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Abstract— In this paper, we study multi-user multi-antenna
wireless power transfer (WPT) systems, where each antenna at
the energy harvesting (EH) nodes is connected to a dedicated non-
linear rectifier. We propose optimal transmit strategies which
maximize a weighted sum of the average harvested powers at
the EH nodes subject to a constraint on the power budget of
the transmitter. First, for multiple-input single-output (MISO)
WPT systems, we prove that the optimal strategy employs
maximum ratio transmission (MRT) beamforming and scalar
symbols with arbitrary phases and discrete amplitudes following
a probability density function (pdf) with at most two mass
points. Then, we prove that for single-input multiple-output
(SIMO) WPT systems, the optimal transmit symbol amplitudes
are discrete random variables, whose pdf also has no more than
two mass points. For general multi-user MIMO WPT, we show
that the optimal transmit strategy employs scalar unit-norm
symbols with arbitrary phases and at most two beamforming
vectors. To determine these vectors, we formulate a non-convex
optimization problem and obtain an optimal solution based on
monotonic optimization. Since the computational complexity of
the optimal solution is high, we propose a low-complexity iterative
algorithm to obtain a suboptimal solution, which achieves near-
optimal performance. Our simulation results reveal that the
proposed transmit strategy for multi-user MIMO WPT systems
outperforms baseline schemes based on a linear EH model and a
single beamforming vector. For a given transmit power budget,
we show that the harvested power saturates when increasing
the number of transmit antennas. Finally, we observe that the
harvested power region spanned by multiple EH nodes is convex
and the power harvested at one EH node can be traded for a
higher harvested power at the other nodes.

Index Terms— Wireless power transmission, energy harvesting
(EH), multiple-input multiple-output (MIMO), signal deisgn,
rectennas, rectifiers.
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I. INTRODUCTION

THE device density in wireless communication networks
has significantly increased over the past decades. The

current trends for wireless systems suggest that the number
of connected devices will continue to grow over the next few
years and a longer battery life for these devices is highly
desirable [3]. However, efficient charging of the batteries of
wireless devices remains an unsolved problem. Since radio
frequency (RF) signals are capable of transferring power,
in recent years, far-field wireless power transfer (WPT) has
attracted significant attention [4]–[24].

A typical WPT system comprises a transmitter (TX) that
broadcasts an RF signal to energy harvesting (EH) nodes that
collect the received power and deliver it to their respective
loads, which store or consume the power, see Fig. 1 [4]. In fact,
the harvested power can be stored in a battery [7] or utilized
for sensing, signal processing, or information transmission
tasks [8], [9]. In [5], the authors studied single-input single-
output (SISO) WPT systems and showed that the power
transferred to the EH node is maximized if a single sinusoidal
signal is broadcasted by the TX. The authors of [6] extended
these results to multiple-input multiple-output (MIMO) WPT
systems and showed that the input power at the EH node is
maximized if a scalar input symbol and energy beamforming,
i.e., beamforming in the direction of the dominant eigenvector
of the channel matrix, are employed at the TX. Although
the solutions developed in [5] and [6] are optimal for the
maximization of the power received by the EH node, they do
not necessarily maximize the harvested power since practical
EH circuits are non-linear [4], [10]–[12]. Hence, an accurate
modeling of the EH circuit is crucial for the design of WPT
systems [4], [10]–[24].

Practical EH nodes typically employ a rectenna, i.e.,
an antenna followed by a rectifier circuit that includes a
non-linear element, namely, a diode. The experimental results
reported in [10]–[12] show that rectennas exhibit a non-linear
behaviour in both the low and high input power regimes.
In particular, for low input power levels, the rectifier non-
linearity is caused by the non-linear forward bias current-
voltage characteristic of the diode [25], whereas in the high
input power regime, practical EH circuits suffer from satura-
tion due to the breakdown effect of the diode [26]. In order to
capture these non-linearities, the authors in [11] modeled the
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Fig. 1. WPT system comprising a TX, which is connected to a power source
and broadcasts an RF signal, and an EH node that harvests the received RF
power and delivers it to its load, which stores or consumes the harvested
power.

harvested power as a parameterized sigmoidal function of the
received power whose parameters depend on the waveform of
the received signal. The model in [11] was widely utilized for
the design of WPT [13], [14] and WPT-based communication
systems [15]–[17]. In particular, in [13], it was shown that,
adopting the EH model from [11], the energy beamforming
proposed in [6] is also optimal for MIMO WPT systems.
Furthermore, to avoid saturation of the rectenna circuits, based
on the model in [11], the authors in [14] proposed to split the
RF power received at the EH node between several collocated
rectifiers.

Although the model in [11] characterizes the non-linear
behavior of rectenna circuits, it is applicable only for signals
with a known fixed waveform and does not allow the opti-
mization of the waveform of the transmit signal [4]. Therefore,
the authors in [18] proposed a non-linear EH model derived
from the Taylor series expansion of the current flow through
the rectifying diode of the EH node. Based on this model,
the authors in [19] studied a WPT system with multiple
antennas at the TX and a single antenna at the EH node,
i.e., a multiple-input single-output (MISO) WPT system, and
showed that the harvested power is maximized with energy
beamforming [6], which reduces to scaled maximum ratio
transmission (MRT) in this case. However, in [20], it was
shown that energy beamforming is not optimal for general
MIMO WPT systems employing non-linear rectenna circuits.
In [21], the authors considered a MIMO WPT system, where
the EH node is equipped with a single rectifier and proposed
to combine the received signals of different antennas in the RF
domain to increase the power at the input of the rectifier and,
thus, maximize the harvested power. However, the practical
implementation of the RF combining schemes considered
in [14] and [21] requires complicated circuit designs and may
also introduce associated losses, which are not desirable in
practical systems [27]. Finally, the authors in [22] considered
a MIMO WPT system, where each antenna of the EH node
was equipped with a dedicated rectifier, and proposed an
iterative algorithm to determine the TX beamforming vector
that maximizes the weighted sum of powers harvested by the
rectifiers.

Although the results in [18]–[22] provide important insights
for the design of practical MIMO WPT systems, their applica-
bility is limited to low input power levels at the EH node
since the saturation of the harvested power is neglected in
the underlying EH model [18]. A realistic EH model that
accurately captures the rectenna non-linearity for both low
and high input powers was developed in [23]. The analysis
in [23] showed that for SISO WPT systems, it is optimal to
adopt ON-OFF signaling at the TX, where the ON symbol and
its probability are chosen to maximize the harvested power
without saturating the EH node while satisfying an average

power constraint at the TX. The optimality of ON-OFF sig-
naling was confirmed in [24], where a learning-based approach
was employed to model non-linear rectenna circuits equipped
with a single and multiple diodes, respectively [26]. Finally,
in [1] and [2], which are the conference versions of this paper,
exploiting the rectenna model derived in [23], we studied the
harvested power region of a two-user MISO WPT system
and the maximum performance of a single-user MIMO WPT
system, respectively. However, to the best of the authors’
knowledge, the problem of optimizing the transmit strategy
for multi-user MIMO WPT systems, where the EH nodes
are equipped with multiple rectennas exhibiting non-linear
behavior in both the low and high input power regimes, has not
been solved, yet. We note that the EH model adopted in [1], [2]
is a special case of the more general EH model considered in
this paper. Hence, the results obtained for two-user MISO and
single-user MIMO WPT systems in [1] and [2], respectively,
are special cases of the results presented in this paper.

In this paper, we aim at determining the optimal transmit
strategies for MISO, multi-user SIMO, and multi-user MIMO
WPT systems, where each receive antenna is connected to
a dedicated rectifier. In order to take the non-linearity of
the EH node into account, we consider a general rectenna
model characterized by a set of properties, which are typically
satisfied for the practical rectenna circuits considered in the
literature [4], [6], [11]–[14], [18]–[24]. Where appropriate,
we specialize our results to the non-linear EH model proposed
in [23]. We propose optimal transmit strategies, which are
characterized by the distribution of the transmit symbol vector
that maximizes a weighted sum of the average harvested
powers at the EH nodes subject to a constraint on the power
budget of the TX. The main contributions of this paper can
be summarized as follows:

• For MISO WPT systems, we show that the optimal
transmit strategy employs MRT beamforming and a scalar
input symbol with an arbitrary phase and a discrete
random amplitude following a probability density func-
tion (pdf) with at most two mass points. The optimal pdf
of the symbol amplitudes is the solution of an optimiza-
tion problem, which is solved via a two-dimensional grid
search [28]. Furthermore, we show that for EH models,
whose maximum harvested power is bounded, the optimal
pdf exhibits an ON-OFF characteristic.

• For multi-user SIMO WPT systems, we show that the
optimal transmit symbol amplitude is a discrete random
variable, whose distribution has at most two mass points
that can also be obtained by a two-dimensional grid
search. Next, for SIMO WPT systems equipped with
two rectennas, whose harvested power grows slower than
quadratically with the input power, we show that the
optimal distribution can be obtained in closed form and
ON-OFF signaling is optimal if the power budget of the
TX is low. Furthermore, for medium average transmit
power budgets at the TX, the two discrete transmit
symbol amplitudes are chosen such that one and both rec-
tifiers are driven into saturation, respectively. Finally, for
high average transmit power budgets, the optimal policy
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is to saturate both rectifiers and the optimal pdf consists
of a single mass point.

• For general MIMO WPT systems, we show that the
optimal transmit strategy employs a scalar input symbol
and at most two beamforming vectors, which can be
determined as solution of a non-convex optimization
problem. This optimal solution is obtained via monotonic
optimization [29]. To reduce the high computational com-
plexity of determining the optimal beamforming vectors,
we develop a low-complexity iterative algorithm based
on semi-definite relaxation (SDR) and successive convex
approximation (SCA) to obtain a suboptimal solution.
Our simulation results reveal that although the suboptimal
solution for MIMO WPT systems has a much lower
computational complexity than the optimal one, both
solutions yield a similar performance.

