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Abstract

This paper investigates the general problem of resource allocation for mitigating channel fading

effects in Free Space Optical (FSO) communications. The resource allocation problem is modeled as

the constrained stochastic optimization framework, which covers a variety of FSO scenarios involving

power adaptation, relay selection and their joint allocation. Under this framework, we propose two

algorithms that solve FSO resource allocation problems. We first present the Stochastic Dual Gradient

(SDG) algorithm that is shown to solve the problem exactly by exploiting the strong duality but whose

implementation necessarily requires explicit and accurate system models. As an alternative we present

the Primal-Dual Deep Learning (PDDL) algorithm based on the SDG algorithm, which parametrizes the

resource allocation policy with Deep Neural Networks (DNNs) and optimizes the latter via a primal-dual

method. The parametrized resource allocation problem incurs only a small loss of optimality due to the

strong representational power of DNNs, and can be moreover implemented without knowledge of system

models. A wide set of numerical experiments are performed to corroborate the proposed algorithms

in FSO resource allocation problems. We demonstrate their superior performance and computational

efficiency compared to the baseline methods in both continuous power allocation and binary relay

selection settings.
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I. INTRODUCTION

Free Space Optical (FSO) communication has attracted noticeable attention due to high

capacity, low cost, strong security and flexible construction [2]. It transmits signals with optical

carriers through the atmosphere and has found applications in satellite communications [3],

last-mile access [4], and fronthaul or backhaul for wireless cellular networks [5]. Despite this

potential, FSO communication is susceptible to channel characteristics, such as atmospheric

turbulence, weather conditions and background radiation [6]. Different models were proposed

to characterize the FSO channel, based on which a number of techniques were developed to

mitigate channel effects [7]–[13]. Cooperative transmission has recently been introduced as one of

such techniques in FSO communications, which improves the system performance by leveraging

optimal resource allocation [14]. That is, it allocates resources adaptively based on the channel

state information (CSI) in order to optimize the system performance. Common examples of FSO

resource allocation problems include power adaptation, relay selection and their joint allocation.

Power adaptation has emerged as a popular cooperative transmission technique to mitigate

channel fading effects, but the conventional adaptation method in radio frequency (RF) channels

does not apply directly to optical channels [15]. The works in [15]–[17] assign adaptive pow-

ers to orthogonal optical carriers maximizing the channel capacity with total and peak power

constraints. The authors in [18], [19] minimize the outage probability with respective power

allocation strategies. Other applications include the security performance [19], the spectral effi-

ciency [20], etc. Relay-assisted communication, on the other hand, employs multiple relay nodes

between the transmitter and the receiver to create a virtual multiple-aperture FSO system [21]–

[23]. However, it is not practical to activate all available relays that requires perfect transmission

synchronization. The works in [24], [25] developed relay selection protocols for optimal outage

and error probabilities, and the authors in [26] considered both serial and parallel relays to

improve the system performance. Furthermore, joint power and relay allocation algorithms were

developed in FSO networks, in order to maximize the network throughout and minimize the

outage probability [27]–[29]. However, the aforementioned works are restricted by both or one
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of the following limitations.

L.1 Approximation approaches are required to simplify optimization problems or to obtain

convex relaxations.

L.2 The implementation of these methods requires complete knowledge of system models (e.g.,

capacity functions and channel distributions).

L.1 results in inexact solutions that degrade performance and/or require high computational cost.

L.2 yields solutions that depend on the system model information, which may be unavailable

or inaccurate, thus introducing inevitable errors. L.1 and L.2 further tie the solution methods

to specific use-cases and do not necessarily generalize to changes in system structure, i.e., the

methods become inapplicable or require significant modifications when changing FSO systems.

These limitations provide an incomplete solution to the design of generic resource allocation

policies in FSO communications.

These challenges of existing FSO resource allocation methods make the application of machine

learning methods appealing, due to their low complexity, potential for model-free implementation,

and transference to unseen scenarios. Deep Neural Networks (DNNs) have been developed as

predominant tools to analyze data for target information and have achieved resounding success

in many communication, signal processing and control problems [30]–[32]. In particular, DNNs

have been applied for power allocation of the interference management problem in wireless

RF domain [33]–[35]. In FSO communication domain, DNNs have been utilized for assisting

channel estimation [36], [37] and signal modulation/demodulation [38], [39]. While to the best of

our knowledge, deep learning approaches have not yet been systematically explored for general

resource allocation problems in FSO systems.

In this paper we study the application of dual domain optimization and deep learning methods

in a wide array of resource allocation problems in FSO communications. Given the objective

with a set of constraints, we formulate the FSO resource allocation problem as the constrained

stochastic optimization problem and seek an optimal resource allocation policy that adapts to

the channel state information (Section II). To demonstrate the generality of our framework, we

exemplify with problems of power adaptation in Radio on FSO systems (Section II-A), relay

selection in relay-assisted FSO networks (Section II-B), and joint power and relay allocation
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in FSO fronthaul networks (Section II-C). Such resource allocation problems are typically

challenging due to the non-convexity of complicated objective, existence of constraints, infinite

dimensionality of resource allocation policy, and lack of system model knowledge. We propose

the use of dual optimization and learning framework to address these challenges and provide a

comprehensive solution methodology. More in detail, our contributions are as follows.

(i) We propose the Stochastic Dual Gradient (SDG) algorithm to overcome the limitation

L.1 (Section III). The SDG algorithm is demonstrated to solve FSO resource allocation

problems exactly by utilizing the strong duality. The latter allows us to operate in the dual

domain, which is convex, unconstrained and finite dimensional, without loss of optimality.

The SDG further saves computational cost by performing primal-dual gradient updates,

which avoids computing KKT conditions. Despite the theoretical advantages, this algorithm

is limited as it is model-based that requires knowledge of specific system models.

(ii) We propose the Primal-Dual Deep Learning (PDDL) algorithm as a model-free, deep learn-

ing based alternative to overcome the limitation L.2 (Section IV). The PDDL parameterizes

the resource allocation policy with DNNs and reformulates the problem as a constrained

machine learning problem. It leverages an approximate strong duality to train DNNs with

an unsupervised primal-dual method. A model-free implementation is obtained by using

the policy gradient method, which does not require the knowledge of system models. The

PDDL further achieves lower complexity due to the computational efficiency of DNNs.

(iii) The overall methodology resulting from both algorithms does not depend on specific

systems or problem settings, and thus is applicable comprehensively in the context of

FSO communications. We perform numerical experiments in a variety of practical FSO

communication scenarios, including power adaptation, relay selection and their joint al-

location (Section V). In all scenarios, we illustrate success of the proposed algorithms,

validating their transference to changes in system structure.

