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Low-Complexity Voronoi Shaping
for the Gaussian Channel

Shen Li, Ali Mirani, Magnus Karlsson, Senior Member, IEEE, Fellow, OSA, and Erik Agrell, Fellow, IEEE

Abstract—Voronoi constellations (VCs) are finite sets of vectors
of a coding lattice enclosed by the translated Voronoi region of
a shaping lattice, which is a sublattice of the coding lattice. In
conventional VCs, the shaping lattice is a scaled-up version of
the coding lattice. In this paper, we design low-complexity VCs
with a cubic coding lattice of up to 32 dimensions, in which
pseudo-Gray labeling is applied to minimize the bit error rate.
The designed VCs have considerable shaping gains of up to 1.03
dB and finer choices of spectral efficiencies in practice compared
with conventional VCs. A mutual information estimation method
and a log-likelihood approximation method based on importance
sampling for very large constellations are proposed and applied
to the designed VCs. With error-control coding, the proposed
VCs can have higher information rates than the conventional
scaled VCs because of their inherently good pseudo-Gray labeling
feature, with a lower decoding complexity.

Index Terms—Geometric shaping, information rates, lattices,
multidimensional modulation formats, Voronoi constellation.

I. INTRODUCTION

POWER efficiency is important for higher-order modula-
tion formats in communication systems. For an additive

white Gaussian noise (AWGN) channel with an average power
constraint, signal shaping is able to reduce the well-known
asymptotic 1.53 dB gap [1] between the channel capacity
and the achievable rates with a uniform signal (such as the
most widely used quadrature amplitude modulation (QAM)),
by adjusting the distribution of the transmitted signal alphabet
to the capacity-achieving distribution, which is the Gaussian
distribution. There are two flavors of shaping, geometric shap-
ing by rearranging the positions of equally likely constellation
points [1], [2], and probabilistic shaping by changing the
distribution of a regular constellation [3], [4]. Much work has
been devoted to the design of Gaussian-like constellations with
feasible complexity in two [5]–[9] and higher dimensions [10]
for the AWGN channel.

The concept of Voronoi constellations (VCs) was first pro-
posed in 1983 by Conway and Sloane, as a finite set of points
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of a lattice enclosed by a translated scaled-up version of its
Voronoi region [11]. Very fast algorithms for mapping integers
to constellation points and vice versa were presented in [11],
[12]. In [13], [14], Mirani et al. designed multidimensional
scaled VCs with up to 1028 constellation points utilizing this
concept for the AWGN channel and nonlinear fiber channel,
and showed high shaping gains and coding gains, and signif-
icant bit error rate (BER) and symbol error rate (SER) gains
over QAM in uncoded system as well.

Forney generalized this concept in 1989 to VCs based on
an arbitrary lattice partition Λ/Λs [15], where Λ is referred
to as the coding lattice and Λs the shaping lattice. They can
be different, as long as the shaping lattice is a sublattice of
the coding lattice. Forney presented encoding and decoding
algorithms for certain choices of the shaping lattice, such as
so-called mod-2 or mod-4 binary lattices.

Feng et al. presented a more general method to enumerate
the points in a VC based on an arbitrary lattice partition
[16], which is reviewed by Zamir in [17, Ch. 9], [18]. This
enumeration admits encoding and decoding algorithms as
fast as Conway and Sloane’s. An equally simple but less
general method called “rectangular encoding” was proposed
by Kurkoski in [19] for VCs whose shaping lattice and coding
lattice both have triangular generator matrices. This method is
applicable to a variety of coding lattices and shaping lattices.

Ferdinand et al. proposed a two-step VC construction
method called “systematic Voronoi shaping” in [20] based
on the concept of “systematic shaping” proposed by Sommer
et al. in [21], combining a high-dimensional coding lattice
defined by a lower-triangular parity check matrix and a lower-
dimensional shaping lattice, to achieve high coding gains and
high shaping gains. The SER performance was evaluated when
low-density lattice codes [22] are used as the coding lattice and
some common multidimensional lattices with low-complexity
quantization algorithms are used for the shaping lattice. For
the shaping step, algorithms to map the integers to points in
VCs with a cubic coding lattice and vice versa were explicitly
described in [23].

