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Abstract—We consider a status update system where multiple
sensors communicate timely information about various random
processes to a sink. The sensors share orthogonal sub-channels to
transmit such information in the form of status update packets.
A central controller can control the sampling actions of the
sensors to trade-off between the transmit power consumption
and information freshness which is quantified by the Age of
Information (Aol). We jointly optimize the sampling action of
each sensor, the transmit power allocation, and the sub-channel
assignment to minimize the average total transmit power of all
sensors, subject to a maximum average Aol constraint for each
sensor. To solve the problem, we develop a dynamic control
algorithm using the Lyapunov drift-plus-penalty method and
provide optimality analysis of the algorithm. According to the
Lyapunov drift-plus-penalty method, to solve the main problem,
we need to solve an optimization problem in each time slot
which is a mixed integer non-convex optimization problem. We
propose a low-complexity sub-optimal solution for this per-slot
optimization problem that provides near-optimal performance
and we evaluate the computational complexity of the solution.
Numerical results illustrate the performance of the proposed
dynamic control algorithm and the performance of the sub-
optimal solution for the per-slot optimization problem versus
the different parameters of the system. The results show that the
proposed dynamic control algorithm achieves more than 60 %
saving in the average total transmit power compared to a baseline
policy.

Index Terms— Age of information (Aol), Lyapunov optimiza-
tion, power minimization, stochastic optimization, wireless sensor
networks (WSNs).

I. INTRODUCTION

Freshness of the status information of various physical
processes collected by multiple sensors is a key performance
enabler in many applications of wireless sensor networks
(WSNs) [2]-[4], e.g., surveillance in smart home systems and
drone control. The Age of Information (Aol) was introduced as
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a destination centric metric that characterizes the freshness in
status update systems [4]—-[8]. A status update packet of each
sensor contains a time stamp representing the time when the
sample was generated and the measured value of the monitored
process. Due to wireless channel access, channel errors, and
fading etc., communicating a status update packet through the
network experiences a random delay. If at a time instant £,
the most recently received status update packet contains the
time stamp U(t), the Aol is defined as the random process
A(t) =t — U(t). In other words, the Aol of each sensor is
the time elapsed since the last received status update packet
was generated at the sensor. In this work, we focus on the
average Aol which is a commonly used metric to evaluate the
Aol [3], [S]-[7], [9]1-[21].

Besides the requirement of high information freshness, low
energy consumption is vital for maintaining a status update
WSN operational. Namely, the wireless sensors are typically
battery limited and thus, it may be infeasible to recharge or
replace batteries during the operation. The main contributors
to the sensors’ energy resources are the wireless access [22],
and also, the sensing/sampling part [23]. Consequently, it
is crucial to minimize the amount of information (e.g., the
number of data packets) that must be communicated from each
sensor to the sink to meet the application requirements. This
engenders the need for joint optimization of the information
freshness, sensors’ sampling policies, and radio resource allo-
cation (transmit power, bandwidth etc.) for designing energy-
efficient status update WSNs.

A. Contributions

We consider a status update WSN consisting of a set of sen-
sors and one sink that receives time-sensitive information from
the sensors. The sensors share a set of orthogonal sub-channels
in each slot and the packet transmission is error-free. We
minimize the average total transmit power of sensors by jointly
optimizing the sampling action, the transmit power allocation,
and the sub-channel assignment under the constraint on the
maximum average Aol of each sensor. To solve the proposed
problem, we develop a dynamic control algorithm using the
Lyapunov drift-plus-penalty method. In addition, we provide
optimality analysis of the proposed dynamic control algorithm.
According to the Lyapunov drift-plus-penalty method, in order
to solve the main problem, we need to solve an optimization
problem in each time slot which is a mixed integer non-
convex optimization problem. We propose a low-complexity



sub-optimal solution for this per-slot optimization problem that
provides near-optimal performance and evaluate the computa-
tional complexity of the solution. Numerical results illustrate
the performance of the proposed dynamic control algorithm in
terms of transmit power consumption and Aol of the sensors
versus different system parameters. In particular, they show
that the sub-optimal solution for the per-slot optimization
problem is near-optimal. The main contributions of our paper
are summarized as follows:

o Considering a novel Aol-aware resource allocation frame-
work, we minimize the average total transmit power of
sensors by jointly optimizing the sampling action, the
transmit power allocation, and the sub-channel assign-
ment under the constraint on the maximum average Aol
of each sensor.

o We develop a dynamic control algorithm using the Lya-
punov drift-plus-penalty method.

« We provide optimality analysis of the proposed dynamic
control algorithm.

o We propose a low-complexity sub-optimal solution for
the per-slot optimization problem.

o Numerical results show that the proposed dynamic con-
trol algorithm reduces the transmit power consumption
by 60 % compared to a fixed scheduling method and that
the sub-optimal solution is near-optimal.

B. Related Work

Since the introduction of the Aol, it has been under ex-
tensive study in various communication setups. For example,
Aol under various queueing models were studied in [3], [5],
[6], [11], [13], [24]-[28]; Aol in energy harvesting based
WSNs were investigated in [14], [18], [29]-[31]; and Aol
under various channel access models were studied in [7], [12],
[32]-[34].

There are only a few works in which optimization of radio
resource allocation, scheduling, and sensor sampling action
has been studied. The authors of [14] considered an energy
harvesting sensor and derived the optimal threshold in terms of
remaining energy to trigger a new sample to minimize the Aol.
In [15], the authors considered a status update system in which
the updates of different sensors are generated at a fixed rate
and they proposed a power control algorithm to minimize the
average Aol. The work in [16] considered a single-user fading
channel system and studied long-term average throughput
maximization subject to average Aol and power constraints.
The authors of [17] considered an energy harvesting sensor
and minimized the average Aol by determining the optimal
status update policy. The work in [19] considered a WSN in
which sensors share one unreliable sub-channel in each slot.
They minimized the expected weighted sum average Aol of the
network by determining the transmission scheduling policy.
In [20], the authors considered a system where a base station
serves multiple traffic streams arriving according to a stochas-
tic process and the packets of different streams are enqueued in
separate queues. They minimized the expected weighted sum
Aol of the network by determining the transmission scheduling
policy.

The most related work to our paper is [21] where the
authors considered a multi-user system in which users share
one unreliable sub-channel in each slot. They proposed an
optimization problem to minimize the cost of sampling and
transmitting status updates under an average Aol constraint
for each user. They solved the problem by the Lyapunov drift-
plus-penalty method. The main differences between [21] and
our paper are as follows. [21] considers a multi-user system
where users share one unreliable sub-channel in each slot; in
our model, users share a set of orthogonal sub-channels and the
packet transmission is error-free. [21] considers fixed transmit
power usage for each packet transmission whereas the power
allocation is a part of our system optimization. [21] considers
a cost of taking a sample and subsequently, minimizes the
average cost of sampling and transmitting status updates in
the system; we do not consider the sampling cost and we
minimize the average total transmit power.

While the prior works contain different combinations of
Aol-aware sampling, scheduling, and power optimization, to
the best of our knowledge, this is the first work that proposes
the joint optimization over the listed three WSN parameters:
the transmit power allocation, sub-channel assignment, and
sampling action.

C. Organization

The rest of this paper is organized as follows. The system
model and problem formulation are presented in Section II.
The Lyapunov drift-plus-penalty method to solve the proposed
problem is presented in Section III. Optimality analysis of the
proposed dynamic control algorithm is provided in Section
IV. The proposed sub-optimal solution for the per-slot mixed
integer non-convex optimization problem is presented in Sec-
tion V. Numerical results are presented in Section VI. Finally,
concluding remarks are made in Section VIIL.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the considered system model and
the problem formulation.

A. System Model

We consider a status update system consisting of a set /C
of K sensors and one sink, as depicted in Fig. 1. The sink is
interested in time-sensitive information from the sensors which
measure physical phenomena. Each sensor communicates the
time-sensitive information to the sink in the form of status
update packets, each containing the measured value of the
monitored process and a time stamp representing the time
when the sample was generated. We assume slotted commu-
nication with normalized slots ¢ € {0, 1, ...}, where in each
slot, the sensors share a set A/ of N orthogonal sub-channels
with bandwidth W Hz per sub-channel. We consider that a
central controller controls the sampling processes of sensors,
i.e., it decides whether each sensor takes a sample or not at
the beginning of each slot .