II. PROBLEM FORMULATION

Consider a general Free Space Optical (FSO) communication system under some form of

resource constraints. By adaptively allocating resources using a policy that responds to instan-
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(a) (b) (c)

Figure 1. (a) The DWDM RoFSO system with N optical wavelength channels. (b) The relay-assisted FSO network.
The transmitter communicates with the receiver through N selected relays (red nodes). (c) The fronthaul FSO
network with N RRHs and M ANs.

taneous fading effects of the atmospheric channel, we can mitigate these fading effects and

optimize the system performance. Denote by h ∈ Rm the collected channel state information

(CSI) and r(h) ∈ Rn a policy that determines the allocated resources based on the observed

h. The objective function f(h, r(h)) measures the system performance that is instantiated on

h and r(h). Furthermore, a total of S constraints are imposed either on the resources r(h)

or on the objective function f(h, r(h)), each of which is represented by a constraint function

cs(r(h), f(h, r(h))) for all s = 1, . . . , S. The atmospheric channel is typically considered as

a fading process with channel coherence time on the order of milliseconds, such that we

shall assume h is drawn from an ergodic and i.i.d block fading process. In this context, the

instantaneous system performance tends to vary fast and the long term average performance

Eh[f(h, r(h))] is the more meaningful metric to consider when designing an optimal resource

allocation policy. We similarly consider constraints to be satisfied in expectation.

Our goal is to maximize the expected performance Eh[f(h, r(h))] given certain resource

constraints. In particular, we seek to compute the instantaneous allocated resources r(h) based on

the instantaneous CSI h, that satisfy required constraints and optimize the system performance.

By introducing R as the action space of allocated resources r(h), we formulate the optimal

resource allocation as the following stochastic optimization problem

P := max
r(h)

Eh [f(h, r(h))] , (1)

s. t. Eh

[
cs
(
r(h), f(h, r(h))

)]
≤0 for all s=1,..., S, r(h) ∈ R.
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We stress in (1) that the objective function f(h, r(h)), the constraint functions {cs
(
r(h), f(h, r(h))

)
}Ss=1

and the set R are not necessarily convex depending on specific applications. In fact, in most

practical scenarios, they are non-convex given the complexity of FSO systems. In general, the

objective function is typically complicated and the allocated resources can be both continuous

and discrete, such that solving the resource allocation problem (1) can be difficult. There are

mainly four challenges in our concern:

(i) The objective function f(h, r(h)) can be extremely complicated in FSO systems, yielding

non-convex optimization problems—see Sections II-A and II-B.

(ii) The imposed constraints {cs
(
r(h), f(h, r(h))

)
}Ss=1 are difficult to address, resulting in

failures of conventional optimization algorithms—see Section II-C.

(iii) The variable to be optimized r(h) is a function of the channel state information h and

consequently is infinitely dimensional.

(iv) FSO systems are sophisticated due to the complexity of optical equipments. Mathematical

models f(h, r(h)) characterizing these systems may be unknown or inaccurate such that

model-based algorithms are inapplicable or suffer from inevitable degradations.

In what follows, we first propose a model-based algorithm that solves the problem (1) exactly

without any approximation (Section III). We proceed to develop a model-free algorithm via deep

learning that solves (1) with only system observations, where the knowledge of system models is

not required (Section IV). Before proceeding, we illustrate in the following subsections how the

general problem framework in (1) represents a variety of optimal resource allocation problems

in FSO communications.

A. Power Adaptation

We consider the transmission power allocation in a Radio on Free Space Optics (RoFSO)

system. As a universal platform for heterogeneous wireless services, it transmits RF signals

through FSO links in optical networks [16]. The Dense Wavelength Division Multiplexing

(DWDM) RoFSO system allows simultaneous transmissions of multiple signals to increase

the transmission capacity. In particular, multimedia RF signals are accessed into the RoFSO

system and placed on multiple optical wavelength carriers with optoelectronic devices, and then
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transmitted into free space. At the receiver, optical signals are received through FSO channels

and transferred back to RF signals for users—see Fig. 1a.

Based on the CSI, adaptive powers are assigned to different wavelengths to maximize the

total channel capacity. Assume that there are N optical wavelength carriers with non-overlapping

space between each other. The CSI is represented by the vector h = [h1, . . . , hN ]> ∈ RN , where

hi is the CSI of i-th wavelength channel. The allocated power to signal transmitted on i-th

wavelength is based upon the observed CSI h via a power allocation policy pi(h). Given the

collection of power allocations r(h) = [p1(h), . . . , pN(h)]> ∈ RN and the CSI h, the channel

capacity Ci(h, r(h)) achieved on i-th wavelength is [16]

Ci(h, r(h)) = Ci(hi, pi(h)) = log
(
1+

1
2
(OMI ·mprpi(h)hi)

2

RIN · (rpi(h)hi)2 + 2em2+F
p rpi(h)hi+

4KT
Rf

)
(2)

with OMI the optical modulation index, RIN the relative intensity noise, mp the photodiode

gain, r the photodiode responsivity, e the electric charge, F the excess noise factor, K the

Boltzmann’s constant, T the temperature and Rf the photodiode resistance. We consider the

weight vector ω=[ω1, . . . , ωN ]> ∈ RN to represent priorities of different wireless services, and

the objective function is the weighted sum of channel capacities over N wavelengths

Eh [f(h, r(h))] =
N∑
i=1

ωiEh [Ci(h, r(h))] . (3)

The RoFSO system is constrained by a total power limitation Pt at the base station, i.e.,

Eh [c(r(h))] = Eh

[∑N
i=1 pi(h)

]
− Pt ≤ 0, and a peak power limitation Ps for each carrier

to ensure eye safety, i.e., R = [0, Ps]
N .

B. Relay Selection

We consider the relay-assisted FSO network, in which the transmitter communicates with the

receiver through intermediate hops [40]. In particular, assume that there are N hops where each

hop consists of M parallel relays. The transmitter sends the optical signal to a selected relay at

1-st hop. The latter amplifies the received signal and then transmits it to a selected relay at 2-nd

hop. The process performs successfully through N hops until the receiver—See Fig. 1b. Based

on the CSI, different relays are selected at different hops to maximize the channel capacity.
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We denote by h ∈ R(M×N+2)×M the CSI between the transmitter, relays and the receiver, and

the matrix r(h) = [α1(h), . . . ,αN(h)]> ∈ {0, 1}N×M the selected relays, where each αi(h) =

[αi1(h), . . . , αiM(h)]> ∈ {0, 1}M is a M -dimensional vector with αij(h) = 1 if j-th relay is

selected at i-th hop and αij(h) = 0 otherwise. The relay-assisted channel capacity is [28]

Cj1...jN(h)=
TfB

ε
log
(

1+
( N∏
i=0

(
1+

1

Phjiji+1

R
e∆f

)
−1
)−1)

(4)

which assumes that ji-th relay is selected at i-th hop and hjiji+1
is the CSI between ji-th relay

at i-th hop and ji+1-th relay at (i+ 1)-th hop, where j0 =jN+1 =1 represent the transmitter and

the receiver. Here, Tf is the frame duration, B the bandwidth, P the transmission power, R the

photodetector sensitivity, e the electric charge, ∆f the noise equivalent bandwidth, ε = 1 for the

full-duplex relay and ε = 2 for the half-duplex relay. The objective function is then given by

Eh[f(h, r(h))]=Eh

[ M∑
jN=1

· · ·
M∑
j1=1

( N∏
i=1

αiji(h)
)
Cj1...jN (h)

]
. (5)

There are N constraints on the selected relays r(h). That is only one relay can be selected at

each hop, i.e., R=
{
{0, 1}N×M |

∑M
j=1 αij(h) ≤ 1, for all i= 1, ..., N

}
. There is no additional

stochastic constraint in this example.