In our conference paper [24], we studied VCs with a cubic
coding lattice, for which we compared Feng’s, Ferdinand’s,
and Kurkoski’s encoding and decoding algorithms. To mini-
mize the BER, we applied pseudo-Gray labeling to these al-
gorithms, and evaluated the performance of the designed VCs
in terms of the Gray penalty [25], [26] and BER performance
for some common multidimensional shaping lattices both in
uncoded and coded systems. In our proposed scheme, coding
is completely separated from shaping and performed using
error-control coding, outside the Voronoi shaping.
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We study VCs with a cubic coding lattice for the following
reasons. First, the decoding algorithm is much simpler than for
VCs with rescaled coding and shaping lattices [11], [13], since
the search for the closest lattice point, which dominates the
decoding complexity for high-dimensional lattices, is simple
dimension-wise integer rounding for a cubic coding lattice.
Second, although the proposed VCs have no coding gain,
the shaping gain is still achievable, and the lack of coding
gain can be compensated by error-correction coding that is
usually performed anyway. After error-correction coding, the
proposed VCs can have better BER performance than the
conventional scaled VCs because of their inherently good
pseudo-Gray labeling feature. Third, for mapping integers to
bits, the proposed VCs allow for improved granularity in
spectral efficiencies. Fourth, the simple cubic coding lattice
makes the analysis of important metrics such as the mutual
information (MI) and the log-likelihood ratio (LLR) possible
for very large VCs, which is discussed in section V.

In this paper, we extend our work [24] on the VCs with a
cubic coding lattice. We propose a new method based on the
concept of importance sampling to estimate the MI for very
large constellations, and exemplify it for VCs. This has been
considered as a challenging issue for such large constellations
since the exact MI calculation requires enumerating all con-
stellation points. The MI of VCs is evaluated here for the first
time to our knowledge. While the MI assumes an ideal channel
code with an infinite blocklength, the realistic performance of
VCs in combination with a practical channel code of finite
blocklength, i.e., a low-density parity-check (LDPC) code, is
also presented. For mapping integers to bits, we apply a 45°
rotation and a

√
2 times scaling proposed by Forney in [27]

to the shaping lattice, thus making our designed VCs have
improved granularity in spectral efficiencies compared with
the conventional scaled VCs. We also investigate the trade-
off between shaping gain and decoding complexity in higher
dimensions.

Notation: Bold lowercase symbols denote row vectors and
bold uppercase symbols denote matrices or random vectors.
The elements of a vector u are denoted by ui, the rows of a
matrix P are denoted by pi, and the element at row i, column
j of a matrix P are denoted by Pij . The sets of integer, real,
complex, and natural numbers are denoted by Z, R, C, and N,
respectively. Rounding a vector to its nearest integer vector is
denoted by ⌊·⌉, in which ties are broken arbitrarily. The largest
integer not greater than a given real number is denoted by ⌊·⌋.

II. PRELIMINARIES

Given a set of n linearly independent basis vectors, a lattice
is the set of all linear combinations of these vectors with
integer coefficients. If the basis vectors are arranged row-wise
into a matrix G, then the lattice is

Λ ≜ {uG : u ∈ Zn}. (1)

Without loss of generality, we assume that the generator matrix
has dimension n×n.1 From the definition, any lattice includes
the all-zero vector 0. The generator matrix of a given lattice
is not unique. Two generator matrices G and G′ generate the
same lattice if and only if G′ = UG, where U is an integer
matrix with determinant ±1 [28, p. 10].

The closest lattice point quantizer QΛ(·) maps an arbitrary
vector x ∈ Rn to its closest lattice point in Λ

QΛ(x) = argmin
λ∈Λ

∥x− λ∥2. (2)

If an affine transformation function T (·) is applied to the
lattice Λ, e.g., a scaling, rotation, or/and a shift, then it follows
that

QT (Λ)(x) = T (QΛ(T
−1(x))). (3)

The fundamental Voronoi region of a lattice Λ is the set of
vectors in Euclidean space having the all-zero vector as its
closest lattice point, i.e.,

Ω(Λ) ≜ {x ∈ Rn : QΛ(x) = 0}. (4)

Given two n-dimensional lattices Λ and Λs, and an offset
vector a ∈ Rn, where Λs is a sublattice of Λ, i.e., Λs ⊂ Λ, a
VC in its general form defined by Forney [15] is

Γ ≜ (Λ− a) ∩ Ω(Λs). (5)

We assume that no points in Λ − a fall on the boundary
of Ω(Λs).2 The “fine” lattice Λ is called the coding lattice
as it determines the minimum Euclidean distance of the
constellation points, and the “coarse” lattice Λs is called the
shaping lattice as it determines the boundary of the VC. The
number of points in the VC is

M ≜ |Γ| = |detGs|
|detG|

, (6)

where Gs is a generator matrix of Λs. This relation can be
verified by recognizing |detG| and |detGs| as the volumes of
Ω(Λ) and Ω(Λs), respectively [28, p. 4]. The average symbol
energy is

Es =
1

M

∑
x∈Γ

∥x∥2. (7)

To compare the performance of different constellations, the
following relevant figures of merit were defined and widely
used in the literature.

