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Abstract—Reconfigurable intelligent surfaces (RISs) are ca-
pable of enhancing the capacity of wireless networks at a
low cost. In practical RIS-assisted communication systems, the
acquisition of channel state information (CSI) and RIS reflection
optimization constitute a pair of challenges. In this paper, a low-
complexity channel estimation and passive beamforming design
is proposed. First of all, we conceive a low-complexity framework
for maximizing the achievable rate of RIS-assisted multiple-
input multiple-output (MIMO) systems having discrete phase
shifts at each RIS element. In contrast to existing solutions,
the proposed arrangement partitions the channel training stage
into several phases, where the RIS reflection coefficients are
pre-designed and the effective superposed channel is estimated
instead of separately training the source-destination and source-
RIS-destination links. Based on this, the active beamformer can
be designed at low complexity and the RIS reflection optimization
is performed by selecting that one from the pre-designed training
set which maximizes the achievable rate. Secondly, we propose
novel techniques for generating the training set of RIS reflection
coefficients. The theoretical performance of the proposed scheme
is analyzed and compared to the optimal RIS configuration.
Finally, our simulation results demonstrate that the proposed
framework is more competitive than its existing counterparts
when relying on imperfect CSI, especially for rapidly time-
varying channels having short channel coherence time.

Index Terms—Reconfigurable intelligent surface (RIS), channel
estimation, passive beamforming, transmit precoding, intelligent
reflecting surface (IRS), multiple-input multiple-output (MIMO).

I. INTRODUCTION

RECENTLY, reconfigurable intelligent surfaces (RIS) [1]–
[4], which are also known as intelligent reflecting sur-

faces (IRS) [5] and large intelligent surfaces (LIS) [6], have
attracted substantial research attention [7], [8]. Specifically, a
RIS is a planar meta-surface constructed of a large number
of reflecting elements, each of which can be reconfigured
to impose individual phase shifts onto the incident signals
[9]. As a result, the radio propagation environments can
be customized according to the specific quality of service

L. Hanzo would like to acknowledge the financial support of the En-
gineering and Physical Sciences Research Council projects EP/P034284/1
and EP/P003990/1 (COALESCE) as well as of the European Research
Council’s Advanced Fellow Grant QuantCom (Grant No. 789028). J. An and
L. Gan are with the School of Information and Communication Engineer-
ing, University of Electronic Science and Technology of China (UESTC),
Chengdu, Sichuan 611731, China. L. Gan is also with the Yibin Institute
of UESTC, Yibin, Sichuan 644000, China. (e-mail: jiancheng_an@163.com;
ganlu@uestc.edu.cn). C. Xu and L. Hanzo are with the School of Electronics
and Computer Science, University of Southampton, Southampton, SO17 1BJ,
U.K. (e-mail: cx1g08@soton.ac.uk; lh@ecs.soton.ac.uk).

(QoS) requirements [4], [10]. In contrast to classic cooperative
communications relying on active relays, the RIS elements
passively perform signal reflection without employing any
active radio frequency (RF) chains, hence reducing the power
consumption and transmission delay [11], [12]. Some recent
studies have demonstrated that a RIS using large metasur-
faces is capable of outperforming decode/amplify-and-forward
relaying despite their lower complexity [13]. Furthermore,
RISs are also capable of operating in a full-duplex (FD)
mode without encountering the self-interference problem in
active relays [5], [12]. Moreover, light-weight and low-cost
RISs are easy to install on and remove from the environment
objects [10]. Due to the aforementioned benefits, RISs are
considered to be an attractive candidate for power-efficient
next-generation green wireless communications [8], [14].

Nevertheless, some new technical challenges have emerged
in RIS-empowered wireless communication systems. On one
hand, one of the major challenges is the acquisition of the
channel state information (CSI) due to the absence of baseband
signal processing capability at the RIS [4], [5], [10], [15].
Hence, the channels of the access point (AP)-RIS link and
the RIS-user equipment (UE) link can no longer be estimated
separately by conventional pilot-based approaches. To solve
this problem, several novel methods have been proposed for
estimating the cascaded AP-RIS-UE channels instead [16]–
[18]. For example, in [16], the simple ON/OFF method
was proposed, where the direct and reflected channels are
estimated by switching on/off the RIS elements in sequence.
Furthermore, a discrete Fourier transformation (DFT) matrix-
based solution was employed in [17] for optimizing the RIS
reflection coefficients during the channel estimation phase,
which is capable of minimizing the mean square error (MSE)
of the channel estimates. More recently, an optimal pilot power
allocation strategy was proposed in [18] for improving the
throughput attained by RIS-assisted communication systems
having imperfect CSI. However, the aforementioned methods
require the same number of pilot symbols as that of the
reflecting elements at the RIS, which becomes excessive for
a massive number of reflecting elements. To overcome this
limitation, a novel three-phase channel estimation method was
proposed in [19] for reducing the number of pilot symbols by
exploiting the commonality of the AP-RIS link between mul-
tiple UEs. As a further advance, the authors of [20] exploited
the beamspace sparsity of the AP-RIS link for further reducing
the pilot overhead. Later, You et al. [21] reduced the number of
pilots by grouping several RIS elements into a bundle having



2

TABLE I
THE CONTRIBUTION OF THE PROPOSED LOW-COMPLEXITY FRAMEWORK COMPARED TO EXISTING SOLUTIONS FOR RIS-ASSISTED SYSTEMS.

Contributions ∗ [11]-2019 [12]-2019 [24]-2020 [44]-2020 [23]-2020 [32]-2021
Reduced set of reflection phase shifts X × × × × × ×
Superposed channel’s estimation X × × × × × ×
Low-complexity passive beamforming design X × × X X X X
Flexibility in the number of pilots X × × × × × X
Reduction in the backhaul overhead X × × × × × ×
Theoretical analysis X × X × × X ×
MIMO setup MIMO MU-MISO MU-MISO MIMO MC/Network-MIMO MU-MISO MIMO
Phase-shift model Discrete Continuous Continuous Continuous Continuous Discrete Continuous
Optimization objective Throughput EE/Sum rate Transmit power Throughput WSR Transmit power EE/Rate

MU: multiple user; EE: energy efficiency; MC: multiple cell; WSR: weighted sum rate;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a joint channel, albeit at the cost of a performance penalty.
As a benefit, the number of pilots is reduced. The motivated
reader may refer to [10], [15], [22] and the references therein
for comprehensive surveys on the existing channel estimation
techniques designed for RIS-assisted communication systems.

On the other hand, the beneficial configuration of both
the transmit beamforming weights and the RIS reflection
coefficients constitutes another major challenge in practical
RIS-assisted wireless systems [12], [23]–[33]. In [12] and
[23], Wu et al. studied joint passive beamforming at the RIS
and transmit beamforming at the AP in multiuser multiple-
input multiple-output (MIMO) scenarios, where the popular
alternating optimization (AO) method based on semidefinite
relaxation (SDR) was applied for finding high-quality approx-
imate RIS reflection coefficients and transmit beamforming
vectors for multiple users. Moreover, the RIS configuration of
point-to-point MIMO systems has been optimized in [24] in
terms of maximizing the MIMO channel capacity. Specifically,
the optimization of the RIS reflection coefficients and the
transmit covariance matrix were performed alternately, where
the optimal closed-form solution of each objective is derived
assuming that the other was already determined. Following
this, the authors of [25] investigated the weighted sum-rate
maximizing problem in a multiuser scenario, where practical
RIS elements having discrete phase shifts were considered.
More recently, the authors of [27] presented a beneficial
phase shift design by maximizing a tight upper bound of
the spectral efficiency, where only statistical CSI is available.
Furthermore, the channel correlation has also been developed
to further simplify the reflection optimization [28], [29]. In
addition, the optimization of the RIS reflection coefficients
has been carried out in combination with other emerging
communication technologies, such as physical layer security
[34], [35], millimeter-wave communications [36], unmanned
aerial vehicles (UAV) [37], [38], index modulation (IM) [39],
deep learning [40], non-orthogonal multiple access (NOMA)
[41], simultaneous wireless information and power transfer
(SWIPT) [42], [43] and cell-free massive MIMO [45].

