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Abstract

Hovering inaccuracy of unmanned aerial vehicle (UAV) degrades the performance of UAV-aided

radio frequency energy transfer (RFET). Such inaccuracy arises due to positioning error and rotational

motion of UAV, which lead to localization mismatch (LM) and orientation mismatch (OM). In this

paper, a hovering inaccuracy mitigation strategy in UAV antenna array beam steering based RFET is

presented. The antenna beam does not accurately point towards the field sensor node due to rotational

motion of the UAV along with pitch, roll, and yaw, which leads to deviation in the elevation angle.

An analytical framework is developed to model this deviation, and its variation is estimated using the

data collected through an experimental setup. Closed-form expressions of received power at the field

node are obtained for the four cases arising from LM and OM. An optimization problem to estimate

the optimal system parameters (transmit power, UAV hovering altitude, and antenna steering parameter)

is formulated. The problem is proven to be nonconvex. Therefore, an algorithm is proposed to solve

this problem. Simulation results demonstrate that the proposed framework significantly mitigates the

hovering inaccuracy; compared to reported state-of-the-art the same performance can be achieved with

substantially less transmit power.

Index Terms

Beam steering, Internet of Things, optimization, radio frequency energy transfer, UAV hovering

inaccuracy, wireless sensors

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are used in recent times in various applications, such as

defense and security, disaster management, surveillance and monitoring, healthcare, agriculture,

telecommunication, and logistics [1]. The choice of UAVs lies in its several advantages, like

excellent maneuverability, remote controllability, low cost, light weight, and programming flex-

ibility. The usage of UAVs are also being envisaged for recharging the field deployed internet
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of things devices (IoTDs), also called sensor nodes, through wireless power transfer (WPT)

technology [2], where a UAV with a radio frequency (RF) transmitter mounted on it hovers above

the IoTDs and charges them wirelessly. The mobility feature of the UAV enables it to access

hard-to-reach inaccessible locations within a short time span to facilitate on-demand WPT. A

UAV-aided WPT framework overcomes several challenges associated with real-life deployment,

e.g., reachability to the field nodes due to infrastructure constraints, lack of cellular and electrical

transmission infrastructure, and battery replacement with human intervention.

Automated and on-demand recharging of IoTDs is important to ensure their uninterrupted

operation, since in many applications the IoTDs are tasked to sense the surroundings round

the clock and report any undesired events to a central entity [3]. A major concern in 5G and

beyond (B5G) is that the IoTDs consume significant amount of energy in sensing, processing,

and communication [4]. A massively large number of IoTDs are envisioned to be used in various

applications [5], such as smart farming, environmental sensing, area monitoring, security and

defense, autonomous vehicles, smart city, smart home, and industrial automation, with almost

100% connectivity and availability [6]. WPT has been found to be a promising solution to ensure

the sustainable operation of 6G communication networks [7], [8]. Towards this goal, we believe

that a UAV-aided WPT framework can potentially take the critical role of an automated recharging

agent of the field nodes. Therefore, it is important to investigate the different limitations of UAV-

aided WPT with a closer look on the feasibility in practical deployments. Here, WPT refers to

radiative WPT, which is also known as RF energy transfer (RFET) [9]. RFET works over a longer

range, and data transfer as well as power transfer can be done over the same frequency band

because RF waves carry energy as well as information. Off-the-shelf devices such as powercast

energy harvesters [10] can be easily embedded with the sensor nodes to facilitate RFET.

A. Related Work

The reported works related to UAV-aided RFET can be broadly classified in three categories:

UAV-aided RFET only [11], [12], UAV-aided RFET and wireless information transfer (WIT)

[13]–[19], and UAV-aided RFET, WIT, and mobile-edge computing (MEC) [20], [21]. The first

set of works investigate strategies to recharge the field sensor nodes. Towards this, a UAV-

mounted energy transmitter is deployed in [11] to deliver energy wirelessly to a set of nodes at

known locations on the ground. The trajectory of the UAV is optimized to maximize the amount

of energy transferred to the nodes during a finite charging period. In [12], the UAV supplies
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wireless energy to a set of ground nodes aiming to maximize the minimum received energy

among all the ground nodes. Here, a global optimal solution is achieved for the nodes deployed

in a one-dimensional array as opposed to a local optimal solution in [11].

The second set of works studied to recharge the sensor nodes along with data collection from

them through WIT. A wireless charging platform integrated with a quadcopter is reported in

[13]. In [14], the UAV acts as an energy source to power device-to-device pairs for information

transfer. Here, the resources are allocated in optimal sense to maximize the throughput within a

time window. In [15], the UAV transfers energy to the user equipments in half-duplex or full-

duplex mode, and the user equipments harvest energy for data transmission to the UAV. The total

energy consumption of the UAV is minimized while satisfying the minimal data transmission

requests of the user equipments. A UAV-assisted cooperative communication system based on

simultaneous wireless information and power transfer (SWIPT) is presented in [16], wherein the

UAV serves as a relay. Multiple UAVs are deployed as relays equipped with energy harvesting

capability in [17]. In these works [16], [17], the UAV’s transmission capability is powered by the

energy harvested from RF signal transmitted from the source. The joint consideration of downlink

SWIPT and uplink information transmission in UAV-assisted millimeter wave (mmWave) cellular

networks is analyzed in [18]. On the other hand, the authors in [19] study the application of

SWIPT to mmWave non-orthogonal multiple access (NOMA) enabled aerial networks, where an

aerial base station sends wireless information and energy simultaneously via NOMA schemes

to multiple single-antenna information decoding devices and energy harvesting devices.

The third set of works explored strategies to process the collected data locally on a UAV-

mounted server followed by recharging and data collection from the sensor nodes. In [20], a

UAV-enabled MEC wireless-powered system is studied Here, the computation rate maximization

problem is investigated, under both partial and binary computation offloading modes, subject to

the energy-harvesting and the UAV’s speed constraint. A time division multiple access based

work flow model, which allows parallel transmissions and executions, is presented in [21] to

improve energy efficiency of the UAV-enabled MEC wireless-powered system.

B. Motivation and Contribution

In the reported works [11]–[21], an ideal hovering condition of the UAV has been considered,

which is not the case in real-life deployment. The operational condition of a UAV is very

different from fixed static infrastructure, as it hovers above ground with sufficient payload. A
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UAV experiences hovering inaccuracy due to various reasons, such as vibration and positioning

errors. Recently, hovering inaccuracy of a UAV and its impact on the performance of UAV-

aided RFET was measured and quantified in [22] through field experiments first time in the

literature of UAV-aided RFET. Due to hovering inaccuracy, a UAV hovers at a position that is a

little away from the desired position, leading to localization mismatch (LM). It also undergoes

rotational motion, leading to orientation mismatch (OM). The individual as well as joint effects

of these mismatches on UAV-aided RFET performance was analyzed. The study in [22] made

the following observations on the effects of UAV hovering inaccuracy: (i) Compared to an ideal

deployment scenario, a higher transmission power is required for the same RFET performance,

(ii) optimum hovering altitude is significantly different, and (iii) compared to OM, the effect of

LM is more severe.

The aforementioned observations reveal that the desired amount of energy is not harvested at

IoTDs due to hovering inaccuracy of the UAV. The excess transmit power required to achieve the

same set of objectives is a critical issue, because the UAV is an energy-limited system. Therefore,

it is important to devise new strategies for mitigating the effects of hovering inaccuracy so that

the energy loss due to this inaccuracy can be minimized in UAV-aided RFET. To the best of

our knowledge, this is the first work in the literature of UAV-aided RFET where a mitigation

strategy to overcome the performance degradation due hovering inaccuracy is studied.

The key considerations and contributions are as follows:

1) An array of antennas is mounted on the UAV to generate an optimally narrow beam directed

towards the ground-deployed sensor node for recharging its battery. This antenna array offers

a high gain with appropriate directivity to overcome the effect of LM.

2) OM leads to displaced beam spot on the ground, which does not ensure coverage of the

sensor node. This happens due to deviation of elevation angle of the narrow antenna beam.

To this end, an analytical framework to model the deviation in elevation angle is presented

and its variation is estimated using the data collected through an experimental setup.