We assume that the perfect channel state information of all
sub-channels is available at the central controller at the begin-
ning of each slot. Let Ay, (t) denote the channel coefficient
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Fig. 1: A WSN consisting of K sensors and one sink that receives
time-sensitive information from the sensors.

from sensor k to the sink over sub-channel n in slot t. We
assume that Ay, (¢) is a stationary process and is independent
and identically distributed (i.i.d) over slots.

Let pg »(t) denote the sub-channel assignment at time slot
t as ppn(t) € {0,1}, VE € K,n € N, where py,(t) = 1
indicates that sub-channel n is assigned to sensor k at time
slot ¢, and py, ,,(t) = 0 otherwise. To ensure that, at any given
time slot ¢, each sub-channel can be assigned to at most one
sensor, the following constraint is used:

Y oralt) <1,¥n €Nt (1

kex

Let py »(t) denote the transmit power of sensor &k over sub-
channel n in slot ¢. Then, the signal-to-noise ratio with respect
to sensor k over sub-channel n in slot ¢ is given by

_ Pen(®) ()

Ve (t) = owN, )

where Ny is the noise power spectral density. The achievable
rate for sensor k over sub-channel n in slot ¢ is given by

Thn(t) = Wlogy (1 + Ykn(t)) - 3)

The achievable data rate of sensor k in slot ¢ is the sum of
the achievable data rates over all the assigned sub-channels at
slot ¢, expressed as

Ri(t) = D pran(O)rin(t)-

neN

Let b (t) denote the sampling action of sensor k at time slot
t as by(t) € {0,1},Vk € K, where by(¢t) = 1 indicates that
sensor k takes a sample at the beginning of time slot ¢, and
by (t) = 0 otherwise. We assume that sampling time (i.e., the
time needed to acquire a sample) is negligible. We consider
that the central controller decides that sensor k takes a sample
at the beginning of slot ¢ only if there are enough resources to
guarantee that the sample is successfully transmitted during the
same slot t. Thus, if sensor k takes a sample at the beginning
of slot ¢ (i.e., b (t) = 1), the sample will be transmitted during
the same slot ¢ successfully. To this end, we use the following
constraint

Ry (t) = nbi(t),Vk € K, t, “4)
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Fig. 2: The evolution of the Aol of sensor k. Without status updates,
the Aol increases by one unit during each slot; a status update
received during slot ¢ + 2 caused the Aol to drop to one at the
beginning of slot ¢ 4 3.

where 7 is the size of each status update packet (in bits). This
constraint ensures that when sensor k& takes a sample at the
beginning of slot ¢ (i.e., bi(t) = 1), the achievable rate for
sensor k in slot ¢ is Ry (t) = 7, guaranteeing that the sample
is transmitted during the slot.

Let 0 (t) denote the Aol about the random process asso-
ciated with sensor k at the sink at the beginning of slot .
For brevity, we refer to this as the Aol of sensor k hereafter.
If sensor k takes a sample at the beginning of slot ¢ (i.e.,
bi(t) = 1), the Aol at the beginning of slot ¢ + 1 drops to
one, and otherwise (i.e., by (t) = 0), the Aol increases by one.
Thus, the evolution of 0y (t) is characterized as

1, if by, (t) = 1;

5
0k(t) + 1, otherwise. ®)

(t+1) = {
The evolution of the Aol of sensor k is illustrated in Fig. 2.
Following a commonly used approach [4], [9], [19], [20],
we define the average Aol of sensor k as the time average of
the expected value of the Aol, given as

1 T-1
m;gﬁfgmmm (6)

where the expectation is with respect to the random wireless
channel states and control actions made in reaction to the
channel states'. Without loss of generality, we consider that the
initial value of the Aol of all sensors is J;(0) = 0, Vk € K.

B. Problem Formulation

Our objective is to minimize the average total transmit
power of the sensors by jointly optimizing the sampling action
{br(t) } ek, the transmit power allocation {pg » (t) }reic,nen
and the sub-channel assignment {p. ., (t)}kex nen in each
slot, subject to the maximum average Aol constraint for

UIn this paper, all expectations are taken with respect to the randomness of
the wireless channel states and control actions made in reaction to the channel
states.



each sensor. Thus, the multi-variable optimization problem is
formulated as

L o1 -
minimize TIIHH;O T tT=01 > ker 2anen Elpkn(t)] (7a)

subject to  lim_ % TR < AP VE e K (Tb)
2

D oneN pk,n(t)W10g2(1+p’“’"(t%|/};\’%"(t)| )

=nbi(t), VE € K, t (7c)

Y okex Prn(t) <1, Vne Nt (7d)

Pen(t) >0, VEEeK,neN, t (7e)

pen(t) €{0,1}, VEEK,ne N, ¢ (79)

br(t) € {0,1}, Vk € K, t, (7g)

with variables {pg (%), pk,n(t) ek nen and {by(t) trex for
all t € {0,1,...}, where AP™ is the maximum acceptable
average Aol of sensor k. The constraints of problem (7) are
as follows. The inequality (7b) is the maximum acceptable av-
erage Aol constraint for each sensor; the equality (7¢) ensures
that each sample is transmitted during one slot; the inequality
(7d) constrains that each sub-channel can be assigned to at
most one sensor in each slot; (7e), (7f), and (7g) represent the
feasible values for the transmit power, sub-channel assignment,
and sampling policy variables, respectively.

Problem (7) is a mixed integer non-convex problem where
both the constraints and the objective function contain av-
erages over the optimization variables. In the next section,
we propose a dynamic control algorithm is proposed to solve
problem (7).

Before that, we introduce the definitions of feasibility of
problem (7), channel-only policies, and the Slater’s condition
for problem (7) which are needed for our optimality analysis
in Section IV.

Definition 1. Problem (7) is feasible if there exists a policy
that satisfies constraints (7b)—(7g) [35, Sect. 4.3].

Definition 2. The channel-only policies are a class of policies
that make decisions for the sampling action, power allocation,
and sub-channel assignment of each sensor independently at
every slot ¢, based only on the observed channel state [35,
Sect. 3.1].

Note that since a channel-only policy does not consider any
other information about the system, such as the Aol of the
sensors, it might be difficult to devise a feasible channel-only
policy. We would like to emphasize that our proposed solution
(presented in Section III) is not a channel-only policy and we
use the channel-only policies only to prove the optimality of
the proposed dynamic algorithm.

Assumption 1. We assume that problem (7) satisfies the
Slater’s condition [35, Sect. 4.3], i.e., there are values ¢ > 0,

G(e) > 0, and a channel-only policy that satisfy in each slot

S 3T Efpra(t)] = Gle), )

keEK neN
E[6(t)] + € < AP™, Vk € K, 9)

where Py, (t) and 5k(t) denote the allocated power to sensor
k over sub-channel 7 in slot ¢ and the Aol of sensor & in slot
t determined by the channel-only policy, respectively.

III. DYNAMIC CONTROL ALGORITHM

In this section, we develop a dynamic control algorithm to
solve problem (7). To this end, we use the Lyapunov drift-
plus-penalty method [35], [36]. According to the drift-plus-
penalty method, the average Aol constraint (7b) is enforced
by transforming it into queue stability constraint. For each
inequality constraint (7b), a virtual queue is associated in such
a way that the stability of these virtual queues implies the
feasibility of the average Aol constraint (7b).

Let {Q(t)}rex denote the virtual queues associated with
the average Aol constraint (7b). The virtual queues are updated
in each time slot as

Qr(t +1) = max [Qk(t) — AP+ 6 (t+ 1),0] , Vk e K.
(10)

Here, we use the notion of strong stability; the virtual queues
are strongly stable if [35, Ch. 2]
T

li !
TE};OTt

|
—

E[Qx(1)] < 0o, VK € K. (11)

i
o

According to (11), a queue is strongly stable if its average
mean backlog is finite. Note that the strong stability of the
virtual queues in (10) implies that the average Aol constraint
(7b) is satisfied. Next, we introduce the Lyapunov function
and its drift which are needed to define the queue stability
condition.