• Our simulations show that the proposed MIMO WPT
design outperforms baseline schemes based on the linear
EH model in [6] and a single beamforming vector at
the TX, respectively, at the expense of an increase in
computational complexity. For the multi-user scenario
and a given transmit power budget, we observe that the
total average harvested power saturates when the TX
is equipped with a large number of antennas. Finally,
we observe that the harvested power region spanned by
multiple EH nodes is convex and the average power
harvested at one EH node can be traded for a higher
harvested power at the other nodes.

The remainder of this paper is organized as follows.
In Section II, we introduce the system model and discuss the
adopted EH model. In Section III, we formulate an optimiza-
tion problem for the maximization of the weighted sum of the
average harvested powers at the EH nodes and establish a pre-
liminary mathematical result needed for solving the problem.
In Section IV, we determine the optimal transmit strategies for
MISO, multi-user SIMO, and multi-user MIMO WPT systems,
respectively. In Section V, we provide numerical results to
evaluate the performance of the proposed designs. Finally,
in Section VI, we draw some conclusions.

Notation: Bold upper case letters X represent matrices and
Xi,j denotes the element of X in row i and column j. Bold
lower case letters x stand for vectors and xi is the ith element
of x. XH , Tr{X}, and rank{X} denote the Hermitian,
trace, and rank of matrix X , respectively. The expectation
with respect to random variable x is denoted by Ex{·}. The
real part of a complex number is denoted by �{·}. x� and
�x�2 represent the transpose and L2-norm of x, respectively.
The imaginary unit is denoted by j. The sets of real, real
non-negative, and complex numbers are denoted by R, R+,
and C, respectively. 1K and 0K represent column vectors
comprising K elements, where all elements are equal to
1 and 0, respectively. The Dirac delta function is denoted by
δ(x). f �(x0) denotes the first-order derivative of function f(x)
evaluated at point x = x0.

II. SYSTEM MODEL AND PRELIMINARIES

In this section, we present the MIMO WPT system model
and discuss the adopted multi-antenna EH model.

Fig. 2. Multi-user MIMO WPT system comprising a multi-antenna TX and
M multi-antenna EH nodes, where node m, m ∈ {1, 2, . . . , M}, is equipped
with NE

m rectennas followed by loads. Here, G denotes the channel between
the TX and the EH nodes.

A. System Model

We consider a narrow-band multi-user MIMO WPT sys-
tem comprising a TX with NT ≥ 1 antennas and M EH
nodes, where EH node m, m ∈ {1, 2, . . . ,M}, is equipped
with NE

m ≥ 1 antennas, see Fig. 2. The TX broad-
casts a pulse-modulated RF signal, whose equivalent com-
plex baseband (ECB) representation is modeled as x(t) =∑

n x[n]ψ(t−nT ), where x[n] ∈ CNT
is the transmitted vec-

tor in time slot n, ψ(t) is the transmit pulse with rectangular
shape, and T is the symbol duration. Transmit vectors x[n]
are mutually independent realizations of a random vector x,
whose probability density function (pdf) is denoted by px(x).

The ECB channel between the TX and antenna p of
EH node m is characterized by row-vector gm

p ∈ C1×NT
,

p ∈ {1, 2, . . . , NE
m}. Thus, the RF signal received in time

slot n at antenna p of EH node m is given by zRF
p,m(t) =√

2�{gm
p x(t) exp(j2πfct)}, where fc denotes the carrier fre-

quency. The noise received at the EH nodes is ignored since
its contribution to the harvested energy is negligible.

The EH nodes are equipped with EH circuits that harvest the
received RF power and deliver it to their respective loads, see
Fig. 1. The power harvested at the EH nodes can be exploited
by the load devices to perform, e.g., sensing, computation,
and information transmission tasks, see [9], [16], [17]. In this
paper, we assume that the TX is not aware of the ultimate
use of the power harvested at the EH nodes. Thus, similar
to [20]–[22], we focus exclusively on the optimal WPT. In the
next section, we discuss the considered EH model in detail.

B. Energy Harvesting Model

In this paper, we assume that EH node m is equipped with
NE

m rectennas, i.e., each antenna is connected to a dedicated
rectifier, see Fig. 2. Thus, the received ECB signal1 at rectenna
p ∈ {1, 2, . . . , NE

m} of EH node m in time slot n is given by
zm

p [n] = gm
p x[n].

1We note that the EH nodes do not convert the RF signal into baseband.
However, since the amount of the harvested power can be expressed as a
function of the ECB signal received at the EH node, see, e.g., [19], [30],
to simplify the notation, we use the ECB signal representation of the received
RF signal.
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Each rectenna comprises an antenna, a matching circuit,
a non-linear rectifier with a low-pass filter, and a load resis-
tor [4], [23], [24]. In order to maximize the power transferred
to the rectifier, the matching circuit is typically well-tuned to
the carrier frequency fc and is designed to match the input
impedance of the non-linear rectifier circuit with the output
impedance of the antenna [31]. The rectifier is an electrical
circuit that comprises a non-linear diode and a low-pass filter
to convert the RF signal zRF

p,m(t) received by rectenna p of EH
node m to a direct current (DC) signal at the load resistor RL

of the rectenna.
In this paper, we make the following assumptions concern-

ing the rectenna circuit.
Assumption 1: The rectenna circuit is memoryless, i.e., the

amount of power harvested in time slot n depends on the ECB
signal received in time slot n only.

Assumption 2: The harvested power depends on the mag-
nitude of the received ECB signal only and is independent of
its phase.

Assumption 3: The mapping between the received ECB
signal z and the harvested power PL is characterized by
a non-linear and monotonically non-decreasing function2

PL = φ(|z|2).
Assumption 1 is justified if the symbol duration T is

sufficiently large. In this case, we can neglect the ripples of the
voltage level across the load resistor RL and the charging and
discharging times of the reactive elements of the circuit. Thus,
we can assume that the output voltage level of rectenna p of
EH node m in time slot n is constant and depends only on the
signal zm

p [n] [18], [23], [24]. Assumption 2 is justified since,
for the considered narrow-band signals, the rectenna circuit
behaves as an envelope detector [25] and, thus, its behavior is
fully characterized by the magnitude |zm

p [n]| of the received
ECB signal zm

p [n]. Assumption 3 is satisfied since typical
rectenna circuits include a diode that has a non-linear non-
decreasing current-voltage characteristic [18], [23], [26].

Example: In this paper, as an example for an EH model
that satisfies Assumptions 1-3, we adopt the model proposed
in [23]. The corresponding power harvested by the rectenna
as a function of the magnitude of the received ECB signal z
is given as follows:

φ(|z|2) = min
{
ϕ(|z|2), ϕ(A2

s)
}
, (1)

where ϕ(|z|2) =
[

1
aW0

(
a exp(a)I0

(
B

√
2|z|2

))
−

1
]2

I2
sRL, a = Is(RL+Rs)

μVT
, B = 1

μVT

√
�{1/Z∗

a} , and W0(·)
and I0(·) are the principal branch of the Lambert-W function
and the modified Bessel function of the first kind and zero
order, respectively. Here, Z∗

a , VT, Is, Rs, and μ ∈ [1, 2]
are parameters of the rectenna circuit, namely, the complex-
conjugate of the input impedance of the rectifier circuit,
the thermal voltage, the reverse bias saturation current,

2In this paper, to simplify the notation, we additionally assume that all
electrical circuits equipped at the rectennas of the EH nodes are identical,
i.e., all rectennas are characterized by the same function φ(·). The general-
ization to the case, where the rectennas employ different electrical circuits,
is straightforward.

the series resistance, and the ideality factor of the diode,
respectively. These parameters depend on the circuit elements
and are independent of the received signal. Finally, since
for large input power levels, rectenna circuits are driven
into saturation [11], [23], [24], [26], the function in (1) is
bounded, i.e., φ(|z|2) ≤ φ(A2

s), ∀z ∈ C, where As is the
minimum input signal magnitude level at which the output
power starts to saturate.

III. PROBLEM FORMULATION AND USEFUL RESULT

In this section, we formulate an optimization problem for
the maximization of the weighted average harvested power
of the considered multi-user MIMO WPT system. Then,
to obtain a preliminary result needed for solving this problem,
we formulate and solve an auxiliary optimization problem,
where we maximize the expected value of a function of a one-
dimensional random variable under a constraint on its mean
value.

A. Problem Formulation

We characterize the transmit strategy via the pdf px(x)
of transmit symbol vector x. The objective of the proposed
transmit strategy is to maximize the weighted average power
harvested at the EH nodes under an average power constraint
at the TX. Thus, we formulate the following optimization
problem:

maximize
px

Φ(px) (2a)

subject to
∫

x

�x�2
2 px(x)dx ≤ Px, (2b)

∫
x

px(x)dx = 1, (2c)

where the objective function is the weighted sum of the average
harvested powers at the EH nodes defined as

Φ(px) =
M∑

m=1

ξmEx

{
ψm(x)

}
. (3)

Here, ψm(x) =
∑NE

m
p=1 φ(|gm

p x|2) is the total power har-
vested by EH node m and ξm ≥ 0,m ∈ {1, 2, . . . ,M},∑

m ξm = 1, is the weight for EH node m [21]. We note
that the weights associated with the users allow the TX to
control the distribution of the harvested power among the EH
nodes. In particular, if weight ξm is increased, the optimal
transmit strategy will favor EH node m and increase the
average harvested power E{ψm(x)} at EH node m at the
expense of the average harvested powers at the other EH
nodes. Furthermore, we impose constraints (2b) and (2c) to
limit the transmit power budget at the TX and ensure that
px(x) is a valid pdf, respectively.

