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Error-and-Erasure Decoding of Product and

Staircase Codes
Lukas Rapp and Laurent Schmalen, Senior Member, IEEE

Abstract—High-rate product codes (PCs) and staircase codes
(SCs) are ubiquitous codes in high-speed optical communication
achieving near-capacity performance on the binary symmetric
channel. Their success is mostly due to very efficient iterative
decoding algorithms that require very little complexity. In this
paper, we extend the density evolution (DE) analysis for PCs
and SCs to a channel with ternary output and ternary message
passing, where the third symbol marks an erasure. We investigate
the performance of a standard error-and-erasure decoder and of
its simplification using DE. The proposed analysis can be used
to find component code configurations and quantizer levels for
the channel output. We also show how the use of even-weight
BCH subcodes as component codes can improve the decoding
performance at high rates. The DE results are verified by Monte-
Carlo simulations, which show that additional coding gains of
up to 0.6 dB are possible by ternary decoding, at only a small
additional increase in complexity compared to traditional binary
message passing.

Index Terms—Channel coding, product codes, iterative decod-
ing

I. INTRODUCTION

The implementation of high-speed communications is a

challenging task. Commercially available transceivers for op-

tical communications operate at throughputs of 800Gbit/s and

beyond [1]. In order to maximize throughput and transmission

reach, powerful forward error correction (FEC) is necessary.

Modern FEC schemes require net coding gains of 11 dB and

more at residual bit error rates (BERs) of 10−15, for code rates

larger than 0.8 [2]. For high-performance applications, soft-

decision decoding (SDD) of low-density parity-check (LDPC)

codes is now state-of-the-art in fiber-optic communication

(see, e.g., [2] for further references and [1] for a recent

commercial example). The adoption of SDD in fiber-optic

communications represented a breakthrough with respect to

the classical schemes based on algebraic codes (BCH and

Reed-Solomon codes) and hard-decision decoding. However,

the implementation of SDD schemes for popular codes still

presents several challenges at very high data rates, in partic-

ular due to large internal decoder data flows [3]. Recently,
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optimized codes for SDD with reduced decoder dataflows

were proposed [4], but these schemes require an additional

low-complexity outer code (the latter being subject of the

investigations in this paper).

Some ubiquitous applications like data-center inter- and

intraconnects require an extremely low transceiver complexity,

which leads to heavy power consumption constraints on the

transceiver circuits that often prohibit the use of SDD. The

lower complexity of typical hard-decision decoding (HDD)

circuits motivates their use for applications where complexity

and throughput is a concern [3]. Powerful code constructions

for HDD date back to the 1950s, when Elias introduced

product codes [5]. In the recent years, the introduction of

new code constructions, such as staircase codes [3] and related

schemes [6], [7], and the link between these constructions and

codes-on-graphs, has led to a renewed interest in HDD for

high-speed communications.

HDD unfortunately entails an unavoidable capacity loss

stemming from the hard decision at the channel output,

reducing the achievable coding gains by 1-2 dB compared to

SDD. Recent work has focused on improving the performance

of modern codes for HDD by employing soft information

from the channel, see, e.g., [2], [8], [9], [10] and references

therein. Most of these schemes assume that the decoder has

access to the full soft information (e.g., the channel output

after transmission over a binary-input additive white Gaussian

noise (AWGN) channel model) and internally use binary or

ternary message passing [11], [12] and possibly error-and-

erasure decoding [13], [14], [15] of the component codes.

However, in many high-speed optical communication systems,

in particular those optimized for low cost and short reach,

the use of a high-precision analog-to-digital converter (ADC)

is prohibitive as the power consumption of an ADC scales

approximately in proportion to its bit resolution [16] and often

simple 1-bit ADCs are used [17].

A promising approach for reducing the capacity loss while

still keeping both the receiver and decoding complexity low

is error-and-erasure decoding of linear codes using a 3-level

(ternary) ADC at the channel output. For instance, error-and-

erasure decoding can be implemented by just two usual binary

decodings and a little decision logic [18]. While error-and-

erasure decoding for algebraic and product codes [19] is well

understood, its application to modern codes for high-speed

communications is largely unexplored. The ternary output

increases the capacity of the binary-output channel and can

be used to improve decoding of, e.g., LDPC codes [20], [12].

Recently, it was shown using both simulations and a stall

pattern analysis that error-and-erasure decoding for product or

http://arxiv.org/abs/2103.05716v4
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staircase codes can improve their decoding performance [21],

[22]. A rigorous analysis including miscorrections and allow-

ing easy parameter optimization was however lacking.

In this paper, we investigate the potential of ternary message

passing with ternary channel outputs for high-rate product and

staircase codes with BCH component codes. Our investigation

extends the density evolution analysis of [23] to ternary

channel outputs and ternary message passing for various

decoding algorithms. This analysis fully takes into account

possible miscorrections. One goal of the analysis is to find

the quantizer levels that maximize the decoding performance.

Interestingly, we find that the optimal quantizer, for which the

noise threshold gets minimal, is significantly different from the

one maximizing the capacity and that the gains of the noise

threshold that can be obtained are less than the maximum

achievable capacity gain.

II. BACKGROUND

A. Product & Staircase Codes

1) Component Codes: In this paper, C denotes a linear

(n, k, t) component code of a product or staircase code that

is decoded by a t error-correcting bounded distance decoder

(BDD), as described in Sec. II-B2.

For product codes, C is either a (2ν − 1, k, t) binary cyclic

BCH code, CBCH, or its (2ν − 1, k − 1, t) cyclic even-weight

subcode, CBCH-Ev := {c ∈ CBCH : w(c) = 2j}. Although the

minimum distance of BCH codes is in general not known, a

lower bound is given by the design distance, ddes(t), which is

2t+1 for a BCH code and 2t+2 for its even-weight subcode.

For staircase codes, we use shortened BCH codes or short-

ened even-weight subcodes, i.e. we take from an (n, k, t) code

only the codewords c that begin with c1 = 0 and delete the

first coordinate [24, Ch. 1. §9]. By doing so, we obtain an

(n−1, k−1, t) linear code. The ddes(t) is 2t+1 for a shortened

BCH code and 2t+ 2 for a shortened even-weight subcode.

2) Product Code: A product code of an (n, k, t) component

code C is a set of binary n×n matrices whose rows and

columns are codewords of C, resulting in a code of rate

r =
(
k
n

)2
. To decode a product code, the rows and columns are

alternately decoded by the component decoder DC. A product

code can be interpreted as a generalized LDPC (GLDPC) code,

hence, its performance under iterative decoding can be esti-

mated through the average performance of a proper GLDPC

ensemble. This makes an analysis via density evolution (DE)

possible as described in [23]. The adequate GLDPC ensemble

consists of the Tanner graphs with m constraint nodes (CNs)

of degree n and N = nm
2 variable nodes (VNs) of degree 2.

In the following, the ensemble is denoted as (C,m) GLDPC

ensemble.

The CNs of the Tanner graphs are defined by C, i.e., the

binary values of the VNs connected to a CN must form a valid

codeword of C. To construct a random graph of this ensemble,

the outgoing edges of the VNs are connected to the sockets

of the CNs via a random permutation [23].

3) Staircase Code: A staircase code of an (n, k, t) com-

ponent code C is a chain of L binary matrices of size
n
2×

n
2 . Its rate is r = 2 k

n
− 1 [3]. Similar to the product

Fig. 1. Random element of the (C, m,L) SC-GLDPC ensemble. πi and π′

i

are random permutations of the edges. Image based on [23].

code, we consider the (C,m, L) spatially-coupled GLDPC

(SC-GLDPC) ensemble for the analysis. Figure 1 shows the

construction of a random Tanner graph of this ensemble. In

the ensemble, the VNs are divided into L groups and the CNs

into L + 1 groups. Each group of VNs contains N = nm
2

nodes of degree 2 and each group of CNs contains m nodes

of degree n so that each group of VNs or CNs has 2N edges.

To construct a random Tanner graph, the 2N edges of each

group are divided via a uniform random permutation πi and

π′
i, respectively, into two sets of N edges. The first set of edges

of VN group i ∈ {1, . . . , L} is connected to a set of edges of

CN group i and the second set is connected to a set of edges

of CN group i+ 1. The remaining edges of CN group 1 and

L+1 are connected to VNs with the fixed value 0, which can

be shortened.