C. Joint Power and Relay Allocation

The resource allocation problem becomes more complicated when considering the joint power

and relay allocation, as seen in the FSO fronthaul network [28], [29]. As one of cloud radio access

network (C-RAN) architectures, it provides high rates, low latency and flexible constructions

for 5G wireless networks. In particular, the system consists of remote radio heads (RRHs),

aggregation nodes (ANs) and the baseband unit (BBU). The RRHs transmit optical signals with

orthogonal optical carriers through free space to the selected ANs. The latter collect received

signals and then forward the aggregated signal to the BBU through high speed optical fiber—See

Fig. 1c. Based on the CSI, different ANs are selected at different RRHs and adaptive powers

are assigned to different optical carriers at each RRH. Assume there are L optical carriers, N

RRHs, M ANs and one BBU. The CSI is represented by h = {hij}ij for all i= 1,..., N and
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j=1,...,M , where each vector hij =[h1
ij, ..., h

L
ij]
>∈RL is the CSI of L optical carriers between

i-th RRHs and j-th AN. The allocated resources r(h) = {pij(h), αij(h)}ij contain assigned

powers and selected ANs, where pij(h) = [p1
ij(h), ..., pLij(h)]> ∈RL are powers assigned to L

optical carriers in the link between i-th RRH and j-th AN, and αij(h) ∈ {0, 1} is the indicator

being one if j-th AN is selected at i-th RRH and zero otherwise. The channel capacity between

i-th RRH and j-th AN is [29]

Cij(h, r(h)) =
L∑
`=1

ω`
TfB

ε
log
(

1 + p`ij(h)h`ij
R

e∆f

)
(6)

with ω = [ω1, . . . , ωL]> ∈ RL the priorities of optical carriers, Tf the frame duration, B the

bandwidth, R the photodetector sensitivity, e the electric charge and ∆f the noise equivalent

bandwidth. The objective function is the sum-capacity over N RRHs

Eh [f(h, r(h))] = Eh

[ N∑
i=1

M∑
j=1

αij(h)Cij(h, r(h))
]
. (7)

There are 2N constraints for the allocated powers, N constraints for the selected ANs and

additional M constraints for the aggregated data at ANs: (i) the total power limitation Pt and

the peak power limitation Ps at each RRH as in Section II-A; (ii) only one AN can be selected

at each RRH as in Section II-B; (iii) the aggregated data traffic shall not exceed the maximal

capacity Ct of optical fiber at each AN to avoid data congestion. Therefore, we have

Eh

[ L∑
`=1

p`ij(h)
]
− Pt ≤0, for all i = 1, ..., N, j = 1, ...,M, (8a)

Eh

[ N∑
i=1

Cij(h, r(h))
]
− Ct ≤0, for all j=1, . . . ,M, (8b)

R=
{

[0, Ps]
N×M×L×{0,1}N×M |

M∑
j=1

αij(h) ≤ 1, for all i = 1, ..., N
}
. (8c)

III. STOCHASTIC DUAL GRADIENT ALGORITHM

In this section, we first address three primary challenges (i)-(iii) outlined in Section II by

working in the dual domain. In particular, by establishing a null duality gap for (1), we present the

Stochastic Dual Gradient (SDG) algorithm that finds exact solutions despite the non-convexity,
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constraints, and infinite dimensionality. For the purposes of developing the SDG algorithm, we

initially ignore challenge (iv) and assume mathematical models established for FSO systems are

given and accurate. For instance, in the RoFSO system we assume the channel capacity function

Ci(h, r(h)) in (2) characterizes the RoFSO system accurately.

With a set of convex or non-convex constraints, it is natural to consider working in the

dual domain. By introducing the dual variables λ = [λ1, . . . , λS]> ∈ RS
+ that correspond to S

constraints, the Lagrangian of problem (1) is given by

L(r(h),λ) = Eh[f(h, r(h))]−
S∑
s=1

λsEh[cs (r(h), f(h, r(h)))] . (9)

Each constraint in (1) shows as a penalty in (9), where the violation is penalized (weighted by

a dual variable). We define the dual function as the maximum of Lagrangian

D(λ) = max
r(h)∈R

L(r(h),λ). (10)

The problem (10) is unconstrained such that conventional optimization algorithms can be used.

With dual variables involved, it has been proved that D(λ) ≥ P holds for any λ. This result

motivates the development of dual problem, that is to find λ∗ minimizing the dual function as

D := min
λ≥0
D(λ) = min

λ≥0
max
r(h)∈R

L(r(h),λ). (11)

The optimal solution D for (11) can be viewed as the best approximation of P when handling

constraints as penalties. However, it is still unclear how much the difference between D and P

is and further how to develop an algorithm to solve the alternative min-max problem (11). We

consider these issues in following subsections.

A. Null Duality Gap

For the ideal scenario, one would expect the difference D− P, referred to as the duality gap,

to be zero. As such, we can solve the general resource allocation problem (1) by solving its

associated dual problem (11) without loss of optimality. It is well-known that the null duality gap

holds for convex optimization problems, which the problem (1) rarely leads to due to complicated
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objective and constraint functions. Despite its possible non-convexity, we show that the problem

does have the null duality gap in the following theorem.

Theorem 1. Consider the stochastic optimization problem (1) and its associated dual problem

(11). Let P be the optimal solution of (1) and D be the optimal solution of (11). Assume that

there exists a feasible point r0 satisfying all constraints with strict inequality, then the strong

duality holds that P = D.

Proof: The objective and the constraints in (1) are in expectation with respect to the CSI h,

which is instantiated from the probability distribution m(h). We can consider (1) as a particular

realization of the sparse functional program [41]. Since the distribution m(h) that characterizes

the FSO channel is continuous, h takes values in a dense set of the domain. Considering this

observation together with the assumption that there exists a solution satisfying all constraints

with strict inequality, the results of Theorem 1 in [41] claim the strong duality gap P = D.

Theorem 1 states that the optimization problem (1) has the null duality gap D− P = 0 even

if it is non-convex, where the strict feasibility assumption is mild in practice. We can then solve

(1) by solving the unconstrained dual problem (11) alternatively without loss of optimality.

B. Primal-Dual Update

We propose the SDG algorithm based on the above analysis, which iteratively searches for

the optimal dual variables λ∗ starting from an initial iterate λ0, to derive the corresponding

optimal resource allocation policy r∗(h). To be more precise, the SDG consists of two steps

over an iteration index k. The primal step updates the primal variables r(h) given the current

dual variables λk, while the dual step updates the dual variables λ given the updated rk+1(h).

Details are formally introduced below.

