
ar
X

iv
:2

00
9.

04
33

8v
2 

 [
cs

.I
T

] 
 1

1 
N

ov
 2

02
1

1

On Decoding of Reed-Muller Codes Using a Local

Graph Search
Mikhail Kamenev

Abstract—We present a novel iterative decoding algorithm for
Reed-Muller (RM) codes, which takes advantage of a graph
representation of the code. Vertices of the considered graph
correspond to codewords, with two vertices being connected
by an edge if and only if the Hamming distance between the
corresponding codewords equals the minimum distance of the
code. The algorithm uses a greedy local search to find a node
optimizing a metric, e.g. the correlation between the received
vector and the corresponding codeword. In addition, the cyclic
redundancy check can be used to terminate the search as soon
as a valid codeword is found, leading to an improvement in
the average computational complexity of the algorithm. Simu-
lation results for both binary symmetric channel and additive
white Gaussian noise channel show that the presented decoder
approaches the performance of maximum likelihood decoding
for RM codes of length less than 1024 and for the second-order
RM codes of length less than 4096. Moreover, it is demonstrated
that the considered decoding approach outperforms state-of-the-
art decoding algorithms of RM codes with similar computational
complexity for a wide range of block lengths and rates.

Index Terms—Reed-Muller codes, BSC channels, AWGN chan-
nels, near maximum-likelihood decoding, Fast Hadamard Trans-
form.

I. INTRODUCTION

B
INARY Reed-Muller (RM) codes were firstly discovered

by Muller [2] and then by Reed, who also proposed a

majority decoding algorithm for this family of error correction

codes [3]. Although it has been proven that RM codes achieve

the capacity on an erasure channel under maximum a posteriori

(MAP) decoding [4], no MAP decoding algorithm that can be

efficiently used for decoding of RM codes is known.

However, there are several decoding algorithms of RM

codes that allow achieving the performance of a maximum

likelihood (ML) decoder for a wide range of block lengths

and rates. For instance, a recursive permutation list decoder

with a list size less than or equal to 128 allows achieving

near-ML decoding performance for small length (≤ 256)
codes [5]. Since this algorithm processes a received codeword

sequentially and uses a sorting operation, the latency of a

hardware implementation of the recursive permutation list

decoder is high. Permutation-based techniques improving the

latency of the recursive permutation list decoder have been

proposed in [6]–[8]. Unfortunately, the complexity of recursive

algorithms required for near-ML decoding performance grows

exponentially with the code length [9].

Another algorithm that performs close to ML decoding is

a recursive projection-aggregation (RPA) decoder proposed in

This paper has been presented in part at the 2020 IEEE Information Theory
Workshop [1].

M. Kamenev is with the Moscow Research Center, Huawei Technologies
Co., Ltd., Moscow, Russia. Email: kamenev.mikhail1@huawei.com

[10]. This algorithm is based on projecting the code on its

cosets, recursively decoding the projected codes, and aggre-

gating the reconstructions. The decoder demonstrates near-ML

decoding performance for RM codes of length less than 512

and for the second-order RM codes. Moreover, it allows for

parallel implementation. Since the code is projected on all its

cosets, the RPA algorithm takes a very long time to decode.

Techniques aiming to improve the running time of projection-

based decoding have been considered in [11]–[13].

Several other approaches for decoding of RM codes have

been proposed recently. However, they demonstrate near-ML

error correction performance for short length codes [14]–[19]

or applicable only for a binary erasure channel [20], [21].

In this paper, we propose a new iterative decoding algorithm

for RM codes. Since recursive decoding needs a large com-

plexity to approach the ML decoding performance for RM

codes of length larger than 256 [9], the proposed algorithm

employs a low-complex recursive decoder [22] just to get

the initial candidate codeword and then iteratively improves

it using a local graph search. The nodes of the considered

graph correspond to codewords. Any two nodes of the graph

are connected by an edge if and only if the Hamming distance

between two corresponding codewords equals the minimum

distance of the code. Simulation results demonstrate that the

proposed algorithm approaches the performance of the ML

decoder for moderate length (≤ 512) RM codes and for the

second-order RM codes of length less than 4096, with average

computational complexity being reasonable. We also observe

that our algorithm outperforms both recursive permutation

list decoding and RPA decoding with similar computational

complexity in most considered cases.

The rest of the paper is organized as follows. In Section II,

we shortly introduce RM codes. In Section III, we provide a

high-level description of our decoding algorithm. In Section

IV, we present a greedy version of the algorithm that allows

to significantly improve the running time. Numerical results

are presented in Section V. We conclude the paper in Section

VI.

II. RM CODES

Denote by f (v) = f (v1, . . . , vm) a Boolean function of

m variables that is written in the algebraic normal form. Let

f be the vector of length 2m containing values of f at all of

its 2m arguments. The binary RM code R (r,m) of length n,

n = 2m, and order r, 0 ≤ r ≤ m, is the set of all vectors f ,

where f (v) is a Boolean function of degree at most r. Note

that the minimum distance of the RM code R (r,m) equals

2m−r [23, Sec. 13.3].

http://arxiv.org/abs/2009.04338v2


2

RM codes can also be considered in terms of finite ge-

ometries. Denote by EG(m, 2) the Euclidean geometry of

dimension m over GF(2). By definition, EG(m, 2) contains

2m points, whose coordinates are all binary vectors v of length

m. We associate every subset S of points of EG(m, 2) with

a binary incidence vector of length 2m that contains one in

positions s ∈ S and zeros elsewhere. Then the codewords of

R (r,m) can be considered as incidence vectors of subsets

of EG(m, 2). For instance, the minimum weight codewords

of R (r,m) are exactly the incidence vectors of (m − r)-
dimensional subspaces of EG(m, 2) [23, Sec. 13.4].

III. GRAPH SEARCH BASED DECODING OF RM CODES

Consider an RM code R (r,m) of dimension k and a graph

G with 2k nodes. Assign to each node in the graph G a code-

word of R (r,m). Then two nodes are connected by an edge

if and only if the Hamming distance between corresponding

codewords equals 2m−r, i.e. the minimum distance of the

code. Assume that y = (y1, y2, . . . , yn) is a log-likelihood

ratio (LLR) vector of a binary-input additive white Gaussian

noise (BI-AWGN) channel. Then, for each node in the graph

G, we can assign the correlation metric M [24, Sec. 10.1],

defined by

M =

n
∑

i=1

(1− 2ci) yi,

where (c1, c2, . . . , cn) is a codeword assigned to the node.

Note that the ML decoder returns a codeword with the largest

correlation metric M [24, Sec. 10.1].

Using a graph traversal algorithm (breadth-first search or

depth-first search), one can start at a random node, visit all

reachable nodes, and return the codeword that corresponds to

the node with the largest metric.