4) GLDPC Decoding: The GLDPC codes of both ensem-

bles are decoded via the same message passing algorithm,

which we briefly explain here. The CNs and VNs of the

Tanner graph are indexed. Let σj(k) be the index of the

VN that is connected to socket k ∈ {1, . . . , n} of the j-th

CN. During message passing, the messages belonging to a

set S are passed along the edges between VNs and CNs. For

HDD, the messages are from S = {0, 1} and for the error-

and-erasure decoding introduced below, S = {0, ?, 1}. Let

ν
(ℓ)
i,j ∈ S be the message that is passed from the i-th VN to

the j-th CN in the ℓ-th iteration and let ν̃
(ℓ)
i,j be the message

that is passed back from CN j to VN i in the ℓ-th iteration. To

decode a received word r = (r1, r2, . . .), where ri ∈ S is the

received channel value of the i-th VN, the following steps are

performed: During initialization, the received channel value,

ri, of each VN i is sent to its two connected CNs, j, j′, where

we set ν
(1)
i,j = ν

(1)
i,j′ = ri. Then, several decoding iterations

are performed consisting of a CN update followed by a VN

update.

In the ℓ-th CN update, each CN j receives the incoming

messages (ν
(ℓ)
σj(1),j

, . . . , ν
(ℓ)
σj(n),j

). To calculate the message

that is sent back to the VN i, σj(k) connected at the k-th

position of CN j, two different approaches are considered:

Intrinsic message passing (IMP) [3] and extrinsic message

passing (EMP) [23]. For IMP, the incoming messages are
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combined to the word

y
(ℓ)
j,IMP := (ν

(ℓ)
σj(1),j

, . . . , ν
(ℓ)
σj(n),j

)

and are decoded by the component decoder DC. Then, the

k-th symbol of the result is sent back to VN i: ν̃
(ℓ)
i,j =

[
DC(y

(ℓ)
j,IMP)

]

k
. For EMP, the k-th incoming message is re-

placed by the channel value ri resulting in the extrinsic word

y
(ℓ)
j,EMP,k

:= (ν
(ℓ)
σj(1),j

, . . . , ν
(ℓ)
σj(k−1),j , ri, ν

(ℓ)
σj(k+1),j , . . . ).

Then, the word is decoded and the k-th symbol of the result

is sent back to VN i: ν̃
(ℓ)
i,j =

[
DC(y

(ℓ)
j,EMP,k)

]

k
.

In the VN update, each VN i receives two messages from its

connected CNs j, j′ and forwards to each CN the message that

it has received from the respective other CN: ν
(ℓ+1)
i,j′ = ν̃

(ℓ)
i,j ,

ν
(ℓ+1)
i,j = ν̃

(ℓ)
i,j′ .

At the end of the message passing, each VN has two

incoming messages to determine the decoding result. To make

a decision, one of the incoming messages is chosen randomly.

If the message is erased, it is replaced by a random binary

value.1

5) Remarks: In practice, a sliding window is used to decode

a staircase code. In most cases, to the best of our knowledge,

IMP is used due to the lower memory requirements. This

window slides over the binary matrices and decoding is

only performed for matrices in the window [3]. We neglect

windowed decoding in our analysis and our results can be

seen as an upper bound on the performance under windowed

decoding.

Note that EMP requires n component decodings per CN

update whereas IMP requires only one. However, for EMP

decoding without erasures, there exist an algorithm that re-

quires only one decoding [23]. Hence, the complexity does not

increase by the factor n because CN updates without erasures

can be carried out with this algorithm and the number of

erasures is normally very low after only a few iterations.

Further note that we restrict our analysis to the GLDPC

and SC-GLDPC code ensembles. Product and staircase codes

are not necessarily typical code realizations of these ensem-

bles, hence the analysis may not directly apply. Numerical

investigations show however good agreements between the

ensemble analysis and the decoding performance of product

and staircase codes [2, Sec. 7.5.9], [8]. The behavior of more

deterministic code constructions has been analyzed in [25]

and [26] for the binary erasure channel (using two different

approaches), but the authors acknowledge that their approach

cannot be easily extended towards more general channels

without ignoring miscorrections.

B. Error-and-Erasure Decoding

1) Channel: For the following analysis, we assume that

the GLDPC codewords x are transmitted over a binary-input

additive white Gaussian noise (BI-AWGN) channel which

1Note that this decision rule is not optimal. In practical decoders, one would
only choose randomly if both messages are erased. We use the proposed rule
because it allows an easy calculation of the final bit error probability in the
DE (see (7)).

xi ri

0

1

0

?

1

δc

ǫc

1− δc − ǫc

δc

ǫc

1− δc − ǫc

Fig. 2. Discrete channel model

generates r̃i := (−1)xi + ni, where ni is an AWGN sample

with noise variance σ2 = (2Es/N0)
−1. To reduce the capacity

loss due to HDD, error-and-erasure decoding uses a ternary

channel output and message alphabet {0, ?, 1}. To determine

the discrete channel outputs ri, the values r̃i ∈ [−T,+T ]
are declared as erasure “?”. Values outside this interval are

mapped to 0 and 1 by the usual HDD rule, i.e. ri = 1 for

r̃i < −T and ri = 0 for r̃i > +T .

This channel is abstracted through the discrete, memory-

less channel model shown in Fig. 2. The channel transition

probabilities are given by

δc = Q

(√

2
Es

N0
(T + 1)

)

,

ǫc = 1−Q

(√

2
Es

N0
(T − 1)

)

−Q

(√

2
Es

N0
(T + 1)

)

,

(1)

where δc is the probability for an error and ǫc for an erasure.

Since the channel is completely described through Es/N0 and

T , it is denoted by (Es/N0, T ).
It is easy to see that for a fixed T , the capacity of this

channel is

C

(
Es

N0
, T

)

= cc log2

(
2cc

1− ǫc

)

+ δc log2

(
2δc

1− ǫc

)

,

where cc := 1−δc−ǫc is the probability of correctly receiving

a symbol.

Optimization of C(Es/N0, T ) with respect to T results in

a capacity gain for this channel compared to HDD (T = 0).

2) Decoder: The decoder of the introduced component

codes C is a bounded distance decoder (BDD). Let

St(c) := {y ∈ {0, 1}n : d(y, c) ≤ t}

be the Hamming sphere of radius t around a codeword c ∈
C that consists of all words y ∈ {0, 1}n whose Hamming

distance from c is less than or equal to t. For a given word

y ∈ {0, 1}n, a t error-correcting BDD selects the codeword

c ∈ C for which y ∈ St(c) holds. Otherwise, a decoding

failure is declared:

DBDD(y) :=

{

c if ∃c ∈ C such that y ∈ St(c)

fail otherwise.

Since the channel output alphabet is {0, ?, 1}, a BDD cannot

be used. Hence, we use the following error-and-erasure de-

coder (EaED), which is a modification of [18, Sec. 3.8.1]. Let

E(y) = |{i ∈ {1, . . . , n} : yi = ?}| be the number of erasures

of the word y and let d∼E(y)(a, b) be the Hamming distance
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between the words a and b at the unerased coordinates of

y. The EaED performs the following steps to decode a word

y ∈ {0, ?, 1}n to the result w:

1) If E(y) ≥ ddes(t), w = y. Otherwise, continue with 2).

2) Generate a random vector p ∈ {0, 1}E(y) and place the

values of p at the erased coordinates of y, yielding y1.

3) Generate the inverted vector of p, denoted by p, by

inverting every bit of p and placing the values of p at

the erased coordinates of y, yielding y2.

4) Decode yi, i ∈ {1, 2}, using the BDD: wi = DBDD(yi)
5) Obtain the decoding result, w, as

Case 1: w1 = w2 = fail: w = y

Case 2: wi ∈ C for exactly one wi: w = wi

Case 3: w1,w2 ∈ C: Output the codeword wi for

which d∼E(y)(y,wi) is smallest. If both distances are

equal, one codeword wi is chosen at random.

Remark. In practical decoders, p is usually the all-zero vector.

However, this is not suitable for our analysis, based on the

all-zero codeword, because the decoder preferably decodes to

the all-zero codeword leading to a falsified too good analysis

result. The use of random vectors in step 2), akin to the

channel adapters of [27], solves this issue which we prove

in Theorem 2.

The following theorem, based on [18, Sec. 3.8.1], estimates

the correction capability of the EaED:

Theorem 1. For the defined component codes, the EaED will

correct a word with D errors and E erasures for certain if

2D + E < ddes(t). (2)

Proof. See Appendix A.

