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Learning-Aided Beam Prediction in mmWave
MU-MIMO Systems for High-Speed Railway

Fan Meng, Shengheng Liu, Member, IEEE, Yongming Huang, Senior Member, IEEE, Zhaohua Lu

Abstract—The problem of beam alignment and tracking in
high mobility scenarios such as high-speed railway (HSR) be-
comes extremely challenging, since large overhead cost and sig-
nificant time delay are introduced for fast time-varying channel
estimation. To tackle this challenge, we propose a learning-aided
beam prediction scheme for HSR networks, which predicts the
beam directions and the channel amplitudes within a period
of future time with fine time granularity, using a group of
observations. Concretely, we transform the problem of high-
dimensional beam prediction into a two-stage task, i.e., a low-
dimensional parameter estimation and a cascaded hybrid beam-
forming operation. In the first stage, the location and speed of a
certain terminal are estimated by maximum likelihood criterion,
and a data-driven data fusion module is designed to improve
the final estimation accuracy and robustness. Then, the probable
future beam directions and channel amplitudes are predicted,
based on the HSR scenario priors including deterministic tra-
jectory, motion model, and channel model. Furthermore, we
incorporate a learnable non-linear mapping module into the
overall beam prediction to allow non-linear tracks. Both of the
proposed learnable modules are model-based and have a good
interpretability. Compared to the existing beam management
scheme, the proposed beam prediction has (near) zero overhead
cost and time delay. Simulation results verify the effectiveness of
the proposed scheme.

Index Terms—Beam prediction, parameter estimation, high-
speed railway, maximum likelihood estimation, alternating opti-
mization, data fusion, hybrid precoder.

I. INTRODUCTION

In the fifth-generation (5G) and future wireless communica-
tions, millimeter wave (mmWave) communication arises as an
appealing solution to provide abundant available spectrum, and
thus satisfies the critical demands for the explosively growing
data traffic [2,3]. However, data transmission in the mmWave
band is challenging due to the high path loss, resulting in a
limited coverage area. The small carrier wavelength enables
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packing a large number of antenna elements into small form
factors. Leveraging the large antenna arrays employed at
the transmitter and receiver, mmWave systems can perform
directional beamforming to achieve high beamforming gain,
which helps overcome large free-space path loss of mmWave
signals and guarantees sufficient received signal-to-noise ratio
(SNR). Nevertheless, the large-scale antennas bring significant
challenges for channel estimation, especially in highly mobile
environments.

Recently, deep learning (DL) [4] has been applied to
physical layer communications and regarded as an enabling
technology for future wireless mobile network. The learning-
based approach is data-driven, and inherently applicable for
the scenarios with imperfect models and/or intractable prob-
lems, where the model-driven method cannot work well [5]–
[8]. However, the data-driven method especially the end-to-
end scheme has several obvious shortcomings, including high
dependence on data, high training and model complexity, lack
of interpretability and performance guarantee. Meanwhile,
model-driven methods are free from these shortcomings by na-
ture. Therefore, embedding learnable modules into the existing
model-based system, or designing a specific neural network
(NN) with domain knowledge in communications can combine
the advantages of both paradigms and possibly achieve better
performance [9,10].

In terms of beam alignment/tracking (BA/T) for mobile
terminals (MTs), current model-based methods are feasible,
and achieve (sub)-optimal performance with simple and ex-
plicit simulated models [11]–[13]. Meanwhile, the practical
environments have implicit and complex prior information
in the time frequency spatial domain, which the data-driven
methods can better utilize than the model-driven ones. In
the literature, the learning-enabled BA/T in mobile environ-
ments have been widely-investigated in recent years. The
beam alignment and user localization are strongly coupling
in mmWave communications, With the aid of spatial location
information, it is possible to conduct beam alignment with
higher accuracy and lower overhead. In [14], a mapping
from the user location to the beam pairs (fingerprints) is
learned by supervised learning (SL). The labeled data are
collected by different locations and stored in a database, and
the mapping is usually realized by a deep NN (DNN) in
complex practical environments. The spatial location infor-
mation also can be implicitly presented as global positioning
system (GPS) signals [15] and 3-D point clouds [16]. The
DL-enabled compressed sensing (CS) is developed in [17],
and researchers design a structured DNN-based CS matrix
for vehicular environments. Except for the above SL ap-
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proaches, BA/T can be realized by deep reinforcement learning
(DRL) [18] in a closed-loop manner [19]–[21]. In [21], an
interactive learning design paradigm which makes full use of
domain knowledge and adaptive learning, is developed. The
paradigm requires no prior knowledge of the dynamic channel
modeling, and thus is applicable for a variety of complicated
scenarios. Different from above DL-based approaches, sparse
Bayesian learning (SBL) has also been considered in [22],
and low-rank property of time-varying massive multiple-input
multiple-output (MIMO) channel covariances is utilized to
reduce the training overhead. Expectation maximization-based
SBL framework is used to learn the sparse parameter set.
Furthermore, a Kalman filter is adopted to exploit the channel
temporal correlations to enhance channel tracking accuracy.
For high-speed railway (HSR) wireless networks, significant
angle offset induced in initial access process is investigated
in [23]. This research is established on the periodicity and
regularity of trains’ trajectory. To compensate the angle offset,
the aligned beam is adjusted by the historical beam training
results. To reduce the beam search space, a best beam pair
look-up table is learned from the historical information.

In this paper, we investigate the learning-aided BAT for
HSR mmWave wireless networks. The advanced HSR system
has following notable features including: high-speed MTs
up to 500 km/h; high-density MTs up to hundreds on one
carriage; and high-quality services such as real-time video
transmission [24,25]. Meanwhile, the current mobile network
for the HSR system is far from satisfactory due to the scarcity
of the spectrum resources. Therefore, it is essential to develop
the mmWave techniques for the explosively growing demand
in the advanced HSR system. The current beam management
procedure which includes beam measurement, reporting and
indication, performs well in a regular mmWave scenario where
the MTs moves at a low speed, but is inapplicable for a
typical HSR scenario [26]. In high-speed mobile scenarios,
this procedure is inefficient due to the following two reasons:

• Beam training overhead. Regarding beam measurement,
the overhead caused by frequent beam training can be
very huge, due to small beam dwelling time. When
number of MTs increases to 50 and train speed is
500 km/h, simulation results in [27] show that almost all
time frequency resource are occupied by beam training.

• Time delay loss. Regarding beam reporting and beam
indication, the corresponding latency is mainly produced
by activating candidate beams from radio resource control
(RRC) pool. The report [27] demonstrates that the latency
can be up to 25 ms with 20 ms synchronization signal
block (SSB) periodicity.

To the best of our knowledge, the above two problems have
not been addressed in the existing studies. Therefore, to reduce
the beam training overhead and time delay loss in the HSR
scenarios, it is essential to develop a new beam management
framework.

In this paper, we propose a learning-aided beam prediction
scheme. More concretely, given a group of received pilot
signals and measurements including Doppler frequencies and
communication delays at different instants, we predict the

optimal Tx/Rx beams within a period of future time with
fine time granularity. The duration of beam prediction up
to a second level, reduces the overhead and delay to be
(near) zero; and the time granularity up to a millisecond level
(greatly smaller than the beam dwelling time), guarantees the
beamforming performance. The beam prediction can be carried
out in a purely model-driven manner, but it cannot perform
well with implicit environment priors and system models. On
the other hand, the purely data-driven approach which outputs
high-dimensional beam indexes, is difficult to be realized by
an end-to-end DNN. Consequently, we innovatively propose a
model-based learnable beam prediction scheme, which equiv-
alently transform the high-dimensional beam prediction into
two cascaded stages, i.e., parameter estimation and hybrid
beamforming.

First, given a group of observations, we derive estimation
of two parameter sets, i.e., the MT locations and speeds
separately and independently. Meanwhile, the bias and vari-
ance of the estimated results cannot be derived in a practical
environment. Therefore, we propose a learnable data fusion
module to implicitly estimate the corresponding bias and
variance, to further improve both the estimation accuracy and
robustness. Secondly, due to the prior information that the
determinacy of the moving train trajectory and the mmWave
channel can be well-described as urban macro (UMa) line of
sight (LoS) in 3GPP TR 38.901 [28], the hybrid beamforming
is realized by the estimated parameter set. Additionally, to
handle the non-linearity of tracks, we propose a learnable non-
linear mapping module. The technical contributions of this
work are summarized as follows.