Proposition 1: The algorithm described above is equivalent

to the ML decoder.

Proof: Observe that the algorithm achieves the perfor-

mance of the ML decoder if all nodes in the graph G can be

visited. It is possible if and only if the graph G is connected.

Since the minimum weight codewords generate the code [23,

Sec. 13.6], it follows that there is a path between the node

associated with the all-zero codeword and any other node of

the graph G. Therefore, G is a connected graph.

Unfortunately, the computational complexity of the algo-

rithm grows exponentially with the code dimension that makes

it infeasible for practical usage. To decrease the complexity

of the search algorithm, we propose the following greedy

approach. The algorithm starts at a node associated with an

output of low-complex recursive decoding [22]. Then it moves

to the adjacent node that has the biggest metric value M and

has not been visited before. The algorithm continues till a

maximum number of iterations N is reached or all adjacent

nodes are already visited. The output of the algorithm is the

codeword corresponding to the visited node with the biggest

metric.

The maximum number of iterations is used here to limit the

computational complexity of the algorithm and the amount of

memory used to store visited nodes. In addition, if all adjacent

nodes are visited, then the algorithm can be finished until the

maximum number of iterations is reached. Another option that

can be used to decrease the average computational complexity

is the termination of the algorithm if a codeword that has

the best metric found so far satisfies the cyclic redundancy

check (CRC). The formal description of the proposed decoding

algorithm is shown in Algorithm 1.

Example 1: Consider the RM code R (2, 3) and an LLR

vector

y = (2.76, 5.68,−6.58, 4.42,−0.09, 3.9, 3.56,−1.91) . (1)

Let us decode this vector using the graph search algorithm with

3 iterations. Assume that the recursive decoder returns a vector

c = (0, 0, 1, 1, 1, 1, 0, 0) with a metric of 8.44. In the first

iteration, the algorithm finds a vector c1 = (0, 0, 1, 0, 1, 0, 0, 0)
that has the largest correlation (M = 25.08) among the

codewords at the minimum distance from c. In the next

iteration, the algorithm performs a search over the codewords

at the minimum distance from c1. The result is the vector

c2 = (0, 0, 1, 0, 0, 0, 0, 1) with a metric of 28.72. In the last

iteration, a vector with the largest metric is c1. Note that

this vector has been found before. Therefore, the algorithm

chooses the vector c3 = (1, 0, 1, 0, 1, 0, 0, 1) with the second

largest correlation that is equal to 23.38. The output of the

algorithm is a codeword with the largest correlation from the

set {c, c1, c2, c3}. Thus, the output of the algorithm is the

codeword c2. It can be readily verified that c2 is the ML

solution for the vector y.

Note that an algorithm similar to Algorithm 1 has been

proposed in [25] for decoding arbitrary linear codes. This

algorithm starts searching with a codeword returned by a low-

complex decoding algorithm and uses decoding over a low-

weight trellis instead of the NextStep function. Although

decoding over a low-weight trellis has lower complexity

compared to trellis-based ML decoding, it is computationally

expensive to run this search procedure many times. As we

will show in the next section, there exists a version of the

NextStep function implementing a low-complex greedy

search algorithm for RM codes. It allows running Algorithm

1 with a large N , with the average computational complexity

being reasonable.

IV. A SIMPLIFIED SELECTION OF AN ADJACENT NODE

The bottleneck of Algorithm 1 is the computational com-

plexity of the function NextStep. A naive implementation of

this function goes through all codewords c of a code R (r,m)
such that the Hamming distance between c and the current

codeword equals 2m−r, i.e. the minimum distance of the code.

The number of minimum weight codewords in R (r,m) is

defined as [23, Sec. 13.4]

A2m−r = 2r
m−r−1
∏

i=0

2m−i − 1

2m−r−i − 1
.

For instance, the number of minimum weight codewords of the

code R (4, 9) is approximately 53 · 106. Thus, a brute-force

algorithm that goes through all adjacent nodes takes a long

time to find the next codeword. To solve this issue, we propose



3

Algorithm 1: The GraphSearch decoding function

Input: RM code parameters r and m, a vector of LLRs y, a
maximum number of iterations N , a flag t whether to
use the CRC to terminate the algorithm

Output: A codeword res
1 Set C to be an empty set of codewords
2 Let c be the result of recursive decoding of the vector y
3 Add c to C
4 res← c
5 M ← 0
6 for i = 1, 2, . . . , 2m do
7 M ←M + (1− 2c[i]) y[i] // Compute the

metric for the codeword c.
8 end
9 for i = 1, 2, . . . , N do

10 c′,M ′ ← NextStep (r,m,y, c, C) // NextStep

goes through all codewords x, x /∈ C,
such that the Hamming distance between

x and c equals 2m−r
, and returns the

codeword c′ that has the biggest

metric. M ′
is the metric of the

output codeword. If all x ∈ C, then

M ′ = −∞.

11 if M ′ = −∞ then
12 break // All adjacent nodes are

already visited.

13 end
14 c← c′ // Move to an adjacent node.

15 Add c to C
16 if M ′ > M then

// Save the current codeword if it

is better than one found so far.

17 res← c

18 M ←M ′

19 if t and res satisfies the CRC then
20 break
21 end
22 end
23 end
24 return res

a greedy search algorithm that has the best-case running time

of O (n log (max {N,n})).

Consider an RM code R (r,m) of length n and a rooted

tree T constructed in the following way. The root of the tree is

assigned EG(m, 2). Each node at depth i, i ∈ {0, . . . , r − 1},

has 2m−i+1 − 2 children containing all possible (m− i− 1)-
dimensional subspaces of the parent node [23, Appx. B].

By the construction of the tree T , the leaf nodes contain

all (m − r)-dimensional subspaces of EG(m, 2). Recall that

the union of these subspaces contains all minimum weight

codewords of R (r,m) [23, Sec. 13.4]. Thus, if we replace

the points of subspaces with the corresponding coordinate

positions in the codeword, then the leaves of the tree T will

store non-zero positions of all minimum weight codewords in

R (r,m). The tree T for the RM code R (2, 3) is illustrated in

Fig. 1. Observe that different leaf nodes can contain non-zero

positions of the same codeword.

The tree T can be easily constructed using codewords of

the first order RM codes. The root of the tree is assigned a set

[n] , {1, 2, . . . , n}. Let c = (c1, c2, . . . , cn) be a codeword of

weight n/2 in R (1,m) and let S (c) = {i ∈ [n] | ci = 1} be

{1, 2, . . . , 8}

{1, 3, 5, 6}

{1, 5} . . . {3, 5}

{1, 4, 5, 8}

{1, 5} . . . {4, 5}

{2, 3, 5, 8}

{2, 5} . . . {3, 5}

. . .

