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SISO Decoding of Z4 Linear Kerdock and
Preparata Codes

Aleksandar Minja, Member, IEEE, and Vojin Šenk, Member, IEEE

Abstract—Some nonlinear codes, such as Kerdock and
Preparata codes, can be represented as binary images under
the Gray map of linear codes over rings. This paper introduces
MAP decoding of Kerdock and Preparata codes by working with
their quaternary representation (linear codes over Z4) with the
complexity of O(𝑁2 log2 𝑁), where N is the code length in Z4.
A sub-optimal bitwise APP decoder with good error-correcting
performance and complexity of O(𝑁 log2 𝑁) that is constructed
using the decoder lifting technique is also introduced. This APP
decoder extends upon the original lifting decoder by working
with likelihoods instead of hard decisions and is not limited to
Kerdock and Preparata code families. Simulations show that our
novel decoders significantly outperform several popular decoders
in terms of error rate.

Index Terms—Codes over rings, Kerdock codes, MAP decod-
ing, Preparata codes, Quaternary cyclic codes.

I. INTRODUCTION

Context and motivation. It was shown in [1] that some
families of nonlinear binary codes with good properties can
be represented as the binary image under the Gray map of
linear codes over Z4 (the ring of integers modulo 4). These
families include the Kerdock [2], Preparata [3], Goethals
[4, 5] and Delsarte-Goethals [6] codes. It is well known that
the quaternary Nordstrom-Robinson code [7] (also known as
the “octacode” [8], which is used when the Leech lattice is
constructed from eight copies of the face-centered cubic lattice
[1]) is a self-dual code of length 8 and represents the initial
member of both Kerdock and Preparata families [1].

The decoding of the nonlinear binary codes (and their Z4
linear counterparts) was an important area of research for
years, and many hard and soft decision decoding algorithms
were proposed. Almost all soft-decision decoding algorithms
are based on an exhaustive search approach with respect to
the Euclidean distance or the correlation between the received
channel sequence and the possible transmitted codeword.
With the exception of the Nordstrom-Robinson, there is no
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low-complexity soft-input soft-output (SISO) decoder for the
mentioned families of nonlinear binary codes. We believe this
to be an important obstacle for their adoption in modern coding
systems.

The primary purpose of this paper is to fill the void and
provide the necessary tools for using these codes in modern
coding systems. In this paper, we focus only on Kerdock
and Preparata families, but similar techniques as the ones
considered here can be used to design decoding algorithms
for other related families.

Use of nonlinear codes and codes over rings in commu-
nication systems. There is widespread use of the Nordstrom-
Robinson code in digital systems [9, 10]. A turbo product cod-
ing scheme with Nordstrom-Robinson as a component code
was presented in [11, 12]. Kerdock codes for limited feed-
back MIMO systems were presented in [13, 14]. Space-time
codes for standard phase shift keying (PSK) and quadrature
amplitude modulation (QAM) signal constellations based on
Kerdock and Delsarte-Goethals codes were presented in [15].
Quaternary constant-amplitude codes (codes that reduce the
peak-to-average power ratio) for OFDM and MC-CDMA were
presented in [16, 17]. Kerdock coded MC-CDMA system with
non-linear amplifiers was presented in [18]. More recently,
nonlinear codes are often used as components of product codes
in order to achieve better reliability and security [19, 20].
Codes over rings have also found application in coding for
the phase noise channel [21] and network-coded bidirectional
relaying systems [22].