• We propose a beam prediction scheme which reduces
the overhead and delay arised by beam measurement and
reporting to (near) zero. Then, the high-dimensional beam
prediction problem is equivalently transformed into two
cascaded sub-problems, i.e., parameter estimation and
hybrid beamforming, which are both model-based and
learnable.

• Separate estimation of two parameter sets is performed
using the maximum likelihood (ML) criterion. Further-
more, we propose a data fusion module to learn the
corresponding biases and variances, and obtain a final
parameter set with higher accuracy and better robustness.

• We propose to predict the optimal BS analog precoder
and MT combiner with the estimated parameter set. The
long-term prediction duration is up to 1.25 s, and the fine
time granularity is 1.25 ms. The BS digital precoder is
realized by classical minimal mean square error (MMSE)
precoding.

• We propose a learnable non-linear mapping module to
fit the non-linear tracks, where the approximator is
composed of piece-wise linear functions. The learned
mapping is used for MT location search in ML estimators,
BS analog precoding and MT combining. The upper
bound of fitting error is also given.

The rest of this paper is organized as follows. The system
model and the problem formulation are described in Sec-
tion. II. The beam prediction including parameter estimation
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and hybrid beamforming, is described in Section. III-A. The
numerical results are given in Section. IV, and the conclusions
are drawn in Section. V.

Notations: We use lowercase (uppercase) boldface A(a)
to denote the vector (matrix), and a is a scalar. Calligraphy
letter A represents the set or the probability distribution.
Superscripts (·), (·)∗ and (·)H represent the transpose, the
complex conjugate and the Hermitian transpose, respectively.
E{·} denotes the expectation operator. IN denotes the an
N × N identity matrix, and n ∼ CN (0, IN ) means n is
complex circularly-symmetric Gaussian distributed with zero
mean and covariance IN . | · | is an absolute operator, ‖ · ‖p
denotes the `p norm. R and C represent the real field and
complex field, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a link-level multi-user (MU)-MIMO mmWave
communication system composed of a BS and several MTs.
The BS is equipped with Nt antennas and Nrf radio frequency
(RF) chains, and the RF chains are fully connected with
the antennas. The BS simultaneously serves Nrf MTs, and
each MT is equipped with Nr antennas and 1 RF chain. In
practice, both the analog transmitter precoder At and receiver
precoder Ar are realized by the discrete Fourier transform
(DFT) codebooks, i.e., At,i ∈

{
Ft,j |∀j ∈ {1, · · · , Nt}

}
, ∀i ∈

{1, · · · , Nrf} and Ar ∈
{
Fr,j |∀j ∈ {1, · · · , Nr}

}
. The

received signal of MT u in the antenna field is represented
as follows

yu = HuAtDs + nu, (1)

where H denotes the the channel matrix, D ∈ CNrf×Nrf is
and transmitter digital precoder, s is the baseband signal,
n ∼ CN (0, σ2

nINr) is the additional noise, respectively.
According to the mmWave channel model1, H is a sum of
the contributions of K dominant paths, thus the discrete-time
narrow-band channel matrix can be described as

H =

√
NtNr

K

K∑
k=1

αkar(φ
r
k)aHt (φt

k), (2)

where αk is a complex channel gain of path k, φr and φt

are the azimuth angles of arrival (AoA) and departure (AoD),
respectively. The array spacing is half of the carrier wave-
length, and the array responses at the receiver and transmitter
are respectively given as follows

ar(φ) =
1√
Nr

[1, ejπ sin(φ), · · · , ejπ(Nr−1) sin(φ)]T ,

at(φ) =
1√
Nt

[1, ejπ sin(φ), · · · , ejπ(Nt−1) sin(φ)]T .
(3)

Abundant prior knowledge is available in the scene of HSR,
and they are beneficial to simplify the beam prediction. We
summarize the prior knowledge point by point:

1) The channel always contains a LoS path.

1We assume the BS and the MTs are (approximately) on the same horizontal
plane, and thus the uniform linear array (ULA) is considered.
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Fig. 1. An illustration of beam prediction procedure. The parameter estima-
tions and the analog precoder design are parallel carried out with respect to
Nrf MTs. The learning modules are labeled with orange color.

2) The power of LoS path is much higher than the non-LoS
(NLoS) paths, i.e., |α1|2 � |αk|2, k 6= 1.

3) The MT moves along the track at some initial speed v
and acceleration a.

4) The mapping between the AoD of the LoS path φ and
the corresponding spatial location projected on the x-

axis x is a bijection, i.e., x
Φ

 φ.

According to the prior knowledge 1) and 2), the channel
function in (2) can be further simplified as

H ≈
√
NtNrαar(φ

r)aHt (φt)

=
√
NtNrαar(π − φ)aHt (φ).

(4)

Therefore, the channel matrix can be described by a parameter
set of only two elements, i.e., {α, φ}.

B. Problem Formulation

As shown in Fig. 1, in the first step of beam prediction
procedure, the parameters of the parametric motion model such
as projected location and speed, are required to be estimated
by different observations. Specifically, the observations are
carried out L times with fixed time interval ∆t. At each
instant, the BS transmits all horizontal pilot beams. The first
observation is the downlink pilot signal. Given the projected
location xl at instant l, the received pilot signal yl,i of beam
i can be written as

yl,i = H lAt,iDsp + nl,i

≈
√
NtNrαl

(
ar
(
Φ(xl)− π

)
aHt
(
Φ(xl)

))
At,iDsp︸ ︷︷ ︸

zi(xl)

+nl,i,

(5)

where sp is the pilot signal. Secondly, another observation is
the measured communication delay τm and Doppler frequency
fd,m. At instant l, the measurements are respectively given as
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follows

τm,l = τl + nτ,l, (6)
fd,m,l = fd,l + nfd,l, (7)

where nτ ∼ N (0, σ2
τ ) is the measurement error of commu-

nication delay with variance σ2
τ , and nfd ∼ N (0, σ2

fd
) is

the measurement error of Doppler frequency with variance
σ2
fd

. The variances are modeled by the range resolution and
Doppler frequency resolution in radar theory. Besides, the
residual carrier frequency is included in fd,m. Therefore,
variances are modeled as follows

σ2
τ =

c

2B
, (8)

σ2
fd

=
c

2fcTc
+ kfcfc, (9)

where c is the light speed, B is the bandwidth, fc is the carrier
frequency, Tc is the integral time, and kfc is the residual carrier
frequency ratio.

The acceleration is considered in the assumption 3) in II-A.
To ensure the passengers’ comfort, the absolute value of HSR
acceleration is relatively small. Besides, we prove that accurate
estimation of acceleration with limited observation interval
and times is infeasible in Appendix A. Therefore, the effects
of HSR acceleration can be neglected, and we only estimate
the projected location and speed of MTs. Particularly, the
parameter estimation problem is: given a group of received
downlink pilot signal {{yl,i}

Nt
i=1}Ll=1 and measurements of

communication delays {τm,l}Ll=1 and Doppler frequencies
{fd,m,l}Ll=1, how to estimate the parameter set {x, v} of the
MT, where x, and v are respectively the projected location and
speed at the final instant L.

III. BEAM PREDICTION

A. Parameter Estimation

1) Linear Tracks: Firstly, we consider a simple case where
the track is modeled as a straight line parallel to the x-axis with
fixed distance d, as shown in Fig. 2(a). With the assumption
of simplified uniform motion, the projected locations can be
expressed as

xl = x+ (l − L)v∆t, ∀l. (10)

When the MT moves from left to right, speed v is regarded as
positive, and vice versa. Therefore, the expression of function
Φ can be expressed as follows

φl = arctan(
xl
d

). (11)

With parameter set Θ =
{
x, v, {αl}Ll=1

}
, the posterior proba-

bility of received pilot signal is expressed as follows

p(yl,i; Θ) =
1√

2πσn
exp

(
−
(
yl − αlzi(xl)

)H(
yl − αlzi(xl)

)
2σ2

n

)
.