Let S(t) = {Qk(t),0k(t)}kex denote the nerwork state
at slot ¢, and Q(t) denote a vector containing all the vir-
tual queues, ie., Q(t) = [Q1(¢), Q2(2),. .., Qk(t)] € R*K.
Then, a quadratic Lyapunov function L(Q(t)) is defined by
[35, Ch. 3]

Q) = 5 3 Q3. (12

keK

The Lyapunov function measures the network congestion: if
the Lyapunov function is small, then all the queues are small,
and if the Lyapunov function is large, then at least one queue
is large. Therefore, by minimizing the expected change of
the Lyapunov function from one slot to the next, queues
{Qk(t)}kek can be stabilized [35, Ch. 4].

Definition 3. The conditional Lyapunov drift o(S(t)) is
defined as the expected change in the Lyapunov function over
one slot, given that the current network state in slot ¢ is S(¢).
Thus, a(S(t)) is given by

a(S®) =E[L(Q(t+1)) - L(QQ®)) [ S®)].

According to the drift-plus-penalty minimization method,
a control policy that minimizes the objective function of
problem (7) with constraints (7b)—(7g) is obtained by solving

13)



the following problem [35, Ch. 3]

minimize (S(t)) +V Y, cxc D onen Elprn(t) | S(1)]
(14a)

subject to (7c) — (7g) (14b)

with variables {pg.n(t), pr.n(t) teex nen and {bg(t)}rex,
where parameter V' > 0 is used to adjust the emphasis on the
objective function (i.e., power minimization). Therefore, by
varying V, a desired trade-off between the sizes of the queue
backlogs and the objective function value can be obtained.

Because of the presence of the max[-] function in the
virtual queue evolution in (10), working with the conditional
Lyapunov drift «(S(t)) is difficult. Therefore, following the
standard procedure of the drift-plus-penalty method, we pro-
vide an upper bound for the drift part that can be readily
used in the optimization procedure [35, Ch. 4]; note that the
penalty part (i.e., the original objective function) will remain
unchanged. We would like to point out that when we replace
the conditional Lyapunov drift with the upper bound we have
that: i) by minimizing the upper-bound of the conditional
Lyapunov drift, the same logic for stabilizing the virtual
queues mentioned above holds true, and ii) the asymptotic
optimality (as V' — oo) of the proposed dynamic control
algorithm is preserved, as shown in the optimality analysis
in Section IV. To find the upper bound of the conditional
Lyapunov drift «(S(t)), we use the following inequality in
which, for any A > 0, ¢ > 0, and ¢ > 0, we have

(max A — o +11,0)> < X2+ 02 + > + 2A(¢) — o). (15)
By applying (15) to (10), an upper bound for Q% (¢ + 1) is
given as

Qi(t+1) < Qi(t) + (AF™)? + 62 (t + 1)+
2Qx (1) (0 (t + 1) — A’,;“”‘) , Vk € K.

(16)

By applying (16) to the conditional Lyapunov drift a(S(t)),
we obtain an upper bound to (13) as

aS(0) < 3| Suce (A7 + 070t + )+
2Qr(t) (Op(t + 1) — A‘,;m)) S(t)}
— 3 T (A1 + BB+ 1) | SO+

2Qk(t) ([0t +1) [ S(t)] — Ai‘“))-

a7

To characterize the upper bound in (17), we need to deter-
mine E[0x(t +1) | S(¢)] and E[62(t + 1) | S(¢)] in (17). To
this end, by using the evolution of the Aol in (5), dx(t + 1)
and 02 (t + 1) are calculated as

Ok(t+1) =bi(t) + (1 — be(t)) (0r(t) + 1), Vke K
S2(t+1) = bi(t) + (1 — be(t)) (6k(t) + 1), VE € K.
(18)
By using the expressions in (18), E[6x(t + 1) | S(¢)] and

(t)] in (17) are given as

| S(t)] =

O]+ 1 =E[bk(t) | S()])(0k(t) + 1),
| S(t)] = Ebr(t) | St)]+

(1 - E[b(t) | SO)])(6:(t) + 1)2, VE € K.

By substituting (19) into the right hand side of (17),
and adding the term V', - >\ E[prn(t) | S()] to both
sides of (17), the upper bound for (14a) is given as

a(S(1) +V X oper 2onen Elpen(t) | S@)] <
E {V Zkelc ZnEN Prn(t)+

5 Sher (01— (Gu(0) + 17 = 20 (05(0)|S(0)| +
3 Scr ({72 4+ (Gu(0) + 17 + 200(0)61(0) + 1)~

2Qk(t)A'f;a").

19)

(20)
Having defined the upper bound (20), instead of minimizing
(14a), we minimize (20) subject to the constraints (7¢)—(7g)
with variables {pgn(t), Pkn(t) tiex nen and {bg(t)}rex-
Given that we observe the channel states {hy ., () }reic nen at
the beginning of each slot, we use the approach of opportunis-
tically minimizing an expectation® to solve the optimization
problem. According to this approach, (20) is minimized by
ignoring the expectations in each slot.

The main steps of the proposed dynamic control algorithm
are summarized in Algorithm 1. The central controller ob-
serves the channel states {hy ,, (t) }rei,nen and network state
S(t) at the beginning of each time slot ¢. Then, following
the approach of opportunistically minimizing an expectation,
it takes a control action to minimize (21) subject to the
constraints (7¢)—(7g) in Step 2. Note that the objective function
of (21) follows from (20) because i) the optimization variables
are {pr.n(t), pen(t) teeicnen and {bg(t)}rek, and thus, we
neglected the second term of (20) because 0y (t) and Q(%)
are functions of bg(t — 1) which itself was determined in
the previous slot ¢ — 1, ii) the approach of opportunistically

2To make the concept of opportunistically minimizing an expectation clear,
consider the following. A system sees a random variable w with some
(possibly unknown) probability distribution and we need to choose a control
action a from an action set A,, to minimize the expectation of a general
cost function C(a,w), i.e., E[C(a,w)], where the expectation is taken with
respect to the distribution of w and the distribution of our action a that
possibly depends on w. Assume for simplicity that, for any given outcome
w, there is at least one action a™™ that minimizes the function C(a, w) over
all @ € Ay . According to the approach of opportunistically minimizing an
expectation, the policy that minimizes E[C(a,w)] is the one that observes
w and selects action aZ‘Ji" [35, Page 13]. In our system model, the channel
coefficients {hy (t)}rex,nen Play the role of random variable w; the
sampling action, power allocation, and sub-channel assignment variables
{br(t)Ykerc, {Pk,n (1), Pre,n(t) } ek, nen Play the role of control action a;
and the objective function of the per-slot optimization problem, i.e.,

E[v S5 prn

keEK neN

LS b0 (1= () + 12 = 20u®)5:(1) S|
2

ke

plays the role of cost function E[C(a,w)].



Algorithm 1 Proposed dynamic control algorithm for problem
()

Step 1. Initialization: set ¢ = 0, set V, and initialize {Q(0) =
0,0%(0) = 0}rex

for each time slot ¢ do

Step 2. Sampling action, transmit power, and sub-
channel assignment: obtain {py »(¢), pr.n(t) }rex nen and
{bk(t) }rex by solving the following optimization problem

minimize 11/ D okek Danen P (t)+
2 S ker bi(t) [1 = (6 (t) 4+ 1)2 = 2Qx (¢) 5 (t)]
subject to  (7¢c) — (7g),

(21
with variables {py. (1), pi,n(t) e, nen and {bk(t)}rex
Step 3. Queue update: update {Q(t+1), 0x (t+1) ke using
(10) and (18)
Set t =t + 1, and go to Step 2
end for

minimizing an expectation minimizes (20) by ignoring the
expectations in each slot. In Step 3, according to the solution
of (21), the virtual queue and Aol of each sensor are updated
by using (10) and (18), respectively.

It is worth noting that the optimization problem (21) is
a mixed integer non-convex optimization problem containing
both integer (i.e., sub-channel assignment and the sampling
action) and continuous (i.e., power allocation) variables. One
way to find the optimal solution of problem (21) is to use an
exhaustive search method. However, it suffers from high com-
putational complexity which increases exponentially with the
number of variables in the system. Therefore, in Section V, we
propose a sub-optimal solution for the optimization problem
(21). Before that, we analyze the optimality of the proposed
dynamic algorithm in the next section.

IV. OPTIMALITY ANALYSIS OF THE PROPOSED SOLUTION

In this section, we study the performance of the proposed
Lyapunov drift-plus-penalty method (i.e., Algorithm 1) used to
solve problem (7). In particular, the main result of our analysis
will be stated in Theorem 1, which characterizes the trade-
off between the optimality of the objective function (i.e., the
average total transmit power) and the average backlogs of the
virtual queues in (10).