1) The spectral efficiency [4], [10], [29] of a constellation
is defined as

β = 2 log2(M)/n [bits/symbol/dimension-pair]. (8)

2) The asymptotic power efficiency (APE) [30, Eq. (5.8)],
[31] is defined as

γ =
d2min log2(M)

4Es
, (9)

1The n basis vectors must have dimension at least n in order to be linearly
independent. If n basis vectors are given in more than n dimensions, then an
n-dimensional lattice, which is equivalent to the original lattice in Euclidean
geometry, can be defined by rotating (e.g., QR-decomposing) G.

2An arbitrarily small perturbation of the offset a in a random direction
prevents points from falling on the boundary with probability one.
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Algorithm 1 Kurkoski’s encoding [19]
Input: u. Output: x.
Preprocessing: Given the generator matrix Gs of the shaping
lattice Λs and the generator matrix of the cubic coding lattice
is G = In. Find an integer matrix S with determinant ±1
such that L = SGs is a lower-triangular matrix with positive
diagonal elements. Let ui ∈ {0, . . . , Lii−1} for i = 1, . . . , n.

1: Let c← u− a
2: Let z ← QΛs(c)
3: Let x← c− z

where dmin is the minimum Euclidean distance of the con-
stellation. Usually, the pulse amplitude modulation (PAM) is
chosen as the benchmark [4], [10], which has an APE of

γPAM =
3β

2(2β − 1)
. (10)

This also applies to the geometric extension of a PAM, i.e., an
n-dimensional cubic constellation constructed by the Cartesian
product of n equal one-dimensional PAM constellations.

3) The APE gain of a constellation over a cubic constellation
at the same spectral efficiencies is quantified as

g = 10 log10
γ

γPAM
[dB]. (11)

It can be divided into a coding gain gc obtained by packing
the constellation points more densely than the cubic lattice
used in PAM, and a shaping gain gs obtained by making the
boundary more spherical when compared to the cubic bound-
ary of PAM constellations [10], [29]. For the fundamental
Voronoi region of the lattice Λs, the shaping gain is defined
as gs(Λs) = 1/(12G(Ω(Λs))) [10], where G(Ω(Λs)) is the
normalized second moment of this region [32, Eq. (9)].

III. MAPPING INTEGERS TO VCS

Feng et al. proposed encoding and decoding algorithms,
i.e., mapping integers to constellation points and vice versa,
for arbitrary VCs in [16], which relies on the Smith normal
form [33, Ch. 15]. In [23], Ferdinand et al. proposed encoding
and decoding algorithms specifically for VCs with a cubic
coding lattice. Kurkoski proposed a “rectangular encoding”
method in [19], which is applicable to VCs with a shaping
lattice described by a triangular generator matrix and a cubic
coding lattice, whose generator matrix in (1) is the identity
matrix In. In this paper, we focus on VCs with a cubic
coding lattice. For commonly used multidimensional shaping
lattices, e.g., D4, E8, Λ16, and Λ24 [28, Ch. 4], Feng’s and
Ferdinand’s algorithms are all applicable. However, Kurkoski’s
algorithms generally provide better labelings of constellation
points, which will be explained in this section. A detailed
comparison between the three algorithms is available in an
earlier version of this paper [34].

Algorithm 1 and 2 summarize Kurkoski’s encoding and
decoding for the special case of the lattice partition Zn/Λs. In
encoding, a lower-triangular generator matrix L for Λs is first
computed (the algorithms are applicable only if L exists), then
a vector of integers is formed such that ui ∈ {0, . . . , Lii−1}.

Algorithm 2 Kurkoski’s decoding [19]
Input: y ∈ Rn, which is a noisy version of x. Output: u.

1: Let u← ⌊y + a⌉
2: for i = n, n− 1, . . . , 1 do
3: vi ← ⌊ui/Lii⌋
4: u← u− vili
5: end for

Fig. 1: Example: Kurkoski’s mapping rule for a two-dimensional VC.
The vectors u are highlighted as the blue filled points, which are
encoded into points in the shifted Voronoi region a + Ω(Λs) (the
light blue region) in encoding.

Every point x ∈ Γ can be uniquely enumerated by u such
that

x = u+ vGs − a, (12)

where ui ∈ {0, . . . , Lii − 1} for i = 1, . . . , n, v ∈ Zn and
vGs = −QΛs

(u − a). There are M = detL =
∏

i Lii

possible values of u, and each of them occurs exactly once
among all points x ∈ Γ. The closest lattice point quantizer
QΛs(u − a) is well-studied for many common lattices [28,
Ch. 20], [12], [35], and other lattices can be handled by general
algorithms [36], [37]. In decoding, x and a are given, v can
be found sequentially and u is decoded, beginning from the
highest dimension, thanks to the triangular structure of L.