(12)
Therefore, the overall posterior probability of a group of
received pilot signals can be described as follows

p({{yl,i}
Nt
i=1}

L
l=1; Θ) =

L∏
l=1

Nt∏
i=1

p(yl,i; Θ). (13)

(a) Linear track.

(b) Non-linear track.

Fig. 2. Illustrations of HSR tracks.

To estimate the binary set {x, v} with a unique solution, the
number of measurements must be larger than the number of
elements, i.e., L ≥ 2.

The prior of Θ can be difficult to obtain, and the param-
eter set Θ can be estimated by maximum likelihood (ML)
criterion without prior of Θ. The posterior probability is
non-convex with respect to multi-dimensional set Θ. Due to
exponential computational complexity, exhaustive search in the
high-dimensional parameter space is difficult and inefficient.
To reduce the computational complexity, we propose to use
coordinate descent method which updates the elements in
the parameter set alternately and iteratively [29]. In the first
iteration, the parameter elements are unknown, and the initial
elements are obtained as follows

x0
l = arg max

x
p({yl,i}

Nt
i=1;x, αl = 1), ∀l, (14)

α0
l =

∑Nt
i=1 y

H
l,izi(x

0
l )∑Nt

i=1 z
H
i (x0

l )zi(x
0
l )
, ∀l, (15)

v0 = arg max
v

p({{yl,i}
Nt
i=1}

L
l=1;x0, v, {α0

l }Ll=1). (16)

The closed-form of α is given in (15). Due to the non-
convexity of (14) and (16), x and v are both derived by one-
dimensional search. Similarly, the k-th derivation is given as
follows

αkl =

∑Nt
i=1 y

H
l,izi(x

k−1
l )∑Nt

i=1 z
H
i (xk−1

l )zi(x
k−1
l )

, ∀l, (17)

xk = arg max
x

p({{yl,i}
Nt
i=1}

L
l=1;x, vk−1, {αk−1

l }Ll=1), (18)

vk = arg max
v

p({{yl,i}
Nt
i=1}

L
l=1;xk−1, v, {αk−1

l }Ll=1). (19)

Consider a linear track, the complete parameter estimation
algorithm with the received pilot signals is given in Algo-
rithm 1.

The parameter estimation by received pilot signals and
measurements are carried out independently. According to the
geometric relationship between the BS and MT in Fig. 2(a),
the derivation of {τl, fd,l} with respect to xl can be described
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Algorithm 1 Linear track: parameter estimation with the
received pilot signals (single MT).

1: Input: Received pilot signals {{yl,i}
Nt
i=1}Ll=1, thresholds

{θth,x, θth,v}, maximum iteration Kmax.
2: Initialization: Obtain {x0, {α0

l }Ll=1, v
0} by (14), (15) and

(16), respectively.
3: for k = 1 to Kmax do
4: x← xk−1, {αl}Ll=1 ← {α

k−1
l }Ll=1 and v ← vk−1.

5: Obtain {xl}Ll=1 by (10).
6: Obtain {αkl }Ll=1, xk and vk by (17), (18) and (19),

respectively.
7: if |x− xk| < θth,x and |v − vk| < θth,v then
8: break
9: end if

10: end for
11: Output: Estimated parameter set {x, v}p.

as follows

τl =

√
x2
l + d2

c
, (20)

fd,l =
2fcv

′
l

c

= −2fc|v| sin(φl)

c

= −
2fc|v| sin(arctan xl

d )

c
, (21)

where v′ is the speed component along the direction of LoS.
With (20) and (21), the posterior probabilities of the l-th
measurement can be respectively described as follows

p(τm,l; Θ) =
1√

2πστ
exp

(
−
(
τm,l − τl

)2
2σ2

τ

)
, (22)

p(fd,m,l; Θ) =
1√

2πσfd
exp

(
−
(
fd,m,l − fd,l)2

2σ2
fd

)
. (23)

The overall posterior probability of a group of measurements
can be described as follows

p({τm,l}Ll=1, {fd,m,l}Ll=1; Θ) =

L∏
l=1

p(τm,l, fd,m,l; Θ)

=

L∏
l=1

p(τm,l; Θ)p(fd,m,l; Θ).

(24)

Similarly, the estimation problem with given measurements
can be solved by alternating iteration optimization. The ini-
tialization of the parameters x0 and v0 are respectively given
as follows

x0 = −sign(fd,m,L)
√
c2τ2

m,L − d2, (25)

v0 = − cfd,m,L

2fc sin(arctan x0

d )
, (26)

where sign(·) is the symbolic function. In iteration k, the
parameters are derived by one-dimensional search, and they

are respectively given as follows

xk = arg max
x

p({τm,l}Ll=1, {fd,m,l}Ll=1;x, vk−1), (27)

vk = arg max
v

p({τm,l}Ll=1, {fd,m,l}Ll=1;xk−1, v). (28)

Consider a linear track, the complete parameter estimation
algorithm with the measurements is given in Algorithm 2.

Algorithm 2 Linear track: parameter estimation algorithm
with the measurements (single MT).

1: Input: Observed {τm,l}Ll=1, {fd,m,l}Ll=1, thresholds
{θth,x, θth,v}, maximum iteration Kmax.

2: Initialization: Obtain x0 and v0 by (25) and (26), respec-
tively.

3: for k = 1 to Kmax do
4: x← xk−1 and v ← vk−1.
5: Obtain {xl}Ll=1 by (10).
6: Obtain xk and vk by (27) and (28), respectively.
7: if |x− xk| < θth,x and |v − vk| < θth,v then
8: break
9: end if

10: end for
11: Output: Estimated parameter set {x, v}m.

2) Non-linear Tracks: Secondly, we consider a more gen-
eralized case where the track is curved and the MTs move
along the track with constant speed. The track is assumed to
be a parallel straight line in the first case, but this assumption
is not (strictly) true in many cases. To address this issue,
we develop a data-driven and model-driven approach for
parameter estimation. More concretely, the data-driven method
is used to fit the non-linear track, and the model-driven method
is used to estimate the parameter set by ML criterion.

As shown in Fig. 2(b), the track is modeled as an arbitrary
projection distance function f(x) but follows the assumption
4) in Section. II-A. The formula (10) holds when the track is
linear. When the track is non-linear, the solution of projected
locations {xl}Ll=1 derived by (10) is replaced by

F (xl, x) = (l − L)v∆t, (29)

where the function F (xl, x) is defined as

F (xl, x) =

∫ x

xl

√
1 + [f ′(u)]2du, (30)

where f ′(x) is the first-order derivative with respect to x.
When f(x) is known, we can only obtain an analytical solution
of (29) in most cases. Meanwhile, F (xl, x) monotonically
decreases with respect to xl. Therefore, the solution xl of (29)
can be derived by binary searching in a lookup table.

According to the principle of geometry, The initialization
of the parameters x0 and v0 are respectively given as follows

x0 = −sign(fd,m,L)
√
c2τ2

m,L − f(x0)2, (31)

v0 = − cfd,m,L

2fc cos
[
Φ(x0)−Ψ(x0, v0)

] , (32)
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where the function Φ and Ψ are respectively derived as follows

Φ(x) =


arctan

x

f(x)
, f(x) ≤ 0,

arctan
x

f(x)
+ π, f(x) > 0,

(33)

Ψ(x, v) =


arctan

1

f ′(x)
, vf ′(x) ≤ 0,

arctan
1

f ′(x)
+ π, vf ′(x) > 0.

(34)

Both the formulas (31) and (32) are transcendental equations.
Formula (31) can be solved with a numerical solution x0.
When x0 is given, the Ψ in formula (34) is only related to
the symbolic character of v, thus (32) can be easily solved
by a binary try. The expressions of τl and fd,l at projected
location xl can be respectively derived as follows

τl =

√
x2
l + f2(xl)

c
, (35)

fd,l = −2fc|v|
c

cos
[
Φ(xl)−Ψ(xl, v)

]
. (36)

It is easy to prove that the Doppler frequency function (21) is a
special case of the generalized formula (36). The parameter es-
timation algorithm with the received pilot signals considering
a non-linear track is similar to Algorithm 1 which considers
a linear track. We highlight the differences between the linear
and non-linear cases as follows

• Consider a linear track, the location set {xl}Ll=1 is com-
puted by (10). Consider a non-linear track, the location
set {xl}Ll=1 is instead derived by (29) in the binary search
method.