(1) Primal step. At k-th iteration given the dual variables λk and the CSI h, we update the

April 20, 2021 DRAFT
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Algorithm 1 Stochastic Dual Gradient Algorithm
1: Input: The objective function f(h, r(h)), the constraints {cs

(
r(h), f(h, r(h))

)
}Ss=1, the CSI

h and the initial dual variables λ0

2: for k = 0, 1, 2, . . . do {main loop}
3: Update the primal variables rk+1(h) by (12)
4: rk+1(h) = argmaxr(h)∈R f(h, r(h))−

∑S
s=1λ

k
scs (r(h), f(h, r(h)))

5: Update the dual variables λk+1 by (13)
6: for s = 1, . . . , S do {main loop}
7: λk+1

s =
[
λks − ηkcs

(
rk+1(h), f(h, rk+1(h))

)]
+

8: end for
9: end for

primal variables by maximizing the Lagrangian as

rk+1(h) = argmax
r(h)∈R

L
(
r(h),λk

)
= argmax

r(h)∈R
Eh

[
f(h, r(h))

]
−

S∑
s=1

λksEh

[
cs
(
r(h), f(h, r(h))

)]
= argmax

r(h)∈R
f(h, r(h))−

S∑
s=1

λkscs (r(h), f(h, r(h))) (12)

where the last equality is because the expectation is automatically maximized if it is maximized

at each sample h. In practice, (12) can usually be simplified based on specific system models.

For example, in the RoFSO system, both the objective and the constraints separate the use of

components p1(h), . . . , pN(h) in r(h) and h1, . . . , hN in h with no coupling between them. In this

context, solving (12) is equivalent to solving N scalar sub-problems that update each component

pi(h) separately as pk+1
i (h) = argmaxpi(h)∈[0,PS ] ωiCi(hi, pi(h))− pi(h) for all i = 1, . . . , N .

(2) Dual step. Given the updated rk+1(h) from the primal step (1), we perform the dual

gradient descent to update λk as

λk+1
s =

[
λks − ηk∇λsL(rk+1(h),λk)

]
+

=
[
λks − ηkcs

(
rk+1(h), f(h, rk+1(h))

)]
+

(13)

for all s = 1, . . . , S, where ηk is the dual step-size at iteration k and [·]+ = max(·, 0) is due to

the non-negativity of the dual variables λ.

By repeating these two steps recursively, λk converges to the optimal values λ∗ as k increases
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[42]. Due to the null duality gap, the optimal solution r∗(h) can be obtained from λ∗ as

r∗(h)=argmax
r(h)∈R

f(h, r(h))−
S∑
s=1

λ∗scs
(
r(h), f(h, r(h))

)
. (14)

Algorithm 1 summarizes the SDG algorithm.

With accurate system models, the SDG algorithm solves the problem (1) perfectly in theory

with no relaxation or approximation. However, there exist several problems with respect to its

practical implementation. For one thing, in the primal step of the SDG, there is no closed-

form solution of (12) to compute optimal rk+1(h). Similarly, even after the algorithm converges,

real time execution of r∗(h) needs to numerically solve (14). Therefore, it may require certain

computational complexity. For another, we recall the difficulty of obtaining accurate system

models in FSO systems as stated in challenge (iv) of Section II. The SDG algorithm heavily

relies on system models, i.e., we need accurate knowledge of the objective functions f(h, r(h))

and constraint functions cs
(
r(h),f(h, r(h))

)
to perform algorithm. This may not be available

given a FSO system that is new, unfamiliar or complex. Furthermore, existing models do not

always capture the true physical performance in practice leading to inevitable model errors.

These motivate the development of a low-complexity and model-free learning-based algorithm

to solve resource allocation problems, as we introduce in the following section.

IV. PRIMAL-DUAL DEEP LEARNING ALGORITHM

To handle above limitations, we develop the model-free Primal-Dual Deep Learning (PDDL)

algorithm based on the SDG algorithm. The implementation of the PDDL requires only observed

values of the FSO system (e.g., the observed channel capacity and CSI) instead of mathematical

system models. We begin by noticing the problem (1) shares the same structure as the statistical

learning problem. The latter inspires us to introduce a parametrization θ ∈ Rq to represent the

resource allocation policy as r(h) = Φ(h,θ). Substituting this representation into (1) yields

Pθ := max
θ

Eh [f(h,Φ(h,θ))] , (15)

s. t. Eh

[
cs
(
Φ(h,θ), f(h,Φ(h,θ))

)]
≤0 for all s = 1, ..., S, θ ∈ Θ
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where Θ is the parametrization set satisfying Φ(h,θ) ∈ R. Then, the goal becomes to learn

the optimal function Φ∗(h,θ∗) by finding the optimal parametrization θ∗ that maximizes the

objective while satisfying prescribed constraints.

A. Near-Universal Parametrization

The parametrization in (15) inevitably introduces a loss of optimality since resource allocation

functions are restricted to those adhered to the form of r(h) = Φ(h,θ). For example, a linear

parametrization Φ(h,θ) = θ>h can never represent any nonlinear resource allocation policy. A

good choice of Φ(h,θ) should provide an accurate approximation for almost all functions in

R by changing parameters θ, and thus can model the space of allowable resource allocation

policies to guarantee the learning performance. To quantify such function representation ability,

we define the near-universal parametrization as follows.

Definition 1 (Near-universal parametrization). For any ε ≥ 0, the parametrization Φ(h,θ) is

ε-universal if for any r(h) ∈ R, there exists a set of parameters θ ∈ Θ such that

Eh [‖r(h)−Φ(h,θ)‖∞] ≤ ε. (16)

The universal property has been found in a number of learning architectures, e.g., radial basis

function networks [43], reproducing kernel Hilbert spaces [44] and deep neural networks [45].

Deep Neural Networks (DNNs) in particular are well-suited candidates that exhibit the univer-

sal function approximation ability and achieve successes in various practical problems. DNNs are

information processing architectures consisting of multiple layers, each of which comprises linear

operations and pointwise nonlinearities. Specifically, consider a DNN with L layers. At layer `,

we have the input feature x`−1 ∈ Rn`−1 with n`−1 the number of hidden units at layer (`−1).

This feature is processed by the linear operation Π` ∈ Rn`×n`−1 to obtain the higher-level feature

u` ∈ Rn` . The latter is passed through a pointwise nonlinearity σ(·) : R → R to generate the

output feature x` = σ
(
Π`x`−1

)
. The output at layer ` is again taken as the input at layer (`+1),

and the process repeats recursively until the final layer L—see Fig. 2. In our case, the input of

the DNN is the instantaneous CSI x0 = h and the output is xL = Φ(h,θ). The parametrization
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Figure 2. Deep neural network with 2 hidden layers. The channel state information h is fed into the input units
(green nodes), processed by the hidden units (blue nodes) and output in the last-layer units (red nodes).

θ ∈ Rq are the weights of linear operations Π1, . . . ,ΠL, where q =
∑L−1

`=0 n`n`+1 is determined

by feature dimensions n0, . . . , nL. Common examples for the nonlinearity are the absolute value,

the ReLU, the sigmoid function, etc. We then verify its near-universal property as follows.