For bit mapping, when Gray coding is applied to label
the integer coordinates of u, i.e., converting ui to the binary
reflected Gray code for i = 1, . . . , n, each pair of nearest u
in terms of Euclidean distance differs by exactly one bit. In
Kurkoski’s algorithms, u is directly mapped to constellation
points, thus most of the constellation points have Gray neigh-
bors, which we call pseudo-Gray labeling. With this pseudo-
Gray labeling for VCs, Kurkoski’s algorithms can achieve a
smaller Gray penalty and better BER performance [24] than
Feng’s and Ferdinand’s algorithms. Throughout this paper, we
adopt Kurkoski’s encoding and decoding and this pseudo-Gray
labeling scheme.

Example: We consider a two-dimensional VC for which the
generator matrices of Λs and Λ are

Gs =

(
6 0
4 4

)
, G =

(
1 0
0 1

)
, (13)

and the offset vector a = (−1/2, 0). In Kurkoski’s algorithms,
L = Gs and u are enumerated as u1 ∈ {0, . . . , 5} and
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TABLE I: Asymptotic shaping gains and normalized second moments
of Voronoi regions of some lattices.

Λs D4 E8 Λ16 Λ24 L32

G(Ω(Λs)) 0.0766 0.0717 0.0683 0.0658 0.0671

gs(Λs) [dB] 0.366 0.653 0.864 1.026 0.935

u2 ∈ {0, . . . , 3}. Fig. 1 illustrates Kurkoski’s mapping rule
for this example. The enumeration of points in a rectangular
shape help achieve a lower Gray penalty and a lower BER
than Feng’s and Ferdinand’s algorithms [24].

IV. DESIGN OF VCS

A VC based on the lattice partition Λ/Λs is defined by (5).
In this section, we discuss the choice of parameters of VCs
based on the lattice partition Zn/Λs.

To minimize the average symbol energy defined by (7),
the offset vector a is optimized using an iterative algorithm
given in [11]. This algorithm may converge to a suboptimal
vector for 8 and higher dimensions, and cannot be exactly
calculated when M is very large. However, as M increases,
the performance difference between VCs generated using the
optimal a and a random a ∈ Ω(Λ) decreases, and can be
neglected for large VCs, see [13, Fig. 3]. In this paper, for
a small or moderate-size VC (M ≤ 217 ≈ 1.3 × 105), a
was optimized using the method in [11], whereas for very
large VCs where we can only approximate the average symbol
energy by Monte Carlo simulations, a random a uniformly
distributed in Ω(Λ) was selected.

The shaping lattice Λs should have a high shaping gain and
low-complexity quantization algorithm. The most commonly-
used multidimensional shaping lattices: the 4-dimensional
checkerboard lattice D4, 8-dimensional lattice E8, 16-
dimensional Barnes–Wall lattice Λ16, the 24-dimensional
Leech lattice Λ24 [28, Ch. 4], and a suboptimal 32-dimensional
lattice L32 are considered in this paper. The 32-dimensional
lattice L32 is constructed by applying Construction B [28,
Ch. 5] to the (32, 6, 16) first order Reed–Muller code. This
lattice has a sublattice 2D32 of index 64, which is beneficial,
since the closest lattice point quantizer dominates the com-
plexity for the encoding and decoding, especially for high-
dimensional lattices, and the encoding and decoding complex-
ity is proportional to the index [35]. Compared with Λ24 which
has a sublattice 4D24 of index 8192 [35], the complexity is
reduced by a factor of 128, while the shaping gain is only
0.091 dB less. Thus, L32 can be considered as a good trade-
off between the shaping gain and decoding complexity. Table I
shows the normalized second moment G(Ω(Λs)) and shaping
gains gs(Λs) for these considered shaping lattices.

A VC based on the lattice partition Λ/Λs with
M = |detGs|/|detG| constellation points can be scaled by
any integer, i.e., Λ/mΛs, m ∈ Z. The new VC after scaling
has a spectral efficiency of

β =
2 log2(|detmnGs|/|detG|)

n

=
2 log2(M)

n
+ 2 log2(m). (14)

A finer-grained scaling can be realized by rotating the
shaping lattice Λs and then scaling it by a factor of

√
2

times. The rotation and scaling can be done for an even n
by multiplying the generator matrix Gs from the right side
with an n-by-n matrix [15], [27]

R =



1 1 0 0 0 · · · 0 0
−1 1 0 0 0 · · · 0 0
0 0 1 1 0 · · · 0 0
0 0 −1 1 0 · · · 0 0

0 0 0 0
. . .

...
...

...
...

...
...