• Consider a linear track, the initialization of {x, v} is
derived by (25) and (26). Consider a non-linear track,
the initialization of {x, v} is instead derived by (31) and
(32).

• Consider a linear track, the set {τl, fd,l}Ll=1 is derived
by (20) and (21). Consider a non-linear track, the set
{τl, fd,l}Ll=1 is instead derived by (35) and (36).

In addition to these differences, both the parameter estimation
algorithms (with the received pilot signals and with the mea-
surements) in the non-linear case are the same as these in the
linear case.

3) Function Fitting: The derivations in the non-linear case
are obtained under the condition that the track function f(x)
is known. In practice, the deterministic function f(x) is
unknown. Hence, f(x) can be learned by some parametric
function g(x; Θg) in a data-driven manner, where Θg is the
network parameter set. Labeled data set can be offline col-
lected by geometric measurements, such as aerial photography
and satellite photography.

According to the universal approximation theorem, using
sufficient hidden computing units, the multi-layer perceptron
(MLP) can approximate the track with arbitrary accuracy.
However, a regular MLP usually has redundant parameters and
lacks interpretability. We propose to construct a contribution
of Nx piece-wise linear functions to fit the function f(x), and

the parametric function g(x; Θg) is defined as follows

g(x; Θg) =

Nx∑
i=1

[ yi+1 − yi
xi+1 − xi

(x−xi)+yi
]
Π(x, xi, xi+1), (37)

where Θg = {yi}Nx+1
i=1 denotes the learnable parameter set,

and the rectangular window function Π(x, a, b) is defined as
follows

Π(x, a, b) =

{
1, x ≥ a and x ≤ b,
0, otherwise,

(38)

and the range x ∈ [−rmax, rmax] is equally divided into Nx
pieces where rmax is the BS maximum service radius. The
expression of xi is given as follows

xi = −rmax + (i− 1)∆x, ∀i ∈ {1, · · · , Nx + 1}, (39)

where ∆x = 2rmax
Nx

denotes the range interval. Apparently,
function g(x) is continuous on the support set of x. The
training is carried out in a SL-enabled approach. The cost
function2 is defined as

L(Θg) = Ex∼X
{∥∥fn(x)− g(x; Θg)

∥∥}, (40)

where fn(x) means f(x) is observed with additional Gaussian
noise. The parameter set Θg is iteratively updated by mini-
batch gradient descent (MBGD) until convergence. Due to
the determinacy of the tracks, the deployed learned function
g(x; Θg) does not require any online fine-tuning or periodic
update. The corresponding analysis about the expected loss in
(40) is presented in Appendix B.

4) Data Fusion: Ignoring the effects of acceleration, the
parameter set {x, v} is the sufficient statistics for the fol-
lowing beam prediction. In Section. III-A we already have
two estimated parameter sets which are derived from different
observations independently. According to the statistical theory,
there exists an optimal estimation from a group of independent
observations. Meanwhile, the optimality is only guaranteed
when the following assumptions hold true:
• The estimated variables follow Gaussian distribution;
• The estimations are unbiased;
• The variances of estimated variables are known.

Firstly, due to the complexity and randomness of the practical
wireless communication scenario, such as imperfect hardware
and inaccurate models, the above assumptions cannot hold
true and thus the performance gap between the theoretical
and practical results is conspicuous. Secondly, there exists a
potential mapping function between the projected location and
the estimation accuracy. For example, when the MTs are far
away from the BS, the estimation variance by the received
pilot signals is very large due to high path loss and limited
angular resolution, and vice versa. This indicates that using
this mapping function can improve the estimation precision.

Out of these two motivations, we propose to develop a
data-driven data fusion method. To distinguish the estimation
results, we mark the parameter set derived by the received

2Consider the convenience of theoretical analysis, we use the mean absolute
error (MAE) as the measure. In practice, the mean square error (MSE) is also
feasible.
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TABLE I
TOPOLOGIES OF THE SUB-NETWORKS.

Weight sub-network Bias sub-network

Output layer sigmoid, 1 linear, 2
BN layer \ \

Hidden layer 2 ReLU, 32 ReLU, 32
BN layer \ \

Hidden layer 1 ReLU, 32 ReLU, 32
Input layer linear, 4 linear, 4

pilot signals as {x, v}p, and similarly mark the parameter set
derived by the measurements as {x, v}m. As shown in Fig. 3,
{x, v}p and {x, v}m are then concatenated as the input of
the NN model h(·; Θh), where Θh = {Θx,Θv} denotes the
network parameter set which is composed by the parameters of
location network hx and speed network hv . The topologies of
the two networks are the same, and each network is composed
by a weight sub-network and a bias sub-network as illustrated
in Table I. The notation ’BN’ denotes batch normalization
(BN), notation ’ReLU’ denotes rectified linear unit (ReLU),
and integer is computation unit number of this layer. The
expressions of the two networks are respectively written as{

wx, bx,m, bx,p} = hx

({
{x, v}p, {x, v}m

}
; Θx

)
, (41){

wv, bv,m, bv,p} = hv

({
{x, v}p, {x, v}m

}
; Θv

)
. (42)

In principle, the network h learns to estimate the variances
and offsets of the input estimations implicitly, assigns the
weightsW = {wx, wv} and biases B = {bx,p, bx,m, bv,p, bv,m}
for the input estimations. The proposed data fusion network
shares the same principle as that of the well-studied attention
networks [30], which also adjust the weights by the input
features. The output of the network is {x, v}. Inspired by
the model-based estimation method, the output estimations are
respectively derived as

x|Θx = wx(xp − bx,p) + (1− wx)(xm − bx,m), (43)
v|Θv = wv(vp − bv,p) + (1− wv)(vm − bv,m). (44)

Compared to the regular NNs, the proposed data fusion
network is light-weighted, inherently against over-fitting, and
have a good interpretability.

The training can be realized in an open-loop manner, i.e.,
the network h is trained with prepared labeled data by SL.
The training procedure is similar to the function fitting in
Section. III-A3, and the cost function is defined as

L(Θh) = E{x,v}∼D
{(
x|Θx

− xtar
)2

+
(
v|Θv

− vtar
)2}

, (45)

where the subscript (·)tar denotes the labeled data. When some
term dominates the overall cost function, theoretically the
loss of other terms can rise. Meanwhile, we have observed
that the loss of the other terms grows slowly, even with a
small training set. Actually, the domination rarely occurs in
practical problems. Therefore, (45) is formulated as a sum. The
parameter set Θh is iteratively updated by MBGD method until
convergence. Besides, the close-loop training can be carried
out by reinforcement learning.

B. Hybrid Beamforming

In our proposed beam prediction procedure, the high-
dimensional beam prediction problem is equivalently trans-
formed into a low-dimensional parameter estimation problem
and a cascaded hybrid beamforming problem. In the hybrid
beamforming, the hybrid precoders in a future time are pre-
dicted by the parameter set {{x, v}u}Nrf

u=1. As shown in Fig. 4,
the time granularity is ∆tp, and the number of predict instants
is Np. Therefore, the period of hybrid beamforming is Np∆tp.