Brief overview of existing decoding algorithms. Com-
mon approaches for designing decoders for codes over rings
include [23] the algebraic (syndrome) decoding of linear codes
[24], the lifting decoder technique [25, 26], the partition-
ing of a code into the subcode and its cosets (a.k.a. the
coset decomposition approach), introduced by Conway and
Sloane in [27] (which works for both linear and nonlinear
codes), and the permutation decoding [23, 28, 29]. Most of
the soft decision decoders employ some form of the coset
decomposition approach. E.g., for the Reed-Muller (RM) [2]
subcode, we can use the fast Hadamard transform (FHT),
which can significantly reduce the complexity of the decoder.
A low complexity maximum likelihood (ML) decoding of
Nordstrom-Robinson code was presented in [30]. An efficient
implementation of this algorithm was presented in [31] and
an improvement was proposed in [32]. A similar decoding
algorithm of the same order of complexity was presented for
Kerdock codes in [1] and [33]. A product code representation
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of nonlinear codes, using a high-complexity list-based ML
decoding, along with a low-complexity bounded distance de-
coding algorithm based on coset decomposition, was presented
in [19]. It was noted in [19] that effective decoding of
Kerdock codes based on the proposed representation is left
as an open problem. The standard way of implementing the
maximum a posteriori (MAP) decoding of a linear code is via
the Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm [34], which
uses a trellis representation of the code. The trellis complexity
of Kerdock and Delsarte-Goethals codes was presented in [35],
where a trellis representation consisting of parallel sections,
each corresponding to a different coset of the RM(1, 𝑚)1
subcode was considered. As the complexity of the BCJR
algorithm for the RM(1, 𝑚) code is O(𝑁2) (where 𝑁 is the
length of the code) [36], the complexity of the BCJR decoding
of the corresponding Kerdock code operating on this trellis
would be O(𝑁3)2. The trellis complexity of the Preparata and
Goethals codes was investigated in [37]. A twisted squaring
trellis construction based on the extended primitive double
error correcting BCH code and its cosets was proposed in [37].
This construction is an extension of the Nordstrom-Robinson
representation presented in [38]. A trellis representation of
the Nordstrom-Robinson code based on the generalized array
code was presented in [39]. A decoding algorithm based on
this representation was investigated in [40]. Since trellis based
decoding of Nordstrom-Robinson code is too complex, a new
SISO decoding was proposed [9, 10]. The lifting decoder
technique for decoding of free linear codes over rings was
introduced in [25] and extended to arbitrary linear codes
over rings in [26]. Chase decoding of linear Z4 codes based
on the lifting decoder technique was presented in [41, 42].
Two algorithms for decoding of RM-like codes over rings of
characteristic 2, based on coset decomposition were proposed
in [16]. Though these algorithms primarily use hard-decision
decoding, there is an extension to the soft-input case as well.
Sphere decoding of Kerdock and Delsarte-Goethals codes was
presented in [15]. Several algebraic decoders of codes over
rings were presented in [1, 43, 44, 45, 46].

Contribution. In this paper, we present symbol-wise MAP
decoding algorithms for Kerdock and Preparata codes with
complexity O(𝑁2 log2 𝑁) (where 𝑁 is the code length in Z4).
This is the same order of complexity as the ML decoding
algorithms of Kerdock codes, presented in [1, 30, 33]. To
the best of our knowledge, no MAP decoding algorithms
were presented for these codes. We further present a sub-
optimal bitwise APP decoding algorithm based on the lifting
decoder technique [25] that performs within 1.5𝑑𝐵 of the
optimum and has the complexity of O(𝑁 log2 𝑁). This sub-
optimal decoder can be applied to any linear Z4 code, but
the decoding complexity depends on the encoder and decoder
complexity of its associated binary code. Although there are
several soft input decoders, these are the first probabilistic
SISO decoders for these code families (with the exception of

1Where RM(𝑟 , 𝑚) represents the 𝑟-order RM code of length 2𝑚 [24].
2It was noted in [35] that the Viterbi decoding on the biproper trellis would

improve run-time performance by up to 10%, compared with the decoding on
the trellis consisting of parallel cosets of the RM(1, 𝑚) code.

the BCJR decoder, whose complexity was noted to be too
high, and the Nordstrom-Robinson code) that we know of.
We note that a low-complexity bit-wise SISO decoder for
the Nordstrom-Robinson code, based on the binary nonlinear
representation, was investigated in [9, 10]. As the quaternary
Nordstrom-Robinson code belongs to both the Kerdock and
the Preparata families, it can efficiently be decoded using any
of the novel MAP decoders or the lifting decoder presented
in this paper. This is demonstrated in Section V. The novel
decoding algorithms are compared to the original lifting de-
coder [25] and the chase decoder [41, 42], and it is shown that
our decoders significantly outperform these algorithms for the
case of both Kerdock and Preparata codes.