3) Closed-form expressions for the received power at the ground-deployed node are obtained

for a total of four cases arising due to LM and OM. This enables us to investigate the

mitigation capability of individual as well as joint degradation due to mismatch. A term

coverage probability is defined, which plays a key role in evaluating the received power at

the sensor node. Further, the received power is characterized for each of the four cases.

4) An optimization problem to estimate the optimal system parameters (transmit power, hover-
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ing altitude of UAV, and antenna steering parameters) for mitigating the hovering inaccuracy

is formulated. Simulation results reveal that the proposed framework mitigates the LM

effectively, whereas the OM has appreciable adverse effect on the performance. However, the

combined effect of LM and OM is mitigated significantly, and the same RFET performance

is achieved with substantially less transmit power (up to 36% reduction) compared to [22].

5) A framework to analyze varying hovering inaccuracy is presented to evaluate the perfor-

mance for different level of LM and OM. Numerical analysis reveals that, in contrast with

the observation in [22], OM affects the performance more severely than LM.

This work distinguishes itself significantly from the previous work reported in [22]. The effects

of UAV hovering inaccuracies on RFET were investigated in [22]. In contrast, the current study

presents beamforming-based UAV hovering inaccuracy mitigation strategy to achieve a higher

amount of energy transfer to a ground node. The consideration of beam steering approach entails a

very different system model in presence of hovering inaccuracy and the associated performance

analysis. Further, importantly, this study shows that, with beam steering the different aspects

of hovering inaccuracy (LM and OM) have very different consequences and the associated

optimization requirements.

C. Paper Organization

In Section II, the system model is presented. The effect of hovering inaccuracy on the system

layout is analyzed in Section III. In Section IV, an optimization problem is formulated to estimate

the optimal system parameters with hovering inaccuracy. The simulation results are discussed in

Section V, followed by concluding remarks in Section VI.

II. SYSTEM MODEL

The system model for a UAV-aided RFET is shown in Fig. 1, where the antenna array is

mounted at the bottom of the UAV. An antenna array radiates power over a narrow beam in a

particular direction with high directivity. Excellent maneuvering capability of the UAV enables

it to hover vertically above the sensor node and facilitate RFET. With this system configuration,

hovering vertically above the sensor node offers the maximum received power, as the distance

between transmitter and the individual receiver is minimum. There are several advantages of

using a narrow beam compared to an omnidirectional radiation pattern. It transfers a higher

amount of power to the ground sensor node due to higher directivity, which offers relatively
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UAV

Sensor node

h

Figure 1: The system model for UAV-aided RFET.

higher coverage along the line-of-sight (LoS) to extend the range of RFET. This extended RFET

range plays a key role in several real-life deployments. The UAV visits each field sensor node

one by one and replenishes energy wirelessly, because the range of UAV-aided RFET is very

small, up to a few meters only. This is due to relatively much higher minimum received power

threshold (i.e., poor sensitivity) for RFET (approximately −12 dBm). On the other hand, inter-

node distance in practical ground node deployment is much larger (e.g., ten meters or more)

compared to the size (diameter) of the beam’s ground projection (on the order of sub-meter).

Thus, charging the nodes individually is only feasible with the narrow beam generated by UAV-

mounted transmitter having limited ground projection area. Also, due to much smaller spot size

compared to the inter-node distance, an individual node’s charging process does not influence

the charging process of another node. Simultaneous charging of multi-nodes through multi-beam

is not beneficial because the gain and the power allocated to each beam are insufficient to meet

the receive power threshold. Further, a large inter-node distance in real-life deployment degrades

the energy harvesting capability due to higher path loss. Therefore, without loss of generality,

for charging optimization, a single node is considered in the network. The consequence of the

UAV hovering inaccuracy will be the same for charging any other ground node in the network.

Since practically a UAV is able to charge one ground node at a time, the analysis of LM and

OM can be extended to multi-UAV scenarios where each of them covers one node at a time

without appreciable overlap of ground projection areas.

In the given context of UAV-aided RFET, the channel between the UAV and the sensor node is

highly dominated by the LoS link due to smaller hovering altitude and limited ground projection

area of the narrow beam. The effect of small-scale (multipath) fading is negligible with a narrow

beam, i.e., when the LoS signal is very strong. Further, since the time required for RFET based

charging is large (on the order of several minutes), and the effect of small-scale (multipath)

fading is averaged out over such a long duration.

Referring to Fig. 1, the power received at a ground sensor node when the UAV hovers at
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altitude h above it is expressed as

P (h, θ) = PtxGrxF (θ, φ)

(
c

4πfcdtx−rx

)2

=
PtxΛ0F (θ, φ)

[dtx−rx]2
, with Λ0 = Grx

(
c

4πfc

)2

, (1)

where Ptx is the radiated power transmitted by the transmitter mounted on the UAV and Grx is

the receiver antenna gain, c (= 3× 108 m/s) is the speed of light, fc is the carrier frequency of

the transmitted RF wave, dtx−rx is the distance between transmitter and receiver, and F (θ, φ)

is the radiation pattern of the transmit antenna array, with θ and φ denoting, respectively, the

elevation angle and the azimuth angle. F (θ, φ) is expressed as [23]

F (θ, φ) =

N, if θ ∈
[
−θB(N)/2, θB(N)/2

]
, φ ∈ [0, 2π]

0, otherwise,
(2)

where θB(N) is the half power beamwidth (HPBW) of the antenna array having N antenna

elements and is θB(N) = π/
√
N .

In the given context of UAV-aided RFET analysis, the main lobe of the antenna array is of

our interest, because of its much higher gain compared to the side lobe gain. The impact of side

lobe gain is negligible in RFET because the nodes are charged one-by-one individually due to

smaller ground projection area of the narrow beam compared to the inter-node distance. Further,

side lobe gain has no effect on the performance of UAV-aided RFET due to higher received

power threshold (approximately −12 dBm) for RF energy replenishment. It is notable that, in

contrast, the side lobe gain is of concern in cellular communication scenario due to much higher

sensitivity for wireless information reception (i.e., it works even at much lower received power,

−90 dBm or less), which causes interference [23].

Remark 1. The ground node is equipped with an omnidirectional antenna, which aids in

mitigation of LM of the hovering UAV. Moreover, omnidirectional circularly polarized antenna

is a good choice, because of its insensitivity to polarization of the received signal [24].

Remark 2. The emphasis of the study is to analyze the impact of hovering inaccuracy on RFET

performance, where the received power is considered as the performance metric due to analytical

tractability. Since the harvested power is a non-decreasing function of the received power [25],

the analysis for received power will also remain valid for harvested power [11], [12].
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III. EFFECT OF HOVERING INACCURACY ON SYSTEM LAYOUT

A. Analysis of Hovering Inaccuracy

The location of the ground sensor node to be charged is fetched into the UAV to schedule an

autonomous flight, and it arrives at the mentioned location to facilitate RFET. It is desired that

the UAV should hover vertically above the sensor node and remain stationary while facilitating

RFET in order to transfer maximum energy to the ground sensor node, because this orientation

offers the minimum distance between transmitter and receiver. Furthermore, the center of the

transmitted beam should point towards the field sensor node. However, this does not happen in

practical deployment due to hovering inaccuracy of the UAV [22]. In fact, the UAV hovers at a

slightly different location rather than hovering vertically above the sensor node and undergoes

rotation at this position. The UAV hovers at a different position other than the desired location

due to positioning error caused by the global positioning system (GPS), which is termed as LM.

The error caused due to rotation of the UAV is termed as OM.

In this work we explore the possibility that, in presence of hovering inaccuracy, the narrow

beam generated by the UAV-mounted antenna array is steered towards the sensor node as shown

in Fig. 2(a) using the location information of field deployed sensor node and the GPS mounted

on the UAV. The location information of deployed sensor node is assumed known to the UAV,

which can be either acquired during deployment of the sensor node or shared with the central

entity (e.g., base station or UAV) during the field data transfer. This will overcome the effect of

LM by providing a high gain. But OM displaces the center of the UAV-mounted antenna’s beam

pointed towards the sensor node as shown in Fig. 2(b). Thus, the repercussions of LM and OM

lead to change in the system layout as depicted in Fig. 2(c). It is very important to investigate the

effect of hovering inaccuracy on the system layout to analyze further the performance analysis

of the UAV-aided RFET.