Remark 1: Optimization problem (2) may have an infinite
number of solutions. In particular, for a general EH model
satisfying Assumptions 1 - 3, since �x�2 and the average
harvested power Φ(·) are invariant under phase rotation of the
transmit symbol vector x, given an optimal pdf p∗x(x) and a
random phase φx ∈ [−π, π) with an arbitrary pdf pφx(φx), the
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random vector x̃ = exp(jφx)x is still a solution of (2) [24].
Furthermore, we note that, for bounded φ(·), such as (1),
if affordable by the power budget Px, there may be an infinite
number of pdfs that drive all the rectifiers of the EH node into
saturation while satisfying constraints (2b) and (2c). Thus,
in the following, we determine one pdf p∗x(x) that solves (2).

Before tackling problem (2), we first consider a related
auxiliary optimization problem. In the next subsection, we for-
mulate and solve this auxiliary problem, namely, the maxi-
mization of the expectation of a non-decreasing function f(ν)
of a scalar random variable ν under a constraint on the mean
value of ν.

B. Auxiliary Optimization Problem

In this section, we study an auxiliary optimization problem,
whose solution will be leveraged in Section IV for solv-
ing problem (2). Let us consider the following optimization
problem:

maximize
pν

Eν{f(ν)} subject to Eν{ν} ≤ Aν , (4)

whose solution is the pdf pν(ν) which maximizes the expecta-
tion of f(ν) under a constraint on the mean value of ν. In order
to solve (4), let us first define the slope of the straight line
connecting points

(
ν1, f(ν1)

)
and

(
ν2, f(ν2)

)
, where ν2 > ν1,

as follows:

σ(ν1, ν2; f) =
f(ν2) − f(ν1)

ν2 − ν1
. (5)

Then, we establish an upper-bound on Eν{f(ν)}. We note that
if f(ν) is convex (concave), an upper-bound on Eν{f(ν)}
is given by the Edmundson-Madansky (Jensen’s) inequality,
e.g., [32]. However, since we intend to apply this result to the
weighted sum of functions ψm(·),m ∈ {1, 2, . . . ,M}, in (2),
which are not necessarily convex or concave, in the following
lemma, we extend the Edmundson-Madansky and Jensen’s
inequalities to arbitrary non-decreasing functions f(ν) and
determine an upper-bound on the expectation of f(ν).

Lemma 1: Let us consider a non-decreasing function f(ν)
of random variable ν. Then, for a given mean value of ν,
ν = Eν{ν}, the expectation of f(ν) is upper-bounded by the
following inequality:

Eν{f(ν)} ≤ Ef

(
ν
)
, (6)

where Ef (ν) = βf(ν∗1 ) + (1 − β)f(ν∗2 ) and β = ν∗
2−ν

ν∗
2−ν∗

1
.

Here, ν∗1 and ν∗2 are given by ν∗1 = argminν1≤ν γ(ν1; f),
where γ(ν1; f) = maxν2≥ν σ(ν1, ν2; f), and ν∗2 =
arg maxν2≥ν σ(ν∗1 , ν2; f), respectively. Furthermore, inequal-
ity (6) holds with equality if the pdf of ν is given by p∗ν(ν) =
βδ(ν − ν∗1 ) + (1 − β)δ(ν − ν∗2 ).

Proof: Please refer to Appendix VI.
Lemma 1 implies that for any non-decreasing function f(ν)

of random variable ν, an upper bound on the expectation of
f(ν) is given by (6). Furthermore, a discrete pdf, pν(ν), with
no more than two mass points, whose values ν∗1 and ν∗2 are
obtained as the solutions of a min-max optimization problem,
is sufficient to attain this upper bound. In the following

Fig. 3. Illustrations of Lemma 1 and Corollary 1.

corollary, we show that for a certain class of functions f(ν),
the result in Lemma 1 can be significantly simplified.

Corollary 1: Let us consider a non-decreasing function
f(ν) of random variable ν. If function f(·) is differentiable
at ν = Eν{ν} and the following property holds:

f �(ν)(ν − ν) ≤ f(ν) − f(ν), ∀ν ∈ R, (7)

then the expectation of f(ν) is upper-bounded by Eν{f(ν)} ≤
f
(
ν
)
, where the inequality holds with equality if the pdf of ν

is given by p∗ν(ν) = δ(ν − ν).
Proof: Please refer to Appendix VI.

We note that Ef

(
Eν{ν}

)
in Lemma 1 can be interpreted as

the value of linear function g(ν), defined by points
(
ν∗1 , f(ν∗1 )

)
and

(
ν∗2 , f(ν∗2 )

)
, at ν = Eν{ν}, where the choice of ν∗1 and

ν∗2 ensures that g(ν) ≥ f(ν), ∀ν ∈ R, see Fig. 3(a). However,
if condition (7) in Corollary 1 is satisfied, points ν∗1 and ν∗2
coincide, i.e., ν∗1 = lim�→0 ν − � and ν∗2 = lim�→0 ν + �,
and then, g(ν) = f(ν) + f �(ν)(ν − ν) ≥ f(ν), ∀ν ∈ R, see
Fig. 3(b).

Finally, exploiting Lemma 1 and Corollary 1, in the follow-
ing corollary, we determine the optimal pdf p∗ν(ν) of random
variable ν solving optimization problem (4).

Corollary 2: A solution3 of optimization problem (4) is a
discrete pdf given by p∗ν(ν) = δ(ν−Aν) if condition (7) holds,
and p∗ν(ν) = βδ(ν − ν∗1 ) + (1 − β)δ(ν − ν∗2 ), where ν∗1 =
argminν1≤Aν

γ(ν1; f), γ(ν1; f) = maxν2≥Aν σ(ν1, ν2; f),
ν∗2 = argmaxν2≥Aν

σ(ν∗1 , ν2; f), β = ν∗
2−Aν

ν∗
2−ν∗

1
, otherwise.

Proof: Please refer to Appendix VI.
The results in Lemma 1, Corollary 1, and Corollary 2 will

be exploited in Section IV for solving the transmit strategy
optimization problem in (2).

IV. OPTIMAL TRANSMIT STRATEGIES

In this section, we first consider MISO and SIMO WPT
systems, where the EH node and the TX are equipped with
a single antenna, respectively. For each system architecture,
we determine the optimal pdf p∗x(x) that solves (2) and the
corresponding optimal transmit strategy. Then, we consider the
general multi-user MIMO WPT case, characterize the solution
of (2), and present optimal and suboptimal transmit strategies.

3We note that, similar to (2), problem (4) may have an infinite number of
solutions, i.e., for a given monotonic non-decreasing function f(·), there may
exist multiple pdfs pν(ν) that yield the same value of Eν{f(ν)} and satisfy
the constraint in (4). In Corollary 2, we obtain one solution of (4).
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A. MISO WPT Systems

In the following, we consider MISO WPT systems employ-
ing a single-antenna EH node, i.e., M = NE

1 = 1, and a TX
equipped with NT ≥ 1 antennas. In this case, the weighted
sum in (3) reduces to Φ(px) = Ex

{
φ(|gx|2)}, where g is the

row-vector representing the channel between the TX and the
EH node. In the following proposition, we provide a solution
of optimization problem (2) for MISO WPT systems and the
corresponding optimal transmit strategy.

Proposition 1: For MISO WPT systems, function Φ(·) is
maximized by transmit vectors x = ws, where w = gH

	g	2
is the MRT beamforming vector and s = rs exp(jθs) is a
scalar random symbol with arbitrary phase θs and amplitude
rs following distribution p∗rs

(rs). Furthermore, for the optimal
transmit strategy, the pdf of the symbol amplitudes rs is given
by p∗rs

(rs) = δ(rs −
√
Px) if the following inequality holds:

Φ�(Px)
(
Px − r2s

) ≤ Φ(Px) − Φ(r2s), ∀rs ∈ R+, (8)

where Φ(r2) = φ
(
r2�g�2

2

)
. If (8) does not hold, the optimal

transmit strategy is characterized by pdf p∗rs
(rs) = (1 −

β)δ(rs − √
ν∗1 ) + βδ(rs − √

ν∗2 ), where β = ν∗
2−Px

ν∗
2−ν∗

1
. Here,

ν∗1 and ν∗2 are the solutions of the following min-max opti-
mization problem:

ν∗1 = arg min
ν1≤Px

γ(ν1; Φ) (9)

with γ(ν1; Φ) = maxν2≥Px σ(ν1, ν2; Φ) and σ(ν1, ν2; Φ) =
Φ(ν2)−Φ(ν1)

ν2−ν1
and

ν∗2 = argmax
ν2≥Px

σ(ν∗1 , ν2; Φ), (10)

respectively.
Proof: Please refer to Appendix VI.

Proposition 1 reveals that, as for linear EH nodes in [6],
for the considered non-linear EH model, MRT beamforming
is optimal. Furthermore, similar to the SISO case in [23], for
MISO WPT systems, there exists an optimal input symbol
amplitude that follows a discrete pdf, p∗rs

(rs), consisting of at
most two mass points. In particular, it is optimal to adopt a
single sinusoidal signal s with amplitude rs =

√
Px and an

arbitrary phase θs if condition (8) holds. If (8) does not hold,
amplitude rs is a discrete binary random variable. In this case,
in order to obtain the pdf p∗rs

(rs), the non-convex min-max
optimization problem defined by (9), (10) has to be solved.
Due to the low dimensionality of the problem, we propose
to obtain the optimal solution via a two-dimensional grid
search [28].

