Challenges This Paper [5] [11] [12] [13] [15] [16]
ISIs & ICIs X X X X
Fading Channels X X X X X
Colored Noise X X X X X
Discrete Priors X X
Ill-Conditioned Problem X
JCEE X X X X
Equalization X X X X X X X

where a realistic non-diagonal colored noise covariance matrix
was used for updating the messages on the associated factor
graph. Nevertheless, an inevitable BER performance loss is
caused by the Gaussian approximation of the discrete a priori
distributions of the transmitted symbols.

All of the above-mentioned MFTN receivers were inves-
tigated under the idealized simplifying assumption of per-
fectly known channel state information (CSI). In practice,
perfect CSI is unattainable, but it may be approached by joint
channel estimation and equalization (JCEE) techniques even
in frequency-selective fading channels. Having said that, no
JCEE solutions have been reported in the open literature for
MFTN systems. This is because it is difficult to extend the
existing JCEE algorithms of single-carrier FTN systems [13]–
[16] to MFTN systems due to the intractable coupling of the
Doppler spreads, frequency selectivity and severe 2D inter-
ferences. Moreover, the existing JCEE algorithms of single-
carrier FTN systems can only deal with the one-dimensional
interferences and cannot alleviate the ill-conditioning problem
imposed by time-frequency packing.

Motivated by tackling these challenges, we appropriately
adapt the parametric bilinear generalized approximate mes-
sage passing (PBiGAMP) algorithm of [17] for solving the
high-dimensional random bilinear mixing recovery problem.
The associated ill-conditioning problem1 caused by the non-
orthogonal nature of MFTN signaling often prevents the
PBiGAMP algorithm for readily converge, but still no solu-
tions have been found for improving the convergence of the
PBiGAMP algorithm. Hence, we develop a low-complexity
PBiGAMP-based FD iterative message passing receiver, which
is robust to the above-mentioned impediments of MFTN
systems operating in frequency-selective fading channels. With
the objective of tackling these challenges of MFTN signaling,
TABLE I boldly and explicitly contrasts the novel features of
our PBiGAMP-based receiver to those of the existing FTN
receivers. The main contributions of this work are related to
innovative signal modeling and efficient algorithm develop-
ment, which are elaborated on below:
• We derive a novel segment-based FD received signal

model through inserting a few cyclic postfixes in the FD
and through truncating the inherent 2D interferences. By

1When the minimum eigenvalue of the interference matrix approaches
zero, the linear system tends to become ill-conditioned [18]. As discussed in
[19], their ill-conditioning cannot be completely overcome by any unbiased
estimator. Hence, we can only mitigate the effect of ill-conditioning on the
BER performance, but cannot completely eliminate it.

reformulating the linear transition matrix into one having
a block circulant structure, we can reduce its condition
number and then mitigate the ill-conditioning problem
of MFTN signaling. Moreover, we reconstruct a block
circulant covariance matrix for the equivalent colored
noise process induced by the non-orthogonal matched
filter and hence diagonalize it based on the eigenvalue
decompositions of the block circulant matrices.

• Based on the proposed segment-based FD received signal
model, we develop a pair of PBiGAMP-based FD JCEE
algorithms for MFTN systems. With the aid of several
average approximations, the refined version not only
circumvents the strong sensitivity of the ill-conditioned
matrices to small perturbations, but also reduces the
computational complexity. Instead of using the typical
Gaussian approximations of the transmitted symbols that
rely on the moment matching method, the exact discrete
a priori probabilities are used for improving the symbol
detection performance. To eliminate the 2D interferences
engendered by the adjacent segments, we introduce two
additive terms for improving the accuracy of the “pseudo”
a priori mean vector of the noiseless measurements. In
the case of known CSI, the proposed JCEE algorithms can
be readily decomposed into two FD equalization (FDE)
algorithms.

The rest of the paper is organized as follows. Section II
presents the system model of MFTN signaling in frequency-
selective fading channels. In Section III, we construct a
segment-based FD received signal model and then discuss its
effects on the ill-conditioning problem of MFTN signaling.
The proposed PBiGAMP-based iterative receiver is described
in Section IV. The BER and NMSE performance results of the
proposed algorithms are evaluated and compared to the state-
of-the-art algorithms in Section V. Finally, our conclusions are
offered in Section VI.

Notations: Boldface capital and small letters represent ma-
trices and vectors, respectively. Specifically, xn and Xm,n

denote the n-th element of the vector x and the (m,n)-th
element of the matrix X, respectively. FN is the N × N
normalized discrete Fourier transform (DFT) matrix with
Fm,n = N−1/2 exp(−j2π(m−1)(n−1)/N). IN and 0M×N
denote an identity matrix of size N ×N and all-zero matrix
of size M × N , while 0N and 1N denote all-zero and all-
one column-vectors of length N , respectively. Furthermore,
BCM,N denotes the set of MN×MN block circulant matrices
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Fig. 1: Block diagram of LDPC-coded MFTN transceiver.
associated with M2 arbitrary square matrices. D(x) or D(X)
represents the diagonal matrix constructed from the vector x
or from the main diagonal vector of the square matrix X. The
operations (·)∗, (·)T , (·)H , (·)−1 and tr(·) denote the complex
conjugate, transpose, conjugate transpose, matrix inverse and
trace operator. The operators ∗, ~, �, �, ⊗, and ∝ denote
linear convolution, cyclic convolution, element-wise product,
element-wise division, Kronecker product, and equality up
to a constant normalization factor. The operation b·c returns
the nearest integer less than or equal to the element. The
function rem(a, b) returns the remainder after division of a by
b. CN (x;mx, vx) represents a complex Gaussian distribution
of variable x with mean mx and variance vx. Moreover,
E{·} and V{·} denote the expectation and variance operations.
For readability, the key variable notations are summarized in
TABLE II.

TABLE II: List of Variable Notations

Nb The number of the uncoded input bits b
Nc The number of the coded bits c
N The number of symbols for each subcarrier

K
The number of subcarriers without cyclic
postfixes for each symbol

Kp
One half of the number of cyclic postfixes
for each symbol

NI or KI The truncated ISI or ICI intervals
Lh The length of channel memory
Lq The number of segments

Lm
The number of the transmitted symbols
in each segment

Ns
The number of the received symbols
in each segment

x, x M -ary linear modulated symbol in the FD
s(t) Baseband transmitted signal in the TD
h(t, ι) Channel impulse response in the TD
r(t), r Received MFTN signal in the TD or FD
r̄, r̆
ω(t), ω Communication additive noise in the TD

v
Equivalent additive colored noise in the
TD or FD

II. SYSTEM MODEL

The general transceiver structure of low density parity check
(LDPC)-coded MFTN systems is illustrated in Fig. 1. The
input bits b = [b0, · · · , bNb−1]T are encoded to obtain Nc
LDPC-coded bits c = [c0, · · · , cNc−1]T . Considering a MFTN
system having K subcarriers and each subcarrier containing
N symbols in the TD, the coded bits are mapped onto M -
ary linear modulation constellation points to generate the
independently and identically distributed modulated symbols.
Then, the serial modulated symbol sequence x is partitioned
into K parallel subsequences, where x = [xT0 , · · · ,xTK−1]T

and xk = [xk,0, · · · , xk,N−1]T contains N modulated symbols
of the k-th subcarrier. Furthermore, the modulated symbols are
passed through a pulse shaping filter p(t) associated with the
symbol interval τT0, where τ ∈ (0, 1] is the time packing
factor and T0 is the Nyquist time interval. After that, the
symbols of the first 2Kp subcarriers are concatenated to the
original symbol sequence as cyclic postfixes in the FD. To
further improve the BE, the modulated symbols are transmitted
on K overlapped subcarriers with the frequency spacing νF0,
where ν ∈ (0, 1] is the frequency packing factor and F0 is the
minimum orthogonal frequency spacing. This operation can
be efficiently implemented by single or multiple inverse fast
Fourier transform (IFFT) modules [20]. After the parallel to
serial (P/S) conversion, the baseband transmitted MFTN signal
is expressed as

s(t) =

K̃−1∑
k=0

N−1∑
n=0

xk,np(t− nτT0)ej2πkνF0t, (1)

where K̃ = K + 2Kp, k and n are the subcarrier index and
the time index, respectively.