Remark 3. First of all, the GPS coordinate system (represented using longitude and latitude)

needs to be converted into Cartesian coordinate system. Let LOo and LOa be respectively the

longitude and latitude of a location positioned on the ground at O. Then, the transformation

from longitude and latitude to Cartesian coordinate is obtained as [26]

xO = Re · cos(LOa ) · cos(LOo ), yO = Re · cos(LOa ) · sin(LOo )
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(c) change in system layout

Figure 2: (a) UAV-mounted antenna’s beam directed towards sensor node, (b) displacement of beam due to OM,

and (c) geometrical interpretation of system layout due to hovering inaccuracy.

Roll

Pitch

Yaw

(a) UAV rotation axes

θP
ΦLM h

U

OuOs OpRoll

(b) effect of rotation along roll

U

OsOb

Ψ

(c) deviation in elevation angle

Figure 3: (a) The rotational axes of UAV; depiction of (b) rotation along roll and (c) deviation in elevation angle.

LM leads to change in distance and elevation angle between transmitter and receiver (Fig.

2(a)). Let d(h) and ΦLM(h) respectively denote the distance and elevation angle due to LM

when the UAV hovers at altitude h. Let Os (xs, ys, 0) be the ground sensor node coordinate

which can be obtained from Remark 4. The UAV hovers at location U (xu, yu, h) which is not

vertically above the location of the sensor node (Fig. 2(c)). Then, the location of the projection

point of the UAV on ground above which it hovers is Ou (xu, yu, 0). The distance d(h) between

transmitter and receiver is obtained as

d(h) = ‖UOs‖ =
√

(xu − xs)2 + (yu − ys)2 + h2. (3)

The elevation angle ΦLM(h) between UAV transmitter and ground receiver is

ΦLM(h) = ∠OuUOs = arctan

[√
(xu − xs)2 + (yu − ys)2

h

]
. (4)

The UAV undergoes rotational motion along its rotational axes. However, OM does not change

the distance between transmitter and receiver. However, it displaces the narrow beam transmitted

from the UAV-mounted antenna array towards the ground sensor node as shown in Fig. 2 (b).

Thus, due to OM, the center of the antenna’s beam does not accurately point towards the sensor

node, which leads to deviation in the elevation angle ∠OsUOb as shown in Fig. 2(c).

There are three types of rotational motion: pitch, roll, and yaw. Pitch corresponds to rotation

around the lateral axis or around the wings, roll corresponds to rotation around the longitudinal

axis or around the head, whereas yaw corresponds to rotation around the vertical plane. For

convenience and analytical tractability, let us assume that roll, pitch, and yaw denote x, y, and z
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axes, respectively, as shown in Fig. 3(a). With this assumption, Fig. 3(b) depicts the displacement

of the beam center of the antenna array along roll axis, where the center of the beam points

towards a slightly different location (say Op) rather than the original sensor node’s location Os

due to roll angle θR. Thus, the x-coordinate of the center of the displaced beam xR due to

rotation along the roll θR is obtained as

xR = h tan
(
ΦLM − θR

)
. (5)

Likewise, y-coordinate of the displaced beam center yP due to rotation along the pitch θP is

yP = h tan
(
ΦLM − θP

)
. (6)

Thus, (xR, yP , 0) is the new coordinate of the beam center after rotation along the pitch and

roll axes. The beam experiences rotation along the yaw, which rotates the beam along the vertical

z-axis and the beam experiences θY angular rotation along the yaw. Consideration of the yaw

is important, because radiation pattern of the transmitted beam from the UAV-mounted antenna

array is not symmetric about the vertical axis (or z-axis). Thus, the antenna beam centered at

(xR, yP , 0) undergoes θY angular rotation along the yaw. Then, the coordinate of the new center

of the beam (say Ob = (xb, yb, 0)) after θY rotation along the yaw (see Fig. 3 (c)) is obtained as

xb
yb

 =

cos θY − sin θY

sin θY cos θY

xR
yP

 ⇒
xb = xR cos(θY )− yP sin(θY )

yb = xR sin(θY ) + yP cos(θY ).
(7)

Finally, the center of the antenna’s beam points towards Ob (xb, yb, 0) (see Fig. 3 (c)) after

experiencing the rotation of the UAV rather than the original sensor location Os. This leads to

the deviation in the elevation angle Ψ between the sensor node Os and the shifted center of the

beam spot Ob as shown in Fig. 3(c). Using the coordinates of the three points, i.e., the sensor

node’s location (Os ≡ (xs, ys, 0)), the shifted center of the beam spot (Ob ≡ (xb, yb, 0)), and the

UAV’s location (U ≡ (xu, yu, 0)), the deviation in elevation angle Ψ is obtained as

Ψ = ∠ObUOs = arccos

[ −−→
UOb ·

−−→
UOs

|
−−→
UOb| · |

−−→
UOs|

]
. (8)

In (8),
−−→
UOb = [xb − xu, yb − yu,−h] and

−−→
UOs = [xs − xu, ys − yu,−h], and

−−→
UOb ·

−−→
UOs denotes

the dot product of two vectors
−−→
UOb and

−−→
UOs.
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Figure 4: UAV experimental setup and variation of hovering inaccuracy parameters.

B. Modeling of Hovering Inaccuracy Parameter

For conducting experiments, a customized rotatory-wing UAV was assembled (see Fig. 4(a))

and a single sensor node equipped with GPS module was considered. Extensive experiments

were conducted in an open play ground. The GPS location of the deployed ground sensor node

was noted. This position information along with the hovering altitude was fetched into the

Ardupilot mission planner (http://ardupilot.org), which was installed in the computer acting as

a ground control station. In the experiment, the setup was programmed to arrive at the fetched

location and hover at altitudes ranging from 1 m to 5 m, for approximately three minutes at each

altitude. While the UAV hovers at each of these altitudes statically, the rotation angle parameters,

i.e., pitch, roll, and yaw, change frequently (around hundred samples per second). The data of

the GPS location and the rotational motion parameters of the UAV were collected for further

analysis. The hovering altitude of UAV was considered up to 5 meters only due to relatively

higher received power threshold (i.e., poorer sensitivity) for RFET (approximately −12 dBm).

Using the GPS location data of the UAV and the sensor node at each hovering altitude h, the

distance d(h) and elevation angle ΦLM(h) between the UAV-mounted transmitter and receiver

on the ground are calculated for different hovering altitudes using (4) and (5), respectively. For

this purpose, first the GPS coordinate system is converted into Cartesian coordinate system (see

Remark 3). The estimated values of distance and elevation angle for different hovering altitude

are modeled using curve fitting technique in order to obtain the empirical equations as function

of hovering altitude for for the ease of analysis. The empirical equations are given as

d(h) =
√
u1h2 + u2h+ u3 and ΦLM(h) = v1h

3 + v2h
2 + v3h+ v4 (9)

where u1 = 1.015, u2 = −0.1193, u3 = 0.2588, v1 = −0.01573, v2 = 0.1763, v3 = −0.651, v4 =

0.8488. The R-square values for the fitting of d(h) and ΦLM(h) are 0.9999 and 0.9938, respec-

tively, and the values close to 1 indicate the best fit.
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Table I: Variation of hovering inaccuracy parameters for beam steering based strategy

OM-only

ΨOM (h) ∼ N
(
µOM (h), σ2

OM (h)
)
,

µOM (h) = q1 exp(q2h) + q3 exp(q4h); R-square = 0.9972

q1 = 4.449e− 06, q2 = 1.38, q3 = 0.08578, q4 = −0.1565

σOM (h) = r1 exp(r2h) + r3 exp(r4h); R-square = 0.9991

r1 = −2.075e− 05, r2 = 1.147, r3 = 0.04924, r4 = −0.1122

Both LM and OM

ΨHI(h) ∼ N
(
µHI(h), σ2

HI(h)
)
,

µHI(h) = m1 exp(m2h) +m3 exp(m4h); R-square = 0.9999

m1 = 2.498,m2 = −2.243,m3 = 0.1657,m4 = −0.2552

σHI(h) = n1 exp(n2h) + n3 exp(n4h); R-square = 0.9921

n1 = 0.0633, n2 = −0.233, n3 = 2.153e− 06, n4 = 1.529

The data of rotational angle parameters along with the location of the UAV and the sensor

node are used to estimate the deviation in elevation angle Ψ using (9). At each altitude, eighteen

thousand samples of rotational angle (each for pitch, roll, and yaw) are collected, and deviation

in elevation angle corresponding to them are estimated at each altitude. It has been observed

that the deviation in elevation angle Ψ closely follows Gaussian shape for the data set at each

height. For example, the histogram of Ψ at altitude h = 1 m is shown in Fig. 3(b). The mean

and variance of the distribution of Ψ for each height is obtained and fitted using curve fitting

technique in order to obtain the empirical equations as function of hovering altitude for analytical

tractability, which are listed in Table I. Thus, Ψ at UAV hovering altitude h is modeled as

Ψ(h) ∼ N
(
µHI(h), σ2

HI(h)
)
, (10)

where N denotes the Gaussian distribution; µHI(h) and σHI(h) denote the mean and standard

deviation, respectively, when the UAV hovers at altitude h.