. . . 0 0
0 0 0 0 · · · 0 1 1
0 0 0 0 · · · 0 −1 1


, (15)

which operates on every dimension-pair of Λs, with a determi-
nant of 2n/2. The generator matrix of the new shaping lattice
mΛsR (which remains a sublattice of Λ) is mGsR, and the
closest point quantizer becomes

QmΛsR(x) = mQΛs
(
1

m
xR−1)R (16)

by (3). The new VC based on the lattice partition Λ/mΛsR
has |detmnGsR|/|detG| points, resulting one additional
bit/symbol/dimension-pair of spectral efficiency

β =
2 log2(|detmnGsR|/|detG|)

n

=
2 log2(M)

n
+ 2 log2(m) + 1. (17)

In order to make bit mapping possible, both M and m must
be powers of 2. With m an arbitrary power of 2, Λ/mΛs

gives a resolution of 2 bits/symbol/dimension-pair according
to (14). However, Λ/mΛsR offers the intermediate spectral
efficiencies as in (17), which decreases the overall resolution
to 1 bit/symbol/dimension-pair. Also, the combination of dif-
ferent shaping and coding lattices can lead to a more granular
set of possible spectral efficiencies, which allows us to have
more flexibility in choosing data rates as needed. In Fig. 2, the
shaping gain gs as a function of β is presented for VCs with
a cubic coding lattice and the considered shaping lattices in
Table I. Larger markers show the spectral efficiencies for bit
mapping; smaller markers show the finer-grained granularity
of spectral efficiencies without considering bit mapping, where
m does not have to be a power of 2.

V. MI ESTIMATION AND LLR APPROXIMATION

MI indicates the maximum amount of information bits that
can be transmitted reliably over the underlying channel. It
assumes a perfect channel code with an infinite blocklength,
thus can be used as an upper bound of the performance of
coded modulation [38]. For very large VCs, the calculation
of MI is challenging, since it requires the coordinates of
all constellation points. In this section, we propose an MI
estimation method and an LLR approximation method for
very large constellations and apply these methods to VCs
with a cubic coding lattice. The MI of our designed VCs is
investigated, and their rate performance after LDPC decoding
are compared with conventional scaled VCs.
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Fig. 2: The APE gain g as a function of β for VCs with a cubic coding
lattice. The smaller markers on top of the lines represent the cases in
which the scaling factor is not a power of 2. The black dashed lines
are the asymptotic shaping gains gs(Λs) for these shaping lattices
stated in Table I.

A. MI estimation method for very large constellations

For a memoryless discrete channel, the MI between the
equally probable transmitted symbols X and the received
noisy symbols Y can be written as

I(X;Y ) ≜
1

M

M∑
i=1

∫
Cn

fY |X(y|xi) log
fY |X(y|xi)

fY (y)
dy,

(18)

where xi for i = 1, . . . ,M form the constellation X . By
applying Monte Carlo integration, the MI can be approximated
as

I(X;Y ) ≈ 1

Ns

Ns∑
i=1

∫
Cn

fY |X(y|xi) log
fY |X(y|xi)

fY (y)
dy

(19)

≈ 1

Ns

Ns∑
i=1

log
fY |X(yi|xi)

fY (yi)
, (20)

where xi for i = 1, 2, . . . , Ns are Ns symbols drawn uniformly
from X , and given a certain xi, yi is drawn from the
conditional distribution of the channel fY |X(yi|xi).

To numerically estimate (20), the key point is to calculate
the marginal distribution of y

fY (y) =
1

M

∑
x∈X

fY |X(y|x). (21)

The exact calculation of fY (y) using (21) requires storing
all M constellation points, which is infeasible when M is
very large. Furthermore, approximating fY (y) by standard
Monte-Carlo techniques is very inaccurate, because for most
realistic channel laws fY |X(y|x), only a tiny fraction of all
constellation points x contribute significantly to the sum in
(21).

To approximate (21), we propose a method based on im-
portance sampling, which is a weighted sampling method that
oversamples from the important region we are interested in,

thus making Monte Carlo feasible [39, Ch. 9]. This concept
has been used in the machine learning field to estimated the
MI between the original data and the learned representation
[40], but as far as we know never to estimate the MI of
a communication channel. The classic importance sampling
approach is to sample from a new importance distribution
that is proportional to the product of the distribution of the
integral variable and the integrand [39, Eq. (9.3)], to resemble
the true expectation. For example, to simulate (21) in our case,
the importance distribution of x ∈ X should be proportional
to (1/M)fY |X(y|x). For the MI estimation problem, we
refine this concept by using a step-wise sampling rule, in
which we only sample symbols from an important set I(y)
which contains points that have an important contribution to
fY (y), and no samples are sampled from the complementary
set X − I(y) since their contribution to fY (y) is negligible
compared with I(y). The important set I(y) is divided into
D disjoint subsets Id(y) for d = 1, . . . , D. The contribution
to fY (y) from each subset Id(y) can be either calculated
by enumerating every symbol in Id(y), or estimated by
performing a uniform Monte Carlo sampling in Id(y). Thus,
the sum in (21) can be approximated as

fY (y) ≈ 1

M

∑
x∈I(y)

fY |X(y|x) (22)

≈ 1

M

D∑
d=1

|Id(y)|
Kd

Kd∑
j=1

fY |X(y|xd,j), (23)

where xd,j for j = 1, . . . ,Kd are all points from Id(y) if
Kd = |Id(y)|, or Kd uniform random samples from Id(y) if
Kd < |Id(y)|. For accurate results, the sampling sets I(y) and
Id(y), but not necessarily their sizes Kd, should be chosen as
functions of y.