At the output of a frequency-selective fading channel having
a channel impulse response (CIR) h(t, ι), the received signal
is given by

r(t) =

∫ +∞

−∞
h(t, ι)s(t− ι)dι+ ω(t), (2)

where h(t, ι) = 0 for ι < 0 and ι > ιmax, ιmax is the maximum
delay spread, and ω(t) is an additive white Gaussian noise
(AWGN) process with zero mean and variance σ2

0 .
We assume perfect synchronization between the transmitter

and the receiver. The output of the non-orthogonal matched
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filter is derived as

rkr,nr =

∫ ∞
−∞

r(t)p(t− nrτT0)e−j2πkrνF0tdt (3)

=

Lh−1∑
l=0

hnr,l

K̃−1∑
kt=0

N−1∑
nt=0

xkt,nte
−j2πktlνF0τT0

∫ ∞
−∞
p(t−nrτT0)

× p(t−(nt+l)τT0)e−j2π(kr−kt)νF0tdt+ ωkr,nr

=

Lh−1∑
l=0

hnr,l

K̃−1∑
kt=0

N−1∑
nt=0

Ap((n∆ + l)τT0, k∆νF0)ψkt,l
k∆,nr

xkt,nt

+ ωkr,nr ,

where n∆ = nt − nr, k∆ = kt − kr, kr and nr are the indices
of the received symbols, kt and nt are the indices of the
transmitted symbols, hnr,l is the l-th channel coefficient at the
time index nr, Ap(τT0, νF0) =

∫ +∞
−∞ p(t)p(t−τT0)ej2πνF0tdt

is the ambiguity function, ψkt,l
k∆,nr

= ej2π(k∆nr−ktl)νF0τT0 and
finally ωkr,nr =

∫∞
−∞ ω(t)p(t − nrτT0)e−j2πkrνF0tdt is the

colored noise process having a covariance matrix Rω with
the elements of E{ωk1,n1ω

∗
k2,n2
} = σ2

0Ap
[
(n1−n2)τT0, (k1−

k2)νF0

]
.

III. SIGNAL MODELING OF FREQUENCY-DOMAIN
SEGMENT-BASED RECEIVER

Since the 2D interference matrix of (3) suffers from poten-
tial ill-conditioning problem, the solutions of the bilinear JCEE
problem are sensitive to small perturbations. The condition
number can be regarded as an indicator of whether the linear
transition matrix is ill-conditioned or well-conditioned. The
condition number of the 2D interference matrix in (3) increases
with the reduction of the packing factors and hence the
negative effects of the ill-conditioning become worse. In this
section, we construct a novel received signal model assisting
in mitigating the ill-conditioning of MFTN signaling.

According to the received signal model of (3), the inevitable
ISIs and ICIs of MFTN signaling can be characterized by the
ambiguity function Ap(τT0, νF0). The inherent 2D interfer-
ences imposed by time-frequency packing depend on both the
shaping pulse and on the packing factors, but they reduced
upon increasing the intervals of the symbols and subcarriers.
In this paper, we employ a root raised cosine (RRC) pulse
shaping filter having a roll-off factor β. Considering that the
ISIs and ICIs are dominated by the neighboring symbols and
subcarriers, we can reduce the demodulation complexity of
MFTN systems by employing a truncated 2D interference
model, i.e., Ap

[
(n∆ + l)τT0, k∆νF0

]
= 0 for |n∆ + l| > NI

or |k∆| > KI, where NI and KI are the truncated ISI and ICI
intervals.

To develop an efficient MFTN receiver for frequency-
selective fading channels, we partition the transmitted symbols
of the k-th subcarriers xk into Lq short segments of length
Lm given by xkt,q = [xkt,qLm , · · · , xkt,(q+1)Lm−1]T , where
q = 0, · · · , Lq − 1, N = LqLm, Lg − 1 ≤ Lm ≤ N , and
Lg = Lh +2NI. For the time-invariant or quasi-static channels,
Lm can be set to N . Without loss of generality, we assume that
the CSI is fixed for the duration of a single segment [15]. The
observation vector of the k-th subcarrier in the q-th segment,

i.e., rkr,q = [rkr,qLm , · · · , rkr,qLm+Ns−1]T , Ns = Lm + Lg − 1,
can be expressed as

rkr,q =

Lh−1∑
l=0

hq,l

kr+KI∑
kt=kr−KI

D(ψkt,l
k∆,q

)(gk∆,l ∗ xkt,q) (4)

+ ztail
kr,q−1 + zhead

kr,q+1 + ωkr,q,

where hq,l is the l-th channel coefficient in the q-
th segment, ψkt,l

k∆,q
= [ψkt,l

k∆,qLm
, · · · , ψkt,l

k∆,qLm+Ns−1]T ,
gk∆,l = [0Tl gTk∆

0T(Lh−1−l)]
T represents the

significant ISIs and ICIs within one segment,
gk∆

= [Ap(NIτT0, k∆νF0), · · · , Ap(−NIτT0, k∆νF0)]T , and
ω′kr,q

= [ωkr,qLm , · · · , ωkr,qLm+Ns−1]T is the truncated colored
noise vector. Moreover, ztail

kr,q−1 and zhead
kr,q+1 characterize the

2D interferences imposed by the tail of the (q−1)-th segment
and by the head of the (q + 1)-th segment, which are given
by

ztail
kr,q−1 =Ξt

[Lh−1∑
l=0

hq−1,l

kr+KI∑
kt=kr−KI

D(ψkt,l
k∆,q−1)(gk∆,l∗xkt,q−1)

]
, (5)

zhead
kr,q+1 =Ξh

[Lh−1∑
l=0

hq+1,l

kr+KI∑
kt=kr−KI

D(ψkt,l
k∆,q+1)(gk∆,l∗xkt,q+1)

]
, (6)

where Ξt = [0(Lg−1)×Lm ILg−1; 0Lm×Lm 0Lm×(Lg−1)], Ξh =
[0Lm×(Lg−1) 0Lm×Lm ; ILg−1 0(Lg−1)×Lm ], and ztail

kr,−1 =

zhead
kr,Lq

= 0Ns .

By appending the required number of zeros to both the
truncated interference vector gk∆,l and the transmitted symbol
vector xkt,q , the linear convolution in (4) can be converted to
cyclic convolution as

rkr,q=

Lh−1∑
l=0

hq,l

kr+KI∑
kt=kr−KI

D(ψkt,l
k∆,q

)(gk∆,l ~ Φmxkt,q) + vkr,q, (7)

where Φg = [ILg 0Lg×(Ns−Lg)]
T is used for inserting

Ns − Lg zeros into the truncated interference vector, Φm =
[ILm 0Lm×(Ns−Lm)]

T is exploited for inserting Ns − Lm zeros
into the transmitted data vector, and vkr,q = ztail

kr,q−1+zhead
kr,q+1+

ωkr,q is the equivalent colored noise process.

According to the properties of cyclic convolution, the re-
ceived signal in (7) is rewritten as

rkr,q=

Lh−1∑
l=0

hq,l

kr+KI∑
kt=kr−KI

D(ψkt,l
k∆,q

)FHNs
D(ḡk∆,l)FNsΦmxkt,q+vkr,q,

(8)

where ḡk∆,l =
√
NsFNsΦggk∆,l. By removing the first and

last KI received subcarriers, the received symbols in the q-th
segment are expressed as

rq=

Lh−1∑
l=0

hq,lΦlΘq(IK⊗FNs)
HḠl(IK⊗FNs)(IK⊗Φm)xq

+ vq, (9)

where we have rq = [rTKI,q
, · · · , rT

K̃−KI−1,q
]T , Φl =

D(φl) ⊗ INs is a KNs × KNs diagonal matrix, φl =
[1, e−j2πlνF0τT0 , · · · , e−j2π(K−1)lνF0τT0 ]T , Θq and Ḡl are
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KNs × KNs block circulant matrices with diagonal blocks,
xq = [xT0,q, · · · ,xTK−1,q]

T , vq = [vTKI,q
, · · · ,vT

K̃−KI−1,q
]T .