Fig. 1. A tree that is used to enumerate all minimum weight codewords of
the RM code R (2, 3)

a set of non-zero positions in c. Since the codewords of weight

n/2 in R (1,m) are incidence vectors of (m−1)-dimensional

subspaces [23, Sec. 13.4], the children nodes of the root

contain sets S (ci), i ∈ [2n− 2], where c1, . . . , c2n−2 are

distinct codewords of weight n/2 in R (1,m). Let us consider

a child of the root with a set S (c) =
{

s1, s2, . . . , sn/2
}

and let us consider the code that is obtained by taking those

codewords of the original RM code that are zero on [n]\S (c)
and deleting these positions. Since the set S (c) defines an

(m− 1)-dimensional subspace, the shortened code is an RM

code, whose codewords are incidence vectors of subsets in

EG(m − 1, 2) [23, Sec. 13.4]. Therefore, we can apply a

similar procedure to generate the children of the considered

node as for the root node. Let ĉ =
(

ĉ1, ĉ2, . . . , ĉn/2
)

be a

codeword of weight n/4 in R (1,m− 1) and let Ŝ (ĉ) =
{si | i ∈ [n/2] , ĉi = 1}. Then the children nodes of the node

with the set S (c) contain the sets Ŝ (ĉi), i ∈ [n− 2],
where ĉ1, . . . , ĉn−2 are distinct codewords of weight n/4 in

R (1,m− 1). This process continues until the node with a set

of size 2m−r, which contains non-zero positions of a minimum

weight codeword in R (r,m), is reached.

The greedy search algorithm can be implemented using the

tree T . Recall that this function aims to find a codeword at the

minimum distance from the current codeword c that has the

best metric. To decrease the complexity of the algorithm, we

consider a depth-first search that is terminated when the first

leaf is reached. Thus, it is required to find a leaf in the tree

T such that if we flip bits in the codeword c at the positions

in the set of this leaf, we will get the codeword with the best

metric.

Consider a leaf with a set S and assume that c =
(c1, c2, . . . , cn) is the current codeword. If we choose this

leaf as a solution, then the metric of the output codeword

is calculated as
n
∑

i=1

(1− 2ci) yi − 2
∑

i∈S

(1− 2ci) yi, (2)

where (y1, y2, . . . , yn) is a vector of input LLRs. Since we are

required to maximize the metric of the output codeword, the

algorithm needs to find a leaf that minimizes the second sum

of (2).



4

Consider a node of the tree T that contains a set S =
{s1, s2, . . . , sn̄}, 1 ≤ s1 < s2 < · · · < sn̄ ≤ n. Assume that

this node is not a leaf. Consequently, it has 2n̄ − 2 children

nodes. Since we consider the greedy depth-first search, the

algorithm needs to move to a child node that seems best at

the moment. Here, we propose to use the following heuristic:

For every child node with a set S̄, we compute a metric

2
∑

i∈S̄

(1− 2ci) yi (3)

and move to the node with the smallest metric value. The

algorithm continues until the leaf node is reached. The output

of the algorithm is the codeword that is obtained from the

current one by flipping bits at the positions in the set of the

leaf node. Observe that the leaf with minimum metric value

(3) provides the best solution in terms of (2).

A straightforward calculation of (3) for all children of a

node with a set S takes O
(

n̄2
)

time. Since a node of the tree

T contains a set with non-zero positions of a codeword of

the first order RM code, we can improve the running time of

a naive algorithm by taking advantage of the Fast Hadamard

Transform (FHT) [26]. Let ȳ = (ȳ1, ȳ2, . . . , ȳn̄) be a vector

such that ȳi = (1− 2csi) ysi and let

H =

[

1 1
1 −1

]⊗ log
2
n̄

, (4)

where X⊗t denotes t-times Kronecker product of the matrix

X with itself. Then the result of the FHT applied to the

vector ȳ can be expressed in terms of matrix multiplication as

(h1, h2, . . . , hn̄) = ȳH. Note that the columns of the matrix

H correspond to half of the first-order RM code codewords.

Namely, if (x1, x2, . . . , xn̄)
T

is a column of the matrix H

associated with the codeword c, then ci = (1 − xi)/2. The

rest codewords are defined by the columns of −H. Therefore,

the values of (3) for the children nodes can be calculated as

(−1)a hi + h1, where i ∈ {2, . . . n̄}, a ∈ {0, 1}. The running

time of this approach is O (n̄ log n̄) [26].

Example 2: Consider a similar scenario as in Example 1.

Namely, the RM code R (2, 3) and LLR vector (1). Assume

that c = (0, 0, 1, 1, 1, 1, 0, 0) is the current codeword. The

correlation metric for this codeword equals 8.44. Let us find a

codeword at the minimum distance from c that has the largest

correlation using the depth-first algorithm described above. In

the first step, the algorithm computes the metric (3) for each

child of the root and moves to the node with the set S =
{2, 4, 6, 8} that has the smallest metric, namely, −9.1. Then,

the algorithm applies the same procedure to the node with

the set S and selects a node with the set {4, 6}. The metric

value for this node equals −16.64 and, from (2), it follows that

if we flip bits at positions 4 and 6, we will get a codeword

c′ = (0, 0, 1, 0, 1, 0, 0, 0) with a metric of 25.04. Note that c′

and c1 found in Example 1 using an optimal algorithm are

the same.

The version of the greedy algorithm described above is able

to find only one solution. If this solution is in the set C (see

line 3 of Algorithm 1), then the break statement in line 12 of

Algorithm 1 will terminate the for-loop in lines 9 – 23. We

observe that in this case, the algorithm terminates before the

correct codeword is found, significantly decreasing the error-

rate performance of the decoder. Therefore, one requires to

modify the greedy approach described above in such a way

that it can visit multiple leaves and select one that generates

the codeword c, c /∈ C. For instance, one can choose l children

of the root of the tree T and run the depth-first search for each

child independently. Then the algorithm can generate up to l
different codewords and choose one that is not in C. We call

parameter l a search breadth of the decoding algorithm.

Note that the complexity of the decoding algorithm depends

on the value of the search breadth. If the search breadth is too

small, then the algorithm has a high probability of termination

before reaching the correct codeword. On the other hand, a

large search breadth significantly increases the running time of

the algorithm. We found that a good trade-off here is to run the

search with a relatively small l, for instance, l = 8. However,

if all generated codewords are in the set C, then we allow

running the depth-first search for l̄ additional children of the

root of the tree T . This operation is allowed to be run only s
times for the one launch of the decoder. If the algorithm is not

able to find a codeword c, c /∈ C, for the given search breadth

l and the algorithm has already run the depth-first search for l̄
additional children s times, then decoding is terminated. This

limitation is introduced to decrease the average computational

complexity of the algorithm. Note that if the search for each

child node of the root runs sequentially, one can stop the search

procedure as soon as a codeword c, c /∈ C, that improves the

metric of the current best codeword is found.