Theorem 2. [45, Theorem 2.2] Let m(h) be the distribution of the channel state information h

and R be the considered set of measurable functions. For a DNN with arbitrarily large number

of layers and arbitrarily large layer sizes, it is dense in probability in R, i.e., for any function

r(h) ∈ R and ε > 0, there exists L, {n1, . . . , nL} and θ ∈ Rq such that

m
(
{h : ‖Φ(h,θ)− r(h)‖∞ > ε}

)
< ε. (17)

Theorem 2 states that DNNs can approximate functions in the considered set with arbitrarily

small error ε by increasing the number of layers L and layer sizes {n`}L`=1. Therefore, the

parametrization loss P−Pθ can be sufficiently small by learning with the DNN parametrization.

B. Primal-Dual Learning

We now develop an analogous dual-domain learning method to find the optimal parametrization

θ∗. Similar as the unparameterized problem, we begin by formulating the Lagrangian of (15) as

L(θ,λ) = Eh[f(h,Φ(h,θ))]−
S∑
s=1

λsEh

[
cs
(
Φ(h,θ), f(h,Φ(h,θ))

)]
. (18)
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The corresponding dual problem is subsequently defined as

Dθ := min
λ≥0
Dθ(λ) = min

λ≥0
max
θ∈Θ
L(θ,λ). (19)

For the above min-max problem with the parametrization θ, the duality gap Pθ − Dθ can be

assumed sufficiently small due to the strong duality in Theorem 1 and the near-universal property

of the DNN in Theorem 2. Thus, we can solve (15) by solving (19) with little loss of optimality.

We similarly develop the PDDL algorithm for solving (19), which updates the primal variables

θ with gradient ascent and the dual variables λ with gradient descent at each iteration k:

(1) Primal step. Given the dual variables λk, we update the primal variables θ as

θk+1 =θk+δk∇θL(θk,λk)=θk+δk∇θEh

[
f(h,Φ(h,θ))−

S∑
s=1

λscs
(
Φ(h,θ),f(h,Φ(h,θ))

)]
(20)

where δk is the primal step-size, and the last equation is due to the linearity of the expectation.

(2) Dual step. Given the updated θk+1 from step (1), the dual variables λ is updated as

λk+1
s =

[
λks−ηkEh

[
cs
(
Φ(h,θk+1), f(h,Φ(h,θk+1))

)]]
+

(21)

for all s = 1,..., S, where ηk is the dual step-size.

The PDDL algorithm learns the optimal primal and dual variables θ∗ and λ∗ by recursively

repeating primal and dual steps. The primal-dual method used in the parameterized problem

features a closed form update in (20), in contrast to the computationally expensive inner max-

imization required in (12) of the SDG algorithm used in the unparameterized problem. Even

still, direct evaluation of the primal update in (20) requires the knowledge of system models to

compute the expected gradients, generally not available in practice. However, unlike the SDG

algorithm, the PPDL algorithm is capable of leveraging the so-called policy gradient method to

develop a completely model-free implementation.

C. Model-Free Policy Gradient

Policy gradient has been developed as a practical gradient estimation method in reinforcement

learning because it avoids explicit modeling of the objective function f(·) and the constraint
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Algorithm 2 Primal-Dual Deep Learning Algorithm
1: Input: Initial primal and dual variables θ0,λ0

2: for k = 0, 1, 2, . . . do {main loop}
3: Draw CSI samples {hτ}Tτ=1, and get corresponding allocated resources {rτ}Tτ=1 according

to DNN outputs {Φ(hτ ,θ
k)}Tτ=1 and policy distributions {πhτ ,θk(r)}Tτ=1

4: Obtain observations of the objective function {f(hτ , rτ )}Tτ=1 at current samples {hτ}Tτ=1

5: Compute the policy gradient ∇̃θL(θk,λk) by (24)
6: Update the primal variables θk+1 = θk + δk∇̃θL(θk,λk) [cf. (20)]
7: Update the dual variables λk+1=

[
λk−ηkT

∑T
τ=1cs

(
Φ(hτ ,θ

k+1), f(hτ ,Φ(hτ ,θ
k+1))
)]]

+
[cf. (21)]

8: end for

functions cs(·). It exploits a likelihood ratio property to compute the gradient for policy functions

taking the form of Eh[f(h,Φ(h,θ))], where f(·) is unknown. Put simply, it provides a stochastic

and model-free approximation for ∇θEh[f(h,Φ(h,θ))] [46].

In particular, we consider the policy parametrization Φ(h,θ) as stochastic realizations drawn

from a distribution with the delta density function πh,θ(r) = δ(r−Φ(h,θ)). We can then rewrite

the Jacobian of policy function as

∇θEh[f(h,Φ(h,θ))] = Eh,r[f(h, r)∇θ log πh,θ(r)] (22)

where r is a random realization drawn from the distribution πh,θ(r). We now translate the

computation of∇θEh[f(h,Φ(h,θ))] to a function evaluation f(h, r) multiplied with the gradient

of the density function ∇θ log πh,θ(r). However, computing ∇θ log πh,θ(r) for a delta density

function still requires the knowledge of f(·). We further address this issue by approximating

the delta density function with a known density function centered around Φ(h,θ), such as the

Gaussian distribution, the Binomial distribution, etc. We can then estimate the gradient of policy

function ∇θEh[f(h,Φ(h,θ))] by using (22), which does not require the function model f(·)

but rather the function value f(h, r) at a sampled channel state h and the distribution πh,θ(r).

To estimate the expectation Eh,r[·], we observe T samples of the CSI and take the average as

∇̃θEh[f(h,Φ(h,θ))]=
1

T

T∑
τ=1

f(hτ , rτ )∇θ log πhτ ,θ(rτ ) (23)
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where hτ is a sampled CSI and rτ is a realization drawn from the distribution πhτ ,θ(r). With

the use of (23), we can compute the gradient of policy function in (20) as

∇̃θL(θ, λ) =
1

T

T∑
τ=1

{[
f(hτ ,rτ )−

S∑
s=1

λscs
(
rτ ,f(hτ ,rτ )

]
∇θlog πhτ ,θ(rτ )

}
. (24)

We stress the model-free aspect of computing the gradient in (24). That is, we need only

observe the values f(hτ , rτ ) and cs(rτ , f(hτ , rτ )) as experienced in the FSO system under

the instantaneous observed states hτ and rτ . This is considered model-free because it does

not require an explicit mathematical model of f(·) and cs(·) or the CSI distribution model,

as typically required to compute analytic gradients. In terms of the dual step, by estimating

the expectation with the average of T samples, it can also be computed with only observed

values cs(rτ , f(hτ , rτ )). By replacing∇θL(θk, λk) with ∇̃θL(θk, λk) in (20), the resulting PDDL

algorithm is model-free and summarized in Algorithm 2.

The PDDL algorithm learns the optimal resource allocation by updating the primal and dual

variables without requiring any explicit knowledge of the objective function, the constraint

functions or the CSI distribution, but only their observed values. Therefore, we can perform

algorithm given any generic FSO systems and required constraints.