In addition, we consider a simplification of the EaED. For

this, we define the Hamming spheres in {0, ?, 1}n as

S3
t (c) = {y ∈ {0, ?, 1}n : 2 d∼E(y)(y, c) + E(y) < ddes(t)}.

The extended EaED (EaED+) is then given by

DEaED+(y) :=

{

w := DEaED(y) if w ∈ C and y ∈ S3
t (w)

y otherwise.

Because of Theorem 1 and the linearity of C, the EaED

decodes deterministically all y ∈ S3
t (c) to a codeword c.

Hence, the EaED+ decodes a word y to a codeword c if and

only if y ∈ S3
t (c). This leads to an alternative definition of

the EaED+, which is used in the following analysis:

DEaED+(y) =

{

c if ∃c ∈ C such that y ∈ S3
t (c)

y otherwise.

Remark. In contrast to the EaED+, the EaED will also decode

error patterns outside the Hamming spheres with a certain

probability. This allows the correction of more errors but there

will be also more miscorrection for patterns with too many

errors. We will see later decoding configuration in which each

decoder outperforms the other one.

III. DENSITY EVOLUTION

In the following, we assume that the all-zero codeword is

transmitted, which is justified by the following theorem:

Theorem 2. The performance of the GLDPC decoder is

independent of the transmitted codeword for all introduced

component decoders.

Proof. See Appendix B.

To analyze the decoding performance of a product or

staircase code, we analyze the average performance of the

corresponding GLDPC ensemble by DE. For the analysis, we

assume that the codewords are transmitted over a channel

(Es/N0, T ) and EMP is used. χc := (δc, ǫc) denotes the

channel transition probabilities, which are calculated using (1).

A. GLDPC Ensemble

As shown in [23], the (C,m) GLDPC ensemble can be

analyzed by DE if the limit m → ∞ is considered.2 Let

χ
(ℓ)
m := (δ

(ℓ)
m , ǫ

(ℓ)
m ) be the error and erasure probability of

the VN-to-CN messages ν
(ℓ)
i,j in the ℓ-th iteration. In the first

iteration, we have χ
(1)
m = χc because the VN-to-CN messages

are initialized with the received channel values.

To derive the DE recursion, we randomly select a VN i,
which is connected to a CN j at position k = σ−1

j (i) and to

a second CN j′. Now, we consider the message ν̃
(ℓ)
i,j that is

passed from CN j to VN i in the ℓ-th iteration. To compute

this message, CN j constructs e := y
(ℓ)
j,EMP,k. By definition, ek

is replaced by ri, hence, the error and erasure probabilities of

ek are χc. The other positions of e are VN-to-CN messages,

which are wrong or erased with the probabilities χ
(ℓ)
m . We

will call these positions “∼k” with ∼k ⊂ {1, . . . , n} in the

following. After construction, e is decoded to w := DC(e),
and the k-th symbol wk is sent to VN i and forwarded to CN

j′: ν
(ℓ+1)
i,j′ = ν̃

(ℓ)
i,j = wk. This leads to the DE recursion

χ(ℓ+1)
m = χrec(χ

(ℓ)
m ) := (δrec(χ

(ℓ)
m ), ǫrec(χ

(ℓ)
m ))

= (P(wk = 1),P(wk = ?)),
(3)

which is a system of two coupled recursive functions.

Next, we decompose these probabilities. We define the event

Error(D′, E′) := {e has D′ 1s and E′ ?s in ∼k}

with the probability

f(D′, E′,χ(ℓ)
m ) := P (Error(D′, E′)) =

(
n− 1

D′, E′

)(

δ(ℓ)m

)D′ (

ǫ(ℓ)m

)E′ (

1− δ(ℓ)m − ǫ(ℓ)m

)n−1−D′−E′

,

where
(

n−1
D′,E′

)
:= (n−1)!

D′!E′!(n−1−D′−E′)! is the multinomial

coefficient counting the ways of distributing D′ 1s and E′

?s in n − 1 positions. Furthermore, we define the decoder

transition probabilities

Tα→β (D
′, E′) := P (wk = β | ek = α, Error(D′, E′))

2It is not immediately obvious that the proposed EMP allows DE. The
explanation for this is given in Appendix C.
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which depend on the respective component decoder. We will

determine these probabilities in Sec. III-C. Applying the law

of total probability two times to P(wk = 1) results in

δrec(χ
(ℓ)
m ) = P(wk = 1) =

n−1∑

D′=0

n−1−D′

∑

E′=0

f(D′, E′,χ(ℓ)
m )

(

δcT1→1 (D
′, E′) + ǫcT?→1 (D

′, E′) + ccT0→1 (D
′, E′)

)

,

where cc := 1 − δc − ǫc. A similar decomposition is possible

for P(wk = ?) leading to

ǫrec(χ
(ℓ)
m ) =

n−1∑

D′=0

n−1−D′

∑

E′=0

f(D′, E′,χ(ℓ)
m )ǫcT?→? (D

′, E′) ,

where we used T0→? (D
′, E′) = T1→? (D

′, E′) = 0 for all

D′ and E′ because these transitions do not occur with the

selected decoders.

Remark. With some adjustments, it is possible to analyze

codes with different component codes. For instance, for a

product code with different code types for rows and columns,

two different DE recursions could be applied one after the

other. However, note that the degree of the VNs in the

ensemble should still be 2 to enable the simplified VN update.

B. SC-GLDPC Ensemble

To take the structure of the SC-GLDPC ensemble into

account, error and erasure probabilities are defined for the

messages of each VN or CN group corresponding to different

edge types. Let χ
(ℓ)
m,i = (δ

(ℓ)
m,i, ǫ

(ℓ)
m,i) be the average error and

erasure probability of the messages that are sent in the ℓ-th
iteration from the VNs of group i to the CNs. The values of

the VNs in group 0 and L+ 1 are fixed and therefore known

at the decoder. Hence, their messages are always correct:

χ
(ℓ)
m,0 = χ

(ℓ)
m,L+1 = (0, 0). The average error and erasure

probability χ̂
(ℓ)
m,i of the messages sent to the CNs of group

i is χ̂
(ℓ)
m,i = 1

2 (χ
(ℓ)
m,i−1 + χ

(ℓ)
m,i) because half of the messages

are from VN group i − 1 and the other half are from VN

group i (see Fig. 1). At the CNs, the CN update is performed

and the CNs of group i return messages with the probabilities

χrec

(
χ̂

(ℓ)
m,i

)
to the VNs. χrec denotes the DE recursion of the

GLDPC ensemble as defined in (3).

Then, at VN group i, the probabilities χ
(ℓ+1)
m,i are derived by

averaging over the probabilities of the messages which are sent

to this group in the last iteration. This leads to the recursion

χ
(ℓ+1)
m,i =

1

2

(
χrec

(
χ̂

(ℓ)
m,i

)
+ χrec

(
χ̂

(ℓ)
m,i+1

))
(4)

=
1

2

(

χrec

(
χ

(ℓ)
m,i−1 + χ

(ℓ)
m,i

2

)

+ χrec

(
χ

(ℓ)
m,i + χ

(ℓ)
m,i+1

2

))

,

for i = 1, . . . , L.

C. Calculation of the Decoder Transition Probabilities

In this section, we calculate Tα→β (D
′, E′) for both de-

coders. For this, we only consider Tα→β with α 6= β. The

required transitions with α = β are given by

T1→1 (D
′, E′) = 1− T1→0 (D

′, E′)− T1→? (D
′, E′) ,

T?→? (D
′, E′) = 1− T?→0 (D

′, E′)− T?→1 (D
′, E′) .

Since the transition (1 → ?) does not happen, we only need

to compute T0→1,T?→1,T1→0 and T?→0.

For E := E′ + 1{α=?} ≥ ddes(t), with 1{α=?} denoting

the indicator function returning 1 if the condition {α = ?}
is true and 0 otherwise, both decoders return the input word

unchanged. This results in Tα→β (D
′, E′) = 0 for α 6= β.

Hence, in the following, only the cases with E < ddes(t) are

considered.