We first point out an important property of the Aol
evolution under the proposed dynamic control algorithm:
the Lyapunov drift-plus-penalty Algorithm 1 ensures that
the Aol of sensors are bounded, i.e., there is a constant
M < oo such that dx(t) < 6™ Vk € K,t. Recall that
the main goal of Algorithm 1 is to minimize the objective
function of (21) in each slot. The objective function of
(21) can be written in the form Zkl,(zl F(bi(t), 0k (t)),
where  f(be(t).6k(0) = V,capealt) -
1/2b(t) [=1 4 (6 (t) + 1)* + 2Qk(t)0x(t)]. The maximum
value of f(bx(t),dx(t)) for each sensor k is zero and is
achieved when the sensor does not take a sample in slot ¢,
i.e., bi(t) = 0. However, if sensor k& does not take a sample,
its Aol increases by one after each slot, and thus, after

some slots, the term 1/2 [—1+ (0x(t) + 1) + 2Qx ()55 ()]
of f(bi(t),0k(t)) becomes greater than the first term
V'Y nen Prn(t); in this case, it is optimal for sensor k to
take a sample since it makes f(by(t),dx(t)) negative. Thus,
we conclude that each sensor takes a sample in a finite
number of time slots, and this implies that there is a constant
M < 0o such that 0y (t) < 0™ Vk € K, t.

Next, we present Lemma 1 which shows that if problem (7)
is feasible, we can get arbitrarily close to the optimal solution
by using channel-only policies. This lemma is used to prove
Theorem 1.

Lemma 1. Under the assumption that each channel is a
stationary process and i.i.d over slots, if problem (7) is
feasible, then for any v > 0, there is a channel-only policy
that satisfies

SN Epa®)] <G+, (22)
keEK neN
E[6;(t)] — v < ARP¥, Vk € K, (23)

where G°P' denotes the optimal value of the average total
transmit power (i.e., the optimal value of the objective function
of problem (7)), and pj ,,(¢) and d;(¢) denote the allocated
power to sensor k over sub-channel n and the Aol of sensor k
in slot ¢ determined by the channel-only policy, respectively.

Proof. See proof of Theorem 4.5 in [35, Appendix 4.A]. O

Next, we present Theorem 1 which characterizes a trade-off
between the optimality of the objective function of problem (7)
and the average backlogs of the virtual queues in the system.

Theorem 1. Suppose that problem (7) is feasible and
L(Q(0)) < oo. Then, for any values of parameter V' > 0,
Algorithm 1 satisfies the average Aol constraint in (7b).
Further, let py ., (¢) denote the allocated power to sensor k
over sub-channel n in slot ¢ as determined by Algorithm 1,
and let Qy(t) denote the virtual queue of sensor k in slot t
as determined by Algorithm 1. Then, we have the following
upper bounds for the average total transmit power and average
backlogs of the virtual queues in the system:

1= B
A YD D Elea®)] < v TE™

t=0 keK neN

(24)

T—1 A
13" S EQun) < 29

T—oo T 25)
t=0 kek

where G/(e) with € > 0 is specified by Assumption 1 (i.e., (8)
and (9)), and constant B is determined as

B= % > ((A;m)Q + (5“1“)2).

ke

(26)

Before proving Theorem 1, we present the following re-
mark.

Remark 1. Inequality (25) implies the strong stability of
the virtual queues {Qg(¢)}rex which, in turn, implies that



the average Aol constraint in (7b) is satisfied. In addition,
we can see from (25) that the upper bound of the average
backlogs of the virtual queues is an increasing linear function
of parameter V. Moreover, inequality (24) implies that the

value of V' can be chosen so that — is arbitrarily small, and
thus, the average total transmit power achieved by Algorithm 1
becomes arbitrarily close to the optimal value G°* of problem
(7). Consequently, parameter V' provides a trade-off between
the optimality of the objective function (i.e., the average total
transmit power) and the average backlogs of the virtual queues
in the system.

Next, we prove Theorem 1; the proof has been inspired by
the proof of Theorem 4.2 in [35].

Proof. Let 0x(t + 1) and @(S(t)) denote the Aol of sensor
k and the conditional Lyapunov drift as determined by Algo-
rithm 1 in slot ¢, respectively. Then, by using the bound in
(17) and Lemma 1, we have

A(S0) 4V Sher Toew Elpint) | S0) ¢

V Siex Snex EPnlt) | S0+ § S (4774
B{(Gu(t-+ 1)? | S(0)+ 20u(0) B + 1) | S(0))-
AIISHX)) VES e Srew [P 0]50)] +

% D kek ((Azl‘”‘)2 +E[(05(t+1))% | SO®)] + 2Qx (1)
(EBE (e + 1)1 S0] - Ap) ) £ VG4 0)+

5 Srer (A2 + (672 +20u(0)

27
where, as defined earlier, pj, ,(t) and &;(t + 1) denote the
allocated power to sensor k over sub-channel n and the Aol
of sensor k determined by the channel-only policy that yields
(22) and (23) for a fixed v > 0. Inequality (a) comes from
the upper bound in (17). Inequality (b) follows because i)
Algorithm 1 minimizes the left-hand side of inequality (b)
over all possible policies (not only channel-only policies) by
using the method of opportunistically minimizing an expec-
tation [35, Sect. 1.8], and ii) the considered channel-only
policy that yields (22) and (23) is a particular policy among
all the policies. Inequality (c¢) follows because i) we have
E[(0:(t + 1))% | S(t)] < (6™)%, and ii) the considered
channel-only policy that yields (22) and (23) in Lemma 1 is
independent of the network state S (t) and thus, we have

DD Epi.0]s®)] = (28)
ke neN

Z Z E < G + y,

kek neN

El6x(t+1) | S(t)] — AF™ = (29)
E[6;(t+1)] — AP™ <w, Vk € K.

By taking v — 0, (27) results in the following inequality:

NHV YD Elpkalt)

keK neN

S(t)] < B+VG™, (30)

where B = 1/2%", . ((AT™)?
defined in (26).

Taking expectations over randomness of the network state
on both sides of (30) and using the law of iterated expectations,
we have

E[L(Q(t+1))] —E[L(Q(®))] +
> ke 2onen ElPkn ()] < B+ VG,

where Q(t) denotes a vector containing all the virtual
queues in slot ¢ under Algorithm 1. By summing over

+ (6™™)2), is the constant

€1y

t €{0,...,T — 1} and using the law of telescoping sums, we
have
E[L(Q(T))] - E[L(Q(0)] +

(32)

VYo Lhex Lnen Elpra(t)] < TB+TVG

Now we are ready to prove the bound of the average total
transmit power in (24). In this regard, we rewrite (32) as

VY20 Sher Cnen Elpra(®)] <

—E[L(Q(T))] +E[L(Q(0))] + TB+TVG™ (g)
TB+TVG™+E[L(Q0)],

(33)
where inequality (a) follows because we neglected the nega-
tive term on the left-hand side of inequality (a). Dividing (33)
by TV, we have

*ZZZ [Pin(t

t=0 keK neN

B opt E [I‘ ( Q(:))]
— 4G ——— =

Since E [L (Q(0))] has a finite value, taking the limit 7" — oo
in (34) proves the bound of the average total transmit power
in (24).