In a nutshell, substantial research efforts have been in-
vested in the channel estimation and reflection coefficient
optimization of RIS-assisted systems. Nonetheless, the existing
methods still exhibit limitations. For instance, the number of
pilot symbols required for estimating the cascaded AP-RIS-
UE channels is proportional to the number of RIS elements
[17], [19]. Furthermore, the RIS configuration requires the

joint design of the transmit beamforming at the AP and the
reflection coefficients optimization at the RIS [12], [23]. These
issues have to be addressed for the practical implementation
of the RIS. Against this background, in this paper, we propose
a novel low-complexity channel estimation and passive beam-
forming design, which provides flexible trade-offs concerning
the pilot overhead, backhaul requirement, system performance,
and implementation complexity. More specifically, the novel
contributions of this paper are boldly and explicitly contrasted
to the literature in Table I and are summarized as follows:

• First of all, we conceive a low-complexity channel es-
timation and passive beamforming framework for maxi-
mizing the achievable rate of RIS-assisted MIMO systems
having discrete phase shifts at each RIS element. Specif-
ically, the proposed arrangement partitions the channel
training phase into several periods, where the reflection
coefficients at the RIS are pre-configured according to our
specific configuration method. The effective superposed
channel combining the direct link and all reflected links
are then directly estimated instead of using separate train-
ing for each link. Based on this, on one hand, the active
beamforming weights at the transmitter can be designed
at low complexity. On the other hand, the optimization of
the RIS reflection coefficients is simplified by selecting
that particular one from the pre-designed training set
which maximizes the achievable rate.

• Secondly, we propose novel configuration approaches for
generating a suitable training set of the RIS reflection
coefficients during the channel training phase, namely,
a random configuration and a Euclidean distance maxi-
mization based configuration, explicitly the first approach
randomly generates RIS reflection coefficients from the
feasible set determined by discrete phase shifts, while
the second one endeavors to maximize the Euclidean dis-
tance of all pairs of legitimate RIS reflection coefficient
vectors in the training set. Furthermore, the theoretical
performance of the proposed scheme is analyzed in terms
of the average received power for a single-input single-
output (SISO) scenario and it is compared to the optimal
RIS configuration. Our theoretical analysis demonstrates
that the proposed framework only imposes a moderate
performance erosion compared to the optimal RIS con-
figuration, despite its substantially reduced complexity
compared to the conventional solutions.

• Thirdly, the advantages of the proposed low-complexity
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channel estimation and passive beamforming framework
are demonstrated over the conventional solutions in terms
of reducing both the complexity as well as the pilot
overhead and the signaling requirements. In addition, the
proposed scheme is independent of the specific reflected
channel models, which can be flexibly applied to various
scenarios.

The rest of this paper is structured as follows. Section II and
Section III introduce the system model of RIS-assisted MIMO
systems as well as existing channel estimation and passive
beamforming paradigms, respectively. Following this, the pro-
posed low-complexity framework is presented in Section IV.
In Section V, the method of generating the training set of RIS
reflection coefficients and our theoretical analysis are detailed,
while the potential benefits of the proposed framework are
discussed in Section VI. Section VII provides our numerical
results for evaluating the proposed scheme. Finally, Section
VIII concludes the paper.

Notations: We use upper/lower bold face letters to indi-
cate matrices/vectors; scalars are denoted by italic letters;
(·)T and (·)H represent transpose and Hermitian transpose,
respectively; S−1, tr (S) and det (S) denote the inverse, trace
and determinant of the square matrix S, respectively; diag (v)
denotes the diagonal matrix with each diagonal element being
the corresponding element in v; we denote the N×N identity
matrix as IN ; 1 denotes an all-one vector with appropriate
dimensions; ‖·‖ is the Frobenius norm of a complex vector;
furthermore, E {·} stands for the expected value; d·e and
⊗ represent the ceiling operation and Kronecker product,
respectively, log (·) represents the logarithmic function; |z| and
∠z denote the magnitude and phase of a complex number
z, respectively; a! denotes the factorial of the non-negative
integer a. Ma:b,c:d represents the elements of the a ∼ bth
rows and c ∼ dth columns extracted from the matrix M,
the distribution of a circularly symmetric complex Gaussian
(CSCG) random vector with mean vector v and covariance
matrix Σ is denoted by ∼ CN (v,Σ), where ∼ stands for
“distributed as"; ∼ U (S) denotes the uniformly distribution
in a set S; Cx×y denotes the space of x× y complex-valued
matrices; Ckn denotes the number of arrangements choosing k
from n.

II. SYSTEM MODEL

Let us consider the point-to-point MIMO system of Fig. 1,
where a RIS equipped with M reflecting elements is employed
for enhancing the communications link spanning from an AP
having Na antennas to a UE with Nu antennas. Each RIS
element reflects the signal with an individual phase shift, i.e.,
θm, m = 1, · · · ,M , which can be dynamically adjusted by
the RIS controller for beneficially controlled signal reflection1.
For the sake of practical implementation, the phase shift of
each RIS element are assumed to be one of B = 2b discrete
values, where b denotes the number of bits used for quantizing
the phase shift levels. For simplicity, we assume that the
discrete phase shifts are obtained by uniformly quantizing the

1Note that in this paper, we only consider the phase shift design at each
RIS element. The magnitude of each RIS reflection coefficient is set to be 1
in order to maintain maximum signal power reflection [12].

AP

RIS

UE
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H

au
H

ru
H

RIS controller

Fig. 1. Schematic of a RIS-assisted MIMO communication system.

interval [0, 2π). Thus, the set of discrete phase shifts at each
RIS element is given by

B = {0,∆θ, · · · , (B − 1) ∆θ} , (1)

where ∆θ = 2π/B. Let ϕm = ejθm denote the reflection
coefficient at the mth RIS element, the phase of each ϕm is
constrained by θm ∈ B, m = 1, · · · ,M .

In this paper, we consider non-dispersive communications
over quasi-static block-fading channels and adopt the time-
division duplex (TDD) mode. Let Hau ∈ CNu×Na represent
the complex baseband channel matrix of the direct link span-
ning from the AP to the UE, Har ∈ CM×Na as that of the
AP-RIS link, and Hru ∈ CNu×M as that of the RIS-UE link.
Let Φ = diag (ϕ) ∈ CM×M denote the diagonal reflection
coefficient matrix at the RIS, with ϕ = [ϕ1, · · · , ϕM ]. There-
fore, the effective superimposed channel spanning from the
AP to the UE is given by H = Hau + HruΦHar.

We first consider channel estimation in the uplink phase. Let
x ∈ CNu×1 denote the normalized pilot vector transmitted
from the UE to the AP, i.e., E

{
‖x‖2

}
= 1. The baseband

signal y ∈ CNa×1 received at the AP is the superposition of
that via the direct link and of the reflected links, which can
be expressed as

y = HH
√
PULx + z =

(
HH
au + HH

arΦ
HHH

ru

)√
PULx + z, (2)

where PUL is the average power of the pilot symbols, z
denotes the additive white Gaussian noise (AWGN) at the AP,
which is of CSCG distribution, i.e., z ∼ CN

(
0, σ2

zINa

)
.

In the downlink phase of data transmission, we denote the
signal vector transmitted from the AP to the UE as s ∈ CNa×1.
The transmit signal covariance matrix is thus defined by S =
E
{
ssH

}
∈ CNa×Na , with S � 0. We consider the average

sum power constraint at the AP given by E
{
‖s‖2

}
= tr (S) ≤

PDL. Hence, the signal vector r ∈ CNu×1 received by the UE
is given by

r = Hs + n = (Hau + HruΦHar) s + n, (3)

where n ∼ CN
(
0, σ2

nINu

)
denotes the independent CSCG

vector at the UE, with σ2
n denoting the average noise power.

III. EXISTING CHANNEL ESTIMATION AND PASSIVE
BEAMFORMING DESIGN

In this section, we will survey the existing channel esti-
mation and passive beamforming designs conceived for RIS-
assisted MIMO systems. Specifically, three channel estima-
tion methods designed for the direct and reflected links are
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introduced in Section III-A, some of which are appropriately
adapted from that of SISO or multi-user multiple-input single-
output (MISO) scenarios. Furthermore, the optimization of
the RIS reflection coefficients in terms of maximizing the
achievable rate based on the estimated CSI is presented in
Section III-B.

A. Channel Estimation for RIS-assisted MIMO Communica-
tion Systems

1) The ON/OFF method: The most common channel es-
timation method for RIS-assisted communication systems is
the ON/OFF method, which estimates the direct channel and
reflected channels one after the other [16]. More specifically,
the direct channel between the AP and the UE is first estimated
upon muting all RIS elements. Based on the estimated direct
channel coefficients, the cascaded AP-RIS-UE channels can be
estimated by only switching on a single RIS element in each
time slot (TS). After switching on all the reflecting elements
in turn, the (M + 1) channel vectors corresponding to each of
the transmit antenna (TA) are estimated. Following this, upon
designing orthogonal pilot vectors for each of the different
TAs, all the channel coefficients will be estimated within a
total of (M + 1)Nu TSs.