Example 3: Let us consider the RM code R (2, 3) and let

us decode LLR vector (1) using a greedy approach discussed

above. Let N = 10, l = 2, l̄ = 1, s = 1 and assume that

c = (0, 0, 1, 1, 1, 1, 0, 0) is the output of the recursive decoder.

As in Example 2, in the first iteration, the algorithm finds a

vector c1 = (0, 0, 1, 0, 1, 0, 0, 0) with a metric of 25.08 by

applying the depth-first search to the child node with the best

metric (3). Since the metric of c1 is greater than the metric

of c, the algorithm does not run the depth-first search for the

second-best child and moves to the next iteration. In the second

iteration, the best child of the root has the set {1, 4, 5, 8} and

the depth-first search for this node returns the set {5, 8}. This

set generates the codeword c2 = (0, 0, 1, 0, 0, 0, 0, 1) with

a metric of 28.72. As in the first iteration, the depth-first

search for the best child results in a new codeword with a

better metric than that of the codewords c and c1. Therefore,

the algorithm terminates the second iteration and moves to

the next one. In the third iteration, the two best children

of the root are defined by sets {1, 4, 5, 8} and {5, 6, 7, 8}.

The depth-first search for both these nodes results in the

set {5, 8} generating the codeword c1 that has been already

found in the first iteration. Since the search for the l best

children does not result in a new codeword, the algorithm

runs the depth-first search for the third-best child defined by

the set {1, 2, 5, 6}. This search results in the set {1, 5} and the

codeword c3 = (1, 0, 1, 0, 1, 0, 0, 1) with a metric of 23.38.

In the fourth iteration, as in the previous one, the search for

the two best children of the root defined by sets {1, 4, 5, 8}
and {1, 2, 5, 6} results in the codeword c2 that has been

already found. Since the search has been already performed



5

for additional l̄ nodes s times, the algorithm terminates here

and returns a codeword with the best metric from the set

{c, c1, c2, c3}. Note that the result in each iteration is the

same as in Example 1 that considers an optimal algorithm to

find the next codeword.

The formal description of the proposed greedy

search approach is shown in Algorithm 2.

This algorithm uses the NextStepGreedyRec

function presented in Algorithm 3. The

NextStepGreedyRec function performs a depth-first

search to find a leaf that minimizes metric (3). At each

recursive step, the function NextStepGreedyRec chooses

a node of the tree T that minimizes (3) (see lines 12 – 22).

Condition in line 1 checks whether a leaf node has been

reached. If so, then the algorithm flips bits of the current

codeword c in the coordinates from the vector v (see lines 3

– 5). Note that, for simplicity, we use vectors instead of sets

to store positions of bits to be flipped. If the new codeword

is not in the set C, then the new codeword and the value of

(3) are returned. Otherwise, the algorithm returns ∞ instead

of the value of metric (3).

The NextStepGreedy function calculates metric (3) for

the children of the root node of the tree T (see lines 5

– 7). Then it uses the NextStepGreedyRec function to

perform a depth-first search for l children with the smallest

metric values. Note that l + l̄ must be less than or equal to

2m+1−2. If a new codeword has been found during the first l
iterations, then the loop in lines 8 – 24 is terminated (see

lines 9 – 15). If additional l̄ nodes are required to find a

new codeword, then the algorithm sets a flag ec to one. This

flag is used to count how many times the algorithm used the

option to run the depth-first search for additional l̄ nodes. If

the NextStepGreedy function returns ec that equals one s
times during decoding of the received vector, then the graph

search algorithm prohibits the NextStepGreedy function

from visiting l̄ extra nodes. For instance, it can be done by

setting l̄ to be equal to zero. Note that the loop in lines 8 –

24 is also terminated if a codeword with a better metric has

been found (see line 23). If the NextStepGreedy function

is not able to find a codeword that is not in C, then the function

returns the input codeword c and −∞ as a metric value. The

formal description of the graph search algorithm that uses the

NextStepGreedy function is presented in Algorithm 4.

We now consider the running time and the space com-

plexity of Algorithm 4. First, we consider the computa-

tional complexity and space requirements of the functions

NextStepGreedyRec and NextStepGreedy.

Lemma 1: The running time of

the NextStepGreedyRec function is

O (n log (max {N,n})), n = 2m.

Proof: Consider the base case in lines 2 – 10 of Algorithm

3. The algorithm flips at most 2m−r bits in line 4 and checks

whether a new codeword is in the set C. This check can be

implemented efficiently using a red-black tree guaranteeing

that the worst-case running time of the search operation is

O (logN) [27, Sec. 13]. Since the per-bit comparison of two

codewords takes linear time, the base case running time is

O (n logN).

Algorithm 2: The NextStepGreedy function

Input: RM code parameters r and m, a vector of LLRs y, a
codeword c, a set of codewords C, search breadth l
and l̄

Output: A codeword res, a metric M of the codeword res,
a flag ec whether the algorithm did not find a
codeword using l attempts

1 res← c, Mc ← 0, M ←∞, ec← 0
2 for i = 1, 2, . . . , 2m do
3 Mc ←Mc + (1− 2c[i]) y[i]
4 end

5 Let ci, 1 ≤ i ≤ 2m+1 − 2, be all codewords of the code

R (1, m) with the Hamming weight 2m−1

6 Let a be a vector of length 2m+1 − 2,
a[i]← 2 ·

∑

j,ci[j]=1

(1− 2c [j])y[j]

7 Let k be a vector that index the vector of metrics a in
ascending order

8 for i = 1, 2, . . . , l + l̄ do
9 if i > l then

10 if M =∞ then
11 ec← 1
12 else
13 break
14 end
15 end

16 Let v be a vector of size 2m−1

17 h← 1
18 for j = 1, 2, . . . , 2m do

19 if ck[i][j] = 1 then v[h]← j, h← h+ 1
20 end
21 c′,M ′ ← NextStepGreedyRec(r − 1, m−

1,y, c, C,v,a [k[i]])
22 if M ′ < M then M ←M ′, res← c′

23 if M < 0 then break
24 end
25 if M =∞ then
26 M ← −∞
27 else

28 M ←Mc −M ′

29 end
30 return res,M, ec

The elements of the array a (see line 13) can be calculated

using the FHT that takes time O (n logn). Since the algorithm

computes the array a at each recursive step, the total running

time of this operation is

O

(

r−1
∑

i=0

2m−i log
(

2m−i
)

)

= O (n logn) . (5)

Observe that the total running time of the for loop in

lines 17 – 21 and the minimum value search in line 14

is O (n). Thus, the NextStepGreedyRec function takes

O (n log (max {N,n})) time.