To prove the bound of the average backlogs of the virtual
queues in (25), we assume that the Slater’s condition presented
in Assumption 1 holds. In other words, we assume that there is
a channel-only policy for which the virtual queues are strongly
stable. Thus, by using the bound in (17), we have (cf. (27))

aA(SH) + VX hex ZneNE[ﬁk’n(t)ﬂ s 2

VY orek 2onen EPrea(t) | S + 5 Zkelc <(Amax)2
E[(5(t + 1))% | S(t)] + 2Qx(t) (E[5 (t+1) S0
AI’?aX)) (2 V¥ her Zonen E [Pra()[S1)] +

5 S ((AP7 + EGute + 1) S(0]+

2Qk (1) ([0t +1) | S(1)] — A?ax)> 9

VG(e) + B — €Y 1ex Qr(t),
(35)

where, as defined earlier, py,,(t) and 8x(t + 1) denote the
allocated power to sensor k over sub-channel n and the Aol
of sensor k determined by the channel-only policy that yields
(8) and (9) in the Slater’s condition, respectively. Inequality
(a) comes from the upper bound in (17). Inequality (b)
follows because i) Algorithm 1 minimizes the left-hand side of



inequality (b) over all possible policies (not only channel-only
policies) by using the method of opportunistically minimizing
an expectation, and ii) the considered channel-only policy that
yields (8) and (9) in the Slater’s condition is a particular policy
among all the policies. Inequality (c) follows because i) we
have E[(d5(t 4+ 1))% | S(£)] < (6™*)2, ii) constant B is given
by (26), and iii) the channel-only policy that yields (8) and
(9) is independent of the network state S(t). Thus, we have

SN Eea® [SO) =D Y Elpra(t)] = Gle),

keEK neN kEK neN
(36)
E[6i(t+1) | S(t)] 4+ € = E[or(t + 1)] + € < AP, Vk € K.
(37)

Taking expectations over randomness of the network state
on both sides of the resulting inequality in (35) and using the
law of iterated expectations, we have

E[L(Q(t+1))]—E[L(Q®)]+
VZkeIC ZnGNE[pk n( )] <
— € pexc EIQr(t)] + VGl(e).

By summing over ¢t € {0,...,T
telescoping sums, we have

E[L(Q(T)] ~E[L(Q)] +
VZt 0 Zkelc EnGN]E[pk n(t)] <
TB— €X' Shex BlQR®)] + TVE(e).

To prove the bound in (25), we rewrite (39) as

€Yo Srex BlQ ()] < —E [L(Q(T))]
+E [L (Q ))] Z Ekelc ZneN]E[pk n( )]

+TB+TVG(e) g TB+TVG(e) +E[L(Q(0))],
(40)
where inequality (a) follows because we neglected the nega-
tive terms on the left-hand side of inequality (a). By dividing
(40) by T'e, we have

(38)

— 1} and using the law of

(39)

B E|L 0
7ZZEQ’€ +VG()+ [ (Q( ))]
€ Te
=0 kek
Since E [L (Q(0))] has a finite value, taking the limit 7" — oo

in (41) proves the bound of the average backlogs of the virtual
queues in (25). O]

(41)

V. A SUB-OPTIMAL SOLUTION FOR THE PER-SLOT
PROBLEM (21)

As discussed in Section III, Algorithm 1 involves solv-
ing an instance of optimization problem (21) in each slot.
Problem (21) is a mixed integer non-convex optimization
problem containing both integer (i.e., sub-channel assignment
and sampling action) and continuous (i.e., power allocation)
variables. Thus, finding its optimal solution is not trivial
and conventional methods for solving convex optimization
problems cannot directly be used. The optimal solution of
problem (21) can be found by exhaustively searching over
all possible combinations of the binary variables, i.e., the

sub-channel assignment ({py . (t)}rek nen) and sampling
action variables ({bx(t)}rex), and solving a (simple) power
allocation problem for each such combination. However, the
computational complexity of this exhaustive search method in-
creases exponentially with the number of sampling action and
sub-channel assignment variables in the system (i.e., K N).
Thus, finding an appropriate sub-optimal solution with low
computational complexity is necessary for the optimization
problem (21). Next, in Section V-A, we propose a sub-optimal
solution. Then, in Section V-B, we present complexity analysis
of the proposed sub-optimal solution.

A. Solution Algorithm

The main idea behind our proposed sub-optimal solution
is to reduce the computational complexity from that of the
full exhaustive search method described above. To this end,
we search only over all possible combinations of sampling
action variables by (t),Vk € K. For each such combination,
we propose a low-complexity two-stage optimization strategy
in order to find a sub-optimal solution to the resulting joint
power allocation and sub-channel assignment problem. Then,
among all the solutions, the best one is selected as the sub-
optimal solution to problem (21). Note that if the number of
sub-channels N is less than the number of sensors K (i.e.,
N < K), we do not search over all possible combinations of
sampling action variables because the maximum number of
sensors that can take a sample in each slot is N.

Let b(t) = [b1(t),...,bk(t)] denote a vector containing
all binary sampling action variables in slot ¢. Further, let B
denote the set of all possible values of binary vector b(t)
with cardinality |B] = 2. In addition, let B C B denote
the set of all possible values of such binary vectors b(t) for
which the number of sensors that have a sample to transmit
i§ less than or equal to the number of sub-channels NV, i.e.,

= {b(t) | b(t) € B,||b(t)|]lo < N}, where || - ||p counts
the number of non-zero elements in a vector. Note that for
K < N, the set B is equal to set B, i.e., B =B.

The steps of the proposed sub-optimal solution are summa-
rized in Algorithm 2. Step 2 performs an exhaustive search
over feasible sampling actions b(t) € B. For each such b(t),
a sub-optimal power allocation and sub-channel assignment is
obtained by finding an approximate solution to problem (42),
which is equivalent to problem (21) for fixed {bx(t)}reic-
We solve (42) with a two-stage approach detailed in the
subsequent subsections. Step 3 returns a sub-optimal solution
to problem (21).

The joint power allocation and sub-channel assignment
problem (42) is (still) a mixed integer non-convex optimization
problem. Therefore, conventional methods for solving convex
optimization problems cannot be used. Thus, we propose a
two-stage sequential optimization method with low complexity
to find a sub-optimal solution to (42). The method first
performs a greedy sub-channel assignment, which is followed
by the optimal power allocation.

1) Sub-channel Assignment: The proposed greedy algo-
rithm to assign the sub-channels is presented in Algorithm
3. The main idea is to find the strongest sub-channel among



Algorithm 2 Proposed sub-optimal solution algorithm to
problem (21)
Step 1. Initialization: set O =0, {bx(t) = 0}rex,

{Prn(t) = 0} ke nens and {pgn(t) = 0} rex nen
Step 2. For each b(t) € B do

A. Find a sub-optimal solution for the following joint
power allocation and sub-channel assignment problem

‘{Zkelc > nen Prn(t)+
5 Tkex be(®) [1 = (Bu(t) + 1) = 201(1)3 (1)
subject to  (7c) — (71),

minimize

with variables {pk n(t), Dk.n(t) teek nen
B. Denote the obtained solution by {pk »(¢) } ke, nen

{P'k,n(t)}kelcme/\/, and {bk (t) brex

C. If

VY N bralt)+
keK neN

537 bulr) [1 = (3ut) + 1) — 2Qu(06x(1)] < O
ke

L Set {pr,n(t) = Prn(t) eexnen, {Prn(t) =
Pen(t) ke nenr> and {b(t) = be(t) frex
II. Set

o=V Z Z ﬁk,n(t)‘i‘

keK neN

5 37 (0) [1 = (3u(0) + 177 — 2Qu(03(1)]

keKx

Step 3. Return {pp n(t) ke nens {Pkn(t)}rex nen and
{bk(t)}kex as a sub-optimal solution to problem (21)

all those sensors that have a sample to transmit, and then, to
greedily assign this strong sub-channel to the corresponding
sensor (Step 1). This assigned sub-channel is then removed
from the set of available sub-channels because each sub-
channel can be assigned to at most one sensor (Step 2). For
fairness, the sensor that was just assigned the sub-channel
is removed from the set of competing sensors, guaranteeing
that this sensor cannot get more sub-channels until the other
sensors get the same number of sub-channels (Step 3). This
procedure is repeated until all the sub-channels are assigned
to the sensors.

2) Power Allocation: Given that the sub-channels have
been assigned via Algorithm 3, the optimal power allocation
for each sensor that has a sample to transmit can be determined
separately. Let Ny, C N denote the set of sub-channels
assigned to sensor k. Thus, for each sensor % that has a sample
to transmit (i.e., by (¢t) = 1), the following convex optimization
problem needs to be solved

minimize ZnENk Dien(t)

subject t0 3, ns Pk, (1)W log, <1+
Pen(t) >0, Vn e Ny,

=n

W Ny

(42)

Algorithm 3 Sub-Channel Assignment
Initialization: a) initialize sets K' = {k | k € K, bi(¢t) = 1},
and N/ = N, b) initialize {py, ,(t) = 0}kex,nen, and c) set
1 =1
While : < N do

Step 1. Set py »(t) = 1 where

(k,n) = argmax |hk7n(t)\2,
keK’ ,neN’

Step 2. N = N\ {n}
Step 3. If K"\ {k} = 0, set K' = K; otherwise, set
K=K k)
Step4. 1 =1+1
End while

with variables {ps »(t)}nen;, . The optimization problem (42)
can be solved by the water-filling approach [37, Proposi-
tion 2.1].