1) Weight Distributions: For the following calculations, we

require the weight distributions of the component code C. Let

A(b1) denote the number of codewords of weight b1 in C. For

t = 2, 3, we calculate the weight distributions of the BCH

codes by the MacWilliams identity [18, Theorem 3.6] from

the distributions of the corresponding dual codes, given in [18,

Sec. 6.1.3]. For BCH codes with an unknown weight distribu-

tion, we use the asymptotically-tight binomial approximation

A(b1) ≈







2−νt
(
n
b1

)
if 2t+ 1 ≤ b1 ≤ n− (2t+ 1)

1 if b1 = 0, b1 = n

0 otherwise,

where n = 2ν − 1 [23, Eq. (17)]. For large n, there exists

a bound on the relative error of the approximation of order

n−0.1 [28]. The weight distribution AEv(b1) of the even-weight

subcode of a BCH code with weight distribution A(b1) is

AEv(b1) = A(b1) if b1 is even and AEv(b1) = 0 otherwise.

The weight distribution ASh(b1) of a shortened code based on

an BCH code or even-weight subcode of weight distribution

A(b1) and length n+ 1 is

ASh(b1) =
n+ 1− b1

n+ 1
A(b1).

This follows directly from Theorem 3 below because BCH

codes and their even-weight subcodes are cyclic.

Besides the weight distribution, the biweight distribution

[24, Ch. 5. §6] is required.3 Its coefficients B(b11, b10, b01, b00)
count the number of ordered codeword pairs (c1, c2) ∈ C2

that have the configuration (b11, b10, b01, b00), which measures

the overlapping symbols of c1 and c2: An ordered pair

(c1, c2) has the configuration (b11, b10, b01, b00) if bfg = |{i ∈
{1, . . . , n} : c1,i = f, c2,i = g}| holds for all f, g ∈ {0, 1}.

For instance, a pair has the configuration (1, 0, n− 1, 0) if at

one positions both c1 and c2 have a 1 and at the other ones c1
has a 0 and c2 a 1. Obviously, we have b11+b10+b01+b00 = n
and B(b11, 0, 0, b00) = A(b11). To the best of our knowledge,

the biweight distribution of BCH codes is not known, however,

for our use case, the approximation described in Appendix D

yields good results.

In the following calculations, the symbol at position k ∈
{1, . . . , n} of a codeword is often fixed. In this case, Aα

k (b1)

3In [24], the biweight distribution is called “biweight enumerator”.
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Fig. 3. Schematic illustration of the variables in the derivation of the transition
probabilities of the EaED+: The symbols of e at ∼k are divided into groups
at the 1s of c (1-coordinates) and into groups at the 0s (0-coordinates).

denotes the number of codewords c1 ∈ C of weight b1
with c1,k = α and Bαβ

k (b11, b10, b01, b00) is the biweight

distribution with c1,k = α and c2,k = β (α, β ∈ {0, 1}). For

cyclic codes (e.g. BCH codes or their even-weight subcodes),

we have the following theorem.

Theorem 3. For a cyclic code of length n, we have

Aα
k (b1) =

bα
n
A(b1), (5)

Bαβ
k (b11, b10, b01, b00) =

bαβ
n

B(b11, b10, b01, b00). (6)

Proof. See Appendix E.

For shortened codes, which are not, in general, cyclic, we

use (5) and (6) as an approximation for Aα
k and Bαβ

k .

2) EaED+: We now derive Tα→β (D
′, E′) for the EaED+

based on [23] and [18, Sec. 3.7.2]. Consider a random exper-

iment in which an error pattern e is chosen from

Ω := {e ∈ {0, ?, 1}n : ek = α and Error(D′, E′)}

uniformly at random. Let M ⊂ Ω be the subset that con-

tains only the error patterns e whose decoding result w :=
DEaED+(e) fulfills wk = β. Then, the transition probability

can be calculated through Tα→β (D
′, E′) = |M|/|Ω|, where

|Ω| =
(

n−1
D′,E′

)
. Because of α 6= β, M contains exactly

these error patterns of Ω that are in S3
t (c) of a codeword

c ∈ Cβ
k
:= {c ∈ C : ck = β}.

To count these error patterns, we consider a codeword c ∈
Cβ
k and an error pattern e ∈ Ω, as shown in Fig. 3. For both,

the symbol at position k is fixed: ck = β and ek = α. At the

remaining positions ∼k, e has E′ erased positions. In addition,

let ∆′ of the unerased positions differ from c. We call these

positions “differences”. For e ∈ S3
t (c), ∆′ must be in the

range of

0 ≤ ∆′ ≤ ∆′
max :=

⌊
ddes(t)− E′ − 1− 1{α=?}

2

⌋

− 1{α6=?}.

Moreover, let e have b1? erasures and b10 differences at the

1-coordinates of c and the remaining E′ − b1? erasures and

∆′ − b10 differences at the 0-coordinates. Then, since e must

have D′ 1s at ∼k, the weight b1 of c at ∼k must be

b1 = b1(∆
′, b1?, b10) := D′ −∆′ + b1? + 2b10.

There are Aβ
k (b1 + 1{β=1}) codewords of Cβ

k of weight b1.

For each codeword, there are

Θ(∆′, b1?, b10, b1) :=

(
b1

b1?, b10

)(
n− 1− b1

∆′ − b10, E′ − b1?

)

,

different error patterns e whose erasures and differences at ∼k
are distributed as defined above by ∆′, b1? and b10.

By summing over all possible combinations of ∆′, b1? and

b10, we obtain

|M| =

∆′

max∑

∆′=0

∆′

∑

b10=0

E′

∑

b1?=0

(

Aβ
k

(
b1(∆

′, b1?, b10) + 1{β=1}

)

Θ
(
∆′, b1?, b10, b1(∆

′, b1?, b10)
))

,

where we use the convention that Aβ
k (b1) = 0 if b1 < 0

or b1 > n and
(

n
k1,k2

)
= 0 if n < 0, k1 < 0, k2 < 0 or

k1 + k2 > n. Note that no error pattern is counted twice

as all spheres S3
t (c) are disjoint, which is an implication of

Theorem 1.

3) EaED: The derivation of Tα→β (D
′, E′) of the EaED is

based on the same principle as the derivation for the EaED+

above. It is described in Appendix F.

D. Noise Threshold

We use the DE recursion of χ
(ℓ)
m to evaluate the performance

of the code over the channel (Es/N0, T ).

1) GLDPC Ensemble: We first focus on the GLDPC

ensemble. First, the channel transition probabilities χc of

(Es/N0, T ) are calculated via (1). Then, the recursion χrec

is applied ℓ times to χ
(1)
m = χc resulting in χ

(ℓ+1)
m =

(δ
(ℓ+1)
m , ǫ

(ℓ+1)
m ). The bit error probability after ℓ decoding

iterations is given by

ρ(ℓ) (Es/N0, T ) := δ(ℓ+1)
m +

1

2
ǫ(ℓ+1)

m . (7)

ρ(ℓ) is used to define the noise threshold

(
Es

N0

)∗

(T ) := inf

{
Es

N0
≥ 0 : lim

ℓ→∞
ρ(ℓ)

(
Es

N0
, T

)

= 0

}

(8)

as a performance measure of the channel [20]. For this

definition, we assume that ρ(ℓ) (Es/N0, T ) is a monotonically

decreasing function in Es/N0.

2) SC-GLDPC Ensemble: For the SC-GLDPC ensemble

only the first 32 groups of VNs are considered, to keep the

computational effort of the DE manageable. Their error and

erasure probabilities are initialized with χ
(1)
m,0 = (0, 0) and

χ
(1)
m,i = χc for i > 0. Then, recursion (4) is applied ℓ times

to χ
(1)
m,i resulting in χ

(ℓ+1)
m,i . To calculate ρ(ℓ), the error and

erasure probabilities of VN group i = 1 to 10 are averaged to

χ
(ℓ+1)
m = (δ

(ℓ+1)
m , ǫ

(ℓ+1)
m ). Then, ρ(ℓ) and the noise threshold

are determined by (7) and (8) with χ
(ℓ+1)
m .

We limit the calculation of ρ(ℓ) on the first 10 groups to

reduce the computational effort. If the bit error probability of

the first 10 groups converges to 0, it can be assumed that the

bit error probability of the following groups will also converge

to 0. Furthermore, this limitation justifies the consideration of

only the first 32 groups in the DE. The following groups would

only have a negligible effect on the performance of the first

10 groups because they are too far away.
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Fig. 4. Noise thresholds calculated via DE for the (511, 484, 3)-BCH product
code. The dotted line marks the noise threshold of HDD.