Lemma 2: The space complexity of the

NextStepGreedyRec function is O
(

n2
)

, n = 2m.

Proof: Observe that the base case and lines 14 – 21 of

Algorithm 3 use linear space. The algorithm also stores all

codewords of R (1, h), h ∈ {m− r + 1,m− r + 2, . . . ,m},

with the Hamming weight 2h−1 to select the codeword with

the smallest metric efficiently (line 14 and line 18). Since

the codewords of the first order RM codes can be defined



6

Algorithm 3: The NextStepGreedyRec function

Input: RM code parameters r and m, a vector of LLRs y, a
codeword c, a set of codewords C, a vector of
coordinates v, a local metric value M ′

Output: A codeword res, a metric M that is used to find
res

1 if r = 0 then
2 res← c
3 for i = 1, 2, . . . , 2m do
4 res[v[i]]← res[v[i]]⊕ 1
5 end
6 if res ∈ C then
7 return res,∞
8 else
9 return res,M ′

10 end
11 end

12 Let ci, 1 ≤ i ≤ 2m+1 − 2, be all codewords of the code

R (1,m) with the Hamming weight 2m−1

13 Let a be a vector of length 2m+1 − 2,
a[i]← 2 ·

∑

j,ci[j]=1

(1− 2c [v [j]])y[v [j]]

14 Let k be an index of the minimum value in a

15 Let v̂ be a vector of size 2m−1

16 h← 1
17 for j = 1, 2, . . . , 2m do

18 if ck[j] = 1 then
19 v̂[h]← v[j], h← h+ 1
20 end
21 end
22 return

NextStepGreedyRec(r − 1, m− 1,y, c, C, v̂,a[k])

recursively using (4), it follows that it is enough to store only

codewords of R (1,m) that takes O
(

n2
)

space. Therefore, the

algorithm uses O
(

n2
)

space.

Lemma 3: The best-case time of the NextStepGreedy

function is O (n log (max {N,n})). The worst-

case time of the NextStepGreedy function is

O
(

(l + l̄) · n log (max {N,n})
)

.

Proof: Consider line 6 and line 7 of Algorithm 2. As in

Algorithm 3, the vector a is computed in O (n logn). Sorting

in line 7 also takes O (n logn) [27, Part II]. Observe that all

the rest calculations require linear time exclusive of line 21.

In line 21, the algorithm uses the NextStepGreedyRec

function to find a new codeword. In the best case, this

function is called only once. Since this function runs in

O (n log (max {N,n})), the best-case running time of the

NextStepGreedy function is O (n log (max {N,n})). In

the worst case, the NextStepGreedyRec function is

called l + l̄ times. Thus, the worst-case running time is

O
((

l + l̄
)

· n log (max {N,n})
)

.

Lemma 4: The space complexity of the NextStepGreedy

function is O
(

n2
)

.

Proof: As the NextStepGreedyRec function, the

NextStepGreedy function stores codewords of R (1,m)
that take O

(

n2
)

space. Observe that the auxiliary variables

use linear space. Therefore, the space requirement of the

NextStepGreedy function is indeed O
(

n2
)

.

Note that Algorithm 2 allows for parallel implementa-

tion. One can run the first l iterations of the for loop

Algorithm 4: A greedy version of the graph search

decoding algorithm

Input: RM code parameters r and m, a vector of LLRs y, a
maximum number of iterations N , a flag t whether to
use the CRC to terminate the algorithm, search
breadth l and l̄, a number of extra l̄ attempts to find a
codeword s

Output: A codeword res
1 Set C to be an empty set of codewords
2 Let c be the result of recursive decoding of the vector y
3 Add c to C
4 res← c
5 M ← 0
6 for i = 1, 2, . . . , 2m do
7 M ←M + (1− 2c[i]) y[i] // Compute the

metric for the codeword c.
8 end
9 for i = 1, 2, . . . , N do

10 c′,M ′, ec← NextStepGreedy
(

r,m,y, c, C, l, l̄
)

11 if ec = 1 then s← s− 1
12 if s = 0 then l̄← 0
13 if M ′ = −∞ then

14 break // A codeword c′ such that c′ /∈ C
is not found.

15 end
16 c← c′ // Move to an adjacent node.

17 Add c to C
18 if M ′ > M then

// Save the current codeword if it

is better than one found so far.

19 res← c

20 M ←M ′

21 if t and res satisfies the CRC then
22 break
23 end
24 end
25 end
26 return res

in lines 8 – 24 of the algorithm in parallel and select a

codeword with the best metric. If all codewords returned

by l calls of the NextStepGreedyRec function are in

the set C, then the algorithm can run l̄ more iterations in

parallel. Consequently, the best-case running time of the

parallel implementation of the NextStepGreedy function

is O (l · n log (max {N,n})), while the worst-case time is

still O
((

l + l̄
)

· n log (max {N,n})
)

. The space complexity

of the parallel implementation of the NextStepGreedy

function is O
(

n2
)

. Indeed, the functions NextStepGreedy

and NextStepGreedyRec only read information from

the memory that stores codewords of R (1, h), h ∈
{m− r + 1,m− r + 2, . . . ,m}. Thus, only one instance of

these codewords can be stored in memory. Moreover, since

l + l̄ ≤ 2m+1 − 2, the auxiliary variables take O
(

n2
)

space.

Consequently, the space requirement of the sequential and the

parallel versions of the algorithm is the same.

Theorem 1: The worst-case running time of Algorithm 4 is

O (L · n log (max {N,n})), where L = N · l + s · l̄.

Proof: Let us consider the running time of the main loop

in lines 9 – 25 of Algorithm 4. Recall that we assume that

the set C is implemented using a red-black tree. Therefore, the

insertion operation in line 17 of Algorithm 4 takes O (n logN)



7

time [27, Sec. 13]. In addition, we assume that a reasonable

length CRC is used. Under this assumption, we can conclude

that line 21 of Algorithm 4 takes a shorter running time

than line 10. In the worst case, the break statement does

not terminate the for loop in lines 9 – 25 of Algorithm 4

and the algorithm uses the possibility to execute l̄ additional

iterations of the for loop in lines 8 – 24 of Algorithm

2 s times. Thus, the worst-case time of the main loop is

O
((

N · l + s · l̄
)

n log (max {N,n})
)

.

Since recursive decoding takes

O (n logn) time [22], Algorithm 4 takes

O (L · n log (max {N,n})) worst-case time.

Theorem 2: Algorithm 4 uses O (max {N,n} · n) space.

Proof: On the one hand, the algorithm needs to store the

set of codewords C. Assume that this set is implemented using

a red-black tree. Thus, it takes O (N · n) space [27, Sec. 13].