1) Grid Search Method: In the following, we propose a
grid-search based method for solving the min-max optimiza-
tion problem in Proposition 1. We note that this problem
is not convex since function σ(ν1, ν2; Φ) is not convex and
not concave in ν1 and ν2, respectively. However, since the
dimensionality of the problem is low, performing a grid
search to determine ν∗1 and ν∗2 entails limited and affordable
complexity [28]. To this end, we define a uniform grid P =
{ρ0, ρ1, ρ2, . . . , ρNρ}, where ρ0 = 0, ρj = Δρ + ρj−1, j =
1, 2, . . . , Nρ, Nρ is the grid size, and Δρ is a predefined step
size. Then, we define the smallest element of P which is larger

Algorithm 1 Grid Search for Determining the Optimal
Values ν∗1 , ν∗2 , and β

Initialize: Grid size Nρ, step size Δρ, maximum TX

power Px, initial value ρ0 = 0.

1. Compute the grid P and the values of Φ(·) for the

grid elements:

for m = 0 to Nρ do
1.1. Compute Φm = Φ(ρm)

1.2. Set ρm+1 = ρm + Δρ

end

2. Determine grid element

ρn = min{ρj|ρj ≥ Px, j = 0, 1, . . . , Nρ}
3. Calculate the elements of matrix S as

Si,j = σ(ρi, ρj� ; Φ) = Φj�−Φi

ρj�−ρi
, i = 0, 1, . . . , n− 1,

j = j� − n, and j� = n, n+ 1, . . . , Nρ

4. Determine power values ν∗1 = ρi∗ and ν∗2 = ρn+j∗ ,

where i∗ = arg mini maxj Si,j and j∗ = argmaxj Si∗,j

Output: Optimal values ν∗1 , ν∗2 , β = ν∗
2−Px

ν∗
2−ν∗

1

than Px as ρn, i.e., ρn = min{ρj |ρj ≥ Px, j = 0, 1, . . . , Nρ}.
Next, we define a matrix S ∈ Rn×(Nρ−n+1), whose elements
are the values of function σ(·, ·; Φ) evaluated at the elements
of P , i.e., Si,j = σ(ρi, ρj� ; Φ), i = 0, 1, . . . , n− 1, j = j�−n,
and j� = n, n+1, . . . , Nρ. Finally, we obtain the power values
ν∗1 = ρi∗ and ν∗2 = ρn+j∗ , where i∗ = argmini maxj Si,j and
j∗ = arg maxj Si∗,j , respectively. The proposed grid-search
method is summarized in Algorithm 1. The computational
complexity of Algorithm 1 is quadratic with respect to the
grid size Nρ and does not depend on the number of TX
antennas NT.

2) Special Case: In the following, we consider the special
case of MISO WPT systems, where the EH model satisfies
the following additional assumption.

Assumption 4: For the EH model φ(·), there is a value As,
such that ∀z : |z| ≤ As, φ(|z|2) is a convex function and
∀z : |z| > As, φ(|z|2) = φ(A2

s).
In particular, we note that Assumption 4 holds for the EH

model in (1). In the following corollary, we show that for an
EH model satisfying Assumption 4, the result in Proposition 1
can be significantly simplified.

Corollary 3: For an EH model satisfying Assumption 4,
the pdf p∗rs

(rs) of the transmit symbol amplitudes rs in
Proposition 1 is given by p∗rs

(rs) = δ(rs −
√
Pmax

x ) if Px ≥
Pmax

x = A2
s

	g	2
2

and p∗rs
(rs) = (1− β)δ(rs) + βδ(rs −

√
Pmax

x ),

where β = P max
x −Px

P max
x

, otherwise.
Proof: First, we note that ∀ν ∈ R+, Φ(ν) ≤ Φ(Pmax

x ) =
φ(A2

s). Therefore, for Px ≥ Pmax
x , the optimal transmit

strategy is characterized by the pdf p∗rs
(rs) = δ(rs −√

Pmax
x ). Furthermore, functions φ(|z|2) in (1) and Φ(ν) in
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Proposition 1 are convex and increasing in the intervals
|z|2 ∈ [0, A2

s] and ν ∈ [0, Pmax
x ], respectively. Hence, ∀Px :

Px < Pmax
x , due to the convexity of Φ(ν), the solutions

of the optimization problems in Proposition 1 are given by
ν∗1 = 0 and ν∗2 = Pmax

x , respectively, with β = P max
x −Px

P max
x

. This
concludes the proof.

Corollary 3 reveals that if Px < Pmax
x , ON-OFF signaling

with MRT beamforming is optimal, which is similar to the
result obtained for SISO WPT systems in [23]. Furthermore,
for Px ≥ Pmax

x , it is affordable to drive the EH node into
saturation and, hence, the optimal pdf of rs consists of a single
mass point. We note that in contrast to Proposition 1, where
the entire power budget Px is utilized for the transmission,
Corollary 3 shows that for EH models satisfying Assumption 4
and Px ≥ Pmax

x , there is an optimal transmit strategy, where
the average transmit power is equal to Pmax

x .

B. SIMO WPT Systems

In the following, we consider a SIMO WPT system, where
M EH nodes are equipped with NE

m ≥ 1, m ∈ {1, 2, . . . ,M},
antennas and the TX has a single antenna, i.e., NT = 1.
In this case, as in [23], [24], due to Assumption 2, the
powers harvested at the rectennas depend on the magnitude
of the scalar transmit symbol but not on its phase. Hence, the
weighted sum in (3) can be expressed as a function of the
pdf prx of the transmit symbol amplitude rx = |x| as follows
Φ(prx) = Erx

{
Φ(r2x)

}
, where

Φ(r2x) =
M∑

m=1

NE
m∑

p=1

ξmφ(r2x|gm
p |2) (11)

and |gm
p | is the magnitude of the scalar channel coefficient

gm
p between the transmit antenna and antenna p of EH

node m. In the following proposition, we provide a solution
of optimization problem (2) for SIMO WPT systems and the
corresponding optimal transmit strategy.

Proposition 2: For the considered SIMO WPT system, func-
tion Φ(·) is maximized for discrete transmit symbol amplitudes
following distribution p∗rx

(rx). In particular, the optimal trans-
mit strategy is characterized by the pdf p∗rx

(rx) = δ(rx −√
Px), if function Φ(r2x) is differentiable at r2x = Px and the

following inequality holds:

Φ�(Px)
(
Px − r2x

) ≤ Φ(Px) − Φ(r2x), ∀rx ∈ R+. (12)

Furthermore, if (12) does not hold, the optimal pdf is given by
p∗rx

(rx) = βδ(rx − √
ν∗1 ) + (1 − β)δ(rx − √

ν∗2 ), where β =
ν∗
2−Px

ν∗
2−ν∗

1
. Here, ν∗1 and ν∗2 are the corresponding solutions of

the optimization problems in (9) and (10), respectively, where
function Φ(·) is given by (11).

Proof: Please refer to Appendix VI.
Proposition 2 reveals that there exists an optimal pdf p∗rx

(rx)
of the symbol amplitudes rx that is discrete and consists
of one or two mass points. In particular, as for SISO and
MISO WPT systems in [5] and in Section IV-A, respectively,
it is optimal to transmit a single sinusoid if condition (12)
holds. If (12) does not hold, this optimal pdf consists of two
mass points, ν∗1 and ν∗2 , which are obtained as solutions of

the min-max optimization problem (9), (10). Due to its low
dimensionality, this problem also can be efficiently solved via
a two-dimensional grid search, as discussed in Section IV-A.1
and summarized in Algorithm 1. Thus, the computational
complexity of determining the optimal transmit strategy for
SIMO WPT systems is independent of the number of EH
nodes M and the number of antennas NE

m at each EH node
m ∈ {1, 2, . . . ,M}.

Special Case: In the following, we consider the special case
of SIMO WPT systems, where the EH model satisfies the
following additional assumption.

Assumption 5: For function φ(·), Assumption 4 is satisfied.
Furthermore, for the value As, ∀z : |z| ≤ As, the following

inequality holds: φ(|z|2) ≥ φ(A2
s)

(
|z|2
A2

s

)2

.
We note that the condition in Assumption 5 implies that the

power harvested by the rectifier grows slower than quadrati-
cally with the input power. In particular, it can be shown that
Assumption 5 is satisfied for the EH model in (1). Let us
now consider a SIMO WPT system with two rectifiers, i.e.,
M = 1 and NE

1 = 2 or M = 2 and NE
1 = NE

2 = 1. In this
case, without loss of generality, we denote the scalar channel
coefficients between the transmit antenna and the antennas of
the rectifiers by g1 and g2 and assume that |g1| ≥ |g2|. Then,
in the following corollary, we provide a closed form solution
for the optimal ν∗1 and ν∗2 in Proposition 2.

Corollary 4: Let us consider a SIMO WPT system with two
rectifiers and an EH model satisfying Assumption 5. In this
case, if Px < ρmin = A2

s

|g1|2 , the optimal transmit strategy is
characterized by the pdf of the transmit symbol amplitudes
given by p∗rx

(rx) = βδ(rx) + (1 − β)δ(rx − √
ρmin), where

β = ρmin−Px

ρmin
. Furthermore, if Px ∈ [ρmin, ρmax), where ρmax =

A2
s

|g2|2 , then p∗rx
(rx) = βδ(rx −√

ρmin)+ (1−β)δ(rx −√
ρmax)

with β = ρmax−Px

ρmax−ρmin
. Finally, if Px ≥ ρmax, the pdf is given by

p∗rx
(rx) = δ(rx −√

ρmax).
Proof: Please refer to Appendix VI.