1) Transmitter Analog Precoder and Receiver Combiner:
Firstly, we consider a linear track and the predicted projected
location of MT u at instant i is given as

xi,u = xu + vui∆tp. (46)

The corresponding AoD can be derived by (11). Secondly, con-
sider a non-linear track, the derivations of projected location
is rewritten as

F (xu, xi,u) = vui∆tp, (47)

and the corresponding AoD is instead derived by (33). The
receiver combiner and the transmitter analog precoder are
respectively derived by

ar,i,u = arg min
∀j∈{1,··· ,Nr}

‖Fr,j − ar(φi,u)‖2, (48)

at,i,u = arg min
∀j∈{1,··· ,Nt}

‖Ft,j − at(φi,u)‖2. (49)

2) Digital Precoder: To simply the description, we take
one instant of beam prediction for example. The digital
precoding matrix is composed of Nrf precoders, i.e., Di =
[vi,1, · · · ,vi,Nrf ]. The equivalent low-dimensional channel is
obtained as hi,u =

(
aHr,i,uHi,uAt,i

)H
which is obtained by

CSI reference signal (CSI-RS) at the BS. We adopt a classical
linear MMSE to derive the transmitter digital precoder as
follows

Di = ξHi

(
HH

i Hi + σ2
nINrf

)−1

(50)

where Hi = [hi,1, · · · ,hi,Nrf ]
T , ξ is a factor to control the

BS maximum transmit power.
3) Hybrid Precoding: The complete hybrid beamforming

procedure with a linear track is given in Algorithm 3. The
procedure with a non-linear track is similar to Algorithm 3.
We highlight the differences between the linear and non-linear
cases as follows
• Consider a linear track, the projected location xi,u is

derived by (46), and the corresponding AoD φi,u is
obtained by (11). Consider a non-linear track, xi,u is
derived by (46), and φi,u is obtained by (33).

All the other steps are the same of those in the linear case,
and then the hybrid beamforming procedure in the non-linear
case is obtained. The hybrid precoders of different predicted
instants can be parallel carried out.

C. Implement

Consider a non-linear track, the non-linear mapping module
and the data fusion module are assumed to be off-line trained,
and fine-tuned online. Finally, we summarize the implement
procedure of beam prediction in Table II.
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Fig. 4. An illustration of the observation process and hybrid beamforming
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Algorithm 3 Linear tracks: hybrid beamforming procedure
(single instant).

1: Input: Estimated parameter set {{x, v}u}Nrf
u=1.

2: Obtain the projected location set {xi,u}Nrf
u=1 by (46), and

the corresponding AoD set {φi,u}Nrf
u=1 by (11).

3: Respectively obtain the receiver combiner Ar,i =
[ar,i,1, · · · ,ar,i,Nrf ] and the transmitter analog precoder
At,i = [at,i,1, · · · ,at,i,Nrf ].

4: Obtain the equivalent channel matrix Hi =
[hi,1, · · · ,hi,Nrf ]

T , and derive the transmitter digital
precoder Di by (50).

5: Output: The receiver combiner Ar,i and transmitter analog
precoder At,i, and the digital precoder Di.

TABLE II
IMPLEMENT OF BEAM PREDICTION

Initialization:
The non-linear mapping module and the data fusion module.
Observation process:
1) The BS transmits pilot signals to the MT.
2) The MT estimates the Doppler frequencies and ToAs, then feedbacks the received pilot
signals, Doppler frequencies and ToAs to the BS.
3) The BS derives the final estimation result with feedbacks.
Hybrid beamforming process:
1) The BS predicts the BS analog precoder and MT combiner with the final estimation
result.
2) The BS transmits the MT combiner to the MT.
3) The BS transmits the data signals to the MTs with hybrid beamforming, and the MTs
receive the signals with combiners.

IV. SIMULATION RESULTS

A. System Configurations

In this section, we present the simulation results to demon-
strate the performance of the proposed learning-aided beam
prediction scheme. Generally, the simulated mmWave channel
in HSR is modeled as UMa LoS in 3GPP TR 38.901, and the
wireless communication configurations are listed in Table III.
The BS has 3 sectors and each sector covers 120◦ range. Each
MT has 3 panels (left, back, right). The speeds of MTs on
board are modeled to follow Laplacian distribution, and the
acceleration is also considered as an uncertain factor. Besides,
the geometry of the established HSR scenario and the setting
of the training beams/measurements [28,31,32] are given in
Table III. The BA/T is regarded as benchmark and only the
horizontal beam alignment is considered. The BS/MT tracks
3 Tx/Rx beams (current, left and right) in each BA/T with
period being 10 ms.

B. Data Fusion

1) Linear Tracks: As shown in Fig. 5(a), the location
estimation accuracy by measurements is high when the MTs
are far away from the BS, while the accuracy is low when
the MTs are located adjacent to the BS. This phenomenon is
caused by the lack of prior knowledge on the MT speed. The
communication delay contains the information of distance be-
tween the BS and the MT, Whether the MT is located at right
or left side of BS, however, cannot be inferred from the delay.
Besides, we use symbolic character of Doppler frequency to
discriminate the MT speed direction in (25). However, the
estimation performance cannot be improved especially when
the measured Doppler frequency is significantly noised or the
projected speed component is sharply reduced. Therefore, as
shown in Figs. 5(a) and 5(b), neither the location and the speed
estimations can be accurate in this range.

Meanwhile, the estimations derived by the received pilot
signals becomes more accurate when the BS to MT distance
is reduced, because the corresponding path loss is reduced and
the SNR of the signals is increased. Besides, the AoD of the
MT is also easy to be distinguished in this range. When the
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TABLE III
SIMULATION CONFIGURATIONS

Name Value Name Value Name Value

Scenario UMa LoS MT speed variance 18 (km/h)2 Carrier Frequency fc 30 GHz
MT acceleration variance 0.1 (m/s2)2 Bandwidth B 80 MHz HSR speed 256 km/h

Noise power spectral density −174 dBm/Hz BS antenna number Nt 8 BS maximum transmit power Pt,max 30 dBm
MT antenna number Nr 4 Half inter site distance rmax 100 m prediction time duration 1.25 s

Minimum BS to MT Distance d 11 m Prediction time granularity ∆tp 1.25 ms Integral time Tc 12.5 ms
Observation period ∆t 100 ms Residual carrier frequency ratio kfc 1 ppm Observation times L 3

MT moves far away form the BS, the variances of estimation
sharply increased3.

Generally, the estimation accuracies by measurements are
more accurate than that by received pilot signals when the
MTs are away from the BS, but the estimation accuracies
by received pilot signals are more accurate than that by
measurements when the MTs are around the BS. In a data-
driven manner, our proposed data fusion method has the
highest accuracy with respect to the projected location x, both
in the estimations of location and speed. The validity of the
proposed method is verified by the simulation results, which
also indicate that the function h have learned a weight function
w(·) with respect to x.

2) Non-linear Tracks: In this part, we consider a more
complex case where the track is modeled as a non-linear
function, namely f(x) =

(
6

200

)2
(x − 5)2 + 11. Firstly, we

demonstrate the estimation results with the non-linear track in
Figs. 6(a) and 6(b). We compare Figs. 5(a) and 6(a), Figs. 5(b)
and 6(b), and we have found that the trends of estimation
variance with linear and non-linear tracks are similar.

Using linear estimation algorithms described in Algo-
rithms 1 and 2, the estimation results with the non-linear track
are shown in Figs. 6(a) and 6(b). We compare the estimations
with and without non-linear correction, and we have found
that the estimation performance is significantly improved with
non-linear correction, which verifies the effectiveness of our
proposed non-linear mapping module. We have also noticed
the data-driven method is significantly better than the primary
two estimators in Figs. 6(a) and 6(b). This is mainly because
the estimators become biased due to the model mismatch, and
the data fusion module can reduce these biases and improve
the estimation performance to some extent. Additionally, our
proposed data fusion method also has the highest accuracy
when the track is non-linear.

C. Non-linear Mapping

To verify the effectiveness of our proposed piece-wise func-
tion, we consider several regular regressors as comparisons,
i.e., random forest (RF) with 100 decision trees, support vector
machine (SVM) with linear kernels, second-order polynomial
regression (Poly), and a two hidden-layer MLP where each
layer has 512 neurons. The simulation result is given in
Table IV, the RF and SVM cannot perform well. The Poly
is feasible, and the model complexity is very low (only three
parameters). Meanwhile, the polynomial order must be known,

3The illustrated MSE curves are regularized by a maximum value being
30.
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Fig. 5. Linear tracks: the MSE versus projected location x.