3) Numerical Estimation: For the numerical estimation of

the limit in (8), the recursion is applied until the change of

ρ(ℓ) in one iteration is less than 10−12. The infimum of the set

in (8) is calculated by a binary search, which searches for the

minimal Es/N0 with limℓ→∞ ρ(ℓ)(Es/N0, T ) < 10−10. We

use 10−10 to avoid numerical instabilities, which occurred for

lower error probabilities.

IV. RESULTS

A. Theoretical Results

We evaluated the noise threshold (Es/N0)
∗(T ) numerically

for different T using the DE analysis based on either the

GLDPC or the SC-GLDPC ensemble. The result of a product

code (GLDPC ensemble) of a (511, 484, 3)-BCH code is

shown in Fig. 4. The dotted line marks the performance of

HDD (T = 0) for the EaED and EaED+.

The threshold of the EaED has a minimum at T 6= 0, i.e.,

EaED performs better than HDD. To quantify the performance

increase of the EaED compared to HDD, we define the optimal

T by

Topt := argmin
T≥0

{(Es/N0)
∗(T )} (9)

and the decrease in (Es/N0)
∗ at Topt compared to HDD by

the predicted gain

∆(Es/N0)
∗ := (Es/N0)

∗(0)− (Es/N0)
∗(Topt). (10)

For this code, we get for the EaED performance: Topt = 0.057
and ∆(Es/N0)

∗ = 0.095dB.

However, the EaED+ has its minimum noise threshold at

T = 0. For it, the use of error-and-erasure decoding results

in a worse performance and erasures are not beneficial. One

explanation for this behavior is as follows: The errors and

erasures of a component code can be corrected by the EaED+

if 2D+E < ddes(t) is fulfilled. For T > 0, because of AWGN,

more correctly than incorrectly received bits are mapped to

erasures. Hence, on average, 2D + E could be larger than

2D for T = 0, which results in a performance decrease. The

EaED, on the other hand, can also correct some error patterns

outside these spheres.

For larger values of T , the noise threshold increases signif-

icantly for both decoders. The reason for the increase is that

for large T , many correctly received symbols are mapped to

erasures, which results in a loss of information.

1) Parameter Analysis BCH Code: We now analyze the

predicted gain ∆(Es/N0)
∗ for different component codes. We

limit this analysis to the EaED as this decoder is the most

relevant in practice. Figure 5-(a) shows ∆(Es/N0)
∗ for several

product and staircase codes (SC-GLDPC ensemble) of a BCH

and shortened BCH code, respectively, plotted as a function

of their rates. The corresponding Topt is shown on the right of

Fig. 5-(a). The dashed curves in Fig. 5 are the result of the

capacity analysis (Sec. II-B1) and show the capacity gain, i.e.

the maximal predicted gain that could be expected if error-

and-erasure decoding is used instead of HDD.

The predicted gain increases with decreasing length n of

the BCH code (decreasing rate in the diagram). For instance,

the predicted gain of the product and staircase codes of BCH

codes with n = 511 increases from less than 0.19 dB to

0.65dB for the staircase code of a (63, 39, 4)-BCH code.

A possible reason may be that, for fixed t, the number of

correctable erasures per bit decreases with n according to

Theorem 1. Furthermore, the predicted gain increases with t,
and all staircase codes achieve a larger predicted gain than the

product code of the same component code.

2) Parameter Analysis Even-Weight Subcode: Figure 5-(b)

shows the predictd gain ∆(Es/N0)
∗ and Topt of product codes

that are constructed from an even-weight subcode (circles)

compared to the results of Fig. 5-(a) (crosses). For the sake of

clarity, the results of the staircase codes are omitted as they

are similar to the ones of the product codes.

The use of the even-weight subcode leads to an increase

in the predicted gain, in particular for smaller values of t.
This increase can be motivated using Theorem 1: a word is

corrected for 2D + E ≤ 2t if a BCH code is used and for

2D + E ≤ 2t+ 1 if its even-weight subcode is used. Hence,

using an even-weight subcode enables the correction of one

extra erasure. This explains why even-weight subcodes benefit

more from error-and-erasure coding. Furthermore, it explains

the large increase for t = 2: Because of the small error-

correcting capability, the extra erasure has a greater impact

than for larger t.

B. Simulation

To check if the theoretical results of the DE are consistent

with the performance, we simulated the performance of prod-

uct and staircase codes. In this section, we define the noise

threshold (Es/N0)
∗∗ as that Es/N0 for which the output BER

is equal to BERtarget := 10−4 after 20 decoding iterations. The

simulated gain and Topt are defined in the same way as the

predicted gain and Topt in (10) and (9).

In the simulation, the points of the BER-Es/N0-curve are

estimated by a Monte Carlo method, along with a binary

search to determine the intersection of the curve with BERtarget

at (Es/N0)
∗∗. During the binary search, the number of trials

is dynamically adapted to ensure that despite the randomness

of the simulations, the estimated BER is greater or smaller

than BERtarget with sufficiently large confidence.
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(a) Results of the product and staircase codes of a usual and shortened BCH code, respectively.

(b) Results of the product codes of a usual BCH code or even-weight subcode.

Fig. 5. Results of the parameter analysis: The predicted noise threshold gain ∆(Es/N0)∗ that the EaED achieves compared to HDD is plotted on the left
and the corresponding Topt on the right. The component code is an (n, k, t)-BCH code with n ∈ {63, 127, 255, 511} and t ∈ {2, 3, 4} or its even-weight
subcode or shortened code. The dashed curves are the results of the capacity analysis. They mark the maximal achievable predicted gain in theory and the
corresponding Topt (Sec. II-B1).

Figure 6 compares the simulation results of a product code

of the (511, 484, 3)-BCH code with the results of the DE

analysis of Fig. 4. For each decoder, we did two simulations,

one with EMP and one with IMP. The plots show an approxi-

mately constant gap between the predicted thresholds and the

simulated (Es/N0)
∗∗ with EMP decoding (The gap slightly

decreases over T and is in the range of 0.050dB to 0.058dB.).

The gap is due to finite length effects because the DE analysis

considers GLDPC graphs of infinite size in contrast to the

finite size of the simulated product code. Since the gap is

approximately constant over T , the predicted gain and Topt of

the DE analysis match those of the results in practice.

However, for both decoders, the curve “Simulation IMP”

has no similarity to the theory. Hence, an estimation of the

simulated gain of error-and-erasure coding with DE is not

possible if IMP is used. Nevertheless, the IMP performance of

the EaED+ is quite surprising: Although this decoder achieves

no simulated gain using EMP decoding, it achieves a simulated

gain of around 0.106dB at Topt = 0.04 using IMP decoding.

It outperforms IMP decoding of the EaED, which has only a

negligible simulated gain.

Furthermore, we simulated the product code of the

(63, 45, 3)-BCH code that is decoded by the EaED (results

not shown). In this case, the DE analysis underestimates the

simulated gain of the EMP simulation by 21%, while Topt

is calculated correctly. The difference between predicted and

simulated gain may result from finite length effects and the

approximation of the biweight distribution.

Figure 7 shows the simulated BER curves of a product code

of the (511, 484, 3)-BCH code that is decoded by both EaED

and EaED+ with 20 decoding iterations using either EMP or

IMP. For T , we choose 0 or the Topt of the respective decoder.

We observe that error-and-erasure decoding does not lead to

early error floors and that the gains are consistent with the DE

results.

V. CONCLUSIONS & OUTLOOK

We analyzed the error-and-erasure decoding of product and

staircase codes based on BCH codes or their even-weight

subcodes. For the analysis, we formulated DE on the corre-

sponding GLDPC or SC-GLDPC ensembles that are decoded

with EMP. We have shown that error-and-erasure decoding

archives a gain in Es/N0 compared to HDD, whereby the

predicted gain is larger for lower rate codes and if an even-

weight subcode is used as a component code. Finally, we

have verified the results by a simulation of a product code

using both EMP decoding but also the simpler IMP decoding,

where we also observed predicted gains for a variation of the

component code decoders.

In practice, instead of using the even-weight subcodes as

component codes, BCH codes are often extended by a parity

check bit. Since these codes have also an even design distance,
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Fig. 6. Simulation results of a product code of the (511, 484, 3)-BCH code compared with the results of the DE analysis. The error bars of the EMP curve
are the remaining search interval after the termination of the binary search. The error bars of the IMP results were omitted because they are negligible.
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we assume that their predicted gains are comparable with the

results of the even-weight subcodes. A detailed analysis of

extended BCH codes is subject of further work.