B. Complexity of the Proposed Sub-Optimal Solution

In this section, we investigate the complexity of the pro-
posed sub-optimal solution for problem (21) and compare it
with that of the full exhaustive search method.

The proposed sub-optimal solution presented in Algorithm
2 has three main steps, namely, i) determining the sampling
actions, which is solved by searching over all feasible sam-
pling action combinations, ii) sub-channel assignment, which
is solved by the proposed greedy algorithm presented in
Algorithm 3, and iii) power allocation, which is solved by
the water-filling approach. The computational complexity of
the search over feasible sampling actions is equal to the
cardinality of B, ie., \l’;’\, which is less than or equal to
2K (recall that since B C B, we have |B| < |B] = 2¥).
Since the sub-channel assignment in Algorithm 3 performs N
iterations, its computational complexity is N. Since the water-
filling approach needs at most N iterations, its worst-case
computational complexity is N [37]. Thus, the computational
complexity of the proposed sub-optimal solution presented in
Algorithm 2 is O = 2N |B|.

The exhaustive search method searches over all feasible
binary sampling action and sub-channel assignment variables.
For each such combination, a convex power allocation problem
is solved. Since there are |Z§\ feasible sampling action com-
binations and N K binary sub-channel assignment variables,
the computational complexity of the binary search is O =
|l§’ |26N " Assuming that the water-filling approach presented
in [37, Proposition 2.1] is used to solve the power alloca-
tion problem, the worst-case computational complexity of the
power allocation is N. Thus, the computational complexity
of the exhaustive search method to solve problem (21) is
O = N|B|2KN.

Considering the discussion above, we can see that, as com-
pared to the full exhaustive search method, the computational
complexity of the proposed sub-optimal solution is reduced by
an exponential factor K V.
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Fig. 3: The considered WSN where the sink is located in the center
and K = 10 sensors are randomly placed. The coordinates of sensor
k are shown by Sk (zk, yx).

VI. NUMERICAL AND SIMULATION RESULTS

In this section, we numerically evaluate the performance of
the proposed dynamic control algorithm presented in Algo-
rithm 1 in terms of transmit power consumption and Aol of
the sensors. In addition, we evaluate the optimality gap of the
sub-optimal solution applied to solve problem (21) presented
in Algorithm 2.

A. Simulation Setup

We consider a WSN depicted in Fig. 3, where the sink is
located in the center and K = 10 sensors are randomly placed
in a two-dimensional plane. Sensors are indexed according to
their distance to the sink in such a way that sensor 1 is the
closest sensor to the sink and sensor 10 is the farthest away.
The channel coefficient from sensor k to the sink over sub-
channel n in slot ¢ is modeled as hy, () = (di/do)*cr.n(t),
where dj, is the distance from sensor k to the sink, dg is the
far field reference distance, ¢ is the path loss exponent, and
ck,n(t) is a Rayleigh distributed random coefficient. Accord-
ingly, (dy/do)* represents large-scale fading and cy ,(t) rep-
resents small-scale Rayleigh fading. We set £ = —3, dg =1,
and the parameter of the Rayleigh distribution as 0.5. The
bandwidth of each sub-channel is W = 180 kHz and the
size of each packet is 77 = 600 Bytes. The same maximum
acceptable average Aol is considered for all the sensors, i.e.,
Ar]:ax — Amax’v]ﬁ

B. Performance of the Proposed Dynamic Control Algorithm

In this section, we evaluate the performance of the proposed
dynamic control algorithm (i.e., Algorithm 1) in terms of
transmit power consumption and Aol of the sensors. To solve
the optimization problem (21), we use Algorithm 2.

Fig. 4 illustrates the evolution of the average total transmit
power for different values of parameter V' with maximum
acceptable average Aol of sensors A™ =4 and N = 10

0.045

0.04

o
(el
o)
)

o
e
>

o
S
o
[

o~

=)
=
=
(=3
[N}

o
(=]
)

=—Proposed algorithm, V=800
= =Proposed algorithm, V=4000
—==Proposed algorithm, V=8000 1
----- Proposed algorithm, V=16000
—Fixed sampling rate

0.01

Average total transmit power

0.005

2000 3000 4000

Time slot

0 1000 5000

Fig. 4: Evolution of the average total transmit power of the sensors for
different values of V' with A™* =4 and N = 10. For comparison,
a control policy with a fixed sampling rate is included as a baseline
method.

sub-channels. The figure shows that when V' increases, the
average total transmit power decreases. This is because when
V increases, more emphasis is on minimizing the total transmit
power (i.e., the objective function of optimization problem
(21)).

In addition, for the benchmarking, we consider a base-
line policy that has a fixed sampling rate. The sampling
rate is set as 1/7 so that resulting average Aol of each
sensor is equal to the maximum acceptable average Aol
AP = A" = 4 Vk € IC. The sampling schedule of the
considered baseline method is presented in Table I. For
this baseline policy, the sub-channel assignment and transmit
power allocation are determined by the proposed methods in
Sections V-Al and V-A2, respectively. As can be seen in
Fig. 4, the proposed dynamic control algorithm saves more
than 60 % in the average total transmit power compared to
the baseline policy. This shows the advantage of the proposed
dynamic control algorithm in optimizing the sampling process
in contrast to relying on a pre-defined sampling schedule
which forces a sensor to transmit a status update even under
a bad channel condition.

Fig. 5 illustrates the trade-off between the average total
transmit power and average backlogs of the virtual queues
as a function of V' for A™* =4 and N = 10 sub-channels.
As can be seen, by increasing V, the average backlogs of the
virtual queues increase and the average total transmit power
decreases. This shows the inherent trade-off provided by the
drift-plus-penalty method which was shown in Theorem 1. We
would like to emphasize that the backlogs of the virtual queues
do not have a physical meaning in the considered system.
Consequently, it does not matter if we have large virtual queue
backlogs which are induced by selecting a high value for V.
Thus, to minimize the average total transmit power, there is
an incentive to set parameter V' as large as possible. However,
when V' is sufficiently large, increasing it further does not
noticeably reduce the total transmit power.



TABLE I: The sampling schedule of the considered fixed rate sampling policy of rate 1/7.

Time slot ¢ 1121314 5 6 7 819 10 | 11 12 13 14 15 16
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Fig. 5: Trade-off between the average total transmit power of the
sensors and average backlogs of the virtual queues as a function of
V.

Fig. 6 illustrates the evolution of the average total transmit
power for different numbers of sub-channels NV with A™* = 4
and V = 8000. The figure shows that when N increases, the
average total transmit power decreases, as expected. This is
because when N increases, more sub-channels can be assigned
to each sensor, and thus, each packet can be transmitted with
less power. In addition, we can see that the effect of increasing
the number of sub-channels from N = 6 to N = 8, and further
to N = 10, is more profound. This is because when there are
fewer sub-channels than sensors, due to the orthogonality of
the sub-channel assignment, all the sensors cannot be served in
every slot and some sensors can get a sub-channel only after
a few slots. Note that in order to meet the Aol constraint,
the sensors may be forced to transmit their sample even if the
power consumption is excessive. On the other hand, increasing
the number of sub-channels from N = 10 to N = 12 yields
only negligible gain. This is because the greedy sub-channel
assignment policy guarantees that each sensor will be assigned
at least one sub-channel.

Fig. 7 illustrates the evolution of the average total transmit
power for different values of maximum Aol A™* with N =
10 sub-channels and V' = 8000. The figure shows that when
A™M¥ decreases, the average total transmit power increases.
This is because when A™* decreases, each sensor needs to
take samples more frequently to satisfy constraint (7b).

Fig. 8 depicts the average Aol for individual sensors as
a function of V for A™ =4 and N = 10 sub-channels.
According to the figure, when V increases, the average Aol
of each sensor increases as well. This is because when V'
increases, the backlogs of the virtual queues associated with
the average Aol constraint (7b) increase. We can also observe
that the average Aol of each sensor is always smaller than
the maximum acceptable average Aol A™**. This validates
that the drift-plus-penalty method is able to meet the average
Aol constraint through enforcing stability in the virtual queue.