2) The three-phase method: It is worth noting that the
power loss of the ON/OFF method is severe due to the frequent
switching of the RIS elements. To solve this problem, Wang et
al. [19] proposed a three-phase channel estimation framework
for RIS-assisted multiuser scenarios, which can be readily
adjusted for point-to-point MIMO systems. Specifically, in
the first phase, all the reflecting elements of the RIS are
switched off for estimating the direct channel, which follows
a similar philosophy as the ON/OFF method. In the second
phase, all the RIS elements are switched on, and merely
one typical TA of the UE, say TA 1, transmits pilot sym-
bols for estimating the reflected channels by Antenna 1 to
the AP. Finally, since the reflected channels corresponding
to Nu antennas share the same AP-RIS link, the scaling
characteristics of the reflected channels between multiple
TAs makes it possible to estimate the remaining reflected
channels within max (Nu − 1, d(Nu − 1)M/Nae) TSs. The
detailed procedures are given in [19], which are omitted
here for the sake of brevity, but the authors verified that
Nu + M + max (Nu − 1, d(Nu − 1)M/Nae) pilot symbols
provide sufficient degrees of freedom for estimating all the
channel coefficients involved in Fig. 1.

3) The DFT-based method: However, the reduction of the
number of pilots in the three-phase method is achieved at the
cost of error propagation. More explicitly, the quality of the
channel estimates in the subsequent phase depends heavily on
the channel estimation accuracy of the previous phases. To
overcome this disadvantage, we conceive a generalized DFT-
based channel estimation method for RIS-assisted MIMO sys-
tems by extending the method of [17], which was designed for
MISO scenarios. It has been shown in [17] that the DFT-based
optimization of the RIS reflection coefficients achieves the
Cramer-Rao lower bound (CRLB) of the channel estimation
mean-squared errors.
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Fig. 2. (a) The frame structure of the DFT-based channel estimation protocol
for RIS-assisted MIMO communication systems. (b)The frame structure of the
low-complexity channel estimation protocol proposed for RIS-assisted MIMO
systems.

This channel estimation protocol and its frame structure
are portrayed in Fig. 2(a), where KT TSs are divided into
K groups. In each group, the same pilot vector lasts for T
TSs. Furthermore, the pilot vectors of the different groups
are orthogonal to each other. Specifically, we have K ≥ Nu
and T ≥ M + 1 for estimating M reflected channels and
a single direct channel associated with Nu TAs at the UE.
The reflecting elements are always switched on throughout
the whole channel estimation phase. In this paper, we consider
the case of using the minimum number of pilot symbols, i.e.
K = Nu and T = M+1. According to the optimal DFT-based
configuration scheme of [17], the RIS reflection coefficient of
the tth TS is set to ϕt = FHt,2:T , t = 1, · · · , T , for an arbitrary
pilot vector, where F ∈ CT×T is the DFT matrix. As a result,
for the kth pilot vector, i.e. for the kth group, the received
signal of the tth TS at the AP can be expressed as

yk,t =
[
HH
au + HH

ardiag
(
FTt,2:T

)
HH
ru

]√
PULxk + zk,t

= H̄
(
IK ⊗ FTt,:

)√
PULxk + zk,t, (4)

where H̄ ∈ CNa×(M+1)Nu contains the channel coefficients
of a single direct link and M cascaded AP-RIS-UE links
associated with Nu TAs, which is defined by

H̄ =
[
HH
au,1,:,H

H
ardiag

{
HH
ru,1,:

}
, · · · ,

· · · ,HH
au,K,:,H

H
ardiag

{
HH
ru,K,:

}]
. (5)

Let us introduce Y =
[y1,1, · · · ,y1,T , · · · ,yK,1, · · · ,yK,T ], Z =
[z1,1, · · · , z1,T , · · · , zK,1, · · · , zK,T ]. Then, upon collecting
the signals received within KT TSs, we have

Y = H̄G + Z, (6)
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where G =
(
IK ⊗ FT

) (√
PULX⊗ IT

)
includes both the

effect of reflection coefficients at the RIS and that of the
pilots transmitted from the UE, i.e., X = [x1, · · · ,xK ]. The
orthogonal pilot design of X follows the conventional MIMO
channel estimation techniques [46].

According to (6), the least square (LS) estimate of H̄ can
be readily obtained by

ˆ̄H = YGH
(
GGH

)−1

. (7)

We note that the DFT-based channel estimation method
requires at least (M + 1)Nu pilot symbols, which is the same
as that of the ON/OFF method. Nevertheless, the DFT-based
channel estimation method attains the highest accuracy in
terms of the channel estimation MSE compared to both the
ON/OFF method and to the three-phase method, which is
crucial for the optimization of the RIS reflection coefficients.

B. Optimization of the RIS Reflection Coefficients
Based on the estimated CSI, we proceed to design the

reflection coefficients at the RIS and transmit precoding at the
AP in order to maximize the achievable rate of RIS-assisted
MIMO systems in bits per second per Hertz (b/s/Hz) as

R = max
tr(S)≤PDL,S�0

log2 det

(
INu +

1

σ2
n

HSHH

)
. (8)

It is worth noting that in contrast to the conventional MIMO
channel operating without the RIS, we have H = Hau, where
the achievable rate is solely determined by the channel matrix
Hau of the direct link, the achievable rate of RIS-assisted
MIMO systems shown in (8) is also dependent on the RIS
reflection matrix Φ, since it influences the effective super-
imposed channel H as well as the resultant optimal transmit
covariance matrix S. Therefore, maximizing the achievable
rate of a RIS-assisted MIMO channel has to jointly optimize
the RIS reflection matrix Φ and the transmit covariance matrix
S, subject to discrete phase shift constraints on the RIS
elements and a total power constraint at the AP. Hence, the
optimization problem is formulated as:

(P1) max
Φ,S

log2 det
(
INu + 1

σ2
n

HSHH
)

s.t. H = Hau + HruΦHar,
Φ = diag

{
ejθ1 , · · · , ejθM

}
,

θm ∈ B, m = 1, · · · ,M,
tr (S) ≤ PDL,
S � 0.

(9)

We note that (P1) is a non-convex optimization problem,
since the objective function can be shown to be non-concave
over the reflection coefficient matrix Φ, and the discrete phase
shift constraint θm of each RIS element in (9) is also non-
convex. Moreover, the transmit covariance matrix S is coupled
with Φ in the objective function of (P1), which makes (P1)
more challenging to solve. In [24], the AO algorithm was
adopted to solve (P1), where the phase shifts at each RIS
element can be flexibly adjusted in [0, 2π). More specifically,
only a single RIS reflection coefficient is optimized at each
step assuming that all the remaining reflection coefficients
and S are given. The optimization of S given the reflection
coefficient matrix Φ follows a similar philosophy to that
of traditional MIMO systems dispensing with the RIS [47].
Furthermore, we note that the method of [24] can be readily
adjusted to solve (P1) by quantizing the estimates of the

RIS reflection coefficient at each step, which constitutes a
benchmark scheme for our proposed arrangement.

IV. PROPOSED LOW-COMPLEXITY CHANNEL ESTIMATION
AND PASSIVE BEAMFORMING FRAMEWORK

In this section, we will propose a low-complexity channel
estimation and passive beamforming design for RIS-assisted
MIMO systems. Specifically, the channel estimation protocol
of the proposed solution is shown in Fig. 2(b), where the
channel training phase is divided into Q training periods,
each having a length of L. During each period, the reflection
coefficients at the RIS are pre-configured and the effective
superimposed channel is estimated instead of separately es-
timating the direct channel and reflected channels one-by-
one. Furthermore, we outline our transmit beamforming design
based on the estimated H in each training period. During each
training period, we adjust the reflection coefficients at the
RIS and then carry out the channel estimation and transmit
beamforming repeatedly. After carrying out both channel
estimation and active beamforming Q times, the decision
center will compare the objective function value of different
training periods and selects the optimum one that maximizes
the achievable rate. Hence, the transmit precoding and passive
beamforming design are determined accordingly. The detailed
procedures of the proposed solution are outlined as follows.