Remark 1. The learning process of the PDDL algorithm outlined in Algorithm 2 may take a

number of iterations to update the DNN parameters before convergence. We stress, however,

that the learning process is completed offline before the real-time implementation and the total

training time thus does not matter. At runtime, the execution of the learned DNN Φ(·,θ∗) on

the instantaneous channel state information h requires little computational complexity, yielding

an efficient implementation as validated in numerical experiments.

V. NUMERICAL EXPERIMENTS

In this section, we corroborate theory by numerically analyzing the performance of the SDG

and PDDL algorithms for a large set of resource allocation problems in FSO communications. To

implement the algorithms, we consider a batch-size of T = 64 samples. The ADAM optimizer

is used for the primal update and the exponentially decaying step-size is used for the dual
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update. In the PDDL algorithm, we address the feasibility condition r(h) ∈ R or θ ∈ Θ by

selecting suitable policy distributions πh,θ, as detailed in specific applications. Also note that

though the PDDL algorithm is model-free, we make system observations (objective and constraint

function observations) in numerical simulation using a given model; however, we do not assume

knowledge of this model to implement the algorithm, only to generate samples to be observed.

Channel state information. We consider FSO channel effects comprising two components:

the attenuation ha and the turbulence ht. The attenuation ha represents the path loss induced

by weather conditions as ha = AtAre
−αd/(d2λ2) with α the attenuation coefficient depending

on weather visibility, d the transmission distance, λ the wavelength, At and Ar the aperture

areas of the transmitter and the receiver. The turbulence ht is modeled as the well-known log-

normal distribution, which is commonly used under weak-to-moderate turbulence. Without loss

of generality, other distributions (e.g., Gamma-Gamma distribution) are applicable based on

turbulence conditions. We then characterize the FSO channel as y = hahtx + n with x the

transmitted signal, y the received signal and n the additive Gaussian noise.

A. Power Adaptation

We first consider the power adaptation in the RoFSO system—see Section II-A. The goal is to

allocate powers to orthogonal optical carriers that maximize the weighted sum-capacity within

total and peak power constraints

P := max
r(h)

N∑
i=1

ωiEh [Ci(h, r(h))] , (25)

s. t. Eh

[ N∑
i=1

pi(h)
]
− Pt ≤ 0, R= [0, Ps]

N

with Ci(h, r(h)) the capacity of i-th wavelength channel [cf. (2)], r(h) = [p1(h), . . . , pN(h)]>

the allocated powers, Pt and Ps the total and peak power limitations. The problem is challenging

due to the complicated non-convex objective and constraints.

The priority weights ω are drawn randomly in [0, 1] and system parameters are set as: Pt =

1.5W ; Ps = 0.3W ; mp = 5; OMI = 15%; r = 0.75; RIN = −140dB/Hz; T = 300K;

transmitter aperture diameter Dtx = 0.015m; receiver aperture diameter Drx = 0.05m and
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Figure 3. Performance of the SDG, the PDDL and the baseline policies for power adaptation in the 10 wavelength
multiplexing RoFSO system. (a) The objective value. (b) The constraint value. (c) The dual variable value.
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Figure 4. Performance of the SDG, the PDDL and the baseline policies for power adaptation in different RoFSO
system configurations. (a) 20 wavelength multiplexing with power limitations Pt = 3W,Ps = 0.3W . (b) 10
wavelength multiplexing with power limitations Pt = 3W,Ps = 0.6W . (c) Hazy and light foggy weather conditions.

d = 1km. We consider three baseline policies for comparison: (i) the RoFSO water-filling

algorithm (ii) the average power allocation and (iii) the random power allocation. The first is the

modified (improved) water-filling algorithm for the RoFSO system depending on system models

to solve KKT conditions [16], while the second and the third are model-free. For the PDDL

algorithm, we consider the policy distribution πh,θ as a truncated Gaussian distribution to satisfy

the feasibility condition r(h) ∈ R = [0, Ps]
N , i.e., the truncated Gaussian distribution has fixed

support on [0, Ps]. Since there is no coupling or interference between wavelength channels, we

construct N independent DNNs serving for N channels. The input of each DNN is the CSI on

its associated channel, and the output Φ(h,θ) ∈ R2 is a set of mean and standard deviation

that specify the truncated Gaussian distribution. The DNN is built with two hidden layers, each

containing 20 and 10 units respectively, and the nonlinearity is the ReLU σ(·) = [·]+.

Fig. 3 shows results of a relatively small-scale experiment with N = 10 wavelength channels.
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Table I: Implementation time required for the SDG, the PDDL and the water-filling algorithms
in three cases. (a) 10 wavelength multiplexing with Pt = 1.5W, Ps = 0.3W. (b) 10 wavelength
multiplexing with Pt=3W, Ps=0.6W. (c) 20 wavelength multiplexing with Pt=3W, Ps=0.3W.

Case (a) Case (b) Case (c)
The SDG 2.81 · 10−3s 3.91 · 10−3s 7.19 · 10−3s
The PDDL 1.56 · 10−5s 1.52 · 10−5s 1.59 · 10−5s
The RoFSO water-filling 1.65s 1.71s 3.31s

From Fig. 3a, we see that the SDG and the PDDL converge as the iteration increases. The SDG

solves the problem exactly and thus exhibits the best performance than baseline policies. The

PDDL outperforms significantly the other model-free policies and achieves close performance

to that of the model-based SDG and water-filling algorithms, indicating its near-optimal perfor-

mance without model knowledge. Fig. 3b shows that the constraint value converges to zero with

the increase of iteration. This confirms the feasibility of solutions obtained by our algorithms.

In Fig. 3c, we observe that the dual variable learned by the PDDL converges closely to that of

the SDG, with a small difference as predicted by the near-universality of DNNs.

In Fig. 4, we run experiments under different system configurations; namely, different number

of wavelength channels, different power budgets, and different weather conditions, to show the

algorithm adaptability to changing scenarios. Fig. 4a plots the objective in the RoFSO system

with N = 20 wavelength multiplexing, Fig. 4b shows that with larger power budgets Pt = 3W

and Ps = 0.6W , and Fig. 4c compares the hazy (4.5dB/km path loss exponent) and light foggy

(11.5dB/km path loss exponent) weather conditions. Similar results apply here, where the SDG

outperforms baseline policies and the PDDL achieves near-optimal performance in a model-free

manner. We also observe that performance improvements of the SDG and the PDDL compared

to the model-free baseline policies become more visible in larger systems (Fig. 4a) and worse

weather conditions (Fig. 4c), and the PDDL converges roughly to the same value as the SDG

with larger power budgets (Fig. 4b). The latter is because the increased budgets create more space

for the PDDL to manipulate powers, such that the learning ability of DNNs is fully activated.