Thus, for SIMO WPT systems with two rectifiers, if the
transmit power budget is low, i.e., Px < ρmin, similar to the
SISO and MISO WPT cases, ON-OFF signaling is optimal,
where the ON signal drives the rectifier with the best channel
conditions into saturation. Furthermore, for Px ∈ [ρmin, ρmax),
the pdf p∗rx

(rx) has two mass points, which are chosen to
drive one and both rectifiers into saturation, respectively. For
Px ≥ ρmax, it is affordable to drive both rectifiers into
saturation and, hence, the optimal pdf consists of a single
mass point. Moreover, as for MISO WPT systems, Corollary 4
reveals that for Px ≥ ρmax, the average transmit power of the
optimal transmit strategy is equal to ρmax.

C. MIMO WPT Systems

In the following, we consider the general multi-user MIMO
WPT system in Fig. 2, where NT ≥ 1 and NE

m ≥ 1 antennas
are employed at the TX and EH node m, m ∈ {1, 2, . . . ,M},
respectively. For these systems, exploiting Corollary 2, we first
show that for the optimal solution of (2), at most two beam-
forming vectors are needed at the TX. Next, in order to
determine these beamforming vectors, we use the monotonic
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Fig. 4. Illustration of the polyblock optimization approach. The red star is the optimal point on the feasible set V .

polyblock optimization framework in [29]. Finally, since the
computational complexity of the optimal scheme is high,
we also propose a suboptimal iterative algorithm based on
SDR and SCA to obtain the beamforming vectors [33]–[35].

In the following proposition, we characterize a solution
of (2) and the corresponding optimal transmit strategy.

Proposition 3: For multi-user MIMO WPT systems, func-
tion Φ(·) is maximized for discrete random transmit symbol
vectors x = ws, where s = exp(jθs) is a unit-norm
symbol with an arbitrary phase θs. Here, w is a discrete
random beamforming vector, whose pdf is given by p∗w(w) =
βδ(w − w∗

1) + (1 − β)δ(w − w∗
2). The beamforming vectors

w∗
n, n ∈ {1, 2}, are given by

w∗
n ∈ {w : Ψ(w) = Φ(ν∗n)}, (13)

Φ(ν) = max
{w |w∈CNT, 	w	2

2=ν}
Ψ(w), (14)

where Ψ(x) =
∑

m ξmψm(x). Here, ν∗1 and ν∗2 are the
corresponding solutions of the optimization problems in (9)
and (10), respectively, where Φ(·) is given by (14). Further-
more, if the following inequality holds:

Φ�(Px)(Px − ν) ≤ Φ(Px) − Φ(ν), ∀ν ∈ R+, (15)

the optimal points ν∗1 and ν∗2 coincide and the optimal pdf is
given by p∗w(w) = δ(w − w∗), where w∗ = w∗

1 = w∗
2.

Proof: Please refer to Appendix VI.
Proposition 3 reveals that there is an optimal transmit

vector x which is discrete and characterized by scalar unit-
norm symbols s with an arbitrary phase4 and at most two
beamforming vectors, w∗

1 and w∗
2. As in Corollary 1, these

beamforming vectors coincide if inequality (15) holds.
We note that w∗

1 and w∗
2 in Proposition 3 are characterized

by the values ν∗1 and ν∗2 obtained as solutions of the non-
convex problems (9) and (10), respectively, that also can be
solved using the grid-search method in Algorithm 1. However,
unlike for MISO and SIMO systems, in order to obtain the
value of Φ(·) for a given transmit power value ν, the maximum
value of Ψ(·) as solution of (14) is required. We note that (14)

4We note that the phase θs of scalar symbol s can be chosen arbitrarily
in each time slot n. This degree of freedom can be further exploited, for
example, for information transmission [24].

is a non-convex problem and, hence, obtaining its optimal
solution is, in general, NP-hard. However, since problem (14)
belongs to the class of monotonic optimization problems,
in Section IV-C.1, we first obtain the optimal solution
exploiting the polyblock outer optimization approach [29].
Then, in Section IV-C.2, for practical EH models satisfying
Assumption 4, we propose an iterative low-complexity algo-
rithm to obtain a suboptimal solution of the problem.

1) Optimal Solution: In the following, we obtain the opti-
mal solution of non-convex problem (14) exploiting monotonic
optimization [29]. To this end, similar to the monotonic
polyblock optimization framework in [29], [33], we obtain
the optimal solution of (14) by exploring the feasible set V
of (14) determined by constraint �w�2

2 = ν. First, we enclose
V by constructing an initial polyblock B(1) with an initial
set of vertices L(1) =

{
ỹ

(1)
d |d ∈ {1, 2, . . . , 22NT}}, where

ỹ
(1)
d ∈ C

NT
is a vector, whose kth element is defined as

ỹ
(1)
d,k = (−1)ad

n−1ν + j(−1)ad
nν. Here, n = 2k and ad

p ∈
{0, 1} denotes bit p in the binary representation of number
d, see Fig. 4(a). Then, since the objective function in (14) is
monotonically increasing in |w|, i.e., in |w1|, |w2|, . . . , |wNT |,
in iteration m ≥ 1 of the proposed algorithm, as shown
in Fig. 4(b), we choose a vertex y(m) from the set of
vertices L(m) that maximizes the objective function, i.e.,
y(m) = arg maxy∈L(m) Ψ(y). We calculate the intersection
point ψ(m) between the feasible set V and the line that
connects the origin and vertex y(m) as χ(m) =

√
ν y(m)

�y(m)�
2

.

Then, based on vertex set L(m), we generate a set of new
vertices L(m+1)

B = {ỹ(m+1)
1 , ỹ

(m+1)
2 , . . . , ỹ

(m+1)
NT } and, thus,

construct the new polybock B(m+1) with vertex set L(m+1) =
L(m) ∪ L(m+1)

B \ {y(m)}, see Fig. 4(c). This procedure is
continued until the feasible set V is enclosed by the final
polyblock B(1) ⊃ B(2) ⊃ · · · ⊃ V . Finally, as solution of (14),
we select the vertex χ∗ that maximizes the objective function
Ψ(w). The proposed algorithm is summarized in Algorithm 2.

We note that the computational complexity of Algorithm 2
increases exponentially with the number of antennas NT

employed at the TX. Therefore, obtaining the optimal value
of function Φ(ν) may not be feasible in practical multi-
user MIMO WPT systems. Nevertheless, the obtained optimal
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Algorithm 2 Polyblock Outer Approximation Algorithm

Initialize: Polyblock B(1) with a vertex set L(1), iteration

index m = 1, vertex y(1), and error tolerance �PA.

repeat
1. Construct a smaller polyblock B(m+1) with vertex

set L(m+1) by replacing y(m) with NT new vertices

L(m+1)
B = {ỹ(m+1)

1 , ỹ
(m+1)
2 , . . . , ỹ

(m+1)
NT }. The new

vertex ỹ
(m+1)
k , k ∈ {1, 2, . . . , NT}, is given by

ỹ
(m+1)
k = y(m) − (y(m)

k − x
(m)
k )uk,

where x(m)
k is the kth element of χ(m) =

√
ν y(m)

�y(m)�2

and uk is a unit vector containing only one non-zero

element at position k.

2. Find y(m+1) ∈ L(m+1) as the vertex that

maximizes Ψ(y), i.e.,

y(m+1) = arg max
y∈L(m+1)

{Ψ(y)}

3. Set m = m+ 1
until

�y(m)−χ(m)�2�y(m)�2

≤ �PA;

Output: w∗ = arg maxy∈{χ(1),χ(2),...,χ(m−1)} Ψ(y),

Φ(ν) = Ψ(w∗)

solution provides a performance upper-bound for any subopti-
mal scheme. In the next section, we propose an iterative low-
complexity algorithm to obtain a suboptimal solution of (14).

2) Suboptimal Solution: In the following, we consider a
practical EH model φ(·) that satisfies Assumption 4. For
this model, we propose an iterative low-complexity algorithm
based on SDR and SCA to determine a suboptimal solution
of (14). To this end, we first define matrix W = wwH and
reformulate problem (14) equivalently as follows:

maximize
W∈S+

Ψ̂(W ) (16a)

subject to Tr{W} ≤ ν, (16b)

rank{W} = 1, (16c)

where Ψ̂(W ) =
∑M

m=1

∑NE
m

p=1 ξmφ(gm
p Wgm

p
H) and S+

denotes the set of positive semidefinite matrices. Since the
objective function in (14) is monotonic non-decreasing in
|w| = {|w1| |w2| . . . |wNT |}�, we relax the equality con-
straint in (14) by inequality constraint (16b) [29].

Optimization problem (16) is non-convex due to the non-
concavity of objective function (16a) and the non-convexity
of constraint (16c). Therefore, in order to obtain a suboptimal
solution of (16), we first eliminate constraint (16c). Then,
we denote the total number of rectennas at the EH nodes by
K =

∑M
m=1N

E
m and define the sets Wk, k ∈ {0, 1, . . .,K},

of matrices W such that ∀W ∈ Wk exactly k rectifiers

are driven into saturation. We note that W1 ∪ W2 ∪ · · · ∪
WK = S+. Furthermore, rectifier p of EH node m is driven
into saturation if and only if gm

p Wgm
p

H ≥ A2
s . Hence, set

Wk, k ∈ {0, 1, . . .,K}, consists of Tk = K!
k!(K−k)! convex sub-

sets, where k! denotes the factorial of k, i.e., Wk = W1
k∪W2

k∪
· · ·∪WTk

k . Each convex subset Wt
k, t ∈ {1, 2, . . ., Tk}, consists

of all matrices W which drive into saturation a specific
combination of k rectennas. We note that the objective function
in (16) is convex for each of these subsets and, hence, applying
SCA for solving (16) for W ∈ Wt

k, is promising [34], [35].
Thus, the solution of (16) can be obtained by exploring the
subsets Wt

k, t ∈ {1, 2, . . ., Tk}, k ∈ {0, 1, . . .,K}, and solving
the resulting problem for each subset [1]. However, since the
computational complexity of this exploration grows with K!,
in the following, we obtain a suboptimal solution of (16).