A. Estimation of the Effective Superimposed Channel
The RIS reflection coefficients are generated as shown in

Fig. 2(b) for the sake of estimating the effective superimposed
channel all-at-once. Let Φq, q = 1, · · · , Q denote the RIS
reflection coefficient matrix in the qth training period. As a
result, the signal received in the lth TS of the qth period can
be expressed as

yq,l =
(
HH
au + HH

arΦ
H
q HH

ru

)√
PULxl + zq,l

=
√
PULHH

q xl + zq,l, (10)

where Hq = Hau + HruΦqHar denotes the effective su-
perposed channel in the qth training period, which combines
a single direct channel and M reflected channels in the qth
training period; xl, l = 1, · · · , L is the pilot symbol at the lth
TS, which is identical for all Q training periods. Following the
same considerations as in (4), we assume L = Nu in order to
use the minimum number of pilots in each training period.

After collecting L received signals of the qth training period,
the signal received by the AP during the qth training period
can be expressed as

Yq = [yq,1, · · · ,yq,L] =
√
PULHH

q X + Zq, (11)

where Zq = [zq,1, · · · , zq,L] denotes the noise during the qth
training period, while X = [x1, · · · ,xL] is the pilot matrix
used for estimating the effective superposed channel.

As a result, the effective superposed channel estimation
of the qth training period is transformed into the classic
MIMO channel estimation. It has been shown [46] that the
orthogonal pilot design associated with XXH = I is capable
of minimizing the MSE of channel estimates in the MIMO
channel estimation. One of the popular practical pilot matrices
is constituted by the normalized DFT matrix [46]. Based on
the orthogonal pilot design, the LS estimate of the effective
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superposed channel Hq at the qth training period can be
expressed as:

Ĥq =
1√
PUL

(
XH

)−1

YH
q , (12)

bearing in mind that we have assumed L = Nu in order to
maintain minimum pilot overhead. Nevertheless, (12) can be
readily extended to an over-determined system upon replacing
the normal inverse by a pseudo-inverse.

It is important to note that the estimate in (12) is the
effective superposed channel, which is the superposition of the
direct channel and the cascaded reflected channels via the RIS.
This is significantly different from prior channel estimation
methods designed for RIS-assisted systems.

B. Transmit Precoding Design at the AP
After obtaining the estimates of the effective superposed

channel in the qth training period, we proceed to conceive the
transmit precoder design at the AP. More specifically given
Ĥq , the optimization problem (P1) is reduced to

(P2) max
Sq

log2 det
(
INu + 1

σ2
n

ĤqSqĤ
H
q

)
s.t. tr (Sq) ≤ PDL,

Sq � 0,

(13)

where Sq is the transmit covariance matrix in the qth training
period.

Note that given the estimated Ĥq , the optimal Sq follows
the singular value decomposition (SVD)-based transmission
mode [47], which can be expressed as

Ŝq = Vqdiag
{
p1, · · · , pDq

}
VH
q , (14)

where Vq ∈ CNa×Dq characterizes the truncated SVD of Ĥq ,
i.e., Ĥq = UqΛqV

H
q ; Dq denotes the maximum number of

data streams that can be transmitted over Ĥq; pd denotes the
optimal water-filling power allocation solution derived for the
dth data stream [47]. Hence, given the reflection coefficient
matrix Φq , the achievable rate is formulated as:

Rq =

Dq∑
d=1

log2

(
1 +

pdλ
2
d

σ2
n

)
, (15)

where λd represents the dth diagonal element of Λq .

C. Optimization of the RIS Reflection Coefficients

Sections IV-A and IV-B describe the effective superposed
channel estimation and transmit precoding design given the
reflection coefficients at the RIS, which can be readily solved
by conventional MIMO techniques designed for operation
without the RIS. In this subsection, we will discuss the
optimization of the RIS reflection coefficients. More explicitly,
in the channel training phase, we invoke different reflection
coefficients in different training periods. After performing the
effective superposed channel’s estimation and transmit precod-
ing Q times, we then select the optimal RIS configuration that
maximizes the achievable rate. Once the RIS configuration is
obtained, the corresponding effective superposed channel and
transmit precoder design are also selected accordingly.

More specifically, the optimization of the RIS reflection
coefficients is formulated as:

(P3) max
q

Rq

s.t. 1 ≤ q ≤ Q.
(16)

Let q̂ denote the optimal index maximizing Rq . Then the op-
timal reflection coefficient matrix and the transmit covariance
matrix can be obtained by Φ = Φq̂ and Ŝ = Ŝq̂ , respectively.

Remark 1: Recall that in existing RIS-assisted systems,
the channel estimation and precoder design are performed
only once, as shown in Fig. 2(a). By contrast, the proposed
framework has to perform channel estimation and precoder
design Q times, as shown in Fig. 2(b). However, the pilot
overhead and training complexity of the proposed framework
are significantly lower due to the fact that the optimization
of RIS reflection coefficients and transmit beamformer are
effectively decoupled. This will be shown in Section VI, where
our complexity comparison will be elaborated on.

Remark 2: Note that the existing RIS reflection coefficient
optimization procedures are generally performed jointly with
transmit precoding, which is thus carried out in an iterative
manner [12], [24]. By contrast, the proposed scheme first
finds the solution set of the RIS reflection coefficient matrix.
Following this, we search for the optimal RIS reflection
coefficient matrix in the extracted solution set that maximizes
the objective function. Therefore, the proposed method does
not have to perform multiple iterations, but instead it designs
the precoding matrix for each reflection coefficient from the
extracted solution set and calculates the resultant objective
function value.

Remark 3: In the proposed framework, it is natural to note
that the training set of the RIS reflection coefficients has a
crucial impact on the achievable rate. For example, if we
adopt the same reflection phase configuration for all Q training
periods, i.e., Φ1 = · · · = ΦQ = Φ, it can be readily seen
that the proposed framework becomes equivalent to a random
configuration operating without any optimization. Therefore,
it is necessary to elaborately design the training set of RIS
reflection coefficients for enhancing the system performance,
which will be detailed in the next section.

Remark 4: At the time of revising the manuscript, we
became aware of another parallel work [29], which also esti-
mates the superimposed channel but focuses on a completely
different research topic under the consideration of cell-free
massive MIMO systems. Specifically, the authors of [29]
configure the RIS by exploiting the statistical knowledge of
the CSI, thus each superimposed SISO channel is estimated
at each AP only once during the uplink training. Further-
more, spatially correlated fading is also considered in [29].
By contrast, we emphasize that the proposed design first
generates a training set for the RIS reflection coefficients and
thus performs superimposed MIMO channel estimation and
downlink precoding design for each reflection coefficient in
the training set. Finally, we choose the best one maximiz-
ing/minimizing the objective function value. As a result, the
proposed scheme strikes flexible tradeoffs between the pilot
overhead and the achievable rate upon adjusting the number
of training periods according to the specific QoS requirements
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and channel characteristics. More explicitly, we contrast our
method to the scheme in [29] in Table II.

V. THE CONFIGURATION METHODS FOR GENERATING THE
TRAINING SET OF RIS REFLECTION COEFFICIENTS

In this section, we propose a pair of configuration methods
for generating the training set of RIS reflection coefficients
over Q training periods, which provides useful insight into
the performance characteristics of the proposed framework.

A. Random Configuration
Let us first consider the simple random configuration, where

the phase shifts of the RIS elements are randomly generated
from the feasible phase shift set in each training period, which
can be formulated as

θq ∼ U
(
BM
/

∪
i=1,··· ,q−1

{θi}
)
, (17)

where BM/ ∪
i=1,··· ,q−1

θi represents the current phase shift

set for the qth training period, and the selected phase shift
vectors are removed from the universal set BM . In fact,
although the generation of the training set is offline, it is
still not straightforward to generate {θ1, · · · ,θQ} according to
(17), which requires a random number generator with variable
seeds. Nonetheless, thanks to the fact that practical RISs are
generally equipped with a large number of reflecting elements
M , the probability of selecting two identical random phase
vectors from BM candidates in turn is very small, i.e. we have
lim
M→∞

P
(
θq = θq′

∣∣θq ∈ BM ,θq′ ∈ BM ) = 0. Therefore, we

can choose the phase shift vectors directly from BM each
time without removing the phase shift vector that have been
previously selected. As a result, the configuration method of
(17) can be reduced to

θm,q ∼ U (B) , q = 1, · · · , Q, m = 1, · · · ,M. (18)

To be more explicit, the conflict probability of arbitrary pairs
of (θq,θq′) from a Q-entry training set generated by (18),
namely, the probability that at least two of the elements in the
training set are the same, is given by

Pc = 1−
CQ
BMQ!