We propose (23) as a very general way to estimate fY (y)
and thereby the MI and related quantities. The proposed MI
estimation method is a special case of importance sampling.
Unlike the importance distribution in classical importance
sampling, which should be more “continuous”, our refined
step-wise sampling rule makes random generation of x easier.
As the number of the elements in I(y) increases, the estimated
distribution fY (y) in (22) should converge to the exact value.
As a special case, setting I(y) = X and D = 1 in (23)
yields the exact expression (21) if K1 = M and a standard
Monte Carlo estimate thereof if K1 < M . The same idea can
be applied to other structured constellations, or other similar
problems. The readers can derive their own estimation rules
from (23) for a specific channel and constellation.

B. MI estimation for the designed VCs

We consider an n-dimensional real AWGN channel, which
has the conditional distribution

fY |X(y|x) = 1

(2πσ2/n)n/2
exp (−∥y − x∥2

2σ2/n
), (24)

where σ2 is the total noise power. We define the signal-to-
noise ratio (SNR) as Es/σ

2.
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TABLE II: The number of points in each shell S(y, r) of the
Euclidean ball B(y, R) (n ≥ 4 in this table).

r2 0 1 2 3 4 . . .

|S(y, r)| 1 2n 22
(n
2

)
23

(n
3

)
24

(n
4

)
+ 2

(n
1

)
. . .

For estimating the MI of our VCs with a cubic coding
lattice, first, given a received noisy symbol y, we define a
Euclidean ball B(y, R) containing all n-dimensional points in
the translated cubic coding lattice having a Euclidean distance
within R from the nearest integer vector of y + a, i.e.,

B(y, R) ≜ {x : ∥x+ a− ⌊y + a⌉ ∥ ≤ R, x+ a ∈ Zn},
(25)

where the squared radius R2 ∈ N. The Euclidean ball B(y, R)
consists of R2+1 Euclidean “shells”, each of which contains
all n-dimensional points in the translated cubic coding lattice
having a Euclidean distance of r from ⌊y + a⌉, i.e.,

S(y, r) ≜ {x : ∥x+ a− ⌊y + a⌉∥ = r, x+ a ∈ Zn},
(26)

for r2 = 0, 1, . . . , R2. The number of points in each shell
S(y, r) of a Euclidean ball B(y, R) are listed in Table II.

The important set is defined as all points in B(y, R) that
belong to Γ at the same time, i.e.,

I(y, R) = B(y, R) ∩ Γ, (27)

which consists of D = R2 + 1 disjoint subsets
Id(y) for d = 1, . . . , D. Each subset Id(y) contains
all points in S(y,

√
d− 1) that also belong to Γ, i.e.,

Id(y) = S(y,
√
d− 1) ∩ Γ. The cubic coding lattice makes

it easy to enumerate all points in Id(y) or uniformly sample
points from Id(y).

How should Kd and D be chosen for accurate estimation?
Heuristically, we have found that Kd = min{|Id(y)|, 104}
works well for all d = 1, . . . , D, which means that the
contributions to (23) from small enough subsets are computed
exactly, whereas large subsets are sampled using 104 random
points. To determine D, we evaluate (23) for increasing values
of D until the relative increase is less than 0.5%. More
precisely, denoting the estimated fY (y) using (23) for a
certain D by f

(D)
Y (y), we choose the smallest integer D for

which

max

(
f
(D+1)
Y (y)− f

(D)
Y (y)

f
(D)
Y (y)

)
< 0.5%, (28)

where the maximum is taken over multiple random vectors y
and multiple Monte-Carlo realizations of (23). If a range of
SNRs is being considered, we usually apply the criterion (28)
to the lowest SNR, which intuitively needs the largest number
of subsets, and then use the obtained value of D throughout
the SNR range. Alternatively, (28) can be evaluated separately
for each SNR to save complexity. With these parameters, (23)
is able to estimate the exact fY (y) calculated by (21) for
VCs with up to M = 16777216 points for all SNRs. For
larger constellations where we have no benchmarks to compare
with, we conjecture that this method is still valid. After having

reliable estimated values of fY (y), the MI can be estimated
accurately by (20).