APPENDIX A

PROOF OF THEOREM 1

Proof. Based on [18, Sec. 3.8.1]: For y1, the EaED assigns

to the erased coordinates of y the random vector p and for

y2, the inverted vector p. Because of this assignment, y1 has

D1 ≤ E errors in addition to the D errors of y. At the erased

coordinates, y2 has errors where y1 has no errors because,

for y2, the inverted vector p is inserted. Hence, y2 has D2 =
E − D1 errors besides the D errors. Therefore, Di ≤ E/2
holds for at least one yi with i ∈ {1, 2}. The total number of

errors of this yi fulfills

D +Di ≤ D +
E

2

(a)
< t+ 1 ⇒ D +Di ≤ t,

where (a) holds because of (2) and ddes(t) ≤ 2t + 2 for the

defined component codes. Hence, the BDD decodes at least

one yi to the right codeword.

It remains to prove that if both results w1 and w2 are

codewords, the EaED selects the correct codeword. A wrong

selection is only possible if one decoding result is not correct.

Let wc be the correct and we the erroneous result of w1 and

w2. Suppose that we is falsely selected. Then the following

inequality contradicts (2) (d∼E(y) and dE(y) are the distance

at the unerased and erased coordinates of y, respectively.):

ddes(t) ≤ dmin ≤ d(we,wc)

= d∼E(y)(we,wc) + dE(y)(we,wc)
(a)

≤ d∼E(y)(we,wc) + E
(b)

≤ d∼E(y)(we,y) + d∼E(y)(y,wc) + E
(c)

≤ 2D + E ,

where (a) holds because the distance of two words of E
coordinates is at most E. (b) is the triangle inequality and (c)

uses that d∼E(y)(y,wc) = D because y has D errors at the

unerased coordinates. Moreover, according to the assumption,

d∼E(y)(we,y) ≤ d∼E(y)(y,wc) = D, as otherwise we

would not have been selected.

APPENDIX B

PROOF OF THEOREM 2

Proof. Let ⊕ : {0, 1}n×{0, ?, 1}n → {0, ?, 1}n be an opera-

tor that computes for each component

[a⊕ b]i :=

{

ai + bi if bi 6= ?

? otherwise.

Then, it is easy to see that the BDD and the EaED+ fulfill the

symmetry condition

D(c⊕ e) = c⊕ D(e) for all c ∈ C and e, (11)

where, in the case of the BDD, we define c⊕ fail := fail and

e is an error-and-erasure pattern (e ∈ {0, ?, 1}n).

For the EaED, we interpret words of {0, ?, 1}n as random

variables taking values in {0, ?, 1}n, so that DEaED is a function

that transforms random variables. Then, the EaED fulfills the

symmetry condition

DEaED(c⊕ e)
d
= c⊕ DEaED(e) for all c ∈ C and e, (12)
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where e is an arbitrary random variable on {0, ?, 1}n and “
d
=”

means that the random variables are equal in distribution.

To prove this condition, we require an alternative description

of the EaED. Let Λ(w1,w2,y) be the function that determines

the decoding result of y from w1 and w2 in decoding step 5 of

the EaED (Sec. II-B2). For the sake of clarity, we decompose

y into an unerased and and erased component: y = [y∼E , ?].
Using Λ, we get

DEaED(y) = Λ(DBDD([y∼E ,p]),DBDD([y∼E ,p]),y),

where the erased coordinates of y are replaced by p, which

is a uniform random variable on {0, 1}n. Let c ∈ C be a

codeword and e be an arbitrary random variable on {0, ?, 1}n.

We decompose c and e into the bits at the unerased and erased

coordinates of e giving c = [c∼E , cE ] and e = [e∼E , ?]. By

doing so, we get

DEaED(c ⊕ e) = DEaED([c∼E + e∼E , ?])

= Λ (DBDD([c∼E + e∼E ,p]),DBDD([c∼E + e∼E ,p]), c⊕ e)
(a)
= Λ(c⊕ DBDD([e∼E , cE + p]),

c⊕ DBDD([e∼E , cE + p]), c ⊕ e)

= c⊕ Λ (DBDD([e∼E , cE + p]),DBDD([e∼E , cE + p]), e) ,

where (a) uses the symmetry condition of the BDD. Finally,

we substitute p2 := cE + p and p2 = cE + p resulting in

DEaED(c⊕ e) = c⊕ Λ (DBDD([e∼E ,p2]),DBDD([e∼E ,p2]), e)
d
= c⊕ DEaED(e),

because p2, just as p, is a uniform random variable on {0, 1}n.

This proves the symmetry condition of the EaED.

Using the respective symmetry condition (11) or (12), it can

be shown, similar to [20], that the expected number of errors

and erasures of the whole GLDPC decoder is independent of

the transmitted codeword.

APPENDIX C

ALTERNATIVE DESCRIPTION OF EMP

It is not immediately obvious that DE is allowed for the

proposed message passing algorithm, as the channel input

values are used in the CN update. Therefore, we present an

alternative description of the same message passing algorithm

in which the decoding of the component codes is moved from

the CN to the VN update. This allows the insertion of the

channel input value at the VN similar to the approach in [23].

The message passing starts with the initialization ν
(1)
i,j =

ν
(1)
i,j′ = ri of the outgoing VN messages. During the CN up-

date, each CN j combines the incoming messages into a vector.

For each VN i, connected at socket k = σ−1(i) ∈ {1, . . . , n},

it replaces the k-th symbol by a blank � and returns the vector

to the VN:

ν̃
(ℓ)
i,j := (ν

(ℓ)
σj(1),j

, . . . , ν
(ℓ)
σj(k−1),j ,�, ν

(ℓ)
σj(k+1),j , . . . , ν

(ℓ)
σj(n),j

).

Due to the replacement of the k-th message, there is only

extrinsic information passed.

In the VN update, each VN i receives two messages from

its connected CNs j, j′. To calculate the outgoing message for

CN j, the VN takes the incoming message of the respective

other CN j′ and replaces the blank by its own channel input

value ri resulting in

y
(ℓ)
j,EMP,k

:= (ν
(ℓ)
σj(1),j

, . . . , ν
(ℓ)
σj(k−1),j , ri, ν

(ℓ)
σj(k+1),j , . . . ),

which was generated in the original algorithm in the CN up-

date. Then y
(ℓ)
j,EMP,k is decoded and the symbol at the position

of the blank � is sent to CN j′: ν
(ℓ+1)
i,j′ =

[
DC(y

(ℓ)
j,EMP,k)

]

k
.

It is easy to see that these VN-to-CN messages are identical

with the ones of the original message passing algorithm

introduced in Sec. II. This proves that DE can be applied on

the original message passing algorithm because only extrinsic

information is passed in this scheme.

APPENDIX D

BIWEIGHT DISTRIBUTION APPROXIMATION

In order that a pair (c1, c2) has the configuration b∗ :=
(b11, b10, b01, b00), c1 must have b1 := b11 + b10 1s and b0 :=
b01+b00 0s, which is the case for A(b1) codewords. Moreover,

the weight of c2 must be w(c2) := b11 + b01 and d(c1, c2) =
b10 + b01. For B, we use the approximation

B(b11, b10, b01, b00) ≈ A(b1)

·







A(w(c2))
A(w(c2)) = 0
or w(c2) ∈ {0, n}

A(b11 + b01)
(
b1
b11

)(
b0
b01

)
/
(

n
b11+b01

)
w(c2) ≤ d(c1, c2)

A(b10 + b01)
(
b1
b10

)(
b0
b01

)
/
(

n
b10+b01

)
w(c2) > d(c1, c2),

which will be motivated in the following.

In the first case, either no valid pair exists, or c2 is the all-

zero or the all-one codeword (if existing). The all-zero or all-

one codeword form together with all codewords of weight b1 a

pair of the configuration b∗. In these cases, no approximation

is necessary, and we have A(b1)A(w(c2)) valid pairs.