(BM )Q
= 1−

(
BM

)
!

BQM (BM −Q)!
, (19)

where CQ
BMQ! denotes the number of training sets having

Q distinct elements, while
(
BM

)Q
represents the number of

possible training sets given Q. For example, if we consider
a RIS with M = 50 reflecting elements, each with B = 2
possible phase shifts, the conflict probability of arbitrary
pairs of (θq,θq′) from the training set generated by (18)
is Pc ≈ 4 × 10−14 for Q = 10. It is clear that further
increasing the number of reflecting elements M will lead to a
diminishing conflict probability, which is difficult to calculate
even by numerical methods. More explicitly, we plot the
conflict probability under different M in Fig. 3. It can be
seen that the conflict probability is a very small value under
moderate Q and will further decrease with M , which implies
that there are almost no identical elements in the extracted
Q-entry training set based on (18). As a result, the random
configuration according to (18) incurs almost no performance
penalty compared to (17).
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Fig. 3. The conflict probability caused by the simplified random configuration.

Next, we will analyze the scaling law of the average power
received at the UE for characterizing the performance of the
proposed framework having random configuration. Before we
start, we first give Lemma 1 formulated from the conclusions
of [48], which provides useful support for our theoretical
analysis.

Lemma 1: For n independent random samples from an
exponential distribution with parameter λ, the order statistics
α(i) for i = 1, 2, . . . , n have the following distribution

α(i)
d
=

1

λ

(
i∑

j=1

βj
n− j + 1

)
, (20)

where βj are i.i.d. standard exponential random variables with
a rate parameter of 1.

Furthermore, for the sake of simplicity, let us firstly consider
the case of Na = Nu = 1 in order to gain essential insights.
Moreover, we assume that the direct link equals zero since the
reflected links become more dominant than the direct link as
M →∞. As a result, the average power Pr received at the UE
using the proposed framework having random configuration is
given by

Pr = PDLE

 max
q=1,··· ,Q


∣∣∣∣∣
M∑
m=1

har,mϕm,qhru,m

∣∣∣∣∣
2

 , (21)

where PDL is the transmit power of the AP, while
har = [har,1, · · · , har,M ]

T and hru = [hru,1, · · · , hru,M ]
represent the degradation of Har and Hru, respectively.
We assume having i.i.d. Rician fading with average
powers of ρ2ar and ρ2ru for each entry in har
and hru, respectively. Specifically, let har,m =

ρar

(√
Kar/(Kar + 1)hLoSar,m +

√
1/(Kar + 1)hNLoSar,m

)
and

hru,m = ρru

(√
Kru/(Kru + 1)hLoSru,m +

√
1/(Kru + 1)hNLoSru,m

)
denote the channel model of the AP-RIS and RIS-UE link,
respectively, where Kar ≥ 0,

∣∣hLoSar,m

∣∣ = 1, hNLoSar,m ∼
CN (0, 1) denote the Rician factor, the deterministic LoS
component, and the complex Gaussian-distributed NLoS
component, respectively, for the AP-RIS link. Furthermore,
Kru ≥ 0,

∣∣hLoSru,m

∣∣ = 1, hNLoSru,m ∼ CN (0, 1) denote the
Rician factor, the deterministic LoS component, and the
complex Gaussian-distributed NLoS component, respectively,
for the RIS-UE link. Based on this assumption, the average
power received at the UE of the proposed framework having
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TABLE II
THE CONTRAST OF THE PROPOSED METHOD TO THE SCHEME IN [29].

The proposed method The method in [29]
Similarity Estimation of the superimposed end-to-end channel

D
i
f
f
e
r
e
n
c
e

Setup Single-user MIMO Cell-free massive MIMO

Operation

1. Generates the training set of RIS
reflection coefficients off-line;
2. Estimates the superimposed channel and
performs the transmit precoding design for
each RIS reflection coefficients;
3. Selects the best one.

1. Performs the RIS configuration
based on the statistical CSI;
2. Estimates the superimposed channel and
performs the transmit precoding design.

Objective function
for RIS configuration Flexible, depends on the specific requirements Fixed, the sum of NMSEs of channel estimates
Statistical CSI Not required Required
Pilot overhead Adjustable Fixed, minimum
Rate performance Suffers from performance loss in slow

time-varying channel fadings
Depends on the bias between the real channel
and the channel statisticals

Application scope Arbitrary channel modelling Slow time-varying channels having accurate
channel statisticals

random configuration for the RIS-assisted SISO systems is
summarized in Proposition 1.

Proposition 1: Upon assuming i.i.d. Rician fading with
average powers of ρ2ar and ρ2ru for each entry of har,m and
hru,m, respectively, as M →∞, it holds that

Pr → PDLρ
2
arρ

2
ruM (logQ+ C) , (22)

where C ≈ 0.57722 . . . is the Euler-Mascheroni constant [49].
Proof: For a single random RIS configuration, based on

the Lindeberg-Levy central limit theorem [12], we have ωq =
M∑
m=1

har,mϕm,qhru,m ∼ CN
(
0,Mρ2arρ

2
ru

)
as M → ∞.

Note that this distribution approximation is independent of the
Rician factor of the AP-RIS and of the RIS-UE links since
we have θm,q = ∠ϕm,q ∼ U (B). According to Lemma 1, the
distribution of the Qth order statistics max

q=1,··· ,Q

{
|ωq|2

}
is thus

given by

max
q=1,··· ,Q

{
|ωq|2

} d
= Mρ2arρ

2
ru

Q∑
j=1

1

Q− j + 1
βj . (23)

As a result, the expectation of the Qth order statistics
max

q=1,··· ,Q

{
|ωq|2

}
can be obtained by

E
{

max
q=1,··· ,Q

{
|ωq|2

}}
= E

{
Mρ2arρ

2
ru

Q∑
j=1

1

Q− j + 1
βj

}
(a)
= Mρ2arρ

2
ru

Q∑
j=1

1

Q− j + 1

Q→∞
= Mρ2arρ

2
ru (logQ+ C) , (24)

where (a) holds due to E {βj} = 1, j = 1, · · · , Q. Upon
substituting (24) into (21), the proof is completed. �

Proposition 1 reveals the power scaling law of the proposed
framework. Note that here we use the general formula of∑Q
j=1

1
Q−j+1

Q→∞
= logQ + C for the sake of explicitly

characterizing the relationship of Pr versus Q. In fact, for
a small value of Q, we could calculate

∑Q
j=1

1
Q−j+1 numer-

ically to obtain a more accurate theoretical Pr. Furthermore,
the performance of the proposed scheme is independent of
the number of quantization bits, which is different from the
existing solutions of [12]. Hence, the proposed solution is
more suitable for a RIS relying on one-bit quantized phase
shifts, which will be verified by our simulations. Moreover,
the appearance of log (Q) in (21) makes it possible to strike
a flexible balance between the pilot overhead and the system

performance. More specifically, when the number of training
periods is Q = 1, we strictly have Pr = MPDLρ

2
arρ

2
ru, which

is equivalent to the single random configuration. Furthermore,
as Q → ∞, we have a quadratic scaling law vs. M , i.e.,
Pr → M2PDLρ

2
arρ

2
ru logB, where the maximum number of

training periods Qmax = BM is considered. More specifically,
our performance comparison between the proposed framework
and the optimal RIS configuration derived for moderate Q is
summarized in Corollary 1.

Corollary 1: Assuming that har,m ∼ CN
(
0, ρ2ar

)
, hru,m ∼

CN
(
0, ρ2ru

)
, m = 1, · · · ,M . For a large M , it holds that2

Pr
Pr,optimal

∝ 16 (logQ+ C)

π2M
, (25)

where Pr,optimal → PDLρ
2
arρ

2
ruM

2π2
/

16 is the average
power received at the UE for the optimal RIS configuration
[12].

It can be seen from Corollary 1 that the proposed framework
using random RIS configuration has a slight power loss
compared to the optimal RIS configuration, which can be
compensated by increasing the number of training periods. Ad-
ditionally, the proposed framework is more robust to channel
estimation errors, and thus the performance gap can be further
narrowed for the practical cases associated with imperfect CSI,
which will be verified by our simulations.