On the other hand, the algorithm calls the NextStepGreedy

function that uses O
(

n2
)

space. Since the auxiliary variables

use O (1) space and recursive decoding uses linear space, the

space complexity of Algorithm 4 is O (max {N,n} · n).

V. SIMULATION RESULTS

We consider RM codes of length 256 and 512 and the

second-order RM codes of length 1024 and 2048. The graph

search decoder (referred to as GS) is compared to RPA decod-

ing without list [10] and the recursive permutation list decoder

(referred to as RPL) [5]. We assume that the graph search

decoder uses the sequential implementation of Algorithm 2

and runs with parameters l = 8, l̄ = 8, and s = 5. Note

that the simulation results for the recursive permutation list

algorithm are obtained using an open source project available

online [28].

In Fig. 2, we present the block error rate (BLER) of

the considered decoders for a BI-AWGN channel. For graph

search decoding, we consider two scenarios. In the first sce-

nario, plotted as solid blue curves, the number of iterations is

chosen in such a way that the worst-case1 running time of the

proposed algorithm is similar to that of recursive permutation

list decoding with the list of size L. In the second scenario,

plotted as dashed orange curves, we consider the number of

iterations required to perform within 0.1 dB from the ML

decoding lower bound that is constructed using an approach

described in [5]. Namely, we compare the metric of the output

codeword of the graph search decoder with a large running

time to that of the transmitted codeword. If the metric of the

decoder’s output is better, then the ML decoder will also return

an incorrect codeword. Consequently, the ratio of such events

gives a lower bound on the ML decoding performance.

We can see that, in most cases, the graph search decoder

outperforms the recursive permutation list decoder with a

similar running time by approximately 0.1 dB. The gap in-

creases to 0.4 dB and 0.6 dB for R (3, 9) and the second-order

RM codes of length larger than 512, respectively. However,

the recursive permutation list algorithm performs better than

1We consider the worst-case running time of the graph search algorithm
as in Theorem 1, i.e. the break statement does not terminate the main loop
of Algorithm 4 and each call of the NextStepGreedy function takes the
worst-case running time.

the graph search algorithm for a high-rate R (5, 8). Observe

that for R (5, 8) we consider the recursive permutation list

algorithm with a relatively small list of size 64, while for the

rest cases the list size is at least 256. Therefore, from Fig. 2,

we notice that the graph search decoder is competitive with

the recursive permutation list decoder with a list of size greater

than 128.

RPA decoding outperforms graph search decoding consid-

ered in the first scenario only for R (2, 11). However, it is

done at the cost of a much longer running time. In Table

I, we present the running time to decode one codeword for

the recursive permutation list, the RPA, and the graph search

algorithms considered in Fig. 2. Note that, for graph search

decoding, results are presented for the first scenario. Since

the running time of the graph search and the RPA algorithms

depends on the noise level, we only present the running time

at a BLER of 10−4 for these two cases. Recall that the worst-

case running time of graph search decoding coincides with

the running time of the recursive permutation list algorithm.

From Table I, we can see that the running time of RPA

decoding is much longer compared to the proposed algorithm.

For R (2, 11), the graph search decoder with 1024 iterations

outperforms RPA decoding by approximately 0.4 dB at a

BLER of 10−4, while the average-case running time of these

two algorithms is the same. Thus, from Fig. 2, we can conclude

that the proposed algorithm outperforms the RPA decoder with

a similar average-case running time.

In [10], a simplified version of RPA decoding is proposed

for high-rate RM codes. For instance, a list version of simpli-

fied RPA decoding is demonstrated to achieve the ML decod-

ing performance for R (5, 8). It takes approximately 13 ms at

a BLER of 10−4. The graph search decoder with 128 iterations

also achieves the ML decoding performance, but it takes only 3

ms on average at a BLER of 10−4. Another simplified version

of RPA decoding, called sparse multi-decoder RPA (SRPA), is

proposed in [12]. The SRPA algorithm allows decreasing the

running time of RPA decoding up to four times for R (2, 9)
at the cost of 0.15 dB loss and up to eight times for R (3, 8)
without any performance loss. Thus, the running time of the

SRPA algorithm and the graph search algorithm for R (2, 9) is

similar. However, due to 0.15 dB performance loss, the graph

search decoding demonstrates slightly better performance. In

the case of R (3, 8), the running time of SRPA decoding

is much longer compared to the proposed algorithm. Hence,

simplified versions of RPA decoding are also not competitive

with the graph search algorithm.

From Fig. 2, we can see that the graph search decoder

requires a large number of iterations to perform 0.1 dB from

ML for RM codes of length 512 and order greater than 3.

For instance, the required number of iterations equals 215 for

R (4, 9) resulting in a very long running time in the worst

case. However, the average-case running time of the proposed

algorithm is much smaller. In Figs. 3 and 4 we compare the

average-case running time as a function of Eb/N0 for R (3, 9)
and R (4, 9), respectively. Note that the graph search decoder

approaching ML performance takes less time to decode than

the recursive permutation list algorithm in high signal-to-noise

region. The average-case running time of the graph search



8

0.5 1 1.5 2 2.5
10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
lo

ck
er

ro
r

ra
te

RPL L = 256

RPA

GS N = 40

GS N = 64

ML lower bound

(a) R (3, 8)

1.5 2 2.5 3 3.5
10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
lo

ck
er

ro
r

ra
te

RPL L = 256

RPA

GS N = 56

GS N = 128

ML lower bound

(b) R (4, 8)

3.5 4 4.5 5
10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
lo

ck
er

ro
r

ra
te

RPL L = 64

GS N = 12

GS N = 128

ML lower bound

(c) R (5, 8)

0 0.5 1 1.5 2
10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
lo

ck
er

ro
r

ra
te

RPL L = 256

RPA

GS N = 24

GS N = 32

ML lower bound

(d) R (2, 9)

0 0.5 1 1.5 2
10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
lo

ck
er

ro
r

ra
te

RPL L = 1024

RPA

GS N = 150

GS N = 1024

ML lower bound

(e) R (3, 9)

0 0.5 1 1.5 2 2.5 3
10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
lo

ck
er

ro
r

ra
te

RPL L = 1024

GS N = 220

GS N = 215

ML lower bound

(f) R (4, 9)

2 2.5 3 3.5
10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
lo

ck
er

ro
r

ra
te

RPL L = 1024

GS N = 250

GS N = 214

ML lower bound

(g) R (5, 9)

0.5 1 1.5 2
10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
lo

ck
er

ro
r

ra
te

RPL L = 1024

RPA

GS N = 90

GS N = 128

ML lower bound

(h) R (2, 10)

−1 −0.5 0 0.5 1 1.5 2 2.5
10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
lo

ck
er

ro
r

ra
te

RPL L = 1024

RPA

GS N = 80

GS N = 1024

ML lower bound

(i) R (2, 11)

Fig. 2. The block error rate performance of RM codes on a BI-AWGN channel. For the recursive permutation list algorithm, we use L to denote the list
size. For the graph search algorithm, we use N to denote the number of iterations.

decoder can be further reduced using a CRC. Recall that the

proposed algorithm is terminated if a codeword with the best

metric found so far satisfies the CRC. In our simulations, we

consider the 24-bits CRC with the generator polynomial

x24+x23+x21+x20+x17+x15+x13+x12+x8+x4+x2+x+1.