TABLE IV
FITTING ERROR MEASURED BY MAE

Regressor RF SVM Poly MLP proposed

MAE 3.05 2.29 0.22 6.44× 10−2 8.14× 10−3

otherwise a low-order or a high-order Poly performs badly.
The MLP is also feasible, but at the cost of huge model and
computation complexities. Our proposed method achieves the
best trade-off between fitting precision and model/computation
complexity, and does not require any priors. Thus, we claim
interpretability and simplicity.
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Fig. 6. Non-linear tracks (non-linear estimations): the MSE versus projected
location x.

TABLE V
AVERAGE SPECTRAL EFFICIENCY AND BEAM PREDICTION ACCURACY

Optimal Data
fusion Measurements Pilot

signals

Spectral efficiency
(bps/Hz) 13.39 13.37 13.29 12.66

Beam prediction
accuracy 99.99% 98.68% 97.64% 93.98%

D. Spectral Efficiency and beam prediction accuracy

The results of spectral efficiency (SE) and beam prediction
accuracy4 are listed in Table V. Due to the influence of accel-
eration, the miss-alignment of optimal occurs at a probability
of 7.05 × 10−5, and the optimal accuracy is 99.99%. The
proposed data fusion method outperforms the methods by
measurements and received pilot signals, in terms of both SE
and beam prediction accuracy. We also notice that the SE and
beam prediction accuracy of the proposed method are close to
the optimal.

4The averaged simulation results with linear and non-linear tracks are
demonstrated, since their performance are highly similar.
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Fig. 7. Non-linear tracks (linear estimations): the MSE versus projected
location x.

TABLE VI
OVERHEAD COST RATIO AND MEAN EFFECTIVE THROUGHPUT

MT number 4 10 20 50 100

Overhead
cost ratio

BA/T 3.21% 8.04% 16.1% 40.2% 80.5%
Beam prediction 0.0705% 0.183% 0.391% 1.164% 2.97%

Mean effective
throughput (Mbps)

BA/T 1036.30 397.65 177.49 49.78 7.97
Beam prediction 1069.03 427.37 209.53 80.83 39.24

E. Overhead and Throughput

Consider MT specific downlink and uplink overheads, the
overheads of BA/T and proposed beam prediction grow lin-
early with MT number [27]. We define overhead cost ratio as
proportion of overhead occupied in time frequency resource. A
real number is quantized by 32 bits. Consider a time division
duplex system, the proposed beam prediction along with the
baseline are demonstrated in Table VI. Compared to BA/T,
the proposed beam prediction consumes near-zero overheads,
and thus the corresponding effective throughput (reducing
downlink/uplink overhead) is higher when the MT number is
greater than 4. Additionally, the delay loss in BA/T is about
20 ms, while the proposed beam prediction has zero delay. The
simulation results validate the effectiveness of our proposed
scheme.
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Furthermore, the effective throughput of 50 MTs is illus-
trated in Fig. 8. 5%-edge MT on the left side denotes the
lowest 5% MT throughput while 95%-ile denotes the highest
5%, and the middle is average throughput. Generally, the mean
and 95%-ile throughputs of predictable methods are greatly
improved by about 60%, compared to the baseline BA/T. We
also notice that the cell-edge MTs with data fusion achieve
the highest throughput, and outperforms these of pilot signals
and measurements.

V. CONCLUSIONS

In an HSR scenario, the beam prediction which transformed
into a parameter estimation and a cascaded hybrid beamform-
ing was investigated. Based on the ML criterion, the parameter
estimations with received pilot signals and measurements were
respectively carried out by the coordinate descent method, and
a data fusion module was proposed to further improve the
estimation accuracy and robustness. In hybrid beamforming,
the future beam directions and channel amplitudes were pre-
dicted for hybrid beamforming. Besides, the learnable non-
linear mapping module was adopted for the HSR scenarios
with non-linear tracks. The simulation results showed that the
proposed beam prediction scheme with learnable model-based
modules outperformed the one without data fusion or the non-
linear mapping, in terms of effective throughput and alignment
rate.

In our future work, we will consider integrated communi-
cations and sensing, as well as learnable prior information to
further improve the beam prediction performance.
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APPENDIX A
ANALYSIS ON THE SPEED AND ACCELERATION

ESTIMATION

Suppose that the speed and acceleration of a MT are
respectively v and a. Consider a linear track, according to (10),
the projected locations are [x1, · · · , xL]T where L denotes the
observed times. We have the following well-posed or over-
determined equation:

∆t 1
2

(
∆t
)2

...
...

(L− 1)∆t 1
2

(
(L− 1)∆t

)2


︸ ︷︷ ︸
A

[
v
a

]
=

 ∆xn,1
...

∆xn,L−1

 (51)

=

 ∆x1

...
∆xL−1

+

 ∆n1

...
∆nL−1


(52)

where ∆xi = xi+1 − x1 and ∆ni = ni+1 − n1, ni ∼
N (0, σ2

n), ∀i, and ∆t denotes the time interval. Multiplying
AT at both sides of (51), and we have the following equation[ ∑L−1

i=1 (i∆t)2
∑L−1
i=1

1
2 (i∆t)3∑L−1

i=1
1
2 (i∆t)3

∑L−1
i=1

1
4 (i∆t)4

] [
v
a

]

=

[ ∑L−1
i=1 (i∆t)∆xn,i∑L−1

i=1
1
2 (i∆t)2∆xn,i

]
. (53)

The first power, quadratic, cubic, and quartic sum formulas
are expressed as

S1
L =

L∑
l=1

l =
(L+ 1)L

2
, (54)

S2
L =

L∑
l=1

l2 =
(2L+ 1)(L+ 1)L

6
, (55)

S3
L =

L∑
l=1

l3 =
(L+ 1)2L2

4
, (56)

S4
L =

L∑
l=1

l4 =
(3L2 + 3L− 1)(2L+ 1)(L+ 1)L

30
. (57)

Using (54), (55), (56), (57), and we solve the equation (51),
obtain (58) and (59). Then, we can derive the variances of
speed and acceleration as follows

σ2
v =

σ2
n

∆t2
·

[
S4
L−1

S4
L−1S

2
L−1 − (S3

L−1)2

+
(S4

L−1S
1
L−1 − S3

L−1S
2
L−1

S4
L−1S

2
L−1 − (S3

L−1)2

)2
]
, (60)

σ2
a =

4σ2
n

∆t4
·

[
S2
L−1

S4
L−1S

2
L−1 − (S3

L−1)2

+
( (S2

L−1)2 − S3
L−1S

1
L−1

S4
L−1S

2
L−1 − (S3

L−1)2

)2
]
. (61)

The simulation results in Fig. 9 is consistent with the theoret-
ical analysis. Therefore, we have the following results:
• The estimation variance of speed is proportional to the in-

verse of quadratic power of time interval, i.e., σ2
v ∝ 1

∆t2 ;
the estimation variance of acceleration is proportional
to the inverse of quartic power of time interval, i.e.,
σ2
a ∝ 1

∆t4 .
• When the measurement times is large, the estimation

variance of speed is proportional to the inverse of
quadratic power of time interval, i.e., limL→+∞ σ2

v ∝ 1
L2 ;

the estimation variance of acceleration is proportional
to the inverse of quartic power of time interval, i.e.,
limL→+∞ σ2

a ∝ 1
L4 .

• Both the estimation variances of speed and acceleration
are proportional to the noise power, i.e., σ2

v ∝ σ2
n, σ

2
a ∝

σ2
n.