Fig. 6: Evolution of the average total transmit power of the sensors for
different numbers of sub-channels N with A™ =4 and V' = 8000.
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Fig. 7: Evolution of the average total transmit power of the sensors
for different values of A™* with N = 10 and V = 8000.

Moreover, we can see that a sensor that has a longer distance
to the sink has higher average Aol. This is because a sensor
far away from the sink must compensate for the large-scale
fading by using more power and thus, it takes samples more
rarely.

C. Performance of the Sub-Optimal Solution

To evaluate the optimality gap of the proposed sub-optimal
solution for (21) presented in Algorithm 2, we compare
the results obtained by the sub-optimal solution to those of
the optimal solution calculated by the full exhaustive search
method. In this regard, we consider a small setup with K =5
sensors {S7,...,55} (see Fig. 3) and N =5 sub-channels.
The maximum acceptable average Aol of sensors is A™* = 4.
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Fig. 8: The average Aol of different sensors as a function of V' for
A™ =4 and N = 10.

Fig. 9 illustrates the evolution of the average total transmit
power for different values of V. Fig. 10 illustrates the trade-
off between the average total transmit power of the sensors
and average backlogs of the virtual queues as a function of
V. Fig. 11 depicts the average Aol of different sensors as a
function of V. Fig. 12 depicts the evolution of the average
Aol of different sensors for V' = 8000. We can see from these
figures that the proposed sub-optimal solution provides a near-
optimal solution for the optimization problem (21).
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Fig. 9: Evolution of the average total transmit power of the sensors
for different values of V.

VII. CONCLUSIONS

We considered a status update system consisting of a set of
sensors and one sink. A central controller controls the sam-
pling processes of the sensors in a way that it decides whether
each sensor takes a sample or not at the beginning of each
slot. The status update packets of the sensors are transmitted
by sharing a set of orthogonal sub-channels in each slot. We
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Fig. 10: Trade-off between the average total transmit power and
average backlogs of the virtual queues as a function of V.
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Fig. 11: The average Aol of different sensors as a function of V.

formulated a problem to minimize the average total transmit
power of sensors under the average Aol constraint for each
sensor. To solve the proposed problem, we used the Lyapunov
drift-plus-penalty method. This method provides an inherent
trade-off between the average total transmit power and the
average Aol of the sensors. We conducted optimality analysis
to study this trade-off, thereby characterizing the optimality
of the proposed dynamic control algorithm. The simulation
results demonstrated the performance of the proposed dynamic
solution algorithm in terms of transmit power consumption
and Aol of sensors. The results showed that, by using the
proposed dynamic control algorithm, more than 60 % saving
in the average total transmit power can be achieved compared
to a baseline policy. In addition, the results showed that the
proposed sub-optimal low-complexity solution for the per-slot
optimization problem provides a near-optimal solution.

The numerical results illustrated the inherent trade-off be-
tween the average Aol of the sensors and the average total
transmit power that the Lyapunov drift-plus-penalty method
brings in the system. This trade-off is adjusted by penalty
parameter V. A high value of V is beneficial in that it enforces
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Fig. 12: Evolution of the average Aol of different sensors for V =
8000.

smaller transmit powers, yet at the cost of increasing the aver-
age Aol of each sensor. The results validated that, regardless
of the value of V, the proposed drift-plus-penalty method
met the time average Aol constraints through successfully
enforcing the virtual queue stability. Regarding the selection
of parameter V' in practice, we observed that when V is
sufficiently large, increasing it further does not significantly
reduce the power.

The interesting future works would be to i) take the com-
binatorial aspect of the per-slot optimization problem into
account by utilizing the possible sub-modularity features of
the problem to provide a low-complexity and near-optimal so-
lution for it [38] and ii) study the performance under different
Lyapunov functions such as a linear Lyapunov function.

REFERENCES

[1] M. Moltafet, M. Leinonen, M. Codreanu, and N. Pappas, ‘“Power
minimization in wireless sensor networks with constrained Aol using
stochastic optimization,” in Proc. Annual Asilomar Conf. Signals, Syst.,
Comp., Pacific Grove, USA, Nov. 3-6, 2019, pp. 406-410.

[2] A. Kosta, N. Pappas, and V. Angelakis, Age of Information: A New
Concept, Metric, and Tool. Foun. and Trends in Net., 2017, vol. 12,
no. 3.

[3] R. D. Yates and S. K. Kaul, “The age of information: Real-time status
updating by multiple sources,” IEEE Trans. Inform. Theory, vol. 65,
no. 3, pp. 1807-1827, Mar. 2019.

[4] Y. Sun, I. Kadota, R. Talak, and E. Modiano, Age of Information:
A New Metric For Information Freshness.  Synthesis Lectures on
Communication Networks, 2019, vol. 12, no. 2.

[5]1 S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often
should one update?” in Proc. IEEE Int. Conf. on Computer. Commun.
(INFOCOM), Orlando, FL, USA, Mar. 25-30, 2012, pp. 2731-2735.

[6] S. K. Kaul, R. D. Yates, and M. Gruteser, “Status updates through
queues,” in Proc. Conf. Inform. Sciences Syst. (CISS), Princeton, NJ,
USA, Mar. 21-23, 2012, pp. 1-6.

[71 S. Kaul, M. Gruteser, V. Rai, and J. Kenney, “Minimizing age of
information in vehicular networks,” in Proc. Commun. Society. Conf.
on Sensor, Mesh and Ad Hoc Commun. and Net., Salt Lake City, UT,
USA, Jun. 27-30, 2011, pp. 350-358.

[8] M. Costa, M. Codreanu, and A. Ephremides, “One the age of information
in status update systems with packet management,” IEEE Trans. Inform.
Theory, vol. 62, no. 4, pp. 1897-1910, Apr. 2016.

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

I. Kadota, A. Sinha, and E. Modiano, “Optimizing age of information
in wireless networks with throughput constraints,” in Proc. IEEE Int.
Conf. on Computer. Commun. (INFOCOM), Honolulu, HI, USA, Apr.
15-19, 2018, pp. 1844-1852.

Z. Chen, N. Pappas, E. Bjornson, and E. G. Larsson, “Optimal control
of status updates in a multiple access channel with stability constraints,”
[Online]. https://arxiv.org/abs/1910.05144, 2019.

M. Moltafet, M. Leinonen, and M. Codreanu, “On the age of information
in multi-source queueing models,” IEEE Trans. Commun., vol. 68, no. 8,
pp- 5003-5017, May 2020.

——, “Worst case age of information in wireless sensor networks: A
multi-access channel,” IEEE Wireless Commun. Lett., vol. 9, no. 3, pp.
321-325, Mar. 2020.

——, “Average age of information for a multi-source M/M/1 queueing
model with packet management,” in Proc. IEEE Int. Symp. Inform.
Theory, Los Angeles, CA, USA, Jun. 21-26, 2020, pp. 1765-1769.

B. T. Bacinoglu and E. Uysal-Biyikoglu, “Scheduling status updates to
minimize age of information with an energy harvesting sensor,” in Proc.
IEEE Int. Symp. Inform. Theory, Aachen, Germany, Jun. 25-30, 2017.
D. Qiao and M. C. Gursoy, “Age-optimal power control for status update
systems with packet-based transmissions,” IEEE Wireless Commun.
Lett., vol. 8, no. 6, pp. 1604-1607, Jul. 2019.

R. V. Bhat, R. Vaze, and M. Motani, “Throughput maximization with
an average age of information constraint in fading channels,” vol. 20,
no. 1, pp. 481-494, Jan. 2021.

X. Wu, J. Yang, and J. Wu, “Optimal status update for age of information
minimization with an energy harvesting source,” IEEE Trans. Green
Comm. Net., vol. 2, no. 1, pp. 193-204, Mar. 2018.

I. Krikidis, “Average age of information in wireless powered sensor
networks,” IEEE Wireless Commun. Lett., vol. 8, no. 2, pp. 628-631,
Apr. 2019.

I. Kadota, A. Sinha, and E. Modiano, “Scheduling algorithms for
optimizing age of information in wireless networks with throughput
constraints,” IEEE/ACM Trans. Networking, vol. 27, no. 4, pp. 1359-
1372, Jun. 2019.

I. Kadota and E. Modiano, “Minimizing the age of information in wire-
less networks with stochastic arrivals,” IEEE Trans. Mobile Comput.,
Early Access, 2019.