Paper organization. The remainder of this paper is com-
posed of five sections. Section II introduces the necessary
definitions and presents the system model analyzed in this
paper. Section III introduces MAP decoding of Kerdock and
Preparata codes. Section IV presents a fast, sub-optimal,
soft input, soft output decoding algorithm for Kerdock and
Preparata codes. Section V presents simulation results, and
Section VI concludes the paper.

Notation. Throughout this paper, bold letters are used to
represent module elements3 and the standard function notation
is used to represent polynomials. The 𝑖-th component (term) of
an element 𝒙 (polynomial 𝑥(𝑍), where 𝑍 is a dummy variable),
is denoted 𝑥𝑖 . Given two elements, 𝒙 and 𝒚 of length 𝑁 ,
𝒙 ⊙ 𝒚 = [𝑥0𝑦0, 𝑥1𝑦1, . . . , 𝑥𝑁−1𝑦𝑁−1] represents the Hadamard
(point-wise) product, and ⟨𝒙; 𝒚⟩ represents the scalar product.
Upper case letters represent matrices, where 𝒙𝑛 denotes the
𝑛-th row of some matrix 𝑋 . 𝑃[𝑥] represents the probability
of 𝑥 and 𝑃[𝑥 |𝑦] represents the conditional probability of 𝑥
given 𝑦. For convenience, 𝛿𝑎,𝑏 represents the Kronecker delta,
defined as 𝛿𝑎,𝑏 = 1 if 𝑎 = 𝑏 and 𝛿𝑎,𝑏 = 0 if 𝑎 ≠ 𝑏. Standard
blackboard bold letters are used for sets of numbers (and
the corresponding rings/fields over them), i.e. Z is the set of
integers, R is the set of real numbers and C is the set of
complex numbers. Z𝑛 = Z/𝑛Z represents the set of integers
modulo 𝑛. K𝑁 represents the set of all 𝑁-tuples of a set K.
Cursive uppercase letters represent codes and other sets. Other
notation is introduced as it is used.

II. SYSTEM MODEL

Let operators + and · represent addition and multiplication
in Z4, while ⊕ and ⊗ represent addition and multiplication
in Z2. Note that Z2 ⊂ Z4, so the elements {0, 1} ∈ Z2 can be
regarded as the same elements in Z4. Furthermore, any element
𝛼 ∈ Z4 has a dyadic expansion (representation)

𝛼 = 𝑎 + 2 · 𝑏,with 𝑎, 𝑏 ∈ Z2. (1)

We will often write the dyadic expansion of 𝛼 as a tuple
(𝑎, 𝑏), where identity 2𝑎 = 2𝛼 follows from (1). The dyadic
expansion can naturally be extended to module elements and
matrices over Z4. For completeness, we reproduce the Lemma
1 from [25] for the case of Z4 = Z22 , [25, Lemma 1]: Let 𝑚, 𝑛

3As every vector space is by definition a free module, we will also refer
to vector spaces as modules and to vectors as elements.
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be natural numbers and let 𝒗 ∈ Z𝑚2 , 𝒘 ∈ Z𝑛2 and 𝐺 ∈ Z𝑚×𝑛2 .
Then

2 · (𝒗 ⊗ 𝐺 ⊕ 𝒘) = 2 · (𝒗 · 𝐺 + 𝒘).

This identity will be used later on.
An [𝑁, 𝐾 = 𝑘1 + 𝑘2] linear code of type 4𝑘12𝑘2 over Z4 is a

submodule of Z𝑁4 , defined by a generator matrix 𝐺. If 𝑘2 = 0,
the corresponding code is a free submodule and the generator
matrix can be written in the systematic form - consisting of
the identity and the parity part. Both Kerdock and Preparata
codes can be regarded as free submodules of Z𝑁4 [1].