B. Euclidean Distance Maximizing Configuration
In the proposed framework, our main objective is to design

the best reflection coefficient vectors. It is plausible that
the random configuration does not exploit the Q training
periods efficiently. Explicitly, the random configuration may
generate some RIS reflection coefficients that are similar to
each other, which may result in similar system performance.
Therefore, we propose a more sophisticated configuration of
the RIS reflection coefficients based on the following heuristic
philosophy: the more different the RIS reflection coefficients
are, the more different the channels generated, thus leading
to Q candidates with significant differences. In this paper, we
use the sum of Euclidean distances of all pairs of RIS re-
flection coefficients to characterize this difference. Therefore,
the optimization problem of the reflection coefficients can be
expressed as

(P4) max
ϕ1,··· ,ϕQ

Q∑
q=1

Q∑
q′=1,q′ 6=q

∥∥ϕq −ϕq′∥∥2
s.t. ϕq = ejθq ,θq ∈ BM .

(26)

2Note that here we consider Rayleigh fading in order to maintain the same
assumption as in [12].
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TABLE III
THE EUCLIDEAN DISTANCE MAXIMIZING CONFIGURATION FOR

GENERATING THE TRAINING SET OF RIS REFLECTION COEFFICIENTS

1: Randomly generate a training set of RIS reflection coefficients,
e.g., ϕ1, · · · ,ϕQ;

2: Calculate ηq =
Q∑

q′=1,q′=q

∥∥ϕq −ϕq′
∥∥2 for each ϕq ;

3: Initialization of the counter, i = 0;
4: while i < Qnew
5: Find the minimum value ηmin from

{
η1, · · · , ηQ

}
and the

corresponding ϕm;
6: Randomly generate new reflection coefficients, ϕ′;

7: Calculate η′ =
Q∑
q=1

∥∥ϕ′ −ϕq
∥∥2 for ϕ′;

8: if η′ > ηmin
9: ϕm ← ϕ′, i← i+ 1;

10: end
11: end
12: Output: ϕ1, · · · ,ϕQ.

We note that it is not trivial to find the optimal phase
shift set of (26), because we have to search through CQ

BM

possible phase shift candidates, which is excessive in practical
implementations. To solve this problem, we propose an ad
hoc method for asymptotically finding the optimal solution of
(P4). Specifically, we first randomly generate a phase shift
set {ϕ1, · · · , ϕQ} following the above random configuration,

and then we calculate the metrics ηq =
Q∑

q′=1,q′=q

∥∥ϕq −ϕq′∥∥2
for each phase shift vector ϕq . Next, we randomly generate
new phase shift vectors from BM to replace the phase shift

vectors having smaller ηq , until
Q∑
q=1

Q∑
q′=1,q′ 6=q

∥∥ϕq −ϕq′∥∥2 in

(26) is close to convergence. More specifically, the detailed
steps are described in Table III. For the sake of efficiency,
we use a maximum number Qnew of iterations instead of the
convergence condition of Table III. In our simulations, we set
Qnew = 5Q by default.

Additionally, although we consider discrete phase shifts
in this paper, the proposed method can be readily extended
to the case of having RISs with continuous phase shifts.
Specifically, we only have to adapt the training set of RIS
reflection coefficients for the continuous phase shifts. For the
detailed configuration method of generating the training set of
continuous phase shifts, please refer to our extended technical
report [50].

VI. ADVANTAGES OF THE PROPOSED FRAMEWORK

In this section, we will discuss the advantages of the
proposed low-complexity framework over its counterparts,
which can be summarized from the following four aspects:

A. Simplified System Complexity

As stated earlier, both the channel estimation and transmit
precoding of the RIS-assisted systems are coupled with the
optimization of RIS reflection coefficients, which imposes
challenges on their practical implementation. By contrast,
the proposed framework significantly simplifies the com-
plex signal processing problems of the existing solutions.

More specifically, the conventional channel estimators of RIS-
assisted MIMO systems have to estimate a single direct
channel and M reflected channels, which has the complexity
of CCE,AO = 2NaNu (M + 1) in terms of the number of real-
valued multiplications [17]. By contrast, the proposed solution
only estimates a single effective superposed channel in each
training period. Hence, its complexity is CCE,Pro = 2NaNuQ,
where Q ≥ 1 can be flexibly chosen based on the specific QoS
requirements. In terms of the transmit precoder design and pas-
sive beamforming, the complexity is non-trivial to assess ex-
plicitly due to the complex optimization involved, and thus we
adopt the complexity order to characterize the computational
complexity of passive beamforming. Assuming that the AO
algorithm is applied for solving (P1), the complexity order is
CPB,AO = O

[
Ni
(
N3
a +BM

(
MNaNu +NaN

2
u +Nu!

))]
,

where Ni represents the number of iterations in the AO
algorithm, while O

(
N3
a

)
quantifies the complexity order

of performing SVD-based transmission at the transmitter;
Furthermore, O (MNaNu), O

(
NaN

2
u

)
, and O (Nu!) signify

the complexity order of calculating HruΦHar, HSHH , and
R, respectively [24]; BM represents the number of feasible
candidates for optimizing the phase shift at each RIS element
one-by-one. By contrast, in the proposed algorithm, only
the optimization of the transmit covariance matrix and the
calculation of the resultant achievable rate has to be completed
during each period at a complexity order of CPB,Pro =
O
[
Q
(
N3
a +NaN

2
u +Nu!

)]
. This significantly alleviates the

computing burden.

B. Flexible Protocol Design

In contrast to the existing solutions, the proposed frame-
work can strike a flexible performance vs. the pilot overhead
trade-off. More specifically, the pilot overhead of the sim-
plest ON/OFF method [16] and of the DFT-based method
is (M + 1)Nu [17]. Although the three-phase method and
the grouping-based method reduce the pilot overhead, this is
achieved at the cost of a performance penalty [19], [21]. Fur-
thermore, the pilot overhead of these methods is still dependent
on the number of reflecting elements M . By contrast, the
proposed framework has a reduced pilot overhead of QNu,
which is independent of the number of RIS elements and
thus can be dynamically adjusted to strike a flexible trade-off
between the system performance and the pilot overhead.

C. Reduced Backhaul Consumption

In the existing RIS-assisted communication systems, the
optimization of the reflection coefficients is performed at the
control center. As a result, the system requires extra backhaul
capacity for feeding back Mb bits to the RIS through the
control link, which is a challenge for practical RISs having
a large number of reflecting elements. By contrast, in our
proposed framework, the RIS configuration can be performed
by feeding back only the index of the optimal training period
to the RIS, hence the number of signaling bits is dlog2Qe. It
is noted that the control signaling requirement of the proposed
framework is independent of the number of quantization bits
of the phase shifts and of the number of the RIS elements,
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hence the index of the optimal training period is sufficient
for the RIS configuration, regardless of whether the full- or
limited-precision RIS reflecting elements are considered. It is
plausible that the proposed framework significantly reduces
both the backhaul requirement and the transmission delay
between the control center and the RIS compared to the
traditional framework.

D. Channel Model Independent

Compared to the existing RIS-aided communication proto-
cols of [19]–[24], [28], [29], the proposed method does not
depend on the specific model of the channel reflected by the
RIS. At each training period, only the reflection coefficients
have to be configured and the AP will estimate the superim-
posed MIMO channel. By contrast, in the existing schemes, the
cascaded AP-RIS-UE channels are estimated, and the channel
estimation algorithms generally have to consider, for example,
the spatial correlation between different reflected channels
[21], [28], [29]. Alternatively, they exploit the similarity of the
AP-RIS link between different antennas [19] or alternatively
the sparsity of the AP-RIS link [20]. By contrast, the proposed
method reduces the dependence on the specific channel model
and thus has a wider range of applications than the existing
RIS-aided communication protocols of [19]–[24], [28], [29].

VII. SIMULATION RESULTS

In this section, we will evaluate the achievable rate of
the proposed framework by considering a three-dimensional
Cartesian coordinate system. We assume that both the AP and
the UE are equipped with a uniform linear array located on the
y-axis with an antenna spacing of dA = λ/2, where λ denotes
the wavelength. More specifically, the number of antennas at
the AP and UE are set to Na = 8 and Nu = 4, respectively.
Furthermore, the RIS relying on a uniform rectangular array
is deployed on the x − z plane for enhancing the MIMO
transmissions using a RIS element spacing of dI = λ/2 and
a fixed number of Mx = 10 elements on the x-axis. Unless
specified otherwise, we consider single-bit quantization for the
phase shifts at each reflecting element, i.e, B = {0, π}, which
is the most common design in practical implementations. The
locations of the reference antenna/element at the AP, the
RIS, and the UE are set to (0, 0, 0), (d0, 0, 0) and (d, dv, 0),
respectively, whose relative positions are illustrated in Fig. 4.
As a result, the lengths of the AP-UE link, the AP-RIS link,
and the RIS-UE link can be obtained as dau =

√
d2 + d2v ,

dar = d0, and dru =

√
d2v + (d0 − d)

2, respectively. In our
simulations, we set the horizontal distance from the AP to the
RIS and the vertical distance between the AP-RIS line and UE
line as d0 = 50 m and dv = 5 m, respectively, since the RIS
is deployed near the UE to improve its performance [5].