Besides performance, the implementation time is of utmost importance for cooperative trans-

missions that allocate resources based on instantaneous CSI. Table I compares the implementation
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Figure 5. Performance of the SG, the PDL and the baseline policies in relay-assisted FSO networks. (a) The 2-hop
FSO network with 5 parallel relays per hop. (b) The 2-hop FSO network with 10 parallel relays per hop. (c) The
3-hop FSO network with 5 parallel relays per hop. (d) Hazy and light foggy weather conditions.

time of the SDG, the PDDL and the water-filling algorithms for processing an instantiation of

CSI. We see that the PDDL requires far less time than the other algorithms but achieves compara-

ble performance. This is because the computation of the DNN contains simply linear operations

with pointwise nonlinearities, whereas the SDG requires some more computation expense for

solving the inner maximization in (12). The water-filling algorithm is particularly computationally

expensive, requiring substantial time to solve the KKT conditions of the complicated objective

with power constraints. The time saved by the PDDL and the SDG increases as the system

becomes larger, highlighting a further advantage of our algorithms.

B. Relay Selection

We then consider the relay selection in relay-assisted FSO networks—see Section II-B. The

goal is to select the appropriate relay at each hop to maximize the channel capacity

P := max
r(h)

Eh

[ M∑
jN=1

· · ·
M∑
j1=1

(
N∏
i=1

αiji(h)

)
Cj1...jN (h)

]
, (26)

s. t. R=
{
{0, 1}N×M |

M∑
ji=1

αiji(h)≤1, for all i=1, ...,N
}
.

where Cj1...jN (h) is the channel capacity of the relaying link [cf. (27)], and r(h) = [α1(h), . . . ,αN(h)]> ∈

{0, 1}N×M are selected relays. Note that there is no stochastic constraint in problem (26), i.e.,

there is no constraint taking the form of Eh

[
cs
(
r(h), f(h, r(h))

)]
≤ 0, in which case the dual

update is not required. The SDG algorithm reduces to the Stochastic Gradient (SG) algorithm

and the PDDL algorithm reduces to the Primal Deep Learning (PDL) algorithm, respectively.
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Table II: Implementation time required for the SG, the PDL and the greedy relay selection in
three cases. (a) 2-hop FSO network with 5 parallel relays per hop. (b) 2-hop FSO network with
10 parallel relays per hop. (c) 3-hop FSO network with 5 parallel relays per hop.

Case (a) Case (b) Case (c)
The SG 1.40 · 10−4s 5.77 · 10−4s 9.81 · 10−4s
The PDL 1.55 · 10−5s 3.09 · 10−5s 3.11 · 10−5s
The greedy 1.49 · 10−5s 1.56 · 10−5s 1.55 · 10−5s

The system parameters are set as B = 5 × 108Hz, Tf = 10−8s, ε = 1, P = 0.3W and

R = 0.75A/W . We consider two baseline policies for performance comparison: (i) the greedy

policy that selects the relay with lowest CSI at each hop and (ii) the random relay selection,

where both are model-free. For the PDL algorithm, we select the policy distribution πh,θ as

the categorical distribution since the allocated resources are binary variables r(h) ∈ R. The

categorical distribution describes a random variable that takes on one of M possible categories.

We construct a single two-layered DNN of 200 and 100 hidden units and the nonlinearity is the

ReLU. Channel conditions over the network h are given as inputs to the DNN, which outputs

Φ(h,θ) ∈ RNM that specify the selected probabilities of each relay (category) at each hop.

Fig. 5a exhibits the performance of the SG, the PDL and two baseline policies in a 2-hop

network with N = 5 parallel relays per hop. We see that both the SG and the PDL converge

and outperform the baseline policies. The SG performs best on the premise that system models

are available at hand. The PDL follows closely with a similar objective value, which is obtained

without explicit model information. The constraints of relay selection are automatically satisfied

by using the categorical distribution, confirming the feasibility of obtained solutions. Additional

experiments in alternative scenarios are performed, i.e., a 2-hop network with N = 10 relays

per hop in Fig. 5b, a 3-hop network with N = 5 relays per hop in Fig. 5c, and the hazy and

light foggy weather conditions in Fig. 5d. We observe similar results indicating the adaptivity of

both algorithms to larger FSO networks and different weather conditions. The PDL gets slightly

degraded in Fig. 5b and 5c because the problem becomes more difficult as we enlarge the system

with more relays or more hops, while the DNN remains same with unchanged representational

power.
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Table II shows the implementation time of the SG, the PDL and the greedy algorithms.

Though the SG exhibits the best performance, its implementation takes the most time. The PDL

achieves the close performance to the SG but only requires a comparable time as the greedy

policy, achieving a favorable balance between these two factors.

C. Joint Power and Relay Allocation

We now consider the joint power and relay allocation in two applications, which are more

complicated but also of more interests in practice.

Relay-assisted multichannel FSO network. For the first experiment, we consider the relay-

assisted multichannel FSO network where the system transmits signals with L orthogonal optical

carriers through N intermediate hops [40]. In particular, the transmitter modulates signals onto

multiple optical carriers and sends them simultaneously to the selected relay. The latter aggregates

received signals, modulates orthogonal carriers, and transmits to the selected relay at next hop

until the receiver. We assume there is no crosstalk between orthogonal carriers and each hop

contains M parallel relays for selection. Based on the CSI, different relays are selected at different

hops and different powers are assigned to different carriers at the transmitter and selected relays

to maximize the total channel capacity. Let h be the CSI between the transmitter, relays and the

receiver, and r(h) = {pij(h), αij(h)}i=0,...,N,j=1,...,M the allocated resources including assigned

powers and selected relays. In particular, pij(h) = [p1
ij(h), . . . , pLij(h)]> ∈ RL are powers of L

optical carriers at j-th relay of i-th hop where i = 0, j = 1 and i = N + 1, j = 1 represent the

transmitter and the receiver, and αij ∈ {0, 1} indicates whether j-th relay is selected at i-th hop.

The channel capacity of `-th orthogonal channel over a specific selected relaying link is

C`
j1...jN

(h) =
TfB

ε
log
(
1+
( N∏
i=0

(
1 +

1

p`iji(h)h`jiji+1

R
e∆f

)
− 1
)−1)

(27)

where we assume ji-th relay is selected at i-th hop and h`jiji+1
is the CSI of `-th optical carrier

between ji-th relay at i-th hop and ji+1-th relay at (i+1)-th hop. Since there is single transmitter

and single receiver, we have j0 = jN+1 = 1 by default. There are three types of constraints: the

total power limitation Pt at the transmitter and selected relays, the peak power limitation Ps for

DRAFT April 20, 2021



25

0 0.5 1 1.5 2 2.5 3

104

110

115

120

125

130

SDG algorithm
PDDL algorithm
Random relay with equal power
Random relay with random power

(a)

0 5000 10000 15000 20000 25000 30000
-0.05

0

0.05

0.1

0.15

0.2

0.25
Transmitter total power constraint
Relay total power constraint

(b)

0 5000 10000 15000 20000 25000 30000
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Transmitter total power constraint
Relay total power constraint

(c)

SDG algorithm
PDDL algorithm
Random relay with equal power
Random relay with random power

(d)

Figure 6. Performance of the SDG, the PDDL and the baseline policies for joint power and relay allocation in the
relay-assisted multichannel FSO network. (a) The objective value. (b) The constraint values for the SDG. (c) The
constraint values for the PDDL. (d) Hazy and light foggy weather conditions.

each carrier, and that only one relay is selected at each hop. The optimization problem is

P := max
r(h)

Eh

[ M∑
jN=1

· · ·
M∑
j1=1

( N∏
i=1

αiji(h)
) L∑
`=1

ω`C
`
j1...jN

(h)
]
, (28)

s. t.Eh

[ L∑
`=1

p`iji(h)
]
−Pt≤0, i=1,. . .,N, ji=1,. . .,M,

R=
{
[0,Ps]

(1+N×M)×L×{0, 1}N×M |
M∑
ji=1

αiji(h) ≤1, i=1,...,N
}

where ω = [ω1, . . . , ωL]> represent priorities of different optical carriers. This challenging

problem can be considered as the extension of the problem in Section II-B to the scenario

with orthogonal optical carriers.