For a given transmit power limit ν, we first determine a
set of rectennas W∗, which will be driven into saturation.
To this end, we sort the channel gain vectors gm

p in descending
order of their norms as follows

∥∥gm1
p1

∥∥
2
≥ ∥∥gm2

p2

∥∥
2
≥ · · · ≥∥∥gmK

pK

∥∥
2
, where mk ∈ {1, 2, . . .,M}, pk ∈ {1, 2, . . ., NE

mk
},

and k = 1, 2, . . .,K . Then, we check if it is possible to drive
the k rectifiers with the best channel conditions, i.e., rectifier
p1 of EH node m1, rectifier p2 of EH node m2, . . . , rectifier
pk of EH node mk, into saturation by solving the following
optimization problem:

maximize
W∈S+

1 (17a)

subject to gmn
pn

Wgmn
pn

H ≥ A2
s, ∀n ∈ {1, 2, . . ., k},

(17b)

gmñ
pñ

Wgmñ
pñ

H < A2
s,

∀ñ ∈ {k + 1, k + 2, . . . ,K}, (17c)

Tr{W} ≤ ν. (17d)

Optimization problem (17) is convex and can be solved with
standard numerical optimization tools, such as CVX [36].
Furthermore, although we dropped the rank-one con-
straint (16c), it can be shown that if (17) is feasible and
k > 0, a beamforming matrix W ∗

k, which solves (17), has
rank one. A corresponding proof is provided in the conference
version [2, Appendix B] but is omitted here due to the
space constraints. We denote by k∗ the maximum number of
rectifiers k, for which problem (17) is feasible. Note that if (17)
is not feasible for any k > 0, we have k∗ = 0. Then, we define
the convex subset W∗ that corresponds to the case, where the
k∗ rectifiers with the best channel conditions are driven into
saturation. This set is given by

W∗ =
{
W : W ∈ S+,

gmn
pn

Wgmn
pn

H ≥ A2
s, ∀n ∈ {1, 2, . . . , k∗},

gmñ
pñ

Wgmñ
pñ

H < A2
s, ∀ñ ∈ {k∗ + 1, k∗ + 2, . . . ,K}}.

(18)

Next, we reformulate problem (16) as follows:

maximize
W∈W∗

Ψ̂(W ) subject to Tr{W} ≤ ν. (19)

Optimization problem (19) is still non-convex due to the
non-concavity of the objective function. In the following,
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TABLE I

OPTIMAL TRANSMIT STRATEGIES FOR MISO, SIMO, AND MIMO WPT SYSTEMS

we propose to solve (19) exploiting SCA [34]. To this
end, we construct an underestimate of the objective function
Ψ̂(W ), which is convex in W∗, as follows:

Ψ̂(W ) ≥ Ψ̂(W (t)) + Tr{�Ψ̂(W (t))(W − W (t))}, (20)

where W (t) is the solution obtained in the iteration t of
the algorithm and �Ψ̂(W (t)) denotes the gradient of Ψ̂(W )
evaluated at W (t). Thus, in each iteration t of the proposed
algorithm, we solve the following optimization problem:

W (t+1) = arg max
W∈W∗

Ψ̂(W (t))

+ Tr{�Ψ̂(W (t))(W − W (t))} (21a)

subject to Tr{W } ≤ ν. (21b)

We note that (21) is a feasible convex optimization problem
that can be solved with standard numerical optimization tools,
such as CVX [36]. Furthermore, it can be shown that similarly
to problem (17), the solution of (21) yields a matrix, whose
rank is equal to one. Hence, we obtain the beamforming
vector w∗ as the dominant eigenvector of the solution W ∗

of (16) and compute the corresponding value of function
Φ(ν) = Ψ(w∗). The proposed algorithm is summarized in
Algorithm 3. We note that the proposed algorithm converges to
a stationary point of (16) [35]. The computational complexity
of a single iteration of the algorithm is polynomial and is given
by5 O(KNT

7
2 +K2NT

5
2 +

√
NTK3), where O(·) is the big-O

notation.
The optimal transmit strategies for MISO, SIMO, and

MIMO WPT systems are summarized in Table I. We note
that the computational complexities of the optimal transmit
strategies for MISO and SIMO WPT systems are substantially
lower than those of the optimal and suboptimal transmit
strategies for MIMO WPT systems.

5The computational complexity of a convex semidefinite problem that
involves an n × n positive semidefinite matrix and m constraints is given
by O�√

n(mn3 + m2n2 + m3)
�

[37]. Here, n = NT and m = K + 1.

Algorithm 3 Suboptimal Algorithm for Solving Optimiza-
tion Problem (14)

Initialize: Transmit power ν, tolerance error �SCA.

1. Sort the channel gain vectors by their norms∥∥gm1
p1

∥∥
2
≥ ∥∥gm2

p2

∥∥
2
≥ · · · ≥ ∥∥gmK

pK

∥∥
2
, where

K =
∑M

m=1N
E
m, mk ∈ {1, 2, . . . ,M},

pk ∈ {1, 2, . . . , NE
mn

}, and k = 1, 2, . . . ,K .

2. Set initial value k∗ = 0.

for j = 1 to K + 1 do
3. Solve optimization problem (17) for k = j and

store k∗ = j if the problem is feasible

end

4. Determine set W∗, set initial values h(0) = 0 and

t = 0, and randomly initialize W (0).

repeat

a. For given W (t), obtain W (t+1) as the solution

of (21)

b. Evaluate h(t+1) = Ψ̂(W (t+1))

c. Set t = t+ 1
until |h(t) − h(t−1)| ≤ �SCA;

5. Obtain w∗ as the dominant eigenvector of W (t) and

evaluate Φ(ν) = Ψ(w∗)

Output: Φ(ν), w∗

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the pro-
posed transmit strategies via simulations. First, we compare
the performance of single-user MISO, SIMO, and MIMO
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Fig. 5. Comparison of single-user SISO, SIMO, MISO, and MIMO WPT
systems.

WPT systems. Then, we evaluate the performance of multi-
user MIMO WPT systems for different numbers of antennas
at the TX and EH nodes. Finally, we study the influence of
the weights ξm,m ∈ {1, 2, . . . ,M}, associated with the EH
nodes and determine the harvested power region.

A. Simulation Parameters

In the following, we provide the system parameters adopted
in our simulations. In our simulations, the path losses are
calculated as 35.3+37.6 log10(dm), where dm is the distance
between the TX and EH node m [33]. Furthermore, in order
to harvest a meaningful amount of power, we assume that
the TX and each EH node have a line-of-sight link. Thus,
the channel gains gm

p follow Rician distributions with Rician
factor 1 [38]. For the EH model φ(·), we adopt the model
proposed in [23] and given by (1) with parameter values
a = 1.29, B = 1.55 · 103, Is = 5 µA, RL = 10 kΩ, and
A2

s = 25 µW. For Algorithms 1, 2, and 3 we adopt step size,
grid size, and error tolerance values of Δρ = 0.1, Nρ = 103,
�PA = 10−3, and �SCA = 10−3, respectively. We note that the
grid size Nρ is chosen sufficiently large to ensure that the
function Φ(ν) saturates for ν = ρNρ . The adopted simulation
parameters are summarized in Table II. All simulation results
were averaged over 1000 channel realizations.

B. Single-User WPT Systems

In this section, we investigate the performance of single-user
WPT systems with different numbers of antennas at the TX
and the EH node. The distance between the TX and the EH
node is d = 10 m. The considered MISO and SIMO WPT sys-
tems employ NT = 2 and NE = 2 antennas at the TX and the
EH node, respectively. For these systems, we evaluate the aver-
age harvested power Φ(p∗x) for different values of the power
budget Px by applying Corollaries 3 and 4, respectively. In the
considered single-user MIMO WPT system, the TX and EH
nodes employ NT = NE

1 = 2 antennas, respectively. For
this system, optimal and suboptimal pdfs px(x) are deter-
mined by combining Algorithm 1 with Algorithms 2 and 3,
respectively, and the values of Φ(p∗x) are computed.

For comparison, we also consider a SISO WPT system
employing the optimal transmit strategy in [23]. As Baseline
Scheme 1, we consider a MIMO WPT system with energy
beamforming at the TX, which is optimal for linear EH
nodes [6]. Furthermore, as Baseline Scheme 2, similar to [21],
we consider a MIMO WPT system, where a scalar input
symbol and a single beamforming vector are adopted at the
TX. For this system, we obtain the optimal beamforming
vector w∗ as solution of (13) for ν = Px with Algorithm 2 and
compute the corresponding harvested power as Φ = Φ(w∗).
Finally, as Baseline Scheme 3, we consider a MIMO WPT
system employing a single beamforming vector computed with
the iterative algorithm proposed in [21] and based on the EH
model in [18].