A. Short Review of Kerdock and Preparata Codes

Nonlinear binary Kerdock code of length 2𝑚 (for some even
𝑚, 𝑚 ≥ 4) is constructed as a union of the RM(1, 𝑚) code
and its cosets in the RM(2, 𝑚) [24], i.e. every Kerdock code
is a supercode of the RM(1, 𝑚) code and a subcode of the
RM(2, 𝑚) code [2]. Similarly, the nonlinear binary Preparata
code of length 2𝑚 (for some even 𝑚, 𝑚 ≥ 4) can be constructed
as a union of the RM(𝑚 − 3, 𝑚) code and its cosets in the
RM(𝑚 − 2, 𝑚) [3, 24]. In the case of 𝑚 = 4, we have the
Nordstrom-Robinson code. It was shown in [1] that these
nonlinear codes can be represented as the binary images under
the Gray map of cyclic codes over the Z4 ring.

When considering cyclic codes over fields it is common to
talk about extensions of base fields. A similar approach is used
for rings [1]. We define a Galois ring as an extension of the
base ring Z4. Let ℎ(𝑍) be an irreducible monic polynomial
of order 𝑚 over Z4 (where 𝑍 is the dummy variable), then
the Galois ring 𝐺𝑅 is isomorphic to the set of all polynomials
modulo ℎ(𝑍), Z4 [𝑍]/ℎ(𝑍). Every 𝐺𝑅 has a primitive element
𝜉 of order 𝑁 − 1, where 𝑁 = 2𝑚. It is clear that 𝜉 does not
generate the entire ring, but every element 𝛼 ∈ 𝐺𝑅 has a
dyadic representation [1]

𝛼 = 𝜉𝑟 + 2𝜉𝑠 , 𝑟, 𝑠 ∈ Δ = {−∞, 0, 1, . . . , 𝑁 − 2}, (2)

with a standard convention, 𝜉−∞ = 0, and 𝜉−∞𝜉𝑟 = 0, ∀𝑟 ∈ Δ.
The generator matrix of the extended Kerdock code
K[2𝑚, 𝑚 + 1], is defined as [1],

𝐺K =

[
1 1 1 1 · · · 1
0 1 𝜉 𝜉2 · · · 𝜉𝑁−2

]
𝑃𝜋 , (3)

where 𝑃𝜋 is an 𝑁 × 𝑁 column permutation matrix. Let
(𝐺K ,0, 𝐺K ,1) represent the dyadic expansion of the generator
matrix 𝐺K . The binary linear code defined by the generator
matrix 𝐺K ,0 is called the associated binary code [47]. Matrix
𝐺K ,0 can be obtained from 𝐺K by replacing 𝜉𝑛, 𝑛 ∈ Δ

with 𝜉
𝑛
, 𝑛 ∈ Δ, where 𝜉 is a primitive element of the

irreducible monic polynomial ℎ(𝑍) ∈ Z2 [𝑍], chosen so that
ℎ(𝑍) ≡ ℎ(𝑍) (mod 2) [1, 47]. Since 𝜉 is a primitive root of
order 𝑁 − 1, the set {𝜉𝑛 | 𝑛 ∈ Δ} corresponds to the set of
all 𝑚-dimensional module elements over Z2, which implies
that 𝐺K ,0 is in fact the generator matrix of the RM(1, 𝑚)
code. For a detailed proof see [47, Corollary 8.4]. Column
permutation matrix 𝑃𝜋 is chosen so that the associated binary
code of the Kerdock code is the first order Reed-Muller code
RM(1, 𝑚) obtained from a Sylvester-type binary Hadamard

matrix [24]. This makes it possible to apply the fast Walsh-
Hadamard transform, and significantly reduce the complexity
of the decoding algorithm.

The extended Preparata code P[2𝑚, 2𝑚−𝑚−1], is the dual
of the extended Kerdock code, defined by the parity check
matrix 𝐻P = 𝐺K . We assume that the generator matrix 𝐺P
is given in a systematic form4 (this follows from the fact that
𝐺K can easily be reduced to a systematic form by only row
operations). It can easily be verified that the associated binary
code of the Preparata code is in fact the RM(𝑚 − 2, 𝑚) code
[47, Corollary 9.3]. Note that the encoding complexity of both
the Kerdock and Preparata code is O(𝑁 log2 𝑁). This is an
important fact that will be used later on.