Consider a typical case where L = 3,∆t = 0.1 s, to achieve
the variance of speed being 1 (m/s)2, the expected absolute
error of acceleration is about 10 times of that of speed.
Therefore, when the period of beam prediction reaches to
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v =

[∑L−1
i=1

1
4 (i∆t)4

][∑L−1
i=1 (i∆t)∆xn,i

]
−
[∑L−1

i=1
1
2 (i∆t)3

][∑L−1
i=1

1
2 (i∆t)2∆xn,i

]
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i=1 (i∆t)2
][∑L−1

i=1
1
4 (i∆t)4

]
−
[∑L−1

i=1
1
2 (i∆t)3

][∑L−1
i=1

1
2 (i∆t)3

]
=

1

∆t
·
∑L−1
i=1 (S4

L−1i− S3
L−1i

2)∆xn,i

S4
L−1S

2
L−1 − (S3

L−1)2
, (58)

a =

[∑L−1
i=1 (i∆t)2

][∑L−1
i=1

1
2 (i∆t)2∆xn,i

]
−
[∑L−1

i=1
1
2 (i∆t)3

][∑L−1
i=1 (i∆t)∆xn,i

]
[∑L−1

i=1 (i∆t)2
][∑L−1

i=1
1
4 (i∆t)4

]
−
[∑L−1

i=1
1
2 (i∆t)3

][∑L−1
i=1

1
2 (i∆t)3

]
=

2

∆t2
·
∑L−1
i=1 (S2

L−1i
2 − S3

L−1i)∆xn,i

S4
L−1S

2
L−1 − (S3

L−1)2
. (59)

1 s, the error is mainly caused by the error of acceleration
estimation rather than that of speed, i.e., σ2

a � σ2
v . On the

other hand, to ensure the comfort of passengers, the HSR
usually takes several hundred of seconds to speed up to
maximum. The absolute maximal acceleration is usually at
the level of 0.1 m/s2. Consider a prediction period around 1 s,
the influence caused by acceleration is negligible.

In summary, although the analytical model in this section is
much simpler than the investigated problem, it still can prove
that effect of acceleration is negligible, and the corresponding
accurate estimation is infeasible, with limited observed times,
time interval and prediction period.

APPENDIX B
ANALYSIS ON THE EXPECTED FITTING ERROR

We investigate the expected fitting error in this part, and
we use Θopt denote the learned optimal parameter set of fitting
function g. Furthermore, we consider a practical track function
which is modeled as an arbitrary quadratic function f(x) =
ax2 + bx+ c.

3 5 9 15 25 43 65 95
Observed times

50

40

30

20

10

0

10

20

30

M
S
E
 (

d
B

)

MSE speed (simulation)
MSE acceleration (simulation)
MSE speed (theory)
MSE acceleration (theory)

0.01 0.05 0.22 1.0 4.64 21.54 100.0
Time interval (s)

100

80

60

40

20

0

20

40

60

80

M
S
E
 (

d
B

)

MSE speed (simulation)
MSE acceleration (simulation)
MSE speed (theory)
MSE acceleration (theory)

60 50 40 30 20 10 0
Noise power (dB)

40

30

20

10

0

10

20

30

40

50

M
S
E
 (

d
B

)

MSE speed (simulation)
MSE acceleration (simulation)
MSE speed (theory)
MSE acceleration (theory)

Fig. 9. The MSE curves of estimation variances versus measurement times,
time interval and noise power (L = 3, ∆t = 0.1 s, σn = 0.1).
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e ≤ 1

2rmax

Nx∑
i=1

∫ xi+∆x

xi

∣∣∣f(x)−
[
f(xi)+

f(xi + ∆x)− f(xi)

∆x
(x−xi)

]∣∣∣dx∣∣∣∣∣
f(x)=ax2+bx+c

+σn

√
2

π
=
|a|∆x2

6
+σn

√
2

π
. (64)

A. Quadratic Curves

The expectation of e in (40) can be rewritten as

e = Ex∼X ,n∼N
{∣∣∣f(x) + n− g(x; Θopt)

∣∣∣}
= En∼N

{ 1

2rmax

∫ rmax

−rmax

∣∣∣f(x) + n− g(x; Θopt)
∣∣∣dx}

≤ 1

2rmax

∫ rmax

−rmax

∣∣∣f(x)− g(x; Θopt)
∣∣∣dx+ En∼N

{
|n|
}

=
1

2rmax

Nx∑
i=1

∫ xi+∆x

xi

∣∣∣f(x)− gi(x; Θopt)
∣∣∣dx+ σn

√
2

π
,

(62)

where X is a uniform distribution on the support set of x.
The inequality in (62) is derived by trigonometric inequality.
Consider a sub-optimal case where fixed start-point is f(xi)
and end-point is f(xi + ∆x) for the i-th piece-wise function
gi(x; Θ), the expression of e in (62) can be further scaled as
follows

e ≤ 1

2rmax

Nx∑
i=1

∫ xi+∆x

xi

∣∣∣f(x)−
[
f(xi) + ki(x− xi)

]∣∣∣dx︸ ︷︷ ︸
ei

+ σn

√
2

π
.

(63)

We substitute the expression of f(x) into (63), and easily
we have (64). The expected loss is composed of two parts:
observed noise and fitting error. Ignoring the influence of
noise, the error e is in proportional to |a| and ∆x2. As
shown in Fig. 10, generally the fitting error gap between the
theoretical curve and the simulation curve is about 3 – 4 dB.
When the range interval ∆x is decreased to 3 m, this gap is
sharply reduced. The updated parameter point during training
is oscillating around the optimal, thus it is difficult to obtain
the fitting curve very close to the track curve.
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Fig. 10. The fitting error versus range interval ∆x.

REFERENCES

[1] Y. Zhang, S. Liu, Z. Lu, F. Meng, and Y. Huang, “Learning-aided beam
management for mmwave high-speed railway networks,” in Proc. 40-
th IEEE Global Commun. Conf. (GLOBECOM’21): Signal Process.
Commun. Symp., Madrid, Spain, Dec. 2021, pp. 1–6.

[2] A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas,
“LTE-advanced: Next-generation wireless broadband technology [In-
vited Paper],” IEEE Wireless Commun., vol. 17, no. 3, pp. 10–22, 2010.

[3] M. Xiao, S. Mumtaz, Y. Huang, L. Dai, Y. Li, M. Matthaiou, G. K.
Karagiannidis, E. Björnson, K. Yang, C.-L. I, and A. Ghosh, “Millimeter
wave communications for future mobile networks,” IEEE J. Sel. Areas
Commun., vol. 35, no. 9, pp. 1909–1935, 2017.

[4] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT
Press, 2016.

[5] T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Trans. Trans. Cogn. Commun. Netw., vol. 3, no. 4,
pp. 563–575, 2017.

[6] F. Meng, P. Chen, L. Wu, and J. Cheng, “Power allocation in multi-
user cellular networks: Deep reinforcement learning approaches,” IEEE
Trans. Wireless Commun., vol. 19, no. 10, pp. 6255–6267, 2020.

[7] H. He, C.-K. Wen, S. Jin, and G. Y. Li, “Deep learning-based channel
estimation for beamspace mmWave massive MIMO systems,” IEEE
Wireless Commun. Lett., vol. 7, no. 5, pp. 852–855, 2018.

[8] ——, “Model-driven deep learning for MIMO detection,” IEEE Trans.
Signal Process., vol. 68, pp. 1702–1715, 2020.

[9] A. Zappone, M. Di Renzo, and M. Debbah, “Wireless networks design
in the era of deep learning: Model-based, AI-based, or both?” IEEE
Trans. Commun., vol. 67, no. 10, pp. 7331–7376, 2019.

[10] H. He, S. Jin, C.-K. Wen, F. Gao, G. Y. Li, and Z. Xu, “Model-
driven deep learning for physical layer communications,” IEEE Wireless
Commun., vol. 26, no. 5, pp. 77–83, 2019.

[11] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath,
“Spatially sparse precoding in millimeter wave MIMO systems,” IEEE
Trans. Wireless Commun., vol. 13, no. 3, pp. 1499–1513, 2014.

[12] Z. Marzi, D. Ramasamy, and U. Madhow, “Compressive channel esti-
mation and tracking for large arrays in mm-Wave picocells,” IEEE J.
Sel. Topics Signal Process., vol. 10, no. 3, pp. 514–527, 2016.

[13] Z. Cheng, Z. Jing, Y. Huang, and L. Yang, “Location-aided channel
tracking and downlink transmission for HST massive MIMO systems,”
IET Commun., vol. 11, no. 13, pp. 2082–2088, 2017.

[14] K. Satyanarayana, M. El-Hajjar, A. A. M. Mourad, and L. Hanzo, “Deep
learning aided fingerprint-based beam alignment for mmWave vehicular
communication,” IEEE Trans. Veh. Technol., vol. 68, no. 11, pp. 10 858–
10 871, 2019.