Example 1: We consider a moderate-size VC based on the
lattice partition Z4/16D4 with M = 131072 constellation
points. For better visualization, we show pf

(D)
Y (y) as a

function of D upon receiving a noisy symbol y in Fig. 3a,
where p = (2πσ2/n)n/2 is a constant for a given σ2. The
benchmark values pfY (y) are calculated using (21). As D
increases, the estimated values all converge to the exact values
for different SNRs in Fig. 3a.

(a) Example 1: Z4/16D4

(b) Example 2: Z8/8E8

Fig. 3: The estimated value pf
(D)
Y (y) as a function of D at different

SNRs for Example 1 and 2. The black dashed lines are the corre-
sponding benchmark values pfY (y). The number after the ‘/’ in (a)
is the corresponding |B(y,

√
D − 1)|. Solid lines without markers

are estimated with Kd = |Id(y)| for all subsets. The markers are
estimated with Kd = 104 uniform samples from Id(y) for subsets
with d > 8 and Kr = |Id(y)| for subsets with 1 ≤ d ≤ 8. The
convergence of all curves to the benchmark value shows the accuracy
of estimation.

Example 2: We consider a larger-size VC of the lattice
partition Z8/8E8 with M = 16777216 constellation points.
Table III lists the minimum required D found by (28) and
the corresponding number of symbols in B(y,

√
D − 1)) at

different SNRs, which shows that |B(y,
√
D − 1)| grows fast

as the SNR decreases. Fig. 3b shows the convergence of
pf

(D)
Y (y) to pfY (y) at medium SNR range. As before, the

benchmark values were computed using (21). We observe from
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TABLE III: The minimum required D and number of points in
B(y,

√
D − 1) for the convergence of f

(D)
Y (y) to fY (y) for the

VC of the lattice partition Z8/8E8 at different SNRs.

SNR 16 14 12 10 8 6

D 5 6 8 11 16 23

|B(y,
√
D − 1)| 1713 3729 12369 47921 231185 1025649

Fig. 3b that the chosen values of D in Table III are sufficient
to approach fY (y) correctly for these SNR values.

C. LLR approximation for very large constellations

We propose an LLR approximation method for very large
constellations and exemplify it for our designed VCs and the
scaled VCs.

For transmission of a constellation X through a given
channel with conditional distribution fY |X(y|x), upon re-
ceiving a noisy symbol y, the LLR of a certain bit bi, for
i = 1, 2, . . . , log2(|X |), is defined as

LLR(bi|y) ≜ log
Pr(bi = 0|y)
Pr(bi = 1|y)

= log

∑
x∈X (i,0) fY |X(y|x)∑
x∈X (i,1) fY |X(y|x)

, (29)

where X (i,0) and X (i,1) are the sets of constellation points
with 0 and 1 at position i, respectively. The exact LLR
calculated using the whole constellation is accurate but too
complex to compute, which can be approximated by only
considering the most likely constellation point with bi = 0
(or bi = 1), i.e.,

LLR(bi|y) ≈ log
maxx∈X (i,0) fY |X(y|x)
maxx∈X (i,1) fY |X(y|x)

. (30)

However, for very large constellations, searching for the most
likely constellation point with bi = 0 and bi = 1 from the
whole constellation is still infeasible.

We propose a similar technique as our MI estimation
method in V-A to further approximate the LLR. Instead of
searching points from X , we only search the closest point
from an important set I(y). Specifically, the LLR in (30) is
further approximated as

LLR(bi|y) ≈ log
maxx∈I(i,0)(y) fY |X(y|x)
maxx∈I(i,1)(y) fY |X(y|x)

, (31)

where I(i,0)(y) = X (i,0) ∩ I(y) and I(i,1)(y) = X (i,1) ∩
I(y). If there is no constellation point in I(i,0)(y) (or
I(i,1)(y)), we assume the most likely constellation point has
a small probability, i.e., setting maxx∈I(i,0)(y) fY |X(y|x) (or
maxx∈I(i,1)(y) fY |X(y|x)) to a small default value.

For the AWGN channel, the widely-used approximate LLR
derived from (30) is

LLR(bi|y) ≈

− 1

2σ2/n

(
min

x∈X (i,0)
(∥y − x∥2)− min

x∈X (i,1)
(∥y − x∥2)

)
,

(32)

where only the nearest constellation point with bi = 0 (or
bi = 1) to y are considered [41, Eq. (6)]. Analogously with
(31), we further approximate (32) as

LLR(bi|y) ≈

− 1

2σ2/n

(
min

x∈I(i,0)(y)
(∥y − x∥2)− min

x∈I(i,1)(y)
(∥y − x∥2)

)
,

(33)

For our designed VCs with a cubic coding lattice,
the important set is defined as in (27) with a ra-
dius R. This parameter provides a trade-off between
low computational complexity (small R) and good decod-
ing performance (high R). If I(i,0)(y) = ∅, then setting
maxx∈I(i,0)(y) fY |X(y|x) to a small probability is equivalent
to setting minx∈I(i,0)(y) ∥y − x∥2 to a large default value q

which is larger than R2, and the same rule applies to I(i,1)(y).
A default value close to the boundary of the important region
(e.g., q = R2+1) is usually not a good choice, neither a very
large q (e.g., q = 100R2). The decoding performance can be
roughly optimized by testing different q for a given R.