For the second case, we first consider a fixed codeword c1
from the A(b1) codewords of weight b1. Now, we approximate

the number of codewords c2 that form together with this c1 a

pair of b∗. We know that A(w(c2)) codewords have the correct

weight. Since we have no further information on the code, we

assume that each of these codewords is independently and

uniformly chosen at random from the set of the binary words

of length n and weight w(c2). Then, the probability that one of

these random words has b11 1s at the 1-coordinates of c1 and

b01 1s at the 0-coordinates is P =
(
b1
b11

)(
b0
b01

)
/
(

n
b11+b01

)
. Hence,

on average, A(w(c2))P codewords form together with c1 a

pair of the configuration b∗. Since there are A(b1) possible

codewords for c1, we have A(b1)A(w(c2))P pairs in total.

In the third case, we count the pairs that have the configu-

ration

b̃∗ := (b̃11, b̃10, b̃01, b̃00) = (b10, b11, b01, b00)

using the second case. Each pair (c̃1, c̃2) of b̃∗ can be

transformed into a pair (c1, c2) of b∗ by the bijective trans-

formation (c1, c2) = (c̃1, c̃1 + c̃2) due to linearity. Therefore,

the biweight distribution of b̃∗ and b∗ are equal.

We observed that the results of the third approximation are

better than the second one when w(c2) is not too small.
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APPENDIX E

PROOF OF THEOREM 3

Proof. For the sake of clarity, we use the abbreviation b∗ :=
(b11, b10, b01, b00) in this proof. Let K(b∗) be the set of ordered

codeword pairs (c1, c2) ∈ C2 that have the configuration

b∗. Its cardinality is the biweight distribution B(b∗). Let

Kαβ
k (b∗) ⊂ K(b∗) be the subset whose pairs (c1, c2) addi-

tionally fulfill c1,k = α, c2,k = β with k ∈ {1, . . . , n} and

α, β ∈ {0, 1}. Its cardinality is Bαβ
k (b∗) = |Kαβ

k (b∗)|.

First, we show that for cyclic codes, Bαβ
k (b∗) is independent

of k. Let i, j ∈ {1, . . . n}, i 6= j be two different positions.

Consider the function

s : Kαβ
i (b∗) → {0, 1}n × {0, 1}n

that cyclically shifts each codeword of a pair (c1, c2) so that

the i-th position is shifted to the j-th position. Since the code

is cyclic, the words of the shifted pair (cs1, c
s
2) := s

(
(c1, c2)

)

are also codewords. In addition, the shift does not change the

configuration b∗ of the pair, and we have (cs1, c
s
2) ∈ K(b∗).

Furthermore, according to the definition of s, cs1,j = c1,i =

α and cs2,j = c2,i = β, which implies (cs1, c
s
2) ∈ Kαβ

j (b∗).

Hence, s is an injective function from Kαβ
i (b∗) to Kαβ

j (b∗).

Since an injective function from Kαβ
j (b∗) to Kαβ

i (b∗) can be

constructed in the same way, we obtain Bαβ
i (b∗) = Bαβ

j (b∗),

which proves the independence of Bαβ
k (b∗) from k.

Next, we use this result to prove (6). According to the

definition of b∗, each pair (c1, c2) ∈ K(b∗) has bαβ positions,

where c1,i = α and c2,i = β with i ∈ {1, . . . , n}, and

therefore, is contained in bαβ sets of {Kαβ
i (b∗)}i. Hence, the

sum over the cardinalities Bαβ
i (b∗) of {Kαβ

i (b∗)}i is

n∑

i=0

Bαβ
i (b∗) = bαβB(b∗). (13)

Since Bαβ
i (b∗) is independent of i, we also have

n∑

i=0

Bαβ
i (b∗) = nBαβ

k (b∗) (14)

for any k ∈ {1, . . . n}. Solving (13) and (14) for Bαβ
k (b∗)

proves (6) of the theorem.

Equation (5) follows directly from (6) and the identities

A(b1) = B(b1, 0, 0, n− b1) and Aα
k (b1) = Bαα

k (b1, 0, 0, n −
b1).

APPENDIX F

DECODER TRANSITION PROBABILITIES EAED

This section presents the derivation of Tα→β (D
′, E′) for

the EaED. In the following, we use A⊔B to denote the union

of two disjoint sets A, B and β to negate a binary value β. For

a set of codewords A ⊂ C, we define St(A) :=
⋃

c∈A St(c).

A. Random Experiment

In decoding steps 2 and 3 of the EaED described in

Sec. II-B2, the EaED generates from an error pattern e ∈ Ω
an error pattern pair (e1, e2). To describe these pairs, let

Ωp(α1, α2) ⊂ ({0, 1}n)2 (α1, α2 ∈ {0, 1}) be the set of

ordered binary error pattern pairs (e1, e2) for which the

following conditions hold:

• The distance between e1, e2 at ∼k is d∼k(e1, e2) = E′.

• There are D′ positions of ∼k at which e1, e2 have a 1.

• e1,k = α1 and e2,k = α2.

Then, the EaED generates from e ∈ Ω a pair from the set

Ωp :=

{

Ωp(α, α) α 6= ?

Ωp(1, 0) ⊔ Ωp(0, 1) α = ?.

It is easy to see that each pair of Ωp occurs with the same

probability. Hence, Tα→β (D
′, E′) can be calculated through

Tα→β (D
′, E′) = |M|/|Ωp|, where M ⊂ Ωp contains only the

pairs (e1, e2) ∈ Ωp whose decoding result w fulfills wk = β.

|Ωp| = |Ω|2E because the E := E′ + 1{α=?} erased

positions of e can be filled with 2E different binary values

to generate a pair. |M| will be calculated in the following

sections.

B. Decomposition of |M|

The analysis method in Sec. F-C below can only be applied

to specific subsets. Therefore, we first decompose M into such

subsets.

For α = ?, the k-th bits of the pairs of M are not fixed.

To avoid this, we define M(α1, α2) := M∩ Ωp(α1, α2) for

α1, α2 ∈ {0, 1}, whose pairs have fixed k-th bits and get

M =

{

M(α, α) α 6= ?

M(1, 0) ⊔M(0, 1) α = ?.
(15)

Below, we will calculate |M(α1, α2)| for arbitrary α1, α2 ∈
{0, 1}. Then, we can obtain |M| by (15).

The following sets Mi are all subsets of Ωp(α1, α2), so for

the sake of clarity, we do not specify the domain in the set

definitions. In the case of wk = β, the decoding had to be

successful because a failed decoding would result in wk =
α 6= β. That is why wk = β is only possible for pairs of

M1 := {e1 ∈ St(C
β
k ) or e2 ∈ St(C

β
k )}.

However, there are pairs (e1, e2) ∈ M1 where one ei is closer

to a codeword c ∈ Cβ
k than the other is to a codeword c ∈

Cβ
k . The decoding result w of these pairs fulfills wk = β.

Removing these pairs from M1 results in

M(α1, α2) = M1 \ {(e1, e2) ∈ M1, wk = β}
︸ ︷︷ ︸

=:M2

.

Since M2 ⊂ M1, we have |M(α1, α2)| = |M1| − |M2|. A

further decomposition

M1 = {e1 ∈ St(C
β
k )} ∪ {e2 ∈ St(C

β
k )},

M2 = {e1 ∈ St(C
β
k ), wk = β} ⊔ {e2 ∈ St(C

β
k ), wk = β}

yields

|M1| = 2 · | {e1 ∈ St(C
β
k )}

︸ ︷︷ ︸

=:M3

| − | {e1, e2 ∈ St(C
β
k )}

︸ ︷︷ ︸

=:M4

|,

|M2| = 2 · | {e1 ∈ St(C
β
k ), wk = β}

︸ ︷︷ ︸

=:M5

|.

because the same decoding method is used for e1 and e2.
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Fig. 8. Schematic illustration of the coefficients describing the configuration
b∗ of the triple (c, e1, e2). For example, b101 determines the number of
positions of ∼k where c has a 1, e1 has a 0 and e2 has a 1.

C. Derivation of |M3|

To calculate |M3|, the following algorithm could be used:

Iterate over all triples (c, e1, e2) with c ∈ Cβ
k and count the

cases in which (e1, e2) ∈ Ωp(α1, α2) and e1 ∈ St(c) holds.4

Since this algorithm is too complex, we use an approach

similar to that used in Sec. III-C2 for the EaED+: In that

section, not all tuples (c, e) are counted individually but all

tuples with identical coefficients b1?, b10, b01 := D′ − b10 and

b0? := E′ − b1? could be treated at once. Figure 8 shows the

generalization of this concept for the triple (c, e1, e2). Because

of c ∈ Cβ
k and (e1, e2) ∈ Ωp(α1, α2), the bits at k are fixed

by β, α1 and α2. The overlaps of the bits at ∼k are described

by the coefficients

bf := |{i ∈ ∼k : ci = f}|,

bfg := |{i ∈ ∼k : ci = f, e1,i = g}|,

bfgh := |{i ∈ ∼k : ci = f, e1,i = g, e2,i = h}|,

which are collectively called configuration b∗.