Such a long CRC guarantees that undetected errors, i.e. the

codeword that satisfies the CRC is not a valid one, do not affect

the performance for a BLER above 10−4. Hence, the results

presented in Figs. 3 and 4 can be regarded as the best possible

improvement of the average-case running time if we have a

genie that stops decoding immediately after a valid codeword

is found. Although this technique allows reducing the average-

case running time, the 24-bits CRC results in a huge rate loss

for the considered cases. Thus, a further improvement of the

proposed algorithm is required to decrease the average-case

running time using a reasonable length CRC with negligible

performance loss.

In Fig. 5, we plot the block error probability for a binary

symmetric channel (BSC). Note that we consider a simplified

version of RPA decoding proposed for a BSC (see Algorithm

1 in [10]), while for graph search decoding and recursive

permutation list decoding we use hard-input versions of the

algorithms considered for a BI-AWGN channel. As in Fig. 2,

we use solid blue curves to report results of the graph search

algorithm with the worst-case running time that is similar to

that of the recursive permutation list algorithm and we use

dashed orange curves to report results of the graph search



9

TABLE I
COMPARISON OF AVERAGE-CASE RUNNING TIME TO DECODE ONE CODEWORD BETWEEN ALGORITHMS CONSIDERED IN FIG. 2. FOR THE GRAPH

SEARCH AND THE RPA ALGORITHMS, THE RUNNING TIME IS ESTIMATED AT Eb/N0 REQUIRED TO REACH A BLER OF 10−4 . THE WORST-CASE

RUNNING TIME OF THE GRAPH SEARCH ALGORITHM IS SIMILAR TO THE RUNNING TIME OF THE RECURSIVE PERMUTATION LIST ALGORITHM.

Code R (3, 8) R (4, 8) R (5, 8) R (2, 9) R (3, 9) R (4, 9) R (5, 9) R (2, 10) R (2, 11)
RPL 3.9ms 5.5ms 1.5ms 4ms 29ms 46ms 53ms 35ms 66ms

RPA 196ms 9.1s – 14ms 2.1s – – 58ms 227ms

GS 2.4ms 1ms 0.2ms 3.1ms 10ms 4.8ms 4ms 24ms 45ms

0 0.5 1 1.5 2

10−3

10−2

10−1

100

Eb/N0 (dB)

R
u

n
n

in
g

ti
m

e
(s

)

RPL L = 1024

RPA

GS N = 150

GS N = 1024

GS N = 150 (CRC)

GS N = 1024 (CRC)

Fig. 3. The average-case running time of R (3, 9) decoding on a BI-AWGN
channel.

1 1.5 2 2.5 3

10−3

10−2

10−1

100

Eb/N0 (dB)

R
u

n
n

in
g

ti
m

e
(s

)

RPL L = 1024

GS N = 220

GS N = 215

GS N = 220 (CRC)

GS N = 215 (CRC)

Fig. 4. The average-case running time of R (4, 9) decoding on a BI-AWGN
channel.

algorithm approaching the ML performance. In contrast to

a BI-AWGN channel, the graph search decoder requires a

moderate number of iterations (N ≤ 1024) to approach the

performance of ML decoding for a BSC. For RM codes of

length greater than 256, the proposed algorithm outperforms

the recursive permutation list algorithm with the same worst-

case running time, while these decoders perform similarly

for RM codes of length 256. Furthermore, the graph search

algorithm outperforms RPA decoding and, at the same time,

takes a shorter average-case running time. For instance, the

average-case running time of RPA decoding for R (3, 8) at a

BLER of 10−4 is 105 ms, while the proposed algorithm with

16 iterations takes only 0.9 ms.

VI. CONCLUSION

We presented a new decoder for RM codes, which benefits

from the representation of the code as a graph. Such repre-

sentation allows using a greedy local search algorithm that is

able to find the transmitted codeword efficiently. In almost

all considered cases, our algorithm outperforms the state-

of-the-art decoders of RM codes with a similar complexity.

Furthermore, the proposed algorithm allows achieving the

performance of the ML decoder with a reasonable worst-case

running time on a BSC. In the case of a BI-AWGN channel,

we demonstrated that the ML decoder performance is achieved

with a feasible average computational complexity, which can

be further reduced using a CRC.

ACKNOWLEDGMENT

We thank the reviewers for valuable suggestions that have

helped to significantly improve the quality of this paper. We

also thank Vladimir Gritsenko and Alexey Maevskiy for useful

discussions and feedback.

REFERENCES

[1] M. Kamenev, “On decoding of Reed-Muller codes using a local graph
search,” in 2020 IEEE Information Theory Workshop (ITW), 2021, pp.
1–5.

[2] D. E. Muller, “Application of Boolean algebra to switching circuit design
and to error detection,” Transactions of the I.R.E. Professional Group

on Electronic Computers, vol. EC-3, no. 3, pp. 6–12, Sep. 1954.

[3] I. Reed, “A class of multiple-error-correcting codes and the decoding
scheme,” Transactions of the IRE Professional Group on Information

Theory, vol. 4, no. 4, pp. 38–49, Sep. 1954.

[4] S. Kudekar, S. Kumar, M. Mondelli, H. D. Pfister, E. Şaşoǧlu, and R. L.
Urbanke, “Reed–Muller codes achieve capacity on erasure channels,”
IEEE Transactions on Information Theory, vol. 63, no. 7, pp. 4298–
4316, July 2017.

[5] I. Dumer and K. Shabunov, “Soft-decision decoding of Reed-Muller
codes: recursive lists,” IEEE Transactions on Information Theory,
vol. 52, no. 3, pp. 1260–1266, March 2006.

[6] N. Stolte, “Recursive codes with the Plotkin construction and their
decoding,” Ph.D. dissertation, Technical University of Darmstadt, Ger-
many, 2002.