The values of µHI(h) and σHI(h) for different heights, e.g., 1 m to 5 m, are obtained by

analyzing the distribution at each height. Next, the variation of µHI(h) and σHI(h) against hov-

ering altitude h are individually modeled through mathematically via curve fitting for analytical

tractability. The modeled equations for µHI(h) and σHI(h) along with the fitting coefficients are

listed in Table I. The variation of the empirical and fitted values of mean µHI(h) and standard

deviation σHI(h) are respectively shown in Figs. 4(c) and 4(d), which indicate a good match.

The R-square values are also listed in the table; the values close to 1 indicate the best fit.

Remark 4. For the scenario when the UAV experiences only OM, ΦLM = 0 and the distance

between transmitter and receiver is equal to the hovering altitude. The above analysis will remain

valid with ΦLM = 0 and the hovering inaccuracy parameters can be estimated. For this case,
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the detailed analysis is not presented here for brevity, but the hovering inaccuracy parameters

ΨOM , i.e., deviation in elevation angle due to OM-only is modeled and listed in Table I.

Remark 5. The numerical analysis presented here is based on a data set of hovering inaccuracy

measured using an experimental setup in Fig. 4(a). It is quite possible that the same UAV may

exhibit different levels of hovering inaccuracy in different deployment scenarios and environmen-

tal conditions. However, the analytical framework and procedure to model the effect of hovering

inaccuracy on system layout will remain the same as presented here in this work. Hence, it

is important to estimate UAV hovering inaccuracy profile via a measurement campaign before

facilitating RFET in a particular deployment scenario, and optimize the system parameters. UAV

can also update the optimal system parameter in real-time according to the hovering profile.

IV. ESTIMATION OF OPTIMAL SYSTEM PARAMETER

With the analysis and modeling of the hovering inaccuracy in the previous section, it is

important to investigate the joint and individual impact of mismatches. These cases are important

to analyze in order to evaluate the performance deviation due to the hovering inaccuracy and

severity of each mismatch. For this purpose, four cases are considered as there are two types

of mismatches, i.e., LM and OM, and the hovering inaccuracy is characterized in terms of the

received power at the sensor node. Then the optimal system parameters, such as transmit power

level, hovering altitude, and antenna parameter, are estimated. These parameters will play a key

role in the UAV-aided RFET system design from practical deployment perspective.

A. Without Hovering Inaccuracy (Ideal Hovering)

In this case, the sensor node does not experience any hovering inaccuracy. This refers to the

scenario when the UAV hovers vertically above the sensor node and does not undergo rotational

motion. Thus, from (1), the received power at the sensor node when the UAV hovers at altitude

h with N antenna elements mounted on it is obtained as

P (Ideal)
rx (h,N) = PtxΛ0F (θ, φ)

(
1

dtx−rx

)2
∣∣∣∣∣
θ=0

dtx−rx=h

=
PtxΛ0N

h2
= PtxZIdeal(h,N), (11)

where ZIdeal(h,N) is given as

ZIdeal(h,N) = Λ0N/h
2. (12)
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Remark 6. ZIdeal(h,N) is not a convex function of h and N . It may be noted that, ZIdeal(h,N)

is an increasing function of N for a given h. On the other hand, ZIdeal(h,N) is a decreasing

function of h for a given N .

B. With Only Localization Mismatch (LM)

In this case, the sensor node experiences only LM. The UAV does not hover vertically above

the sensor node as well as does not undergo rotational motion at this erroneous position. The

beam is steered towards the ground node at angle ΦLM(h) and the node is covered by a narrow

beam. This leads to change in the distance between transmitter and receiver, but no deviation

in the elevation angle is noted. Thus, from (1), the received power at the sensor node when the

UAV hovers at altitude h with N antenna elements mounted on it is obtained as

P (LM)
rx (h,N) = PtxΛ0F (θ, φ)

(
1

dtx−rx

)2
∣∣∣∣∣
θ=0

dtx−rx=d(h)

=
PtxΛ0N

[d(h)]2
= PtxZLM(h,N), (13)

where ZLM(h,N) is given as

ZLM(h,N) = Λ0N/[d(h)]2. (14)

Theorem 1. ZLM(h,N) is not proven to be a convex function of h and N .

Proof. See Appendix B.

Lemma 1. ZLM(h,N) is a decreasing function of h for a given N = N0.

Proof. See Appendix C.

Lemma 2. ZLM(h,N) is an increasing function of N for a given h = h0.

Proof. See Appendix D.

ZLM(h,N) is not proven to a convex function of h and N , and therefore its variation against

the individual parameters h and N are investigated. Lemma 1 reveals that ZLM(h,N = N0) is

a decreasing function of h, because the distance between transmitter and receiver increases with

increase in h. Lemma 2 reveals that ZLM(h = h0, N) is an increasing function of N , because

the gain of antenna array mounted on UAV increases with increase in N . These observations

are used helpful in estimating optimal system parameters.
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C. With Only Orientation Mismatch (OM)

In this case, the sensor node experiences only OM. The UAV hovers vertically above the

sensor node and undergoes rotational motion at this location. This does not change the distance

between transmitter and receiver, but the deviation in the elevation angle is noted due to OM.

Thus, from (1), the received power at the sensor node when the UAV hovers at altitude h with

N antenna elements mounted on it is obtained as

P (om)
rx (h,N) = PtxΛ0F (θ, φ)

(
1

dtx−rx

)2
∣∣∣∣∣
θ∼ΨOM (h)

dtx−rx=h

= PtxΛ0F (θ, φ)
1

h2

∣∣∣∣∣
θ∼ΨOM (h)

. (15)

It may be noted from Table I that the deviation in the elevation angle ΨOM is a random

variable having Gaussian distribution. Hence, the received power in the expected sense is an

appropriate metric for performance evaluation, because the UAV will have to hover for a long

duration (up to a few minutes) in order to transfer several Joules of energy to each of the sensor

nodes. Thus, the received power in the expected sense is evaluated as

P (OM)
rx (h,N) = E

[
PtxΛ0F (θ, φ)

(
1

h

)2
]

= PtxΛ0

(
1

h

)2

E
[
F (θ, φ)

]
, (16)

where E[·] denotes the expectation operator.

The narrow beam pointed towards the sensor node gets displaced due to the hovering inaccu-

racy of the UAV, which leads to a deviation in the elevation angle. Thus, the sensor node does

not lie within the beam transmitted by the antenna array mounted on the UAV. The gain of the

directed beam is N when the sensor node is covered by it, whereas the gain is 0 when the sensor

node is not covered by the beam. Therefore, E
[
F (θ, φ)

]
estimates the coverage of the sensor

node, and to capture this a term named coverage probability Pcov(h,N) is defined for analysis.

Definition 1. The coverage probability refers to the possibility that the target sensor node lies

within the beam spot generated by the UAV-mounted antenna array having N antenna elements

hovering at altitude h.

Using the definition 1 and the hovering parameters estimated in Table I, P (OM)
cov (h,N) is

estimated as

P (OM)
cov (h,N) = Pr

{
− θB(N)

2
≤ ΨOM (h) ≤ θB(N)

2

}
= Q

(
−

θB(N)
2 − µOM (h)

σOM (h)

)
− Q

( θB(N)
2 + µOM (h)

σOM (h)

)
,

(17)

where Q(·) denotes the Gaussian Q-function.
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Using the definition 1, E
[
F (θ, φ)

]
is given as

E
[
F (θ, φ)

]
= NP (OM)

cov (h,N). (18)

Using the above finding, (16) is rewritten as

P (OM)
rx (h,N) = PtxΛ0

(
1

h

)2

E
[
F (θ, φ)

]
= PtxΛ0

(
1

h

)2

NP (OM)
cov (h,N) = PtxZOM(h,N),

(19)

where ZOM(h,N) is given as

ZOM(h,N) = Λ0NP
(OM)
cov (h,N)/h2. (20)

It may be noted from (19) that the coverage probability depends on the variance of deviation

in elevation angle; increase in variance leads to decrease in coverage probability and vice versa.