Moreover, we consider narrowband MIMO communications
and adopt the Rician fading model for all the channels, Hau,
Har, and Hru. For an arbitrary H ∈ {Hau,Har,Hru}, the
channel matrix H is modeled as [12]:

H =

√
C0d−α

K + 1

(√
KHLoS + HNLoS

)
, (27)

AP

UE

RIS

v
d

0
d

d

Fig. 4. The relative positions of the AP, RIS and UE (top view).

where HLoS and HNLoS denote the LoS component and the
NLoS component, respectively; while d, α and K denote the
transmission distances, the path loss exponents and Rician
factors, respectively, of the corresponding link. Note that by
considering different K values, this model corresponds to
various practical channels including the deterministic LoS
channel as K → ∞, and the Rayleigh fading channel when
K = 0. In our simulations, the Rician factors of the AP-RIS
channel Har and the RIS-UE channel Hru are set to Kar = 5
dB and Kru = 3 dB, respectively, since the RISs are generally
positioned for facilitating LoS propagation for both the AP-
RIS link and the RIS-UE link. The direct link is modelled by
(27) using a Rician factor of Kau = 0. Furthermore, C0d

−α

characterizes the distance-dependent large-scale fading for all
channels, where C0 = −20 dB denotes the path loss at the
reference distance of 1 m. The path loss exponents for the
AP-UE, AP-RIS and RIS-UE links are set as αau = 3.5,
αar = 2.2, and αru = 2.8, respectively [24]. Moreover,
we set the transmit power constraint of PDL = 20 dBm for
the downlink transmission considered, while the average noise
power of the narrowband MIMO systems is set to σ2

n = −70
dBm. All the results are averaged over 1000 independent
channel realizations. To start with, several benchmark schemes
and their simulation settings are listed as follows:

1) Without RIS: Maximizing the achievable rate in (8) by
optimizing S using H = Hau;

2) Random phase shift: Randomly generate {θ1, · · · , θM}
with θm ∈ B, m = 1, · · · ,M . Maximizing the achievable
rate in (8) by optimizing S using H = Hau + HruΦHar;

3) Alternating optimization3: Alternately optimizing Φ and
S according to the closed-form solutions in [24]. The phase
shift obtained at each step is quantized into B based on the
minimum Euclidean distance. The convergence threshold in
terms of the relative increment in the achievable rate is set to
ε = 10−3.

Additionally, for each scenario, we will consider the cases
of perfect and imperfect CSI, respectively. More specifically,
when considering practical channel estimation, the uplink
average pilot power is set to PUL = 0 dBm, and the average

3When considering the effect of the practical channel estimates, the AO
algorithm in [24] needs to know Hau,Har,Hru. Unfortunately, it is difficult
for the aforementioned cascade channel estimation schemes to obtain separate
Har and Hru. Therefore, we have to design a semi-passive channel estimator
for the AO algorithm of [24], namely, the RIS can operate in the channel
sensing mode by activating the sensors to receive pilots from AP/UE, while
turning off all the reflecting elements [10]. By contrast, the RIS in our systems
is completely passive. Hence, this is actually an unfair comparison strategy
for our proposed scheme.
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Fig. 5. (a) The average received power under different channel models for
SISO scenario. (b) The average received power comparison of the proposed
scheme and the optimal configuration.

noise power at the AP is set to σ2
z = −60 dBm. Furthermore,

the ergodic achievable rate is given by

Rimperfect CSI = E
{

log2 det

(
INu +

1

σ2
n

HSHH

)}
, (28)

where S is designed based on the estimated H. The ergodic
achievable rate with imperfect CSI in (28) is totally different
from the expected achievable rate in (13), where the estimated
H is employed instead for the optimization of S. Note that
(28) actually describes the ergodic achievable rate in a slow
time-varying channel, where the effect of pilot overhead is
ignored. We only consider the AO algorithm since it remains
the optimal performance in the slow time-varying channels.
The comparison of the proposed scheme with other recent
methods will be detailed under the fast time-varying channels
later.

First of all, we verify our theoretical analysis by considering
Na = Nu = 1 and assuming that the direct link is blocked.
The corresponding simulation results are shown in Fig. 5(a),
where Rayleigh fading and Rician fading correspond to Kar =
Kru = 0 and Kar = 5 dB, Kru = 3 dB, respectively. It can
be seen from Fig. 5(a) that the performance of the proposed al-
gorithm increases logarithmically with the number of training
periods Q, regardless of the fading distribution, which once
again confirms the independence of the proposed scheme of
the specific channel model. Moreover, the theoretical results
in Proposition 1 perfectly characterize the system performance
under all setups. Furthermore, Fig. 5(b) compares the average

received power of the proposed scheme to that associated
with the optimal RIS configuration. It can be seen that the
proposed algorithm suffers from some performance erosion
compared to the optimal configuration, but has a range of
other benefits, as demonstrated in Section V. Additionally, the
performance gap can be bridged by increasing the number of
training periods. Moreover, it can be observed that for a given
Q, the performance loss is more severe for a large M , which
implies that for a large RIS array, more training periods are
required for improving the system performance. In contrast to
the schemes where the pilot overhead is proportional to M , the
proposed arrangement can flexibly adjust the training period
for striking tradeoffs between the pilot overhead imposed and
the performance attained.

Next, let us consider the scenario that the UE moves around
the RIS, where the number of reflecting elements is set to
M = 50. More specifically, the horizontal distance between
the UE and AP gradually increases from d = 25 m to d = 75
m. The simulation results with perfect CSI and imperfect
CSI are shown in Fig. 6(a) and Fig. 6(b), respectively. We
use the acronyms ‘RC’ and ‘EMC’ in the legends of Figs.
6(a) ∼ 6(b) to represent the proposed random configuration
and Euclidean distance maximizing configuration, where the
number of training periods is set to Q = 50. Observe from
Fig. 6(a) that the RIS significantly increases the achievable
rate of UEs in its vicinity compared to the case in the absence
of the RIS. Additionally, compared to the random phase shift
setting, both the proposed framework and the AO algorithm
attain considerable performance improvement. Furthermore,
compared to the optimal AO algorithm, our proposed schemes
have only about 1b/s/Hz performance penalty during the
whole UE movement process, despite avoiding the complex
alternating optimization process and the acquisition of CSI.
Furthermore, when considering the practical scenarios having
imperfect CSI, as shown in Fig. 6(b), the proposed framework
has a higher rate than the AO algorithm, despite its lower
complexity.

Figs. 7(a) ∼ 7(b) portray the achievable rate of different
schemes versus the number of training periods, which cor-
respond to the case without/with channel estimation errors,
respectively. The UE’s horizontal distance from the AP is
fixed at d = 50 m, while the number of reflecting elements
follows the setting of Fig. 6(a). Observe from Fig. 7(a) that
the achievable rate of the proposed solution increases with
the number of training periods, which is not the case for its
existing counterparts. In particular, when Q = 1, the proposed
algorithm is equivalent to a single random configuration, while
when Q→∞, the proposed algorithm will gradually approach
the maximal achievable rate. However, its convergence will
slow down upon increasing of Q, which is consistent with
Proposition 1, namely that we have R ∝ log [log (Q)] for
high SNRs. Furthermore, the improved configuration method
of generating the training set has a faster convergence than
the random configuration. For example, for the Euclidean
distance maximizing configuration method, it requires only
Q = 10 training periods to reach the rate of 25 b/s/Hz, while
at least Q = 50 training periods are required upon using the
random configuration. Furthermore, when considering prac-
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Fig. 6. (a) The achievable rate versus the horizontal AP-UE distance with
perfect CSI. (b) The achievable rate versus the horizontal AP-UE distance
with imperfect CSI.

tical channel estimation errors, Fig. 7(b) demonstrates that
the proposed scheme relying on the improved configuration
method outperforms even the AO algorithm when Q > 10,
indicating that the AO algorithm is more sensitive to the
channel estimation errors.