Specifically, the 2D interference matrix Ḡl ∈ BCK,Ns is given
by

Ḡl =


D(ḡ−KI,l) · · · D(ḡKI,l) 0

0
. . . · · ·

. . .
D(ḡKI,l) 0 D(ḡ−KI,l) · · · D(ḡKI−1,l)

...
. . . 0

. . .
...

D(ḡ−KI+1,l) · · · D(ḡKI,l) D(ḡ−KI,l)

 , (10)

where the subscripts of the all-zero matrices are omitted for
simplicity. Moreover, Θq ∈ BCK,Ns has the similar expression
of (10), where D(ḡk∆,l) is replaced by D(θk∆,q) with θk∆,q =
[ej2πk∆qLmνF0τT0 , · · · , ej2πk∆(qLm+Ns−1)νF0τT0 ]T .

Note that Ḡl ∈ BCK,Ns consists of a series of diagonal ma-
trices. According to the properties of block circulant matrices,
Ḡl satisfies the decomposition of

Ḡl = (FK ⊗ INs)
HΛḠl

(FK ⊗ INs), (11)

where ΛḠl
is a diagonal matrix and the derivations are given

in Appendix A. According to the Theorem 5.8.1 of [21],
we introduce another decomposition of the block circulant
matrices for simplifying the received signal model of (9).
Then, we obtain Φl = (FK ⊗ FNs)

HΛΦl
(FK ⊗ FNs) and

Θq = (FK ⊗ FNs)
HΛΘq (FK ⊗ FNs). After left multiplying

rq in (9) by a unitary matrix (FK⊗FNs), we have the received
symbol vector in the q-th segment as

r̆q = (FK ⊗ FNs)rq (12)

=

Lh−1∑
l=0

hq,lΛΦl
ΛΘq

(FK ⊗ FNs)(FK ⊗ FNs)
H

×ΛḠl
(FK ⊗ FNs)(IK ⊗Φm)xq + v̆q

=

Lh−1∑
l=0

hq,lΛq,lF̈KNsxq + v̆q,

where Λq,l = ΛΦl
ΛΘqΛḠl

, F̈KNs = (FK ⊗FNs)(IK ⊗Φm)
denotes the KNs ×KNs normalized 2D DFT matrix having
inserted zeros, while v̆q = (FK ⊗ FNs)vq represents the FD
colored noise process obeying Gaussian distribution with mean
vector zvq and covariance matrix Λv

q . The relevant derivations
of the equivalent colored noise are shown in Appendix B.
Note that the product of (FK ⊗ FNs) and any vector in (12)
can be efficiently calculated via the 2D FFT with complex-
ity KNs log(KNs). Hence, the proposed segment-based FD
received signal model is equivalently obtained by a 2D FFT
module, as shown in Fig. 1.

To emphasize the benefits of the proposed segment-based
FD received signal model on the ill-conditioning problem of
MFTN signaling in Fig. 2, we compare its condition number
to that of the original received signal model of (3) in the
case of various packing factor combinations. The simulation
parameters are as follows. The truncated ISI and ICI intervals
are NI = 12 and KI = 1, respectively. The length of each
segment is Lm = 42, and we employ an RRC shaping pulse
having a roll-off factor of β = 0.3. Considering a frequency-
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Fig. 2: Comparison of the condition number of linear transition
matrices in the received signal models of Equation (2).

selective fading channel of Lh = 8 taps, the l-th power delay
profile (PDP) satisfies σ2

hl
= exp(−0.1l)/(

∑
l σ

2
hl

).
The linear transition matrix of the proposed segment-based

FD received signal model of (12) is defined as Gq =∑Lh−1
l=0 hq,l(FK⊗FNs)

HΛq,l(FK⊗FNs) in the q-th segment.
Accordingly, the linear transition matrix of the original re-
ceived signal model in Section II is Aq =

∑Lh−1
l=0 hq,lȦl,

where the (m,n)-th element of Ȧl is Ap
(
[rem(n,Ns) −

rem(m,Ns)]τT0, (bn/Nsc−bm/Nsc)νF0

)
in (3). As shown in

Fig. 2, for a fixed BE, we can obtain a linear transition matrix
having a minimum condition number by jointly optimizing
the combination of the packing factors. For the original
model, the condition number of the linear transition matrix
Aq significantly increases with the reduction of the frequency
packing factor ν. By contrast, the condition number of the
proposed model varies gently with the packing factors. Given
the values of packing factor, the condition number of Gq is
much smaller than that of Aq , which is an explicit benefit
of the block circulant structure associated with the circulant
blocks in Gq . Hence, the proposed segment-based FD received
signal model is expected to significantly mitigate the inherent
ill-conditioning problem of MFTN signaling, which will be
verified by our simulations.

IV. FREQUENCY-DOMAIN JOINT CHANNEL ESTIMATION
AND EQUALIZATION ALGORITHMS

Building on the above-mentioned segment-based FD re-
ceived signal model, we can rewrite the received symbol vector
in (12) as

r̆q = z̆q + wq =

Lh−1∑
l=0

hq,lΛq,lF̈KNsxq + zvq + wq, (13)

where z̆q =
∑Lh−1
l=0 hq,lΛq,lF̈KNsxq+zvq denotes the noiseless

observation vector, zvq is the mean vector of the colored noise
process v̆q , while wq is the equivalent colored noise process
with zero mean and the covariance matrix of Λv

q .
Assuming that the likelihood function is component-wise

independent, the a posteriori probability of the channel coef-
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Fig. 3: Factor graph representation of the segment-based FD
received signal model.
ficients and the transmitted symbols can be factorized as

p(xq,hq|r̆q) ∝ p(r̆q|z̆q)p(z̆q|hq,xq)p(hq)p(xq) (14)

∝
∏
k,n

p(r̆k,n|z̆k,n)p(z̆k,n|hq,xq)

×
∏
l

p(hq,l)
∏
k′,n′

p(xk′,n′),

where p(r̆q|z̆q) is the likelihood function, p(hq,l) is the a
priori probability of the l-th channel coefficient in the q-
th segment, and p(xk′,n′) is the a priori probability of the
n′-th TD transmitted symbol of the k′-th subcarrier, k′ =
0, · · · ,K − 1, n′ = qLm, · · · , (q + 1)Lm − 1.

According to the factorization of the a posteriori probability
in (14), we construct a factor graph to characterize the statisti-
cal relationships between variables shown in Fig. 3. Since the
factor graph contains dense short loops, the typical loopy belief
propagation (LBP) over the factor graph leads to an excessive
computational complexity. Although Gaussian BP can be used
for reducing the complexity of the LBP, the Gaussian approx-
imations of the discrete a priori messages of the transmitted
symbols may result in an additional performance loss. Our
goal is to simultaneously estimate the channel coefficients and
the transmitted symbols from the noisy received observations.
This is equivalent to solving the high-dimensional random
bilinear mixing recovery problem. Hence, we can resort to
the computationally efficient PBiGAMP algorithm for decou-
pling the bilinear estimation problem into a series of scalar
computations, where all messages can be characterized and
updated by their mean and variance vectors.