Thus, the variance of deviation in elevation angle has strong impact on received power at the

sensor node, because the received power is directly proportional to the coverage probability.

Theorem 2. ZOM(h,N) is not proven to be a convex function of h and N .

Proof. See Appendix E.

Lemma 3. ZOM(h,N) is an increasing function of h for a given N = N0.

Proof. See Appendix F.

Lemma 4. ZOM(h,N) is an increasing function of N for a given h = h0.

Proof. See Appendix G.

The variation of ZOM(h,N) against the individual parameters h and N , is investigated, as it

is not proven to be a convex function of h and N . Lemma 3 suggests that ZOM(h,N = N0) is

a decreasing function of h. This happens, because the distance between transmitter and receiver

increases with increase in altitude. In addition, the coverage probability also decreases with

altitude, as the mean and variance of deviation in elevation angle ΨOM decreases with increase

in altitude. Lemma 4 reveals that ZOM(h = h0, N) is an increasing function of N . The gain

of antenna array increases with increase in N , whereas the coverage probability decreases with

increase in N due to reduced HPBW. ZOM(h = h0, N) is the product of antenna gain and

coverage probability. The increase in antenna gain overcomes the effect of reduction in coverage

probability, and as a result ZOM(h = h0, N) increases with increase in N .
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D. With Both LM and OM

In this case, the UAV does not hover vertically above the sensor node (i.e., LM), which leads

to a change in the distance between transmitter and receiver. In addition, the UAV undergoes

rotational motion at this erroneous position (i.e., OM), which leads to a deviation in the elevation

angle between transmitter and receiver. Thus, from (1), the received power at the sensor node

when the UAV hovers at altitude h with N antenna elements mounted on it is obtained as

P (hi)
rx (h,N) = PtxΛ0F (θ, φ)

(
1

dtx−rx

)2
∣∣∣∣∣
θ∼ΨHI(h)

dtx−rx=d(h)

= PtxΛ0F (θ, φ)

(
1

d(h)

)2
∣∣∣∣∣
θ∼ΨHI(h)

. (21)

It may be noted from (10) that the deviation in the elevation angle θ is a random variable

having Gaussian distribution. The received power in the expected sense is evaluated as

P (HI)
rx (h,N) = E[P (hi)

rx (h,N)] = E

[
PtxΛ0

[d(h)]2
F (θ, φ)

]
=

PtxΛ0

[d(h)]2
E
[
F (θ, φ)

]
. (22)

By definition 1 and the estimated parameters in Table I, P (HI)
cov (h,N) is estimated as

P (HI)
cov (h,N) = Pr

{
− θB(N)

2
≤ ΨHI(h) ≤ θB(N)

2

}
= Q

(
−

θB(N)
2 − µHI(h)

σHI(h)

)
− Q

( θB(N)
2 + µHI(h)

σHI(h)

)
.

(23)

Now, E
[
F (θ, φ)

]
is estimated as

E
[
F (θ, φ)

]
= NP (HI)

cov (h,N). (24)

Using the above finding, (22) is rewritten as

P (HI)
rx (h,N) =

PtxΛ0

[d(h)]2
E
[
F (θ, φ)

]
=
PtxΛ0NP

(HI)
cov (h,N)

[d(h)]2
= PtxZHI(h,N), (25)

where ZHI(h,N) is given as

ZHI(h,N) = Λ0NP
(HI)
cov (h,N)/[d(h)]2. (26)

Theorem 3. ZHI(h,N) is not proven to be a convex function of h and N .

Proof. See Appendix H.

Lemma 5. ZHI(h,N) is a unimodal function of h for a given N = N0.

Proof. See Appendix I.

Lemma 6. ZHI(h,N) is a unimodal function of N for a given h = h0.

August 17, 2021 DRAFT



18

Proof. See Appendix J.

Lemma 5 reveals the unimodal nature of ZHI(h,N = N0). The coverage probability increases

with increase in h due to decrease in mean and variance of ΦHI and the distance between

transmitter and receiver increases at the same time. Thus, at a lower altitude, reduction in

coverage probability dominates due to significantly higher values of mean and variance of ΦHI ,

whereas the distance between transmitter and receiver dominates at a higher altitude. Therefore,

ZHI(h,N = N0) exhibits unimodal variation against h. Lemma 6 reveals the unimodal variation

of ZHI(h = h0, N). The HPBW reduces with increase in N and the gain of antenna array

increases at the same time. The coverage probability decreases with increase in N due to

reduction in HPBW. Therefore, ZHI(h = h0, N) exhibits unimodal variation. It may be noted

from Table I that the magnitude of mean and variance of ΨOM is significantly lesser than that

of ΨHI . Due to this, Lemmas 3 and 4 exhibit different characteristics than Lemmas 5 and 6.

E. Estimation of Optimal System Parameters

Till now, the received power level at the sensor node for all the four cases have been obtained,

which will be used to estimate the optimal system parameters. For this purpose, an optimization

problem to obtain the optimal system parameters for the kth case is formulated as

(P1) : minimize
h,N

P
(k)
tx , k = {Ideal,LM,OM,HI}

s. t.:(C1) : E[P (k)
rx (h,N)] ≥ Po, (C2): hmin ≤ h ≤ hmax, (C3): Nmin ≤ N ≤ Nmax.

(27)

The objective function of (P1) ensures the transfer of at least Po amount of power to the ground

deployed sensor node by radiating minimum amount of power from the UAV-mounted transmitter.

Towards this, the objective function aims to select the appropriate hovering altitude and the

antenna parameters so that the transmitted power level can be minimized in order to receive a

power level higher than Po. Constraint (C1) captures the received power threshold characteristics.

Constraint (C2) restricts the UAV hovering altitude range, whereas constraint (C3) limits the

range of the number of antenna elements mounted on the UAV.

Using (11), (13), (16), and (25), constraint (C1) is rewritten as

E[P (k)
rx (h,N)] ≥ Po ⇒ P

(k)
tx · Zk(h,N)⇒ P

(k)
tx ≥

Po
Zk(h,N)

, k = {Ideal,LM,OM,HI}. (28)

Using (28), the optimization problem (P1) is rewritten as

(P2) : maximize
h,N

Zk(h,N), k = {Ideal,LM,OM,HI}; s. t.: (C2) and (C3) (29)
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Thus, the optimization problem (P1) is transformed into (P2) and solving (P2) is equivalent to

solving (P1). Moreover, Remark 6, Theorems 1 through 3 indicate that Zk(h,N) is not a convex

function of h and N . Therefore, numerical techniques are needed to solve this optimization

problem, where the characteristics of Zk(h,N) proved in Lemmas 1 through 6 will be explored.

For the ideal case without hovering inaccuracy Zk(h,N) with k = {Ideal}, the minimum

hovering altitude is the optimal one, whereas the maximum allowable value of N is the optimal

one (see Remark 6). On one hand, for LM-only and OM-only cases, the optimal hovering

altitude is the lowest possible one, i.e, hmin (see Lemmas 1 and 3), and the optimal number of

antenna elements is the maximum allowable one, i.e., N = Nmax (see Lemmas 2 and 4). On

the other hand, in presence of both LM and OM, Zk(h,N) with k = {HI} exhibits unimodal

variation against h for a given N (see Lemma 5). Also, Zk(h,N) with k = {HI} exhibits

unimodal variation against N for a given h (see Lemma 6). Using the characteristics of the

received power, an algorithm is proposed (Algorithm 1) to estimate the values of optimal system

parameters with both LM and OM. Here, the optimal hovering altitude, which is the root of
∂
∂h
ZHI(h,N0) = 0, is obtained using bisection method for a given number of antenna elements.