14

[15] Y. Heng and J. G. Andrews, “Machine learning-assisted beam alignment
for mmWave systems,” in 2019 IEEE Global Commun. Conf. (GLOBE-
COM), Waikoloa, HI, USA, 2019.

[16] W. Xu, F. Gao, S. Jin, and A. Alkhateeb, “3D scene-based beam selection
for mmWave communications,” IEEE Wireless Commun. Lett., vol. 9,
no. 11, pp. 1850–1854, 2020.

[17] N. M. Jonathan, W. Yuyang, G.-P. Nuria, and J. R. H. W., “Deep
learning-based beam alignment in mmWave vehicular networks,” Proc.
IEEE Int. Acoust., Speech, Signal Process. (ICASSP), Brighton, UK, pp.
8569–8573, 2019.

[18] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. MIT
Press, 2018.

[19] W. Wu, N. Cheng, N. Zhang, P. Yang, W. Zhuang, and X. Shen, “Fast
mmwave beam alignment via correlated bandit learning,” IEEE Trans.
Wireless Commun., vol. 18, no. 12, pp. 5894–5908, 2019.

[20] J. Zhang, Y. Huang, Y. Zhou, and X. You, “Beam alignment and tracking
for millimeter wave communications via bandit learning,” IEEE Trans.
Commun., vol. 68, no. 9, pp. 5519–5533, 2020.

[21] J. Zhang, Y. Huang, J. Wang, X. You, and C. Masouros, “Intelligent
interactive beam training for millimeter wave communications,” IEEE
Trans. Wireless Commun., pp. 1–1, 2020.

[22] J. Ma, S. Zhang, H. Li, F. Gao, and S. Jin, “Sparse bayesian learning
for the time-varying massive MIMO channels: Acquisition and tracking,”
IEEE Trans. Commun., vol. 67, no. 3, pp. 1925–1938, 2019.

[23] L. Yan, X. Fang, L. Hao, and Y. Fang, “A fast beam alignment scheme
for dual-band HSR wireless networks,” IEEE Trans. Veh. Technol.,
vol. 69, no. 4, pp. 3968–3979, 2020.

[24] B. Ai, K. Guan, M. Rupp, T. Kurner, X. Cheng, X.-F. Yin, Q. Wang, G.-
Y. Ma, Y. Li, L. Xiong, and J.-W. Ding, “Future railway services-oriented
mobile communications network,” IEEE Commun. Mag., vol. 53, no. 10,
pp. 78–85, 2015.

[25] H. Song, X. Fang, and Y. Fang, “Millimeter-wave network architec-
tures for future high-speed railway communications: Challenges and
solutions,” IEEE Wireless Commun., vol. 23, no. 6, pp. 114–122, 2016.

[26] M. Giordani, M. Polese, A. Roy, D. Castor, and M. Zorzi, “A tutorial
on beam management for 3GPP NR at mmWave frequencies,” IEEE
Commun. Surveys Tuts., vol. 21, no. 1, pp. 173–196, 2019.

[27] Enhancements on predictable mobility for beam management, 3GPP
TSG RAN WG 90 e-Meeting. RP-202675, ZTE, Dec. 2020.

[28] 3GPP, “Study on channel model for frequencies from 0.5 to 100 GHz,”
3GPP TR 38.901, Jan. 2020, version 16.1.0.

[29] A. Beck and Y. C. Eldar, “Sparsity constrained nonlinear optimization:
Optimality conditions and algorithms,” SIAM J. Optim., vol. 23, no. 3,
pp. 1480–1509, 2012.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. Int.
Conf. Neural Inf. Process. Syst. (NIPS), 2017, p. 6000–6010.

[31] Moderator summary for multi-beam enhancement: EVM, 3GPP TSG
RAN WG1 102 e-Meeting. R1-2007151, Moderator (Samsung), Aug.
2020.

[32] A. Zaidi, R. Baldemair, M. Andersson, S. Faxér, V. Molés-Cases, and
Z. Wang, “5G new radio: Designing for the future,” Ericsson Technol.
Rev., 2017.

Fan Meng received the B.S. degree in 2015 from
the school of electronic engineering in the Uni-
versity of Electronic Science and Technology of
China, UESTC, and the Ph.D. degree in 2020 from
the school of Information Science and Engineering,
Southeast University, China. He is now a wireless
communication researcher in Purple Mountain Labo-
ratories. His main research topic is applying machine
learning techniques in the wireless communication
systems. Further research interests include machine
learning in general, joint demodulation and equal-

ization, resource allocation, intelligent beamforming and precoding.

Shengheng Liu (S’14-M’17) received the B.Eng.
and Ph.D. degrees in electronics engineering from
the School of Information and Electronics, Beijing
Institute of Technology, Beijing, China, in 2010 and
2017, respectively.

Dr. Liu is currently an Associate Professor with
the School of Information Science and Engineering,
Southeast University (SEU), Nanjing, China. Prior to
joining SEU, he held a postdoctoral position at the
Institute for Digital Communications, The University
of Edinburgh, Edinburgh, U.K., from 2017 to 2018.

He also worked as a Visiting Research Associate from 2015 to 2016 at
the Department of Electrical and Computer Engineering, Temple University,
Philadelphia, PA, USA, under the support of the China Scholarship Council.
Dr. Liu is a recipient of the 2017 National Excellent Doctoral Dissertation
Award from the China Institute of Communications. His research interests
mainly focus on intelligent sensing and wireless communications.

Yongming Huang (M’10-SM’16) received the B.S.
and M.S. degrees from Nanjing University, Nanjing,
China, in 2000 and 2003, respectively, and the Ph.D.
degree in electrical engineering from Southeast Uni-
versity, Nanjing, in 2007.

Since March 2007 he has been a faculty in the
School of Information Science and Engineering,
Southeast University, China, where he is currently a
full professor. He has also been the Director of the
Pervasive Communication Research Center, Purple
Mountain Laboratories, since 2019. From 2008 to

2009, he visited the Signal Processing Lab, Royal Institute of Technology
(KTH), Stockholm, Sweden. He has published over 200 peer-reviewed papers,
hold over 80 invention patents. His current research interests include intelli-
gent 5G/6G mobile communications and millimeter wave wireless communi-
cations. He submitted around 20 technical contributions to IEEE standards,
and was awarded a certificate of appreciation for outstanding contribution to
the development of IEEE standard 802.11aj. He served as an Associate Editor
for the IEEE Transactions on Signal Processing and a Guest Editor for the
IEEE Journal Selected Areas in Communications. He is currently an Editor-
at-Large for the IEEE Open Journal of the Communications Society and an
Associate Editor for the IEEE Wireless Communications Letters.

Zhaohua Lu (lu.zhaohua@zte.com.cn), Ph.D., grad-
uated from Tianjin University in 2006. He is senior
wireless communication system research expert of
ZTE Corporation and has long been engaged in the
field of wireless communication system design and
the key technologies of the physical layer. He has
many technical contributions, papers, and patents in
interference mitigation in the MIMO field.


	I Introduction
	II System Model and Problem Formulation
	II-A System Model
	II-B Problem Formulation

	III Beam Prediction
	III-A Parameter Estimation
	III-A1 Linear Tracks
	III-A2 Non-linear Tracks
	III-A3 Function Fitting
	III-A4 Data Fusion

	III-B Hybrid Beamforming
	III-B1 Transmitter Analog Precoder and Receiver Combiner
	III-B2 Digital Precoder
	III-B3 Hybrid Precoding

	III-C Implement

	IV Simulation Results
	IV-A System Configurations
	IV-B Data Fusion
	IV-B1 Linear Tracks
	IV-B2 Non-linear Tracks

	IV-C Non-linear Mapping
	IV-D Spectral Efficiency and beam prediction accuracy
	IV-E Overhead and Throughput

	V Conclusions
	VI Acknowledgments
	Appendix A: Analysis on the Speed and Acceleration Estimation
	Appendix B: Analysis on the Expected Fitting Error
	B-A Quadratic Curves

	References
	Biographies
	Fan Meng
	Shengheng Liu (S'14-M'17)
	Yongming Huang (M'10-SM'16)
	Zhaohua Lu