[7] M. Geiselhart, A. Elkelesh, M. Ebada, S. Cammerer, and S. t. Brink,
“Automorphism ensemble decoding of Reed-Muller codes.” [Online].
Available: https://arxiv.org/abs/2012.07635v1

[8] N. Doan, S. A. Hashemi, and W. J. Gross, “Successive-cancellation
decoding of Reed-Muller codes with fast Hadamard transform,” 2021.
[Online]. Available: https://arxiv.org/abs/2108.12550v2

[9] K. Ivanov and R. L. Urbanke, “On the efficiency of
polar-like decoding for symmetric codes.” [Online]. Available:
https://arxiv.org/abs/2104.06084v2

[10] M. Ye and E. Abbe, “Recursive projection-aggregation decoding of
Reed-Muller codes,” IEEE Transactions on Information Theory, vol. 66,
no. 8, pp. 4948–4965, 2020.

https://arxiv.org/abs/2012.07635v1
https://arxiv.org/abs/2108.12550v2
https://arxiv.org/abs/2104.06084v2


10

0.07 0.08 0.09 0.10 0.11 0.12
10−4

10−3

10−2

10−1

Crossover probability

B
lo

ck
er

ro
r

ra
te

RPL L = 64

RPA

GS N = 7

GS N = 16

ML lower bound

(a) R (3, 8)

0.02 0.03 0.04
10−4

10−3

10−2

10−1

Crossover probability

B
lo

ck
er

ro
r

ra
te

RPL L = 32

RPA

GS N = 5

GS N = 16

ML lower bound

(b) R (4, 8)

0.13 0.14 0.15 0.16 0.17 0.18 0.19
10−4

10−3

10−2

10−1

Crossover probability

B
lo

ck
er

ro
r

ra
te

RPL L = 1024

RPA

GS N = 150

GS N = 512

ML lower bound

(c) R (3, 9)

0.05 0.06 0.07 0.08 0.09
10−4

10−3

10−2

10−1

Crossover probability

B
lo

ck
er

ro
r

ra
te

RPL L = 1024

GS N = 220

GS N = 512

ML lower bound

(d) R (4, 9)

0.29 0.3 0.31 0.32 0.33 0.34
10−4

10−3

10−2

10−1

Crossover probability

B
lo

ck
er

ro
r

ra
te

RPL L = 1024

RPA

GS N = 90

GS N = 256

ML lower bound

(e) R (2, 10)

0.32 0.33 0.34 0.35 0.36
10−4

10−3

10−2

10−1

Crossover probability

B
lo

ck
er

ro
r

ra
te

RPL L = 1024

RPA

GS N = 80

GS N = 1024

ML lower bound

(f) R (2, 11)

Fig. 5. The block error rate performance of RM codes on a BSC. For the recursive permutation list algorithm, we use L to denote the list size. For the graph
search algorithm, we use N to denote the number of iterations.

[11] K. Ivanov and R. Urbanke, “Improved decoding of second-order Reed-
Muller codes,” in 2019 IEEE Information Theory Workshop (ITW), 2019,
pp. 1–5.

[12] D. Fathollahi, N. Farsad, S. A. Hashemi, and M. Mondelli, “Sparse
multi-decoder recursive projection aggregation for Reed-Muller codes,”
in 2021 IEEE International Symposium on Information Theory (ISIT),
2021, pp. 1082–1087.

[13] M. V. Jamali, X. Liu, A. V. Makkuva, H. Mahdavifar, S. Oh, and
P. Viswanath, “Reed-Muller subcodes: machine learning-aided design
of efficient soft recursive decoding,” in 2021 IEEE International Sym-

posium on Information Theory (ISIT), 2021, pp. 1088–1093.

[14] S. A. Hashemi, N. Doan, M. Mondelli, and W. J. Gross, “Decoding
Reed-Muller and polar codes by successive factor graph permutations,”
in 2018 IEEE 10th International Symposium on Turbo Codes Iterative

Information Processing (ISTC), 2018, pp. 1–5.

[15] E. Santi, C. Hager, and H. D. Pfister, “Decoding Reed-Muller codes
using minimum-weight parity checks,” in 2018 IEEE International

Symposium on Information Theory (ISIT), 2018, pp. 1296–1300.

[16] M. Lian, C. Häger, and H. D. Pfister, “Decoding Reed–Muller codes us-
ing redundant code constraints,” in 2020 IEEE International Symposium

on Information Theory (ISIT), 2020, pp. 42–47.

[17] A. Buchberger, C. Häger, H. D. Pfister, L. Schmalen, and A. G.
Amat, “Pruning neural belief propagation decoders,” in 2020 IEEE

International Symposium on Information Theory (ISIT), 2020, pp. 338–
342.

[18] P. Yuan and M. C. Coşkun, “Complexity-adaptive maximum-
likelihood decoding of modified GN -coset codes.” [Online]. Available:
https://arxiv.org/abs/2105.04048v2

[19] S. A. Hashemi, N. Doan, W. J. Gross, J. Cioffi, and A. Goldsmith, “A
tree search approach for maximum-likelihood decoding of Reed-Muller
codes.” [Online]. Available: https://arxiv.org/abs/2107.08991v1

[20] K. Ivanov and R. Urbanke, “Permutation-based decoding of Reed-Muller
codes in binary erasure channel,” in 2019 IEEE International Symposium

on Information Theory (ISIT), 2019, pp. 21–25.

[21] M. C. Coşkun, J. Neu, and H. D. Pfister, “Successive cancellation
inactivation decoding for modified Reed-Muller and eBCH codes,” in

2020 IEEE International Symposium on Information Theory (ISIT),
2020, pp. 437–442.

[22] I. Dumer and K. Shabunov, “Recursive decoding of Reed-Muller codes,”
in 2000 IEEE International Symposium on Information Theory, 2000,
p. 63.

[23] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting

codes. Amsterdam, The Netherlands: North-Holland, 1977.
[24] S. Lin and D. J. Costello, Error control coding, Second ed. Upper

Saddle River, NJ, USA: Pearson Prentice hall, 2004.
[25] T. Koumoto, T. Takata, T. Kasami, and Shu Lin, “A low-weight trellis-

based iterative soft-decision decoding algorithm for binary linear block
codes,” IEEE Transactions on Information Theory, vol. 45, no. 2, pp.
731–741, 1999.

[26] R. Green, “A serial orthogonal decoder,” JPL Space Programs Summary,
vol. 37, pp. 247–253, 1966.

[27] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to algorithms, 3rd ed. Cambridge, MA, USA: MIT Press, 2009.
[28] K. Shabunov, “Error correcting coding research tools,”

https://github.com/kshabunov/ecclab, 2021.

https://arxiv.org/abs/2105.04048v2
https://arxiv.org/abs/2107.08991v1
https://github.com/kshabunov/ecclab

	I Introduction
	II RM Codes
	III Graph Search Based Decoding of RM Codes
	IV A Simplified Selection of an Adjacent Node
	V Simulation results
	VI Conclusion
	References