Then ZHI(·, ·) is calculated and compared with the previous set of optimal value. This process

is repeated until decrease in ZHI(·, ·) is noted due to unimodal variation of ZHI(h,N) against

h and N individually. The computational complexity of Algorithm 1 is O(hmaxNmax), because

the computational complexity of bisection method depends on the search interval and accuracy

of the solution (a constant, which is taken as 0.01 m). The variation of the function evolved

in the optimization problem is characterized in Lemma 5 and Lemma 6, and found to exhibit

unimodal variation. It may be noted that the unimodal function contains a unique optimal in the

domain of definition, which ensures the convergence of Algorithm 1 in finite iteration. Further,

the optimal solution estimated by Algorithm 1 is a global optimal solution due to presence of

unique optimal in unimodal function.

V. RESULTS AND DISCUSSIONS

Numerical evaluation of the analyses in Sections III and IV is presented here. The hovering

inaccuracy parameters in Table I are used in simulations. The system parameter values considered

are: Ptx = 1 W, Grx = 2.10, fc = 28 GHz, Nmin = 1, Nmax = 150, hmin = 1 m, hmax = 5 m.

A. Effect of Coverage Probability
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Algorithm 1 Estimation of Optimal System Parameters
1: Input: Λ0, Nmin, Nmax, hmin, hmax, P0, hovering inaccuracy parameters (Table I and (9))

2: Output: P opt
tx , hopt, Nopt

3: ε = 0.01, N0 = Nmin

4: Find hr(N0), the root of ∂
∂h
ZHI(h,N0) = 0 (see Appendix I), using bisection method

5: Calculate ZHI(hr(N0), N0) (see (26))

6: while ε ≥ 0 do

7: N0 = N0 + 1,

8: Find hr(N0), the root of ∂
∂h
ZHI(h,N0) = 0, using bisection method

9: Calculate ZHI(hr(N0), N0), ε = ZHI(hr(N0), N0)− ZHI(hr(N0 − 1), N0 − 1)

10: end

11: nopt = N0 − 1, hopt = hr(N0 − 1), P opt
tx = [P0]/[Λ0 · ZHI(hopt, nopt)]

The variation of coverage probability against the number of antenna elements N at different

hovering altitudes for the two cases (OM-only and both LM and OM) is shown in Fig. 5, where

the hovering inaccuracy occurs due to the rotational motion of the UAV. It can be observed that the

coverage probability decreases with increase in N due to decrease in the HPBW, which leads to a

reduced size of the beam spot wherein the sensor node cannot be covered. Moreover, Pcov(h,N)

increases with hovering altitude, because the mean and standard deviation of the deviation in

elevation angle (see ΨOM(h) and ΨHI(h) in Table I) decreases with increase in hovering altitude.

Hence, the antenna’s beam does not get displaced significantly at higher hovering altitude, which

ensures coverage of the sensor node within the beam spot. The effect of coverage probability is

more severe in the case of both LM and OM as compared to OM-only. This is because the UAV

hovers vertically above the sensor node in OM-only case. This leads to symmetric radiation

pattern of antenna’s beam about the vertical axis in this orientation, where the effect of the

yaw is not severe. On the other hand, the antenna beam is directed towards the distant located

sensor node in case of both LM and OM. This leads to asymmetric radiation pattern of the beam

about the vertical axis in this orientation, where the rotation along the yaw results in significant

deviation in elevation angle.

Remark 7. Hovering inaccuracy of UAV leads to reduce the effective gain of antenna beam

directed towards the sensor node, which has strong impact on the performance.
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Figure 5: Variation of Pcov(h,N) against number of antenna elements for different cases.

(a) LM-only (b) OM-only (c) both LM and OM

Figure 6: Variation of optimal received power against HPBW for different cases of mismatch with Ptx = 1 W.

(a) LM-only (b) OM-only (c) both LM and OM

Figure 7: Variation of optimal hovering altitude against HPBW to receive optimal power level for different cases

for proposed framework and the work reported in [22] with Ptx = 1 W.

B. Comparison of Hovering Inaccuracy Mitigation Performance

The work reported in prior art [22] is considered for comparison purpose. The radiation pattern

of transmitter antenna mounted on the UAV is: g(n, θ) = 2(n+1) cosn(θ), where n is the antenna

exponent and θ is the elevation angle between transmitter and receiver. The HPBW of this antenna

is
√

2π/(n+ 1). This directional antenna has a symmetrical radiation pattern about the vertical

axis as opposed to the narrow beam having an asymmetric radiation pattern considered here in

this work. To demonstrate the mitigation capability of the proposed framework, variation of the

received power against HPBW is shown in Fig. 6 for different cases. The transmit power level

is considered to be 1 W and the dimension of the antenna array depends upon the HPBW value.

Then, the UAV optimizes its hovering altitude (as shown in Fig. 7) so that the maximum power
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(a) transmit power (b) hovering altitude

Figure 8: Comparison of optimal (a) transmit power and (b) hovering altitude against HPBW for Po = 0.1 W.

can be received at the sensor node. Fig. 6(a) reveals that LM-only case, the received power

level in the proposed framework is much higher than the prior art. However, the gap reduces

and the received power level is almost same for both of the methods as HPBW increases. This

happens because the narrow beam offers much higher gain, which overcomes the loss due to

LM significantly in the proposed beam steering based framework. Besides, the loss caused by

coverage probability is not here due to the absence of rotation motion of UAV. The optimal

UAV hovering altitude variation for this case shown in Fig. 7(b) indicates that the UAV hovers

at the lowest allowable altitude in the proposed framework, whereas the UAV needs to hover at

a higher altitude to overcome LM without beam steering, as considered in [22]. For OM-only

case where there is no LM, Fig. 6(b) indicates that the received power level in the proposed

framework is slightly less than that in [22]. This is caused due to reduction in the effective gain

of antenna’s beam due to coverage probability (see Fig. 5(a)). Although the gap is nominal, it

reveals that the effect of OM in the proposed beam steering based RFET framework is more

severe than that in [22]. However, the optimal hovering altitude is the same and the lowest

allowable altitude for both as shown in Fig. 7(b). With both LM and OM, the received power

level variation against HPBW is shown in Fig. 6(c), which reveals that the received power level

in the proposed framework is much higher than [22]. Optimal altitude variation against HPBW

shown in Fig. 7(c) indicates that the UAV hovers at higher altitude for smaller values of HPBW,

which offers a larger beam spot on the ground to ensure the node’s coverage.

Variation of the optimal transmit power level required to achieve the objectives of the optimiza-

tion problem (P1) against HPBW is shown in Fig. 8(a) for the proposed method and [22]. One can

observe that relatively less power needs to be transmitted in the proposed framework as compared

to the same in prior art. The saving in transmit power level up to 36% is observed. To meet

this performance, the UAV hovers at a higher altitude in the proposed framework as compared
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(a) transmit power (b) number of antenna array (c) hovering altitude

Figure 9: Variation of optimal system parameters for different level of hovering inaccuracy for Po = 0.1 mW.

to that in prior art as shown in Fig. 8(b). The discussion made above reveals that the proposed

mitigation framework is energy-efficient and overcomes the effect of hovering inaccuracy, as

relatively less transmit power needs to be transmitted to achieve the same performance.

Remark 8. The proposed beam steering based framework treats LM and OM very differently.

It mitigates LM effectively, whereas OM exhibits adverse effect. However, an overall gain in

performance improvement is noticed by jointly accounting for both the mismatches.

C. Impact of Varying Hovering Inaccuracy

The analysis presented till now is based on the parameters listed in Table I, which had been

estimated using the data collected by conducting experiments in an open space (hockey ground).

This can be thought of as an ideal deployment scenario, because GPS signals from nine satellites

were available. It is quite possible that the UAV may experience different levels of hovering

inaccuracy in different deployment scenarios while facilitating UAV-aided RFET, where the

amount of LM and OM can be much higher than that obtained in Table I. It is important to

investigate the mitigation capability of the proposed framework in such a deployment scenario

having varying level of hovering inaccuracy. To this end, to model the severity of the hovering

inaccuracy, we have used two tuning parameters γ > 0 and β > 0 to capture the variation in

distance and the deviation in elevation angle, respectively.