A. PBiGAMP-Based Frequency-Domain JCEE Algorithm

The a posteriori probability of the noiseless measurement
z̆k,n is proportional to the product of the message propagated
from the factor node (FN) p(z̆k,n|hq,xq) to the variable node
(VN) z̆k,n and the conditional probability density function
p(r̆k,n|z̆k,n). Hence, the former can be regarded as the pseudo
a priori probability of the noiseless measurement z̆k,n. As
shown in Fig. 3, this message is calculated by integrating the
product of the messages propagated from all VNs xq and hq to
the FN p(z̆k,n|hq,xq) and the function p(z̆k,n|hq,xq) over all
the VNs in xq and hq . Applying central-limit-theorem (CLT)
to the messages gleaned from the FNs p(z̆q|hq,xq) to the
VNs z̆q , we can approximate the pseudo a priori probabilities
of the noiseless measurements z̆q by independent Gaussian

distributions having the mean vector of p̂q(t) and the variance
vector of νpq (t) [22]. The pseudo a priori variance vector νpq (t)
of the noiseless measurements z̆q in the t-th iteration is derived
as

νpq (t) = ν̄pq (t) +

Lh−1∑
l=0

νhq,l(t)|Λq,lF̈KNs |2νxq (t), (15)

with

ν̄pq (t) =

Lh−1∑
l=0

νhq,l(t)|Λq,lF̈KNs x̂q(t)|2 (16)

+ |
Lh−1∑
l=0

ĥq,l(t)Λq,lF̈KNs |2νxq (t),

where ĥq,l(t) and νhq,l(t) are the a posteriori mean and
variance of the l-th channel estimate in the q-th segment.

Note that the noiseless measurement contains the colored
noise process of (13) having non-zero mean. To improve
the accuracy of the pseudo a priori mean vector of the
noiseless measurement, we can introduce two additive terms
characterizing the 2D interferences arising from the adjacent
segments for improving its updating expression. Accordingly,
the pseudo a priori mean of z̆q is given by

p̂q(t)=

Lh−1∑
l=0

ĥq,l(t)Λq,lF̈KNs x̂q(t)−ν̄pq (t)� ŝq(t− 1) (17)

+(FK⊗FNs)
[
(IK⊗Ξt)ẑq−1(t)+(IK⊗Ξh)ẑq+1(t)

]
,

where

ẑq(t) = (FK ⊗ FNs)
H
Lh−1∑
l=0

ĥq,l(t)Λq,lF̈KNs x̂q(t). (18)

By taking the product of the likelihood function
p(r̆q|z̆q) ∝ CN

[
z̆q; r̆q,Λ

v
q(t)

]
and the pseudo a priori mes-

sage CN
[
z̆q; p̂q(t),D(νpq (t))

]
, the a posteriori probability of

z̆q is modelled by the Gaussian distribution as p(z̆q|r̆q) ∝
CN
[
z̆q; ˆ̆zq(t),D(ν z̆q (t))

]
with

ˆ̆zq(t) = [z̆q � νpq (t) + Λv
q(t)p̂q(t)]� [νpq (t) + Λv

q(t)1KNs ],
(19)

ν z̆q (t) = (Λv
q(t)ν

p
q (t))� (νpq (t) + Λv

q(t)1KNs). (20)

Note that the covariance matrix Λv
q(t) of the equivalent

colored noise depends not only on the covariance matrix of
the 2D interferences arising from the adjacent segments but
also on the variance of the AWGN process, which is updated
according to the derivations in Appendix B.

We can update the first derivative ŝq and second derivative
νsq based on a Taylor series expansion of the messages passed
from the likelihood function nodes passed to the channel VNs
or the transmitted symbol VNs as

ŝq(t) = [ˆ̆zq(t)− p̂q(t)]�νpq (t) (21)

= [r̆q − p̂q(t)]� [νpq (t) + Λv
q(t)1KNs ],

νsq (t) = [νpq (t)−ν z̆q (t)]�[νpq (t)]2 (22)

= 1KNs � [νpq (t) + Λv
q(t)1KNs ].
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We introduce γq to represent the product of all outgoing
messages from the likelihood function nodes to the transmitted
symbol VNs. The vector γq can be regarded as the noisy
observation of the transmitted symbol xq in an AWGN channel
having the noise variance of νγq . The marginal a posteriori
probability of the unknown transmitted symbols is given by

p(xq|r̆q) =
p(xq)CN

[
xq; γ̂q(t),D(νγq (t))

]∫
xq
p(xq)CN

[
xq; γ̂q(t),D(νγq (t))

] , (23)

where the outgoing mean vector γ̂q(t) and variance vector
νγq (t) are updated as

νγq (t)=1KLm�
[∣∣F̈HKNs

(

Lh−1∑
l=0

ĥq,l(t)Λq,l)
H
∣∣2νsq (t)

]
, (24)

γ̂q(t)= x̂q(t)+νγq (t)�
[L−1∑
l=0

ĥq,l(t)Λq,lF̈KNs

]H
ŝq(t) (25)

−νγq (t)� x̂q(t)�
L−1∑
l=0

νhq,l(t)|F̈HKNs
ΛH
q,l|2νsq (t).

The a priori messages of the transmitted symbols are
calculated based on soft extrinsic information gleaned from
the channel decoder. Let us assume that the m̄-th ex-
trinsic log-likelihood ratio (LLR) of xk,n acquired from
the channel decoder output is L

e,(t)
dec (ck,n,m̄), the a pri-

ori probability of the coded bit ck,n,m̄ ∈ {0, 1},m =
0, · · · , log2M − 1 in the t-th iteration is p(ck,n,m̄) =
1
2

[
1 + (−1)ck,n,m̄ tanh

(
1
2L

e,(t)
dec (ck,n,m̄)

)]
. Since each trans-

mitted symbol belongs to the constellation set S ,
{S1, · · · ,SM}, we can obtain the discrete a priori prob-
abilities {p(xk,n)} according to the constellation mapping
rules. Hence, the conditional a posteriori probability of each
transmitted symbol xk,n in the q-th segment is p(xk,n|r̆q) ∝
p(xk,n)CN [xk,n; γ̂k,n(t), νγq (t)]. The corresponding condi-
tional a posteriori expectation and variance are given by

x̂k,n(t+ 1)=E{xk,n|γk,n= γ̂k,n(t); νγq (t)} (26)

∝
∑
m

Smp(xk,n = Sm) exp

(
−|Sm − γ̂k,n(t)|2

νγq (t)

)
,

νxk,n(t+ 1)=V{xk,n|γk,n = γ̂k,n(t); νγq (t)} (27)

∝
∑
m

|x̂k,n(t+ 1)− Sm|2p(xk,n=Sm)

× exp

(
−|Sm − γ̂k,n(t)|2

νγq (t)

)
.

Note that the a posteriori variance of νxk,n(t + 1) is used
for characterizing the estimation accuracy of the transmitted
symbol in the t-th iteration and then for updating the “pseudo”
a priori variance of the noiseless measurement in the (t+1)-st
iteration.

Similar to the above-mentioned characterization of the sym-
bol detection, the outgoing messages of the unknown channel
coefficients are approximated by the Gaussian distribution
CN (hq; %̂q,ν

%
q ) based on the CLT. Hence, the l-th element

of the outgoing variance vector ν%q and mean vector %̂q are

expressed respectively as

1/ν%q,l(t) =
∣∣(Λq,lF̈KNs x̂q(t)

)H ∣∣2νsq (t), (28)

%̂q,l(t) = ĥq,l(t)+ν%q,l(t)[Λq,lF̈KNs x̂q(t)]
H ŝq(t) (29)

× ĥq,l(t)ν%q,l(t)ν
x
q (t)1TKNs

|F̈HKNs
ΛH
q,l|2νsq (t).

Under the assumption of the Gaussian a priori probability,
the a posteriori distribution of hq,l is given by p(hq,l|z̆q) ∝
CN
[
hq,l; ĥq,l(t+ 1), νhq,l(t+ 1)

]
with

ĥq,l(t+ 1) = [%̂q,l(t)ν̄
h
q,l + h̄q,lν

%
q,l(t)]/[ν̄

h
q,l + ν%q,l(t)], (30)

νhq,l(t+ 1) = ν̄hq,lν
%
q,l(t)/[ν̄

h
q,l + ν%q,l(t)], (31)

where the a priori probability CN
(
hq,l; h̄q,l, ν̄

h
q,l

)
can be

obtained by pilot-based least-squared estimation (LSE) [23].
Similarly, the a posteriori variance νhq,l(t+ 1) is also utilized
for quantifying the accuracy of the channel estimate and then
for updating the “pseudo” a priori variance of the noiseless
measurement in the next iteration.