In Fig. 5, we plot the average harvested powers Φ(p∗x)
for different values of Px. First, we observe that for each
considered WPT setup, the average harvested power Φ(·) is
bounded above, since for the EH model in (1), for sufficiently
large values of Px, all rectifiers of the EH node are driven into
saturation. Furthermore, the saturation level of the harvested
power is proportional to the number of rectennas employed at
the EH node. As expected, the MIMO WPT system achieves
a superior performance compared to the SIMO and MISO
WPT systems, which, in turn, outperform the SISO WPT
system significantly. Interestingly, the MISO WPT system can
harvest more power than the SIMO WPT system if the transmit
power budget at the TX is low, whereas, for large values of
Px, the single rectenna of the MISO WPT system is driven
into saturation and, thus, more power can be harvested by
the SIMO WPT system. Furthermore, we observe that for
MIMO WPT systems, the proposed optimal transmit strategy,
which employs two beamforming vectors, outperforms Base-
line Schemes 1, 2, and 3, which utilize a single beamforming
vector. This improvement is achieved at the expense of a
higher computational complexity. Moreover, we observe that
Baseline Scheme 2, which is based on the optimal beamform-
ing vector obtained by Algorithm 2, outperforms Baseline
Schemes 1 and 3, which employ the energy beamforming
scheme in [6] and the iterative algorithm in [21], respectively.
We note that the authors in [21] exploited the EH model
derived in [18] and the breakdown effect of the rectifying
diode is not taken into account in their iterative algorithm.

We observe that although the computational complexity of
the proposed suboptimal scheme for obtaining the MIMO
WPT beamforming vectors is significantly lower than that
of the optimal scheme, the performances attained by both
schemes are practically identical. Therefore, in the next
section, to keep the computational complexity low, we adopt
the proposed suboptimal scheme to evaluate the performance
of multi-user MIMO WPT systems. Furthermore, since the
analysis in [21] is limited to single-user MIMO WPT systems,
we compare our schemes with Baseline Schemes 1 and 2 in
the following sections.

C. Multi-User WPT Systems

In this section, we consider multi-user MIMO WPT sys-
tems, where the EH nodes are equipped with NE

m = 2,
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TABLE II

SIMULATION PARAMETERS

Fig. 6. Average harvested power Φ(p∗x) for different numbers of transmit antennas NT and EH nodes M .

m ∈ {1, 2, . . . ,M}, rectennas. In Fig. 6(a) and 6(b), we show
the average harvested power for different numbers of transmit
antennas NT and EH nodes M , respectively. For each system
setup, we compare the performance of the proposed transmit
strategy with Baseline Scheme 1 and Baseline Scheme 2. The
results in Fig. 6 are obtained assuming a transmit power budget
of Px = 15 W, equal weights for all EH nodes, i.e., ξm = 1

M ,
and equal distances of dm = 10 m,m = {1, 2, . . . ,M},
between the TX and EH nodes. We observe that higher values
of NT and M yield larger average harvested powers Φ.
Furthermore, we note that, similar to the single-user case, the
proposed transmit strategy yields a better performance than
the baseline schemes. Moreover, for SIMO WPT systems,
i.e., for NT = 1, the transmit strategies for Baseline Scheme
1 and Baseline Scheme 2 are identical and depend only
on the power budget Px. In Fig. 6(a), we observe that the
harvested power depends practically linearly on the number
of EH nodes. Although this result is relatively straightforward
if the EH nodes are driven into saturation, see Fig. 5, Fig. 6(a)
suggests that the linear growth of Φ(·) as M increases also
holds when the rectifiers are not saturated. On the contrary,
in Fig. 6(b), we observe that for a large number of transmit
antennas, the average harvested power saturates since for the
EH model in (1), the harvested power is bounded above.
In fact, a larger number of transmit antennas NT enables a
more efficient exploitation of the transmit power budget, which
yields a higher received power at the EH nodes. Furthermore,
for larger M , the harvested power is distributed among a
larger number of EH nodes and, thus, the number of transmit
antennas needed to drive the rectennas into saturation, grows
with M . We observe that for small numbers of the rectennas
at the EH nodes, i.e., for M = 1 and M = 2, the saturation
level of the average harvested power is nearly identical for

the proposed scheme and Baseline Scheme 2, whereas, for
Baseline Scheme 1, this saturation level is significantly lower.
In fact, for massive MIMO systems, where the number of
transmit antennas is much larger than the number of rectennas,
the channel vectors gm

p are practically orthogonal and, hence,
the transmit strategy of Baseline Scheme 1 favors the rectenna
with the best channel conditions while the powers transferred
to the other rectennas are significantly lower [6], which may
not be optimum in case of rectenna saturation.

Finally, in Fig. 7, we study the influence of weights ξm,
m ∈ {1, 2}, for M = 2 EH nodes on the powers har-
vested by the individual EH nodes. For the results in Fig. 7,
by varying the weights ξm, we determine the optimal transmit
strategies that maximize the corresponding weighted sum of
the average powers harvested at the EH nodes. Then, for the
optimal pdfs p∗x(x), we evaluate and plot the average harvested
powers at the individual EH nodes, Ex{ψm(x)},m = {1, 2},
respectively. For comparison, we also show the average har-
vested powers obtained with Baseline Scheme 1 and Baseline
Scheme 2, respectively. In Fig. 7(a), we consider a low
transmit power regime characterized by a power budget of
Px = 10 W, whereas for the results in Fig. 7(b), we assume a
high transmit power regime with Px = 30 W. The distances
between the EH nodes and the TX are equal to d1 = 10 m
and d2 = 25 m, respectively. In Fig. 7, we observe that higher
values of NT and Px yield larger average harvested powers
at both EH nodes. Furthermore, as expected, the proposed
scheme yields a better performance compared to Baseline
Scheme 1 and Baseline Scheme 2. For both transmit power
regimes, we observe that for SIMO WPT, i.e., NT = 1,
the performances obtained with both baseline schemes are
identical and do not depend on the adopted weights ξ1 and
ξ2. In fact, in this case, the transmit strategies of the baseline
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Fig. 7. Harvested power regions of MIMO WPT system with M = 2 EH nodes equipped with NE
m = 2, m = {1, 2}, rectennas for different numbers of

transmit antennas NT.

schemes are identical and depend on the power budget Px

only. Moreover, in the high transmit power regime, we observe
that the performance of Baseline Scheme 2 also does not
depend on ξm,m = {1, 2}, for large numbers of transmit
antennas, i.e., NT = {3, 4}, since, for large NT, EH node 1
is driven into saturation anyways. However, for the other
system setups, the choice of the weights ξm,m ∈ {1, 2},
enables a trade-off between the powers harvested at the EH
nodes, which is characterized by a convex harvested power
region. Furthermore, by increasing weight ξm, more power
is harvested at EH node m at the expense of a reduction of
the power harvested by the other node. Thus, by choosing
the user weights, the TX can control the distribution of the
harvested power among the users. In particular, for ξ1 = 1 (and
ξ2 = 0), the TX maximizes the average harvested power at EH
node 1 and neglects EH node 2, which may yield a substantial
decrease of the power at EH node 2. In the high transmit
power regime, EH node 1 is driven into saturation for NT =
{3, 4}. In this case, by decreasing ξ1 (and increasing ξ2),
it is possible to significantly increase the power harvested
by EH node 2 without a substantial reduction of the power
harvested by EH node 1.

VI. CONCLUSION

In this paper, we considered multi-user MIMO WPT sys-
tems with multiple EH nodes employing non-linear rectennas.
Based on a set of assumptions, which are satisfied for practical
EH circuits, we specified a general EH model. Then, we pro-
posed an optimal transmit strategy that maximizes a weighted
sum of the powers harvested at the EH nodes subject to a
constraint on the power budget of the TX. For MISO WPT,
we showed that transmission of scalar symbols with discrete
random magnitudes, whose pdf has at most two mass points,
via MRT beamforming is optimal. Next, for SIMO WPT,
we proved that the optimal transmit symbol magnitude also
has a discrete pdf with no more than two mass points. Then,
for MIMO WPT, we showed that the optimal transmit strategy

employs a scalar unit norm symbol and at most two beamform-
ing vectors. In order to obtain these vectors, we formulated a
non-convex optimization problem and presented optimal and
suboptimal solutions. Our simulation results revealed that the
proposed optimal and suboptimal schemes for MIMO WPT
systems yield practically identical performances. Furthermore,
we observed that the proposed MIMO WPT design achieves
substantial performance gains compared to baseline schemes
based on a linear EH model and a single beamforming vector.
Moreover, for multi-user MIMO WPT systems, we showed
that the harvested power saturates for large numbers of TX
antennas. We also observed a trade-off between the powers
harvested at individual EH nodes, which was characterized by
a convex harvested power region.

Finally, the extension of the optimal MIMO WPT strategies
presented in this paper to take into account non-idealities
of practical communication systems, e.g., imperfect channel
estimation [17], hardware impairments [16], [24], and peak
power limitations at the TX [23], [24], is an interesting
direction for future research.

APPENDIX A
PROOF OF LEMMA 1

In the following, we prove Lemma 1. First, we note that
since ν∗2 is the maximizer of the slope function σ(·, ·; f) for
ν1 = ν∗1 , then we have

f(ν∗2 ) − f(ν∗1 )
ν∗2 − ν∗1

≥ f(ν) − f(ν∗1 )
ν − ν∗1

, ∀ν ≥ ν ≥ ν∗1 . (22)

Then, since ν∗1 is the minimizer of σ(·, ·; f) for ν2 = ν∗2 ,
we have

f(ν∗2 ) − f(ν∗1 )
ν∗2 − ν∗1

≤ f(ν∗2 ) − f(ν)
ν∗2 − ν

, ∀ν ≤ ν ⇐⇒ (23)

f(ν∗1 )ν∗2 − f(ν)(ν∗2 − ν∗1 ) ≥ f(ν∗2 )(ν∗1 − ν)
+ f(ν∗1 )ν, ∀ν ≤ ν. (24)
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Next, we subtract f(ν∗1 )ν∗1 from both sides of (24). This allows
us to rewrite both (22) and (24) as follows:

f(ν∗1 ) − f(ν) ≥ f(ν∗2 ) − f(ν∗1 )
ν∗2 − ν∗1

(ν∗1 − ν), (25)

respectively, which, thus, holds ∀ν ∈ R. Let us define linear
function g(ν) = f(ν∗1 )+ f(ν∗

2 )−f(ν∗
1 )

ν∗
2−ν∗

1
(ν−ν∗1 ). Since, from (25),

g(ν) ≥ f(ν), ∀ν ∈ R, then Eν{f(ν)} ≤ Eν{g(ν)} = g
(
ν
)

=
f(ν∗1 ) + α

(
f(ν∗2 ) − f(ν∗1 )

)
, where α = ν−ν∗

1
ν∗
2−ν∗

1
. Finally, with

α = 1−β, we have Eν{f(ν)} ≤ βf(ν∗1 )+(1−β)f(ν∗2), where
the inequality holds with equality if the pdf of ν is given by
p∗ν(ν) = βδ(ν − ν∗1 ) + (1 − β)δ(ν − ν∗2 ). This concludes the
proof.