The γ-dependent distance between transmitter and receiver is formulated as

d(γ)(h) =
√
h2 + (γ|OuOs|)2 with |OuOs| =

√
[d(h)]2 − h2. (30)

Here, the increase in horizontal distance between the sensor node (Os) and the ground projection

of the UAV (Ou), i.e., |OuOs|, depicts the GPS error (see Fig. 2), whereas γ indicates the severity

of LM. γ > 1 indicates that the amount of LM is higher than that in Table I, whereas 0 < γ < 1
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indicates that the amount of LM is less than that in Table I. The β-dependent deviation in

elevation angle is formulated as Ψ(β)(h) ∼ N
(
µHI(h), σ2

HI(h)
)

+ β ·µ0, where µ0 = 0.03 is the

additional deviation in elevation angle. This indicates that the UAV undergoes severe rotation

motion along pitch, roll, and yaw, which leads to a higher deviation in elevation angle.

Now, the received power level is obtained from (25) using the distance between transmitter

and receiver d(γ)(h) and the deviation in elevation angle Ψ(β)(h). The characteristics of the

received power for this case has been investigated, which exhibits same variation as proved in

Theorem 3, Lemma 5, and Lemma 6. Thus, the optimal system parameters can be evaluated using

Algorithm 1. The optimal system parameters for the ideal case without any hovering inaccuracy

is: (P opt
tx , hopt, Nopt)

∣∣
Ideal = (0.44 W, 1 m, 150). On the other hand, the variation of the optimal

system parameters against severity of OM for different level of LM is shown in Fig. 9. One can

observe from Fig. 9(a) that it requires to transmit significantly higher power level as the amount

of OM increases. Furthermore, the optimal number of antenna elements reduces as β increases

as shown in Fig. 9(b), because a lower value of N offers a higher HPBW which ensures the

coverage of the sensor node within the beam spot. The optimal hovering altitude also decreases

with increase in β as shown in Fig. 9(c) to balance the loss due to coverage probability which

reduces with β. It is also noted from Fig. 9 that the effect of different level of OM is more

severe than that of LM, because the variation in the optimal system parameters is not significant

when amount of LM increases. However, the proposed framework offers overall performance

gain by mitigating the effect of both LM and OM.

VI. CONCLUDING REMARKS

An antenna beam steering based mitigation strategy to reduce the effect of hovering inaccuracy

in the performance of UAV-aided RFET has been presented. A narrow beam is transmitted

towards the ground sensor node from the antenna array mounted on the bottom of the UAV.

The center of the narrow beam is displaced due to hovering inaccuracy, which leads to an

uncertain ground coverage by the transmitted beam. An analytical framework to estimate the

deviation in elevation angle has been presented and its parameters have been evaluated using data

collected from the UAV-based experimental setup. With this finding, closed-form expressions for

the received power at the ground sensor node have been obtained for the ideal hovering condition

of the UAV and in the presence of hovering inaccuracy of the UAV. The nature of variation of the

received power has also been characterized. Then, an optimization problem has been formulated
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to evaluate the optimal values of system parameters, i.e., transmit power level, hovering altitude,

and antenna parameter. This problem has been proven to be a nonconvex optimization problem,

and an algorithm is proposed to solve this. Performance analysis and simulation results reveal that

the proposed framework is found to be more energy-efficient in mitigating hovering inaccuracy,

as the same performance can be achieved with less transmit power level (up to 36%) as compared

to the prior art. The proposed framework also mitigates the varying level of hovering inaccuracy.

Further investigations on the study of charging mechanism with multi-UAV deployment sce-

nario in presence of hovering inaccuracy would be of future research interest, where mapping

of nodes to appropriate UAV, trajectory optimization of each of the UAVs, and estimation of

charging time required by each node will be of major concern, while accounting for the energy

constraint of UAVs. While the analysis of LM and OM in this paper generically captures the

UAV hovering inaccuracy, an interesting direction would be exclusive investigation on the effects

of environmental factors, such as wind and fog, on the hovering inaccuracy and performance of

UAV-aided RFET. The effect of UAV orientation mismatch due to pitch, roll, and yaw is also

very interesting and challenging issue when the UAV communicates using beamforming with

another UAV or base station over the backhaul data link.

APPENDIX

A. Proof of Theorem 2

For convenience, let us assume that

D(h) =d2(h), D′(h) =
∂

∂h
D(h) = 2u1h+ u2, D′′(h) = 2u1 (see 9). (B-1)

The Hessian matrix ZLM(h,N) is obtained as: HLM(h,N) =

∂2ZLM (h,N)
∂h2

∂2ZLM (h,N)
∂h∂N

∂2ZLM (h,N)
∂N∂h

∂2ZLM (h,N)
∂N2

 =

Λ0

2D(h)[D′(h)]2−[D(h)]2D′(h)
[D(h)]4

− D′(h)
[D(h)]2

− D′(h)
[D(h)]2

0

 . The determinant ofHLM(h,N) is |HLM(h,N)| = −
(

Λ0
D′(h)

[D(h)]2

)2

,

which is negative and hence ZLM(h,N) is not a convex function of h and N .

B. Proof of Lemma 1

The derivative of ZLM(h,N) with respect to h for a given value of N = N0 is obtained

as: ∂
∂h
ZLM(h,N0) = −Λ0N0

D′(h)
[D(h)]2

. From the parameters listed in Table I, one can deduce that

D′(h) > 0 ∀h. Hence, ∂
∂h
ZLM(h,N0) < 0 ∀h, which proves the decreasing nature of ZLM(h,N0)

against h.
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C. Proof of Lemma 2

The derivative of ZLM(h,N) with respect to N for a given value of h = h0 is: ∂
∂N
ZLM(h0, N) =

Λ0
1

D(h0)
. From the parameters listed in Table I, one can deduce that D(h) > 0 ∀h. Hence,

∂
∂N
ZLM(h0, N) > 0 ∀N , which proves the increasing nature of ZLM(h0, N) against N .

D. Proof of Theorem 3

For convenience, let us denote

V (h,N) = −
θB(N)

2 − µOM (h)

σOM (h)
, W (h,N) =

θB(N)
2 + µOM (h)

σOM (h)
. (E-1)

The derivatives of V (h,N) with respect to h and N are obtained as

Vh(h,N) =
∂

∂h
V (h,N) =

∂

∂h

(
µOM (h)− π

2
√
N

σOM (h)

)
=
σOM (h)µ′OM (h)− (µOM (h)− π

2
√
N

)σ′OM (h)

[σOM (h)]2
,

VN (h,N) =
∂

∂N
V (h,N) =

π

4σOM (h)
N−3/2,

Vhh(h,N) =
∂2

∂h2
V (h,N) =

σ2
OM (h)[σOM (h)µ′′OM (h)− σ′′OM (h)(µOM (h)− π

2
√
N

)]−
2σOM (h)σ′OM (h)[σOM (h)µ′OM (h)− (µOM (h)− π

2
√
N

)σOM (h)]

[σOM (h)]4
,

VNh(h,N) = VhN (h,N) =
∂2

∂N∂h
V (h,N) = −π

4

σ′OM (h)

σ2
OM (h)

N−3/2,

VNN (h,N) =
∂2

∂N2
V (h,N) = − 3π

8σOM (h)
N−5/2,

(E-2)

where µ′OM (h) = ∂
∂hµOM (h), σ′OM (h) = ∂

∂hσOM (h), µ′′OM (h) = ∂2

∂h2µOM (h), σ′′OM (h) = ∂2

∂h2σOM (h).

The derivatives of W (h,N) with respect to h and N are obtained as

Wh(h,N) =
∂

∂h
W (h,N) =

∂

∂h

(
µOM (h)− π

2
√
N

σOM (h)

)
=

(µOM (h) + π
2
√
N

)σ′OM (h)− σOM (h)µ′OM (h)

[σOM (h)]2
,

WN (h,N) =
∂

∂N
W (h,N) = − π

4σOM (h)
N−3/2,

Whh(h,N) =
∂2

∂h2
W (h,N) =

σ2
OM (h)[σ′′OM (h)(µOM (h) + π

2
√
N

)− σOM (h)µ′′OM (h)]−
2σOM (h)σ′OM (h)[(µOM (h) + π

2
√
N

)σ′OM (h)− σOM (h)µ′OM (h)]

[σOM (h)]4
,

WNh(h,N) = WhN (h,N) =
∂2

∂N∂h
W (h,N) =

π

4

σ′OM (h)

σ2
OM (h)

N−3/2,

WNN (h,N) =
∂2

∂N2
W (h,N) =

3π

8σOM (h)
N−5/2.