Next, the achievable rate versus the number of reflecting
elements is shown in Figs. 8(a) ∼ 8(b), where the number of
training periods is set to Q = 50. Observe that compared to the
AO algorithm, the proposed algorithm has a slight advantage
for a low number of reflecting elements. More specifically,
under perfect CSI, the proposed algorithm performs better
for a low number of reflecting elements, such as M ≤ 20.
When the channel estimation error is taken into account,
Fig. 8(b) shows that the proposed algorithm extends these
rate advantages to a moderate number of reflecting elements,
such as M ≤ 70. The performance advantage will become
more significant with the increase of the channel estimation
error. This is because the proposed algorithm can search
through almost the entire discrete solution space for the low
number of reflecting elements, but the AO algorithm can only
ensure convergence to a locally optimal solution. Additionally,
when there is no channel estimation error, the rate of the
proposed algorithm grows according to R ∝ log (M), which
is a factor two slower than that of the AO algorithm given
by R ∝ 2 log (M). However, this rate difference can be
compensated by increasing the number of training periods.
When considering practical systems having realistic channel
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Fig. 7. (a) The achievable rate versus the number of training periods with
perfect CSI. (b) The achievable rate versus the number of training periods
with imperfect CSI.

estimation errors, the performance loss can also be alleviated,
as shown in Fig. 8(b).

Furthermore, we study the effect of the RIS phase shift
levels on the achievable rate of the proposed solution. Like-
wise, Fig. 9(a) and Fig. 9(b) represent the cases associated
with perfect CSI and imperfect CSI, respectively. The number
of reflecting elements is set to M = 50, while the number
of training periods is set to Q = 50 and the number of
quantization bits increases from b = 1 to b = 5. It can be seen
from Figs. 9(a) ∼ 9(b) that only the performance of the AO al-
gorithm improves upon increasing the number of quantization
bits, while the performance of the proposed algorithm and the
random phase shift is robust to the quantization errors, which is
consistent with Proposition 1. Therefore, the proposed scheme
is more suitable for using low-precision phase shifts at the
RIS, which is easy to design in practical implementations. In
particular, when considering the effects of channel estimation
errors, as shown in Fig. 9(b), the proposed scheme employing
the one-bit quantized phase shifts is more competitive than
the AO algorithm, which once again verifies the conclusions
of our prior simulation results.

Recently, some novel channel estimation and passive beam-
forming methods were proposed for reducing both the pilot
overhead and the complexity. Next, we will compare our
methods to some of these recent counterparts upon considering
rapidly time-varying channels. Since the number of pilots
and other parameters required for passive beamforming in
these methods are generally different, the achievable rate is
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Fig. 8. (a) The achievable rate versus the number of RIS reflecting elements
with perfect CSI. (b) The achievable rate versus the number of RIS reflecting
elements with imperfect CSI.

employed as our metric, which comprehensively considers
the influence of both the channel estimation and passive
beamforming. Specifically, the effective achievable rate is
defined as follows:

Re =
T − τ
T

E
{

log2 det

(
INu +

1

σ2
n

HSHH

)}
, (29)

where T represents the channel’s coherence time interval and
τ is the pilot overhead, both in terms of the number of
symbols. Additionally, we consider the following schemes: (1)
Statistical CSI-based scheme: completes the RIS configuration
based on the statistical CSI and thus carries out end-to-end su-
perimposed channel estimation as well as the ensuing transmit
beamforming design [27], [29]; (2) Grouping-based scheme:
arrange the RIS elements into groups and then estimates only
a common reflected channel for each group and uses the same
reflection coefficient for each coefficient within the group [21].
It is important to note that these methods were originally
proposed for other scenarios. In our simulations, we adapted
them to point-to-point MIMO systems.

The effective achievable rates of the different methods are
shown in Fig. 10(a), where we consider M = 30 reflecting
elements, while the other simulation parameters are the same
as those above. For the grouping-based method, we consider
arranging the RIS elements into five groups, each of which has
six elements. It can be seen from Fig. 10(a) that for a rapidly
time-varying channel (e.g., T ≤ 200), the effective achievable
rate is quite different. First of all, the AO algorithm shows
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Fig. 9. (a) The achievable rate versus the quantization bits of phase shifts
with perfect CSI. (b) The achievable rate versus the quantization bits of phase
shifts with imperfect CSI.

the worst performance, since it relies on an excessive pilot
overhead for CSI acquisition. Furthermore, the performance
of the AO algorithm can be improved by lumping together
the adjacent elements into groups under rapidly time-varying
channels. Interestingly, the random configuration maintains
nearly the best performance in the face of rapidly time-varying
channels, which is because the random configuration relies
on the lowest pilot overhead, thus significantly improving the
effective achievable rate. Compared to the performance penalty
suffered by the AO algorithm, the reduced pilot overhead of
the random configuration is more beneficial for rapidly time-
varying channels. Additionally, the RIS configuration relying
on statistical CSI attains further performance improvements
over the random configuration under the minimum pilot over-
head, but the performance gain attained depends on the quality
of the channel statistics. As the channel’s coherence time
increases in case of slowly time-varying channels, the AO al-
gorithm would gradually outperform the random configuration
and becomes the best upon further increasing the channel’s
coherence time. We emphasize that the proposed algorithm is
capable of flexibly adjusting the training overhead according
to the specific coherence time, thus maximizing the effective
achievable rate. For example, under the setups considered, we
could set Q = 1 for T ≤ 200, and Q = 5 for T > 200,
thus having the most energy-efficient communications all the
time. The quantitative analysis of the optimal pilot overhead is
beyond the scope of this paper and will be left for our future
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Fig. 10. (a) The effective achievable rate versus the channel coherence time.
(b) The complexity comparison between the proposed scheme and the AO
algorithm (B = 2, Ni = 3).

research topic.
Finally, we compare the computational complexity of the

proposed scheme to that of the AO algorithm, as shown in
Fig. 10(b), where we set B = 2 and Ni = 3. Please bear in
mind that the complexity of channel estimation is evaluated
in terms of the number of real-valued multiplications, while
that of passive beamforming is assessed in terms of the
complexity order associated with solving the optimization
problems involved. It can be observed from Fig. 10(b) that the
complexity of the proposed algorithm does not increase with
the number of RIS elements, but that of the AO algorithm
does. Specifically, the complexity order of the AO algorithm
employed for passive beamforming increases quadratically
with the number of RIS elements, which rapidly escalates
and hence cannot be applied for massive RIS deployment.
Furthermore, although the proposed algorithm increases with
the number of training periods Q, it is still far lower than the
complexity of the AO algorithm, especially for a large RIS
having a lot of elements.

VIII. CONCLUSIONS

A low-complexity channel estimation and passive beam-
forming framework was proposed for RIS-based MIMO sys-
tems with discrete phase shifts at each reflecting element. In
contrast to the existing schemes, the proposed arrangement
partitions the channel training into several phases, where the
RIS reflection coefficients are pre-designed and the effective

superposed channel is estimated instead of separately esti-
mating the direct channel and reflected channels. Based on
this, on one hand, the active beamforming weights used at
the transmitter are designed at low complexity. On the other
hand, the optimization of the RIS reflection coefficients is
performed by selecting the one that maximizes the achievable
rate from the pre-designed training set. Furthermore, we pro-
posed two configuration approaches for generating the training
set, where the performance of the random configuration was
used as a benchmarker of the proposed scheme. The scheme
advocated is capable of striking a flexible trade-off between
the achievable performance and the training overhead. In
order to further improve the performance of the proposed
solution, we conceived an improved configuration method by
maximizing the Euclidean distance sum of all pairs of the
reflection coefficient vector. Additionally, we elaborated on
the advantages of the proposed framework in terms of reduc-
ing the complexity, pilot overhead, and signaling overhead.
Finally, our simulations verify the advantages of the proposed
algorithm over its existing counterparts, especially in the case
of practical situations having imperfect CSI.

Nonetheless, some open issues await further investigations,
one of which is the generation of the training set of the RIS
reflection coefficients. Although we have proposed a pair of
efficient configuration methods for generating the training set,
it is possible to find a better training set for further improving
the performance of the proposed algorithm. Additionally, in
this paper, we adopted a decision center to select the training
set, but future research may be able to exploit the limited
training periods more effectively. Finally, the extension of
the proposed method to multi-user scenarios and wideband
systems forms part of our future research.
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