According to the aforementioned derivations, the
PBiGAMP-based JCEE algorithm proposed for MFTN
signaling is summarized in Algorithm 1.

Algorithm 1 The Proposed PBiGAMP-based FD JCEE Algo-
rithm (PBiGAMP-FDJCEE)

1: Initialization: Set the a posteriori mean and variance of
the transmitted symbols to be x̂k,n(1) = 0 and νxk,n(1) =
1, k = 0, · · · ,K − 1, n = 0, · · · , N − 1. The initialized
channel coefficients ĥq(1) and νhq (1) are obtained by a
pilot-based LSE. Set ŝq(0) = 0Ns for q = 0, · · · , Lq − 1
as described in [17].

2: for t = 1 to Tex do
3: for q = 0 to Lq − 1 do
4: The TD received symbols are transformed to FD via

2D FFT in (13).
5: Compute νpq (t) and p̂q(t) using (15) and (17).
6: Compute ŝq(t) and νsq (t) using (21) and (22).
7: Compute the outgoing messages νγq (t) and γ̂q(t) of

the transmitted symbols using (24) and (25).
8: Compute each element of the a posteriori messages

x̂q(t + 1) and νxq (t + 1) of the transmitted symbols
using (26) and (27).

9: Compute each element of the outgoing messages
ν%q (t) and %̂q(t) of the channel coefficients using (28)
and (29).

10: Compute each element of the a posteriori messages
ĥq(t + 1) and νhq (t + 1) of the channel coefficients
using (30) and (31).

11: end for
12: Compute the extrinsic LLRs of the equalizer based on

the outgoing messages of the transmitted symbols and
then feed them to the channel decoder.

13: Perform BCJR channel decoding and feed the soft
extrinsic information to the equalizer.

14: end for
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B. Refined PBiGAMP-Based Frequency-Domain JCEE Algo-
rithm

According to the derivations of the PBiGAMP-FDJCEE
algorithm proposed in Section IV.A, the equations (15), (16),
(24), (25), (28), and (29) contain the squared modulus of the
FD linear transition matrix, which may increase the condition
numbers. To solve this problem, we introduce a series of scaled
identity matrices for approximating the variance vectors of the
transmitted symbols in (27) and the second derivative term in
(22). Moreover, the scaled identity matrix corresponding to
νsq (t) is also harnessed for improving the accuracy of channel
estimation. The detailed derivations are as follows.

The pseudo a priori variance of the noiseless measurement
in (15) can be rewritten as

νpq (t)= ν̄pq (t)+

Lh−1∑
l=0

νhq,l(t)|Λq,lF̈KNs |2νxq (t) (32)

= ν̄pq (t)+

Lh−1∑
l=0

νhq,l(t)D
[
Λq,lF̈KNsD(νxq (t))F̈HKNs

ΛH
q,l

]
1KNs ,

where we have F̈KNs = (FK ⊗FNs)(IK ⊗Φm). To simplify
the second term in the above equation, we can introduce a
scaled identity matrix νxq (t)IKNs as the average approxima-
tion of the term (IK ⊗ Φm)D(νxq (t))(IK ⊗ Φm)H , where
νxq (t) = 1/(KNs)1

T
KNs

(IK⊗Φm)D(νxq (t))(IK⊗Φm)H1KNs

is the average variance of the transmitted symbols in the q-
th segment. Then, the pseudo a priori variance vector of the
noiseless measurement vector is expressed as

νpq (t) ≈ ν̄pq (t) +

Lh−1∑
l=0

νhq,l(t)D
[
Λq,l(FK⊗FNs) (33)

× νxq (t)IKNs(FK⊗FNs)
HΛH

q,l

]
1KNs

= ν̄pq (t) + νxq (t)

Lh−1∑
l=0

νhq,l(t)Λq,lΛ
H
q,l1KNs .

Moreover, the second term of ν̄pq (t) in (16) can also be simpli-
fied using the scaled identity matrix νxq (t)IKNs . Accordingly,
(16) is approximated as

ν̄pq (t)≈
Lh−1∑
l=0

νhq,l(t)Λq,lΛ
H
q,l|F̈KNs x̂q(t)|2 (34)

+νxq (t)

(Lh−1∑
l=0

ĥq,l(t)Λq,l

)(Lh−1∑
l′=0

ĥq,l′(t)Λq,l′

)H
1KNs .

In (24), we can employ a scaled identity matrix ςγq (t)IKNs

for replacing the middle term between the 2D Fourier oper-
ations. Then the outgoing variance vector of the transmitted
symbols can be calculated as

νγq (t) = 1KLm �D
(

F̈HKNs

(Lh−1∑
l=0

ĥq,l(t)Λq,l

)H
(35)

×D(νsq (t))
(Lh−1∑
l′=0

ĥq,l′(t)Λq,l′
)
F̈KNs

)
≈ 1KLm �D

(
F̈HKNs

ςrq (t)IKNsF̈KNs

)
= 1/ςγq (t)1KLm ,

where the scaled value is given by

ςγq (t)=
1

KNs
1HKNs

(Lh−1∑
l=0

ĥq,l(t)Λq,l

)H(Lh−1∑
l′=0

ĥq,l′(t)Λq,l′

)
νsq (t).

(36)

Note that all outgoing variances in (35) are identical. Hence,
we only compute a scalar outgoing variance νγq (t) = ςγq (t).

Furthermore, the corresponding outgoing mean vector γ̂q(t)
in (25) is approximated as

γ̂q(t) ≈ x̂q(t)+νγq (t)
[L−1∑
l=0

ĥq,l(t)Λq,lF̈KNs

]H
ŝq(t) (37)

− νγq (t)x̂q(t)�
L−1∑
l=0

νhq,l(t)|F̈HKNs
ΛH
q,l|2νsq (t)

= x̂q(t)+νγq (t)
[L−1∑
l=0

ĥq,l(t)Λq,lF̈KNs

]H
ŝq(t)− νγq (t)

× x̂q(t)�
L−1∑
l=0

νhq,l(t)D
[
F̈HKNs

ΛH
q,lD(νsq (t))Λq,lF̈KNs

]
≈ x̂q(t) + νγq (t)

[L−1∑
l=0

ĥq,l(t)Λq,lF̈KNs

]H
ŝq(t)

− νrq (t)

L−1∑
l=0

νhq,l(t)ς
s
q,l(t)x̂q(t),

where the scaled identity matrix ςsq,l(t)IKNs is introduced to
replace ΛH

q,lD(νsq (t))Λq,l by

ςsq,l(t) =
1

KNs
1TKNs

ΛH
q,lΛq,lν

s
q (t). (38)

As for channel estimation, by introducing the scaled identity
matrix ςsq,l(t)IKNs , the outgoing variance of the l-th unknown
channel coefficient in (28) can be simplified as

1/ν%q,l(t)=(x̂q(t))
HF̈HKNs

ΛH
q,lD(νsq (t))Λq,lF̈KNs x̂q(t) (39)

≈ ςsq,l(t)||x̂q(t)||2.

Moreover, the outgoing mean of the l-th channel coefficient
in (29) is approximated as

%̂q,l(t) ≈ ĥq,l(t) + ν%q,l(t)(Λq,lF̈KNs x̂q(t))
H ŝq(t) (40)

−KNsĥq,l(t)ν
%
q,l(t)ν

x
q (t)ςsq,l(t).

According to the above-mentioned approximations, the pro-
posed refined PBiGAMP-based JCEE procedure of MFTN
signaling is summarized in Algorithm 2.