(E-3)

Using (E-1) and (E-2), the derivatives of Q(U(h,N)) with respect to h and N are obtained as

Qh(V (h,N)) =
∂Q(V (h,N))

∂h
= − 1

2π
exp(−[V (h,N)]2/2)Vh(h,N),

QN (V (h,N)) =
∂Q(V (h,N))

∂N
= − 1

2π
exp(−[V (h,N)]2/2)VN (h,N),
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Qhh(V (h,N)) =
∂2Q(V (h,N))

∂h2
=

1

2π
exp(−[V (h,N)]2/2)

[
V (h,N)(Vh(h,N))2 − Vhh(h,N)

]
, (E-4)

QNN (V (h,N)) =
∂2Q(V (h,N))

∂N2
=

1

2π
exp(−[V (h,N)]2/2)

[
V (h,N)(VN (h,N))2 − VNN (h,N)

]
,

QhN (V (h,N)) = QNh(V (h,N)) =
∂2Q(V (h,N))

∂h∂N
=

1

2π
exp(−[V (h,N)]2/2)

[
V (h,N)Vh(h,N)VN (h,N)− VhN (h,N)

]
.

Using (17) and (E-4), the derivatives of Pcov(h,N) are obtained as

hP
(OM)
cov (h,N) =

∂

∂h
P (OM)
cov (h,N) = Qh(V (h,N))−Qh(W (h,N)),

NP
(OM)
cov (h,N) =

∂

∂N
P (OM)
cov (h,N) = QN (V (h,N))−QN (W (h,N)),

hhP
(OM)
cov (h,N) =

∂2

∂h2
P (OM)
cov (h,N) = Qhh(V (h,N))−Qhh(W (h,N)),

NNP
(OM)
cov (h,N) =

∂2

∂N2
P (OM)
cov (h,N) = QNN (V (h,N))−QNN (W (h,N)),

hNP
(OM)
cov (h,N) = NhP

(OM)
cov (h,N) =

∂2

∂h∂N
P (OM)
cov (h,N) = QhN (V (h,N))−QhN (W (h,N)).

(E-5)

In the same way, the derivatives of Q(W (h,N)) with respect to h and N can be obtained using

E-2, E-3, and (E-4).
Now, the Hessian matrix of ZOM(h,N) is given as

HOM (h,N) =

∂2ZOM (h,N)
∂h2

∂2ZOM (h,N)
∂h∂N

∂2ZOM (h,N)
∂N∂h

∂2ZOM (h,N)
∂N2

 = Λ0

κ11 κ12

κ21 κ22

 .
Using (B-1) and (E-5), the elements of the Hessian matrix HOM(h,N) are obtained as

κ11 = N
[D(h)]2

[
D(h)hhP

(OM)
cov (h,N)− P (OM)

cov (h,N)D′′(h)− 2D′(h)hP
(OM)
cov (h,N)

]
+2[D′(h)]2P

(OM)
cov (h,N)D(h)

[D(h)]4
.

κ12 = κ21 =
D(h)

[
hP

(OM)
cov (h,N) +NNhP

(OM)
cov (h,N)

]
−D′(h)

[
P

(OM)
cov (h,N) +NNP

(OM)
cov (h,N)

]
[D(h)]2

.

κ22 =
2NP

(OM)
cov (h,N) +NNNP

(OM)
cov (h,N)

D(h)
, (ZOM (h,N) is continuous, hence κ12 = κ21).

For a function to be convex, the Hessian matrix should be positive semidefinite. The variation of

the eigenvalues of |HOM(h,N)| against h and N is shown in Fig. 10 (a) and (b). The presence

of eigenvalues of opposite sign ensures that HOM(h,N) is not a convex function of h and N .

E. Proof of Lemma 3

The derivative of ZOM(h,N) with respect to h for a given value of N = N0 is obtained as

∂

∂h
ZOM (h,N0) = N0

D(h)hP
(OM)
cov (h,N0)−D′(h)P

(OM)
cov (h,N0)

[D(h)]2
.

The variation of ∂
∂h
ZOM(h,N0) is shown in Fig. 11(a) for different values of N0. It may be

noted that ∂
∂h
ZOM(h,N0) is negative, which proves decreasing nature of ZOM(h,N0) against h.
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(a) |HOM (h,N)| (b) |HOM (h,N)| (c) |HHI(h,N)| (d) |HHI(h,N)|

Figure 10: Variation of maximum and minimum eigenvalue against hovering altitude h and antenna array N .
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Figure 11: Variation of different derivatives.

F. Proof of Lemma 4

The derivative of ZOM(h,N) with respect to N for a given value of h = h0 is obtained as:
∂
∂N
ZOM(h0, N) =

P
(OM)
cov (h0,N)+NNP

(OM)
cov

(h0,N)

D(h0)
. The variation of ∂

∂N
ZOM(h0, N) is shown in Fig.

11(b) for different values of h0. It may be observed that ∂
∂N
ZOM(h0, N) is positive, which proves

the increasing nature of ZOM(h0, N) against N .

G. Proof of Theorem 4

For convenience, we denote

X(h,N) = −
θB(N)

2 − µHI(h)

σHI(h)
, Y (h,N) =

θB(N)
2 + µHI(h)

σHI(h)
. (H-1)

The derivatives of X(h,N) and Y (h,N) can be obtained by following the same procedure in

(E-2) and (E-3), respectively. Then, the derivatives of P (HI)
cov (h,N) can be obtained from (E-5).

These expressions will be used during the estimation of the Hessian matrix of ZHI(h,N), but

they are not given here for brevity.
Now, the Hessian matrix of ZHI(h,N) is given as

HHI(h,N) =

∂2ZHI(h,N)
∂h2

∂2ZHI(h,N)
∂h∂N

∂2ZHI(h,N)
∂N∂h

∂2ZHI(h,N)
∂N2

 = Λ0

h11 h12

h21 h22

 . (H-2)

The elements of the Hessian matrix HHI(h,N) are obtained as

h11 = N
[D(h)]2

[
D(h)hhP

(HI)
cov (h,N)− P (HI)

cov (h,N)D′′(h)− 2D′(h)hP
(HI)
cov (h,N)

]
+2[D′(h)]2P

(HI)
cov (h,N)D(h)

[D(h)]4
.
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h12 = h21 =
D(h)

[
hP

(HI)
cov (h,N) +NNhP

(HI)
cov (h,N)

]
−D′(h)

[
P

(HI)
cov (h,N) +NNP

(HI)
cov (h,N)

]
[D(h)]2

.

h22 =
2NP

(HI)
cov (h,N) +NNNP

(HI)
cov (h,N)

D(h)
, (ZHI(h,N) is continuous, hence h12 = h21).

For a function to be convex, the Hessian matrix should be positive semidefinite. The variation

of the eigenvalues of |HHI(h,N)| against h and N is shown in Fig. 10 (c) and (d). The presence

of eigenvalues of opposite sign ensures that HHI(h,N) is not a convex function of h and N .

H. Proof of Lemma 5

For a function to be unimodal, the sign of the derivative changes only once. The derivative

of ZHI(h,N) given in (26) with respect to h for a given N = N0 is found as: ∂
∂h
ZHI(h,N0) =

N0
D(h)hP cov

(h,N0)−D′(h)Pcov(h,N0)

[D(h)]2
. The variation of ∂

∂h
ZHI(h,N0) is shown in Fig. 11(c) for dif-

ferent values of N0. It may be noted that ∂
∂h
ZHI(h,N0) changes its sign at most once, which

proves the unimodal nature of ZHI(h,N0) against h.

I. Proof of Lemma 6

For a function to be unimodal, the sign of the derivative changes only once. The derivative

of ZHI(h,N) given in (26) with respect to N for a givenh = h0 is found as: ∂
∂N
ZHI(h0, N) =

Pcov(h0,N)+NNP cov
(h0,N)

D(h0)
. The variation of ∂

∂N
ZHI(h0, N) is shown in Fig. 11(d) for different

values of h. It may be noted that ∂
∂h
ZHI(h0, N) changes its sign at most once, which proves the

unimodal nature of ZHI(h0, N) against N .
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