Similarly, for very large scaled VCs, the important set can
be generalized as

I(y) ≜ {x : ∥x+ a−QΛ(y + a)∥ ≤ R,x ∈ Γ}. (34)

Then (31) can be used to estimate the LLR for the scaled VCs.

D. Results

Fig. 4 shows the estimated MI for multidimensional VCs
using our proposed estimation method in V-A and parameters
are chosen as suggested in V-B. The MI of QAM constellations
was computed using (20) and (21) with M = 65536, assuming
that lower-order QAM has the same MI for the considered
SNR range [38, Fig. 10]. To validate the correctness of our
estimation, the MI simulated with the exact fY (y) in (21) for
some moderate-size VCs are included as benchmarks. It shows
that our estimated MI is consistent with the benchmark MIs
(markers). With L32 as the shaping lattice, at SNR = 45 dB,
we can observe the maximum 0.935 dB shaping gain. At SNR
= 25 dB, the gap to capacity is reduced from 1.33 dB to 0.48
dB compared with the QAM constellation, which corresponds
to a shaping gain of 0.85 dB.

We also investigate the performance of our VCs in coded
systems. An LDPC code3 from the digital video broadcasting
(DVB-S2) standard [42] with multiple code rates are applied
to our designed VCs. Our proposed LLR approximation in
(33) is applied. The information rate is computed as βRc
as in [38], where Rc is the code rate of the LDPC code.
Fig. 5 shows the estimated required SNRs to achieve a BER
below 10−4 after LDPC decoding for the VCs based on the
lattice partition Z4/26D4 (R2 = 20, q = 50), Z8/26E8

(R2 = 6, q = 20), Z16/26Λ16 (R = 3, q = 20), and
Z32/26L32 (R2 = 2, q = 13). The default values q are
not globally optimized for different VCs, since our goal is
not to design an LDPC code to maximize the information
rates. For comparison, we present results for the scaled VC

3The codeword length is 64800 and 50 decoding iterations are used.
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Fig. 4: The estimated MI as a function of the SNR for multidimen-
sional VCs (solid curves without markers). The markers are the MI
estimated using the exact fY (y) by (21).

based on the lattice partition D4/2
4D4 and our VC based

on the lattice partition Z4/24D4 simulated using the LLR in
(32), i.e., without the further approximation in (33). The result
shows that our VC with a cubic coding lattice can have slightly
higher information rates than the scaled VC. In this case, the
loss of coding gain due to the cubic coding lattice is more
than compensated by the usage of a lower-rate LDPC code
to obtain the same net rate, which is consistent with the BER
improvements observed in [24, Fig. 4]. The better performance
might come from that a pseudo-Gray labeling is more efficient
for the cubic coding lattice, since our VC Z4/24D4 has a
Gray penalty of 1.01, which is half of that for the scaled VC
D4/2

4D4 (1.99).

Fig. 5: The information rate as a function of the SNR for mul-
tidimensional VCs with the DVB-S2 LDPC codes. The code rate
Rc ∈ {1/3, 1/2, 3/5, 2/3, 3/4, 5/6, 9/10}.

VI. CONCLUSION

We proposed Voronoi constellations with a cubic coding
lattice, for which we follow Kurkoski’s encoding and decoding
algorithms and apply pseudo-Gray labeling to minimize the
BER. As a structured geometric shaping method, this class of

VC has high shaping gains of up to 1.03 dB and low com-
plexity. Thanks to its cubic coding lattice, an MI estimation
method for very large constellation size based on importance
sampling is proposed for the first time, which enables us to
observe an up to 0.85 dB shaping gain for medium SNR
values. Our proposed LLR approximation method makes the
performance analysis of our VCs in coded systems at high
spectral efficiencies possible, which is infeasible for the scaled
VCs. Compared with the conventional scaled VCs, our de-
signed VCs have the advantages that 1) the decoding algorithm
is simpler, 2) the spectral efficiency for mapping integers to
bits is improved to 1 [bit/symbol/dimension-pair] realized by
rotating and scaling the shaping lattices, 3) the information
rates after combining with an LDPC code can be higher due to
our better pseudo-Gray labeling, and 4) analysing the MI and
information rates becomes feasible for very large constellation
sizes.
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