C. GAMP-Based FDE Algorithms

In the special case of perfectly known CSI, the channel
coefficients no longer have to be estimated. Hence, we can
replace the channel estimates by the exact channel coefficients.
The proposed PBiGAMP-based receivers are readily simplified
to the GAMP-FDE and R-GAMP-FDE algorithms, which are
summarized in Algorithm 3 and Algorithm 4.
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Algorithm 2 The Refined PBiGAMP-based FD JCEE Algo-
rithm (R-PBiGAMP-FDJCEE)

1: Run the same initialization and calculation steps in Algo-
rithm 1 except for the following three modifications:

2: for t = 1 to Tex do
3: for q = 0 to Lq − 1 do
4: Compute the a priori variance vector of the noiseless

measurements νpq (t) using (33) and (34).
5: Compute the outgoing messages νγq (t) and γ̂q(t) of

the transmitted symbols using (35)-(37).
6: Compute each element of the outgoing messages

ν%q (t) and %̂q(t) of the channel coefficients using (39)
and (40).

7: end for
8: end for

Algorithm 3 The GAMP-Based FDE Algorithm (GAMP-
FDE) For Perfectly Known CSI

1: Initialization: Set the a posteriori mean and variance of
the transmitted symbols to be x̂k,n(1) = 0 and νxk,n(1) =
1, k = 0, · · · ,K−1, n = 0, · · · , N −1. Set ŝq(0) = 0Ns ,
ĥq,l(t) = hq,l, and νhq,l(t) = 0 for q = 0, · · · , Lq − 1,
l = 0, · · · , Lh − 1.

2: Run Step 2-14 in Algorithm 1 except Step 9 and 10.

D. Complexity Analysis

In this section, we analyze the computational complexity of
the proposed PBiGAMP-based algorithms and compare them
to that of the existing algorithms, as summarized in TABLE
III. Since all methods perform standard soft information calcu-
lations and BCJR decoding, we only discuss the computational
complexity of the equalizer and channel estimator in a single
iteration. Moreover, the complexity of FDE algorithms is
dominated by the number of complex multiplications and 2D
FFT/IFFT operations, which are analyzed independently in
TABLE III.

Under the assumption of perfectly known CSI, we compare
the proposed GAMP-based algorithms to three typical TDE
algorithms: MMSE-TDE, GAMP-TDE, and AMP with unitary
transformation (UTAMP)-TDE. The MMSE-TDE algorithm of
[24] needs to calculate the inversion of the equivalent channel
matrix, resulting in a complexity order of O(K3N3). As
described in [25], the worst-case total complexity of GAMP
per iteration is O(K2N2) when the size of the equivalent
channel matrix is KN × KN . As a modified version of
AMP, UTAMP exploits singular value decomposition (SVD)
of the KN × KN equivalent channel matrix for improving
the convergence of AMP [26]. The complexity of SVD is
O(K3N3), while the complexity of message passing relying
on the non-structured equivalent channel matrix is O(K2N2).
For GAMP-FDE, nine KNs-point 2D FFT/IFFT operations
are needed for the calculations of (12), (16)-(18), (24), and
(25). Note that F̈KNs x̂q(t) in (17) and (18) only has to be
calculated once. For its refined version, four KNs-point 2D
FFT/IFFT operations imposed by (16) and (24) are omitted
by introducing a series of scaled identity matrices in (34)

Algorithm 4 The Refined GAMP-Based FDE Algorithm (R-
GAMP-FDE) For Perfectly Known CSI

1: Run the same initialization and calculation steps in Algo-
rithm 3 except for the following two modifications:

2: for q = 0 to Lq − 1 do
3: for t = 1 to Tex do
4: Compute the a priori variance vector of the noiseless

measurements νpq (t) using (33) and (34).
5: Compute the outgoing messages νγq (t) and γ̂q(t)

using (35)-(37).
6: end for
7: end for

and (35). Hence, five KNs-point 2D FFT/IFFT operations are
required for message updating of R-GAMP-FDE per segment.
The remaining complexity mainly depends on the complex
multiplications of a diagonal matrix and a vector or of vectors,
resulting in a complexity order of O(KNs) per segment.

For MFTN systems operating in the absence of CSI, we
extend both the LS-based channel estimator of [23] and the
MMSE-based equalizer of [24] labeled as “LS-MMSE”, by
conceiving the proposed segment-based FD received signal
model for MFTN systems. Since the interferences of MFTN
signaling only depend on the shaping pulse and packing
factors, the weighted matrix of the LS-based channel es-
timator can be calculated off-line and stored in advance.
This substantially reduces the computational complexity in
practice. Hence, we only consider the complexity associated
with the complex multiplication of the weighted matrix and
the received observations. The complexity order of LS-based
channel estimator is O(LhNp) per segment, with Np being
the number of pilots, while that of MMSE-based equalizer
is O(K3N3

s ) per segment dominated by the matrix inversion
of the non-diagonal covariance matrix of the FD transmitted
symbols. For PBiGAMP-FDJCEE, thirteen KNs-point 2D
FFT/IFFT operations are needed for the calculations of (12),
(15)-(18), (24), and (25) for equalization. Note that (28)
and (29) characterizing the channel estimation can utilize the
outputs of the corresponding FFT/IFFT operations the equal-
izer, without any additional complexity. For R-PBiGAMP-
FDJCEE, a set of eight KNs-point 2D FFT/IFFT operations
imposed by (15)-(16) and (24)-(25) are omitted due to the
simplifications in (32)-(38). Hence, only five KNs-point 2D
FFT/IFFT operations are required for the message updating
of R-PBiGAMP-FDJCEE per segment. Similarly, the remain-
ing complexity order of the PBiGAMP-based algorithms is
O(KNs) for equalization and O(LhKNs) for channel estima-
tion per segment, respectively.

V. SIMULATION RESULTS

In this section, we evaluate both the BER and the
normalized mean square error (NMSE) of the proposed
GAMP-FDE, R-GAMP-FDE, PBiGAMP-FDJCEE, and R-
PBiGAMP-FDJCEE algorithms designed for MFTN signaling
in frequency-selective fading channels. To verify their effi-
ciency, we extend the MMSE of [24], the UTAMP algorithm
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TABLE III: Complexity Analysis

Algorithm Equalization Channel EstimationComplex Multiplications FFT/IFFT Operations
MMSE-TDE O(K3N3) - -
GAMP-TDE O(K2N2) - -
UTAMP-TDE O(K3N3) - -
GAMP-FDE O(LqKNs) 9LqKNs log(KNs) -
R-GAMP-FDE O(LqKNs) 5LqKNs log(KNs) -
LS-MMSE O(LqK

3N3
s ) - O(LqLhNp)

PBiGAMP-FDJCEE O(LqKNs) 13LqKNs log(KNs) O(LqLhKNs)
R-PBiGAMP-FDJCEE O(LqKNs) 5LqKNs log(KNs) O(LqLhKNs)
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Fig. 4: BER performance of different equalization algorithms
for MFTN systems with τ = 0.9, ν = 0.8 in the case of
perfectly known CSI.

of [26], and the GAMP algorithm of [25] to TDE of MFTN
systems and then compare them to the proposed algorithms.

We consider an LDPC code of rate Rc = 23/28 and
code length of Lc = 4032 bits for our MFTN systems. The
number of subcarriers is K = 64 and each subcarrier has
N = 512 symbols employing quadrature phase shift keying
(QPSK) modulation. The carrier frequency and symbol period
are 2 GHz and 2 µs, respectively. The roll-off factor of the
RRC shaping filter is β = 0.3 and the truncated lengths of
the inherent 2D interferences are NI = 12 and KI = 1,
respectively. The fixed truncated lengths have been verified
to be able to cover the dominant 2D interferences in the
following simulations. Moreover, the length of each segment
is Lm = 42. For frequency-selective fading channels, the
number of taps is set to be Lh = 8 and the l-th PDP satisfies
σ2
hl

= exp(−0.1l)/(
∑
l σ

2
hl

). We consider a car traveling at 80
km/h and a high-speed trains at 270 km/h. The corresponding
Doppler spreads are fd = 150 Hz and fd = 500 Hz,
respectively, while the normalized fading rates are 0.0003 and
0.001. The number of external iterations between the equalizer
and the channel decoder is Tex = 50 and the number of
internal LDPC decoding iterations is Tin = 50.