Let K(b∗) be the set of all triples whose bits at k are β, α1,

α2 and the positions at ∼k have the configuration b∗. Then

it is possible to determine if the triples of K(b∗) are counted

in the algorithm above, although the exact positions of the

symbols are not known: For e1 ∈ St(c), the condition

d(c, e1) = b10 + b01 + 1{α1 6=β} ≤ t (16a)

must hold and for (e1, e2) ∈ Ωp(α1, α2), we get

d∼k(e1, e2) =
∑

v∈{0,1}

(bv10 + bv01) = E′, (16b)

∑

v∈{0,1}

bv11 = D′. (16c)

To calculate |M3|, we iterate over all configurations fulfilling

(16) and sum the numbers of triples that belong to them:

|M3| =
∑

b∗ if (16)

Aβ
k (b1 + 1{β=1})

︸ ︷︷ ︸

Ways for c

∏

v∈{0,1}

(
bv
bv1

)

︸ ︷︷ ︸

Ways for e1 given c

∏

vv∈{0,1}2

(
bvv
bvv1

)

︸ ︷︷ ︸

Ways for e2 given c, e1

.

D. Derivation of |M4| and |M5|

In the following, β1 and β2 denote binary values, where,

in the derivation of |M4|, we set β1 = β2 = β and in the

derivation of |M5|, β1 = β and β2 = β.

4Since the spheres St(ci) are pairwise disjoint, no pair is counted twice.

To calculate |M4| and |M5|, the same approach as before

is used for tuples (c1, c2, e2, e1), where position k is fixed by

c1,k = β1, c2,k = β2, e2,k = α2 and e1,k = α1. The overlaps

at ∼k are described by configurations b∗, whose coefficients

have up to 4 indices. As before, the i-th index in a coefficient

denotes the symbol of the i-th word of (c1, c2, e2, e1).
For |M4|, we count all tuples for which (e1, e2) ∈

Ωp(α1, α2) and e1 ∈ St(c1), e2 ∈ St(c2) holds. In the

configuration domain, (e1, e2) ∈ Ωp(α1, α2) transforms into

d∼k(e1, e2) =
∑

vv∈{0,1}2

(bvv10 + bvv01) = E′, (17a)

∑

vv∈{0,1}2

bvv11 = D′ (17b)

and e1 ∈ St(c1), e2 ∈ St(c2) transform into

d(c1, e1) =
∑

vv∈{0,1}2

(b1vv0 + b0vv1) + 1{α1 6=β1} ≤ t, (17c)

d(c2, e2) =
∑

v∈{0,1}

(bv10 + bv01) + 1{α2 6=β2} ≤ t, (17d)

where β1 = β2 = β. By summing the number of tuples of

each configuration that fulfills (17), we get

|M4| =
∑

b∗ if (17)

(

Bββ
k (b11+1{β=1}, b10, b01, b00+1{β=0})

∏

vv∈{0,1}2

(
bvv
bvv1

)
∏

vvv∈{0,1}3

(
bvvv
bvvv1

))

.

For |M5|, again, only tuples fulfilling (e1, e2) ∈
Ωp(α1, α2) and e1 ∈ St(c1), e2 ∈ St(c2) are counted, which

transforms into (17) (with β1 = β and β2 = β) in the

configuration domain. In addition,

d∼E(e)(c2, e) ≤ d∼E(e)(c1, e) (18)

must hold so that the decoder decodes to c2 resulting in wk =
β. In configuration domain, these distances are obtained by

d∼E(e)(c1, e) =
∑

v∈{0,1}

(b1v00 + b0v11) + 1{α 6= ? and α 6= β},

d∼E(e)(c2, e) =
∑

v∈{0,1}

(bv100 + bv011) + 1{α 6= ? and α 6= β}.

Summing over the valid configurations yields

|M5| =
∑

b∗ if (17), (18)

(

Bββ
k (b11, b10+1{β=1}, b01+1{β=0}, b00)

∏

vv∈{0,1}2

(
bvv
bvv1

)
∏

vvv∈{0,1}3

(
bvvv
bvvv1

)

Corr(b∗)

)

.

In the case of d∼E(e)(c2, e) = d∼E(e)(c1, e), the decoder

chooses between c1 and c2 at random, and therefore, on

average only half of the pairs have a result with wk = β.

To take this into account, the correction term Corr(b∗) is 1
2

in this case and 1 otherwise.

Now, the transition probabilities can be calculated by putting

all contributions together.
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[8] C. Häger and H. D. Pfister, “Approaching miscorrection-free perfor-
mance of product codes with anchor decoding,” IEEE Trans. Commun.,
vol. 66, no. 7, pp. 2797–2808, 2018.

[9] A. Sheikh, A. Graell i Amat, and G. Liva, “Binary message passing
decoding of product-like codes,” IEEE Trans. Commun., vol. 67, no. 12,
pp. 8167–8178, 2019.

[10] A. Sheikh, A. Graell i Amat, and A. Alvarado, “Novel high-throughput
decoding algorithms for product and staircase codes based on error-and-
erasure decoding,” arXiv preprint arXiv:2008.02181, 2020.

[11] G. Lechner, T. Pedersen, and G. Kramer, “Analysis and design of binary
message passing decoders,” IEEE Trans. Commun., vol. 60, no. 3, pp.
601–607, 2011.

[12] E. Ben Yacoub, F. Steiner, B. Matuz, and G. Liva, “Protograph-based
ldpc code design for ternary message passing decoding,” in Proc. Intern.

ITG Conf. on Systems, Communic. and Coding. Rostock, Germany:
VDE, 2019.

[13] G. D. Forney, Jr., “Generalized minimum distance decoding,” IEEE

Trans. Inf. Theory, vol. 12, no. 2, pp. 125–131, 1966.

[14] S. B. Wicker, Error Control Systems for Digital Communication and

Storage. Englewood Cliffs, NJ, USA: Prentice Hall, 1995.

[15] R. Blahut, Algebraic Codes for Data Transmission. New York:
Cambridge University Press, 2003.

[16] B. S. G. Pillai, B. Sedighi, K. Guan, N. P. Anthapadmanabhan, W. Shieh,
K. J. Hinton, and R. S. Tucker, “End-to-end energy modeling and anal-
ysis of long-haul coherent transmission systems,” J. Lightw. Technol.,
vol. 32, no. 18, pp. 3093–3111, 2014.

[17] P. Ossieur, G. Coudyzer, D. Kelly, X. Yin, P. D. Townsend, and
J. Bauwelinck, “ASIC implementation challenges for next generation
access networks,” in Proc. Signal Processing in Photonic Communica-

tions, Zurich, CH, 2018, pp. SpTh4F–1.

[18] T. K. Moon, Error Correction Coding - Mathematical Methods and

Algorithms. John Wiley & Sons, Inc., 2005.

[19] S. Wainberg, “Error-erasure decoding of product codes,” IEEE Trans.

Inf. Theory, vol. 18, no. 6, pp. 821–823, 1972.

[20] T. Richardson and R. Urbanke, “The capacity of low-density parity-
check codes under belief propagation decoding,” IEEE Trans. Inf.

Theory, vol. 47, no. 2, pp. 599–618, Feb. 2001.

[21] A. Y. Sukmadji, “Zipper codes: High-rate spatially-coupled codes with
algebraic component codes,” Master’s thesis, University of Toronto,
2020.

[22] D. K. Soma, A. K. Pradhan, and K. Narayanan, “Errors and erasures de-
coding of product codes for optical transport networks,” IEEE Commun.

Lett., pp. 1–1, 2021.

[23] Y. Jian, H. D. Pfister, and K. R. Narayanan, “Approaching capacity
at high rates with iterative hard-decision decoding,” IEEE Trans. Inf.

Theory, vol. 63, no. 9, pp. 5752–5773, Sep. 2017.

[24] F. MacWilliams and N. Sloane, The Theory of Error-Correcting Codes.
North Holland, 1977.
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