We assume a 1-hop network with M = 5 parallel relays per hop and L = 5 orthogonal optical

carriers. The priority weights ω are drawn randomly in [0, 1] and system parameters are set as:

B = 5× 108Hz, Tf = 10−8s, ε = 1, Pt = 1.5W , Ps = 0.6W and R = 0.75A/W . We consider

two model-free baseline policies: (i) the random relay selection with equal power allocation and

(ii) the random relay selection with random power allocation1. For the PDDL algorithm, we

consider the truncated Gaussian distribution for allocated powers and the categorical distribution

for selected relays. The DNN is constructed as a two-layered architecture of 200 and 100 hidden

1The objective is more complicated and the allocated resources include both continuous and binary variables, such that model-
based algorithms that solve the KKT conditions (as the water-filling algorithm in Section V-A) requires more careful relaxations
and much more computation. As we have shown the theoretical (Section III) and numerical (Section V-A and V-B) optimality
of the SDG, we focus on verifying performance of our algorithms in this scenario compared to two low-complexity model-free
baseline policies.
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Figure 7. (a) The data congestion constraint values of the random AN selection with equal power allocation. (b)
The objective values of the SDG, the PDDL and the baseline policies for joint power and relay allocation in the
FSO fronthaul network. (c) Hazy and light foggy weather conditions.

units with the ReLU nonlinearity. The CSI h are fed as inputs to the DNN, which outputs

parameters that specify policy distributions πh,θ.

Fig. 6 plots the objective and constraints of the SDG, the PDDL and two baseline policies.

The performance of the SDG and the PDDL is superior to that of baseline policies, and the

performance improvements get emphasized compared to either single power adaptation in Section

V-A or single relay selection in Section V-B. This is because advantages of our algorithms get

compounded in this joint problem. The PDDL obtains close performance to the SDG but does

not require any system model for implementation. From Fig. 6b and 6c, we see that constraint

values converge to zero for both the SDG and the PDDL, confirming the solution feasibility.

Fig. 6d shows that both algorithms apply well to changing weather conditions.

FSO fronthaul network. The second experiment considers FSO fronthaul networks—see

Section II-C. We consider the large-scale fronthaul network divided into multiple small-scale

fronthaul clusters that perform resource allocation independently. In a fronthaul cluster, the goal

is to allocate powers to optical carriers and select the optimal AN at each RRH that maximize

the sum-capacity. The optimization problem is formulated by the objective (7) and constraints

(8). Note that the data congestion constraints (8c) further complicate the problem, making it

extremely challenging to solve in practice.

We consider a FSO fronthaul cluster with N = 5 RRHs, M = 2 ANs, one BBU and

L = 5 orthogonal carriers. RRHs and ANs are distributed randomly at locations in the squares

[−5km, 5km]2 and [−1km, 1km]2, respectively. The system parameters are set as: B = 109Hz,
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Figure 8. (a) The data congestion constraints of the SDG (b) The total power constraint of the SDG at an example
RRH. (c) The data congestion constraints of the PDDL. (d) The total power constraint of the PDDL at an example
RRH.

Table III: Implementation time required for the SDG and the PDDL for joint power and relay
allocation. (a) Relay-assisted multichannel FSO network. (b) FSO fronthaul network.

Case (a) Case (b)
The SDG 8.28 · 10−3s 2.83 · 10−2s
The PDDL 3.28 · 10−5s 9.34 · 10−5s

Tf = 10−9s, ε = 1, Pt = 1.5W , Ps = 0.6W , R = 0.75A/W and Ct = 50. For the

PDDL algorithm, the truncated Gaussian distribution and the categorical distribution are used

for allocated powers and selected ANs. As the problem becomes more complicated, we consider

a denser DNN with 3 layers, each of which contains 400, 200 and 100 hidden units, and the

ReLU nonlinearity is used. The inputs are channel conditions h over the network and the outputs

are parameters specifying policy distributions. We point out that, due to the data congestion

constraints (8c), there is no feasible heuristic baseline policy for comparison in this problem. To

show this more precisely, we test the random relay selection with equal power allocation and plot

data congestion constraint values in Fig. 7a. We see that constraints are easily broken due to the

fact that, if each RRH selects a AN randomly, it is possible that there exist times when all RRHs

transmit to the same AN violating the data congestion constraints. We can nonetheless validate

the performance of the proposed SDG and PDDL algorithms and demonstrate their feasibility.

We plot in Fig. 7b the performance achieved by the SDG and the PDDL algorithms. Since both

baseline policies are not feasible, we consider them as benchmark values only for reference. As

seen in the prior simulations, the SDG exhibits the best performance using model knowledge,

while the PDDL performs comparably to the SDG while forgoing any models. Fig. 8 plots
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constraint values for both algorithms to confirm feasibility of the learned solutions, where Fig.

8b and 8d show total power limitations, while Fig. 8a and 8c illustrate data congestion constraints.

To conclude our numerical analysis, we provide in Table III the implementation time of the

SDG and the PDDL algorithms for two joint power and relay allocation problems. We see

that besides requiring system model information, the SDG achieves better performance at the

expense of more implementation time. The latter gets emphasized when the FSO system or the

resource allocation problem becomes more complicated. The implementation time of the PDDL

is much lower but increases slightly from single power adaptation to the joint power and relay

allocation, which is because the applied DNN gets deeper and denser. However, its computation

time is independent on the FSO system and the optimization problem, resulting in an efficient

implementation. We further note that a denser DNN learns better performance while taking more

time for implementation, indicating a tradeoff between these two factors.

VI. CONCLUSIONS

In this paper, we consider the general resource allocation in free space optical communica-

tions. We formulate the problem under the constrained stochastic optimization framework. Such

problems are typically challenging due to the non-convex nature, multiple constraints and lack

of model information. We first proposed the model-based Stochastic Dual Gradient algorithm,

which solves the problem exactly by exploiting the strong duality. However, it heavily relies on

system models that may not be available in practice. The model-free Primal-Dual Deep Learning

algorithm was developed to overcome this issue. It parameterizes the resource allocation policy

with DNNs and learns optimal parameters by updating primal and dual variables simultaneously.

Policy gradient method is applied to the primal update in order to estimate necessary gradient

information without using the knowledge of system and channel models. The proposed algorithms

are computationally efficient and transferable to any resource allocation problem under the

framework, which were validated in numerous numerical experiments.
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