In Fig. 4, we compare the BER performance of the proposed
GAMP-FDE and R-GAMP-FDE algorithms to those of the
extended equalization algorithms at a velocity of 80 km/h,
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Fig. 5: BER performance of the proposed R-GAMP-FDE
algorithm for MFTN systems with various time and frequency
packing factors in the case of perfectly known CSI.

where the Doppler spread is fd = 150 Hz. The GAMP-TDE
algorithm has an error floor in the high Eb/N0 region due
to the divergence of GAMP induced by the ill-conditioning
problem of MFTN systems. Compared to GAMP-TDE, both
UTAMP-TDE2 and GAMP-FDE significantly improve the
BER performance, where GAMP-FDE obtains an additional
gain by exploiting the exact discrete a priori distributions of
the transmitted symbols. Since GAMP-based algorithms rely
on the MMSE approximations, the MMSE-TDE algorithm3

outperforms both the UTAMP-TDE and GAMP-FDE. More-
over, the proposed R-GAMP-FDE algorithm is superior to the
MMSE-TDE algorithm in terms of BER. The performance
gain of R-GAMP-FDE can be attributed to the average approx-
imations of νxq (t) and νsq (t) in (33)-(38), which circumvents
the strong sensitivity of the ill-conditioned matrices to small
perturbations. Moreover, compared to its counterpart using the
exact discrete a priori probabilities, R-GAMP-FDE employing
the Gaussian a priori distribution approximation suffers from
an additional 0.7 dB Eb/N0 loss at BER = 10−6.

2Since the UTAMP algorithm is guaranteed to converge in case of Gaussian
priors, the UTAMP-TDE algorithm only exploits the Gaussian approximations
of the a priori probabilities of the transmitted symbols.

3To avoid an intractable computational complexity imposed by the discrete
a priori distributions of the transmitted symbols, the MMSE-TDE algorithm
only employ its Gaussian approximations.
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In Fig. 5, we evaluate the BER performance of MFTN
systems employing R-GAMP-FDE at different combinations
of time and frequency packing factors, where the Doppler
spread is fd = 150 Hz. The BER performance of their Nyquist
counterpart (i.e., τ = 1.0, ν = 1.0) with perfect CSI is also
included as a benchmark. It is seen that at τ = 1.0, ν = 0.9,
MFTN signaling improves the BE4 by up to 11% at a negli-
gible BER performance degradation. When further reducing τ
and ν, our MFTN systems based on the proposed R-GAMP-
FDE algorithm obtain about 39% and 56% higher transmission
rates, for τ = 0.9, ν = 0.8 and τ = 0.8, ν = 0.8, respectively,
albeit at the cost of about 1.1 dB and 2.6 dB Eb/N0 losses at
BER = 10−6. Moreover, for a given pulse shaping filter and a
fixed BE, we can significantly improve the BER performance
of MFTN signaling by optimizing τ and ν. Observe that
MFTN systems having τ = 1.0, ν = 0.72, τ = 0.9, ν = 0.8,
τ = 0.8, ν = 0.9 and τ = 0.72, ν = 1.0 achieve the same BE,
while with τ = 0.9, ν = 0.8 they achieve better BER than
other packing factors. This is because MFTN systems having
τ = 0.9, ν = 0.8 suffer from a lower inherent interference
energy5 than those of other cases, when we employ an RRC
shaping filter, as shown in Fig. 6(a).

To clarify the relationship between the packing factor com-
binations and the pulse shaping filter in Fig. 6, we evaluate
the inherent interference energy EI and BE η of MFTN
systems employing RRC and Gaussian pulses6 with different
packing factor combinations. Observe that the effects of τ
and ν on EI depend on the choice pulse shaping filters for
a fixed BE. For an RRC pulse, the reduction of τ leads
to higher interference energy than that of ν, when we keep
the BE constant. For example, the MFTN systems having
τ = 0.9, ν = 0.8 and τ = 0.72, ν = 1.0 have the same BE,
while the interference energy for τ = 0.72, ν = 1.0 is much
higher than that for τ = 0.9, ν = 0.8. The corresponding BER
performance is depicted in Fig. 5, where the MFTN system
with τ = 0.72, ν = 1.0 suffers from an additional 6.5 dB
Eb/N0 erosion at BER = 10−5 compared to its counterpart
using τ = 0.9, ν = 0.8. However, for a Gaussian pulse, the
negative influence of ν on EI is more grave than that of
τ . The interference energy remains nearly constant within a
certain range of τ . Then, we obtain a higher BE at a negligible
BER performance degradation via reducing τ in the case of
Gaussian pulses. It is concluded that we can improve the BE
by jointly optimizing τ and ν, instead of only reducing either
τ or ν.

In Fig. 7 and Fig. 8, we compare both the BER and NMSE
performance of the proposed JCEE algorithms to those of the
LS-MMSE method. In the following simulations, we consider
MFTN systems in frequency-selective fading channels at a
velocity of 270 km/h, where the corresponding Doppler spread
is fd = 500 Hz. The BER and NMSE performance of

4The BE of MFTN signaling can be computed as η = Rc log2M/[τν(1+
β)] bits/s/Hz [1].

5In [27], the inherent interference energy of MFTN signaling is defined as
EI = Es

∑
n

∑
k |Ap(nτT, kνF )|2 − 1, where Es denotes the energy of

the transmitted symbols.
6The Gaussian pulse is expressed as pG(t) = (2/ρ)1/4e−πt

2/ρ with ρ =
0.3.
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Fig. 6: Interference energy and BE of MFTN systems with
various pulse shaping filters and packing factors.

their Nyquist-based counterpart with unknown CSI are also
included as benchmarks. For channel estimation, the proposed
PBiGAMP-based algorithms obtain more accurate channel
estimates than LS-MMSE, since the former exploits both
the pilots and the data symbols for improving the accuracy
of channel estimation. However, superior channel estimation
cannot always guarantee better BER performance, especially
in severe inherent interference scenarios. Compared to the
Nyquist-based counterpart, our MFTN systems employing the
proposed algorithms obtain the similar NMSE performance,
but still suffer from a non-negligible BER performance loss.
For example, MFTN signaling employing the proposed R-
PBiGAMP-FDJCEE algorithm can increase the transmission
rate by up to 39%, at the cost of about 1.2 dB Eb/N0 loss at
BER = 10−6. That means that the inherent 2D interferences
induced by time-frequency packing are more crucial than
those imposed by channels in this case. For equalization,
as an efficient approximation of MMSE equalization [17],
PBiGAMP-FDJCEE can only approaches the LS-MMSE algo-
rithm in terms of BER, while the complexity of PBiGAMP-
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FDJCEE is much smaller than that of LS-MMSE as shown
in TABLE III. Note that the proposed R-PBiGAMP-FDJCEE
can still improve the BER performance, compared to LS-
MMSE. In Fig. 7, we observe about 1.0 dB Eb/N0 gain
at BER = 10−5. The performance gain of R-PBiGAMP-
FDJCEE arises from the efficient average approximations of
νxq (t) and νsq (t) in (33)-(40), which improves the robustness of
the ill-conditioned matrices to small perturbations. Moreover,
as shown in Fig. 8, the NMSE performance of different
algorithms tends to remain constant upon increasing Eb/N0.