APPENDIX B
PROOF OF COROLLARY 1

To prove this corollary, let us define a linear function g(ν) =
f �(ν)(ν − ν) + f(ν). We note that due to (7), g(ν) ≥ f(ν)
∀ν ∈ R. Thus, Eν{f(ν)} ≤ Eν{g(ν)} = g

(
ν
)
, where the

equality holds due to the linearity of g(ν). Hence, we conclude
that the expectation of f(·) is upper-bounded by Eν{f(ν)} ≤
f(ν), where the inequality holds with equality for pdf pν(ν) =
δ(ν − ν). This concludes the proof.

APPENDIX C
PROOF OF COROLLARY 2

First, we note that the objective function in optimization
problem (4) is monotonically non-decreasing, whereas the fea-
sible set of the problem is defined by inequality Eν{ν} ≤ Aν .
Hence, (4) can be equivalently rewritten as follows [29]:

maximize
pν

Eν{f(ν)} subject to Eν{ν} = Aν . (26)

Therefore, if condition (7) holds for function f(ν) and
ν = Aν , the objective function in (26) is upper-bounded by
Eν{f(ν)} ≤ f(Aν), see Corollary 1, where the inequality
holds with equality if pν(ν) = δ(ν −Aν).

Let us now consider the case, where condition (7) does not
hold for f(ν) and ν = Aν . In this case, the expectation of f(ν)
is upper-bounded by (6), see Lemma 1, where the inequality
holds with equality if the pdf of random variable ν is given
by p∗ν(ν) = βδ(ν − ν∗1 ) + (1 − β)δ(ν − ν∗2 ) with ν∗1 , ν∗2 , and
β defined as in Lemma 1. This concludes the proof.

APPENDIX D
PROOF OF PROPOSITION 1

We solve optimization problem (2) for a single-user MISO
WPT system, i.e., M = NE

M = 1. First, let us consider a distri-
bution of the transmit symbols x which has a point of increase
at x̃0. For this distribution, a larger value of the input power
at the EH node and, thus, an equal or larger value of Φ(·) can
be attained by removing the mass point x̃0 and increasing
the probability of symbol x0 = �x̃0�2

gH

	g	2
exp(jθs) by

the probability of symbol x̃0 of the former distribution, see
Assumptions 3 [6]. We note that this transformation preserves
the validity of the distribution, i.e.,

∫
px(x)dx = 1, and, since

the transmit powers for the two symbols are identical, i.e.,
�x̃0�2

2 = �x0�2
2, the new distribution does not affect the power

budget of the TX.
Therefore, for the solution of (2), transmit vector x =

wrs exp(jθs) is optimal, where w = gH

	g	2
is the MRT

beamformer and rs = |s| and θs are the magnitude and
the arbitrary phase of random scalar symbol s, respectively.
We denote the pdf of the transmit power values ν = r2s ,
ν ∈ [0,+∞), by pν(ν). Then, the utility function in (3) can
be rewritten as a function of pdf pν(ν) as follows:

Φ =
∫

x

px(x)φ(|gx|2)dx =
∫

rs

prs(rs)φ(�g�2
2 r

2
s)drs

=
∫

ν

pν(ν)Φ(ν)dν = Eν{Φ(ν)}. (27)

Hence, problem (2) can be equivalently rewritten as follows:

maximize
pν

Eν{Φ(ν)} subject to Eν{ν} ≤ Px. (28)

Since optimization problem (28) is in the form of auxiliary
problem (4), we obtain the solution by applying Corollary 2.
First, the optimal pdf is given by p∗ν(ν) = δ(ν − Px) if

Φ�(Px)(Px − ν) ≤ Φ(Px) − Φ(ν), ∀ν ∈ R+. (29)

We note that condition (29) is equivalent to (8). Furthermore,
since Frs(rs) = Fν(r2s), where Frs(rs) and Fν(ν) are the
cumulative density functions of rs and ν, respectively, the
optimal pdf of rs is given by p∗rs

(rs) = δ(rs −
√
Px).

If (29) does not hold, according to Corollary 2, the optimal
solution of (28) is given by p∗ν(ν) = (1−β)δ(ν−ν∗1)+βδ(ν−
ν∗2 ), where ν∗1 and ν∗2 are given by (9) and (10), respectively.
Finally, since Frs(rs) = Fν(r2s), the equivalent optimal pdf of
rs is given by p∗rs

= (1 − β)δ(rs − √
ν∗1 ) + βδ(rs − √

ν∗2 ).
This concludes the proof.

APPENDIX E
PROOF OF PROPOSITION 2

In order to prove Proposition 2, we note that as a sum of
non-decreasing functions, function Φ(·) is also monotonically
non-decreasing. Furthermore, the objective function can be
equivalently rewritten as follows:

Φ(prx) =
∫

rx

prx(rx)Φ(r2x)drx

=
∫

ν

pν(ν)Φ(ν)dν = Eν{Φ(ν)}, (30)

where pν(ν) is the pdf of the transmit power ν = r2x.
Hence, for the considered SIMO WPT system, optimization

problem (2) can be equivalently reformulated as follows:

maximize
pν

Eν{Φ(ν)} subject to Eν{ν} ≤ Px. (31)

Since optimization problem (31) is in the form of aux-
iliary problem (4), the application of Corollary 2 yields
Proposition 2. This concludes the proof.
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APPENDIX F
PROOF OF COROLLARY 4

For the considered SIMO WPT systems with two rectennas,
Φ(r2x) =

∑2
p=1 φ(r2x|gp|2). Hence, the function Φ(ν) is

monotonic non-decreasing and convex in the intervals [0, ρmin),
[ρmin, ρmax), and [ρmax,∞), respectively, and bounded Φ(ν) ∈
[0,Φmax

r ], where Φmax
r = Φ(ρmax) = 2φ(A2

s). Therefore,
if affordable by the power budget constraint, i.e., Px ≥ ρmax,
the optimal pdf is given by p∗r(r) = δ(r −√

ρmax).
From the condition in Assumption 5, we obtain the follow-

ing inequality:

Φ(ρmin)
ρmin

=
φ(A2

s) + φ(A2
sρmin/ρmax)

ν1

≥ φ(A2
s) + φ(A2

s)(ρmin/ρmax)2

ρmin

=
φ(A2

s)
ρmax

ρ2
max + ν2

1

ρminρmax
≥ 2φ(A2

s)
ρmax

=
Φ(ρmax)
ρmax

> 0.

(32)

Since function Φ(·) is convex in the intervals [0, ρmin),
[ρmin, ρmax) and Φ(ρmin)

ρmin
≥ Φ(ρmax)

ρmax
, the solution of the optimiza-

tion problem in Proposition 2 is given by ν∗1 = 0 and ν∗2 =
ρmin if Px < ρmin. Finally, we note that from (32), we have
Φ(ρmax)

ρmax
≥ Φ(ρmax)−Φ(ρmin)

ρmax−ρmin
and, hence, if Px ∈ [ρmin, ρmax),

ν∗1 = ρmin and ν∗2 = ρmax. This concludes the proof.

APPENDIX G
PROOF OF PROPOSITION 3

First, we note that for any arbitrary transmit symbol x̃, there
is a symbol x̂ given by

x̂ = argmax
x

Ψ(x) subject to �x�2
2 = �x̃�2

2 , (33)

which has the same transmit power and yields a higher or
equal value of Ψ(x). Hence, for any arbitrary distribution of
transmit symbols with a point of increase x̃, a larger value of
Ψ(x) can be obtained by removing this point and increasing
the probability of x̂ by the corresponding value.

Let us introduce now a function Φ(ν) that returns the largest
possible value of Ψ(x) if a symbol with power ν was transmit-
ted. This function is given by (14). We note that function Φ(·)
is monotonically non-decreasing, see Assumption 3. Then, the
solution of (2) can be obtained by determining first the solution
p∗ν(ν) of the following optimization problem:

maximize
pν(ν)

Eν{Φ(ν)} subject to Eν{ν} ≤ Px. (34)

Since (34) is in the form of (4), there exists an optimal discrete
pdf p∗ν(ν) consisting of at most two mass points, ν∗1 and ν∗2 ,
see Corollary 2. Hence, the optimal symbol vector x can be
decomposed as x = ws with unit-norm symbols s and discrete
random beamforming vector w, whose pdf consists of at most
two mass points evaluated as

w∗
n = argmax

w | 	w	2
2=ν∗

n

Ψ(w), n ∈ {1, 2}, (35)

with probabilities p∗w(w∗
n) = p∗ν(ν∗n), n ∈ {1, 2}, respectively.

This concludes the proof.
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