E. Fountoulakis, N. Pappas, M. Codreanu, and A. Ephremides, “Optimal
sampling cost in wireless networks with age of information constraints,”
in Proc. IEEE Int. Conf. on Computer. Commun. (INFOCOM) Workshop,
Toronto, ON, Canada,, Jul. 6-9, 2020, pp. 918-923.

V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivastava, “Energy-
aware wireless microsensor networks,” IEEE Signal Processing Mag.,
vol. 19, no. 2, pp. 40-50, Mar. 2002.

G. Anastasi, M. Conti, M. D. Francesco, and A. Passarella, “Energy
conservation in wireless sensor networks: A survey,” Ad Hoc Netw.,
vol. 7, no. 3, pp. 537-568, May 2009.

M. Costa, M. Codreanu, and A. Ephremides, “Age of information
with packet management,” in Proc. IEEE Int. Symp. Inform. Theory,
Honolulu, HI, USA, Jun. 20-23, 2014, pp. 1583-1587.

E. Najm, R. Yates, and E. Soljanin, “Status updates through M/G/1/1
queues with HARQ,” in Proc. IEEE Int. Symp. Inform. Theory, Aachen,
Germany, Jun. 25-30, 2017, pp. 131-135.

L. Huang and E. Modiano, “Optimizing age-of-information in a multi-
class queueing system,” in Proc. IEEE Int. Symp. Inform. Theory, Hong
Kong, China, Jun. 14-19, 2015, pp. 1681-1685.

M. Moltafet, M. Leinonen, and M. Codreanu, “Average Aol in multi-
source systems with source-aware packet management,” IEEE Trans.
Commun., vol. 69, no. 2, pp. 1121-1133, Feb. 2021.

N. Akar, O. Dogan, and E. U. Atay, “Finding the exact distribution of
(peak) age of information for queues of PH/PH/1/1 and M/PH/1/2 type,”
IEEE Transactions on Communications, vol. 68, no. 9, pp. 5661-5672,
Jun. 2020.

R. D. Yates, “Lazy is timely: Status updates by an energy harvesting
source,” in Proc. IEEE Int. Symp. Inform. Theory, Hong Kong, China,
Jun. 14-19, 2015, pp. 3008-3012.

B. T. Bacinoglu, E. T. Ceran, and E. Uysal-Biyikoglu, “Age of infor-
mation under energy replenishment constraints,” in Proc. IEEE Inform.
Theory Workshop, San Diego, CA, USA, Feb. 1-6, 2015, pp. 25-31.
A. Arafa, J. Yang, S. Ulukus, and H. V. Poor, “Age-minimal transmission
for energy harvesting sensors with finite batteries: Online policies,” [EEE
Trans. Inform. Theory, vol. 66, no. 1, pp. 534-556, Sep. 2020.

R. D. Yates and S. K. Kaul, “Status updates over unreliable multiaccess
channels,” in Proc. IEEE Int. Symp. Inform. Theory, Aachen, Germany,
Jun. 25-30, 2017, pp. 331-335.



[33] A. Kosta, N. Pappas, A. Ephremides, and V. Angelakis, “Age of infor-
mation and throughput in a shared access network with heterogeneous
traffic,” in Proc. IEEE Global Telecommun. Conf., Abu Dhabi, United
Arab Emirates, Dec. 9-13, 2018, pp. 1-6.

A. Maatouk, M. Assaad, and A. Ephremides, “On the age of information
in a CSMA environment,” IEEE/ACM Trans. Net., vol. 28, no. 2, pp.
818-831, Apr. 2020.

M. J. Neely, Stochastic Network Optimization With Application to
Communication and Queueing Systems. Belmont, MA, USA: Morgan
and Claypool, 2010.

L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation and
cross-layer control in wireless networks,” Found. Trends Netw., vol. 1,
no. 1, pp. 1-144, Apr. 2006.

P. He and L. Zhao, “Generalized water-filling for sum power minimiza-
tion with peak power constraints,” in Proc. Int. Conf. Wireless Commun.
and Sign. Proc., Nanjing, China, Oct. 15-17, 2015, pp. 1-5.

K. Thekumparampil, A. Thangaraj, and R. Vaze, “Combinatorial re-
source allocation using submodularity of waterfilling,” IEEE Trans.
Wireless Commun., vol. 15, no. 1, pp. 206-216, Aug. 2016.

[34]

[35]

[36]

[37]

(38]

Mohammad Moltafet (S’16-M’21) received the

M.Sc. degree in communications engineering from

Tarbiat Modares University, Tehran, Iran, in 2016,

and the Ph.D. degree in communications engineering

from the University of Oulu, Finland, in 2021.
q In 2019, he was a Visiting Ph.D. researcher with
the Linkoping University, Sweden. He is currently
a Postdoctoral researcher with the University of
Oulu, Finland. His current research interests include
queueing theory, information freshness, radio re-
source allocation and optimization in wireless net-
works, and machine learning for wireless applications.

Markus Leinonen (S’11-M’18) received the B.Sc.
(Tech.) and M.Sc. (Tech.) degrees in electrical en-
gineering from the University of Oulu, Finland, in
2010 and 2011, respectively, and the D.Sc. (Tech.)
degree in communications engineering from the Uni-
versity of Oulu, Finland, in 2018. In 2010, he joined
the Centre for Wireless Communications, University
of Oulu, where he is currently working as Academy
of Finland Postdoctoral Researcher. In 2013, he was
a Guest Researcher with the Technical University
of Munich, Germany. In 2020, he was a Visiting
Postdoc with the University of California San Diego (UCSD). His research
interests include time-critical and sparsity-aware wireless communications.

Marian Codreanu (S’02-M’07) received the M.Sc.
degree from the University Politehnica of Bucharest,
Romania, in 1998, and the Ph.D. degree from Uni-
versity of Oulu, Finland, in 2007. His thesis was
awarded as the best doctoral thesis within the area
of all technical sciences in Finland in 2007. In
2008, he was a visiting postdoctoral researcher with
. “«  Prof. Ephremides group at the University of Mary-
\ land, College Park, USA. Dr. Codreanu received
Mﬂ his Docent in 2013 from the Centre for Wireless
Communications of University of Oulu. In 2013, the
Academy of Finland awarded him a five years Academy Research Fellow
position. In 2019, Dr. Codreanu received a Marie Sktodowska-Curie Individual
Fellowship and joined the Linkoping University, where he is currently an
associate professor. Dr. Codreanu published over 100 journal and conference
papers in the areas of wireless communications and networking, statistical
signal processing, mathematical optimization, and information theory. His
current research focus is on information freshness optimization, sparse signal
processing, and machine learning for wireless networking.

Nikolaos Pappas (IEEE Senior Member) received
the B.Sc. degree in computer science, the B.Sc.
degree in mathematics, the M.Sc. degree in com-
puter science, and the Ph.D. degree in computer
science from the University of Crete, Greece, in
2005, 2012, 2007, and 2012, respectively. From
2005 to 2012, he was a Graduate Research Assistant
with the Telecommunications and Networks Labo-
ratory, Institute of Computer Science, Foundation
for Research and Technology-Hellas, and a Visiting
Scholar with the Institute of Systems Research,
University of Maryland at College Park, College Park, MD, USA. From
2012 to 2014, he was a Post-Doctoral Researcher with the Department
of Telecommunications, Supélec, France. Since 2014, he has been with
Linkoping University, Norrkoping, Sweden, as a Marie Curie Fellow (IAPP).
He is currently an Associate Professor in mobile telecommunications with
the Department of Science and Technology, Linkdping University. His main
research interests include the field of wireless communication networks with
emphasis on the stability analysis, energy harvesting networks, network-level
cooperation, age of information, network coding, and stochastic geometry.
From 2013 to 2018, he was an Editor of the IEEE COMMUNICATIONS
LETTERS, which currently serves as an Expert Editor for Invited Papers. He
is an Editor of the IEEE TRANSACTIONS ON COMMUNICATIONS, the
IEEE Open Journal of Communications Society, the IEEE/KICS JOURNAL
OF COMMUNICATIONS AND NETWORKS, and a Guest Editor of IEEE
Internet of Things Journal for the Special Issue “Age of Information and Data
Semantics for Sensing, Communication and Control Co-Design in IoT”.