Considering that the channel coefficients are assumed to
be constant in each segment, the segment length of Lm is
crucial for its performance versus computational complexity.
In Fig. 9, we investigate the impact of Lm on the BER of the
proposed R-PBiGAMP-FDJCEE algorithm. It is observed that
BER degrades upon increasing Lm for a fixed Doppler spread.
When the segment length increases to Lm = 126, a significant
BER loss can be observed due to the inaccurate quasi-static
channel assumption. By contrast, we can improve the BER
of the proposed R-PBiGAMP-FDJCEE algorithm by reducing
the segment length, Lm, at the cost of increased computational
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Fig. 9: BER performance of the proposed R-PBiGAMP-
FDJCEE algorithm employing various length of segment for
MFTN systems with τ = 0.9, ν = 0.8.
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complexity. Compared to the cases with Lm = 63 and
Lm = 84, R-PBiGAMP-FDJCEE using Lm = 42 obtains an
additional 1.2 dB and 2.7 dB Eb/N0 gains at BER = 10−6

in Fig. 9. When we further reduce the segment length, its
BER performance gain becomes marginal, while the number
of segments Lq significantly increases. Hence, Lm = 42 is an
appropriate option for R-PBiGAMP-FDJCEE in the MFTN
system considered. In practice, we can adjust the segment
length of Lm to strike a performance versus complexity trade-
off.

In Fig. 10, we evaluate the BER performance of the pro-
posed R-PBiGAMP-FDJCEE algorithm with various combi-
nations of Tin and Tex at Eb/N0 = 7 dB, where the total
number of iterations T = Tin · Tex. It is seen that, given Tin,
BER performance is improved with the increase of Tex. On the
contrary, given Tex, e.g., Tex = 2 and Tex = 10, increasing Tin

does not improve the BER performance. Moreover, when we
fix the total number of iterations T , for Tin > 10, increasing
Tin (or decreasing Tex) deteriorates the BER performance.
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Hence, we can conclude that the external iterations between
the equalizer and the channel decoder are much more crucial
than the internal iterations of LDPC decoder. Observe that
Tin = 5 is appropriate for the studied MFTN systems. In fact,
increasing Tin may even worsen the BER performance. For
Tex = 40, there is a significant BER loss when Tin varies from
5 to 10. This is because the belief output from LDPC decoder
could be overconfident when Tin becomes large. Hence, Tin

and Tex should be optimized to compromise between the BER
performance and the computational complexity.

VI. CONCLUSIONS

In this paper, we proposed a low-complexity PBiGAMP-
based iterative message passing receiver for MFTN systems
operating in frequency-selective fading channels. By inserting
a cyclic postfix in the FD and truncating the severe 2D
interferences, we are able to construct a segment-based FD
received signal model in the form of a block circulant linear
transition matrix. It was shown that the proposed model reduce
the condition number of the ill-conditioned linear transition
matrices, which can potentially lead to improved BER perfor-
mance. Building on this model, we proposed the PBiGAMP-
based parametric JCEE algorithm for simultaneously esti-
mating the modulated symbols and channel coefficients. For
improving the robustness of the proposed JCEE algorithm
to small perturbations, we further developed a refined JCEE
algorithm by inserting a series of scaled identity matrices.
The proposed JCEE algorithms can be readily decomposed
into two FDE algorithms when the CSI is perfectly known.
The simulation results verified the benefits of the proposed
PBiGAMP-based receiver for MFTN systems operating in
frequency-selective fading channels. Compared to its Nyquist-
signaling counterpart, MFTN systems employing the proposed
refined algorithms achieve about 39% higher transmission rate
at the cost of 1.2 dB BER Eb/N0 loss. Moreover, our work
provides a theoretical reference for solving the challenging
channel estimation problem of other emerging systems [28]–
[30].

APPENDIX A
DERIVATIONS OF (11)

According to Theorem 5.6.2 in [21], a block circulant matrix
A ∈ BCm,n having the the first n rows of [A1 A2 · · · Am]
satisfies A =

∑m−1
k=0 (Πk

m ⊗Ak+1), where Πk
m is an m×m

circulant permutation matrix with the first row vector λΠk
m

=
[0Tk 1 0T(m−k−1)], Ak is an n × n matrix. Hence, the 2D
interference matrix Ḡl ∈ BCK,Ns can be expressed as

Ḡl =

2KI∑
k=0

(
Πk
K ⊗D(ḡKI−k,l)

)
. (41)

Since Πk
K is a circulant matrix, we can diagonalize it using

the FFT operation. Equation (41) can be rewritten as

Ḡl =

2KI∑
k=0

(
FHKΛΠk

K
FK
)
⊗ IHNI

(
INID(ḡKI−k,l)I

H
NI

)
INI (42)

= (FK ⊗ INI)
H

[2KI∑
k=0

ΛΠk
K
⊗D(ḡKI−k,l)

]
(FK ⊗ INI)

= (FK ⊗ INI)
HΛḠl

(FK ⊗ INI),

where ΛΠk
K

= D(
√
KFHKλ

H
Πk

m
) and ΛḠl

=
∑2KI
k=0 ΛΠk

K
⊗

D(ḡKI−k,l) are diagonal matrices having different sizes.

APPENDIX B
DERIVATIONS OF THE PROBABILITY DISTRIBUTION OF THE

COLORED NOISE IN (12)

In (12), the colored noise term is given by

v̆q = (FK ⊗ FNs)(z
tail
q−1 + zhead

q+1 + ωq) (43)

= (FK⊗FNs)
[
(IK⊗Ξt)zq−1+(IK⊗Ξh)zq+1 + ωq

]
,

where zq denotes the noiseless measurement vector in the q-th
segment and ωq contains the zero mean colored noise samples.
Hence, the mean vector of the colored noise v̆q is derived as

zvq = (FK⊗FNs)
[
(IK⊗Ξt)ẑq−1+(IK⊗Ξh)ẑq+1

]
, (44)

where the estimated noiseless measurement vector is ẑq =

(FK ⊗FNs)
H
∑Lh−1
l=0 ĥq,lΛq,lF̈KNs x̂q , and x̂q represents the

transmitted symbol estimates.
Moreover, the covariance matrix of the FD colored noise

imposed by a non-orthogonal matched filter is expressed as

R = (FK⊗FNs)Rω(FK⊗FNs)
H (45)

= (FK⊗FNs)(R̈ω − Ṙω)(FK⊗FNs)
H ,

where Rω is the covariance matrix of the colored
noise in the TD, R̈ω is a block circulant matrix, its
first Ns rows is [Θ̈−KI · · · Θ̈KI 0Ns×(K−2KI−1)Ns ],
Θ̈k is an Ns × Ns circulant matrix having the first
row vector λ̈Θ̈k

= [Ap(0, k), · · · , Ap(NIτT0, k),
0, · · · , 0, Ap(−NIτT0, k), · · · , Ap(−τT0, k)]. Similarly,
the first Ns rows of the block circulant matrix Ṙω is
[Θ̇−KI · · · Θ̇KI 0Ns×(K−2KI−1)Ns ], where Θ̇k is an
Ns × Ns Toeplitz matrix having the first row vector
λ̇Θ̇k

= [0, · · · , 0, Ap(−NIτT0, k), · · · , Ap(−τT0, k)]

and the first column vector ζ̇Θ̇k
= [0, · · · , 0,

Ap(NIτT0, k), · · · , Ap(τT0, k)]T .
According to the properties of block circulant matrices in

[21], we can obtain the block diagonal matrices via 2D FFT
operations. As a special case, the block circulant matrices
associated with circulant matrices can be diagonalized by a
2D FFT. Hence, (45) is rewritten as

R = Λ̈− Υ̇ ≈ Λ̈ω −D(Υ̇), (46)

where Λ̈ = (FK ⊗ FNs)R̈ω(FK ⊗ FNs)
H is a diagonal

matrix, Υ̇ = (FK⊗FNs)Ṙω(FK⊗FNs)
H is a block diagonal

matrix. Moreover, the approximation error can be controlled
by appropriately selecting the packing factor in the TD [15].
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Considering that the variances of the transmitted sym-
bols are averaged in the proposed PBiGAMP-based iterative
message passing receiver, the average variance of the 2D
interferences imposed by the adjacent segments is formulated
as

νvq =
2KI + 1

Ns

[Lh−1∑
l=0

l|ĥq−1,l|2νxq−1 (47)

+

Lh−1∑
l=0

(Lh − 1− l)|ĥq+1,l|2νxq+1

]
.

According to the above derivations, the covariance matrix
of v̆q is expressed as

Λv
q = νvq IKNs + R. (48)
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