B. Communication System and MAP Decoding

Let C be an arbitrary [𝑁, 𝐾] linear block code over some
ring K, and let all the codewords be equally likely. Given
a codeword 𝒄 ∈ C and a modulation mapping 𝜙(·), the
corresponding modulated codeword is 𝒙 = 𝜙(𝒄). The random
mapping Ω(·) represent a memoryless channel, defined by a
conditional probability

𝑃[𝒚 |𝒄] =
𝑁−1∏
𝑛=0

𝑃[𝑦𝑛 |𝑐𝑛], (4)

where 𝒚 = Ω(𝒙) is a specific channel output. For every
codeword symbol 𝑐 𝑗 , 𝑗 ∈ {0, 1, . . . 𝑁−1}, the goal of the MAP
decoder is to find 𝑃[𝑐 𝑗 = 𝛼 |𝒚] for every 𝛼 ∈ K and choose
the maximum one. Using Bayes’s rule and the definition of
the memoryless channel, we can write

𝑃[𝑐 𝑗 = 𝛼 |𝒚] =
∑︁
𝒃∈C

𝑃[𝒃 |𝒚]𝛿𝑏 𝑗 ,𝛼

=
∑︁
𝒃∈C

𝑃[𝒃]
𝑃[𝒚] 𝑃[𝒚 |𝒃]𝛿𝑏 𝑗 ,𝛼

=
1

|C|𝑃[𝒚]
∑︁
𝒃∈C

𝑁−1∏
𝑛=0

𝑃[𝑦𝑛 |𝑏𝑛]𝛿𝑏 𝑗 ,𝛼,

(5)

where |C| represents the size of the code C.
A MAP decoding rule for codes over finite fields using the

dual code was introduced in [48] and extended to codes over
rings in [49, 50]. Let the Fourier transform (F {·}) of a real
or complex-valued function 𝑓 (𝛼), 𝛼 ∈ K, be defined as

F { 𝑓 (𝛼)} =
∑︁
𝛼∈K

𝜔−𝛼𝛽 𝑓 (𝛼) = 𝐹 (𝛽), 𝛽 ∈ K, (6)

with
𝜔 = exp

{
2𝜋𝐼
|K|

}
, 𝐼 =

√
−1. (7)

Using the Poisson summation formula and the fact that the
Fourier transform of a product function is the product of the
corresponding individual Fourier transforms [50, 51], the MAP
decoding rule in (5), can be written as

𝑃[𝑐 𝑗 = 𝛼 |𝒚] =
1

|K|𝑁𝑃[𝒚]
∑︁
𝒃∈C⊥

𝑁−1∏
𝑛=0

F {𝑃[𝑦𝑛 |𝑏𝑛]}F {𝛿𝑏 𝑗 ,𝛼},

4By systematic form, we assume that a subset of columns of the generator
matrix form the identity matrix, while the remaining columns represent parity.
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where C⊥ is the dual code of C and |K|𝑁 = |C| · |C⊥ |. By
substituting eq. (6) for the Kronecker delta we get

𝑃[𝑐 𝑗 = 𝛼 |𝒚] = 𝜂
∑︁
𝒃∈C⊥

𝑁−1∏
𝑛=0

F {𝑃[𝑦𝑛 |𝑏𝑛]}
∑︁
𝛽∈K

𝜔−𝛼𝛽𝛿𝑏 𝑗 ,𝛽

= 𝜂
∑︁
𝛽∈K

𝜔−𝛼𝛽
∑︁
𝒃∈C⊥

𝑁−1∏
𝑛=0

F {𝑃[𝑦𝑛 |𝑏𝑛]}𝛿𝑏 𝑗 ,𝛽 ,
(8)

where 𝜂 = 1
|K |𝑁𝑃 [𝒚 ] . After substituting eq. (6) in (8) we have

𝑃[𝑐 𝑗 = 𝛼 |𝒚] =

𝜂
∑︁
𝛽∈K

𝜔−𝛼𝛽
∑︁
𝒃∈C⊥

[
𝑁−1∏
𝑛=0

∑︁
𝛾∈K

𝜔−𝛾𝑏𝑛𝑃[𝑦𝑛 |𝛾] · 𝛿𝑏 𝑗 ,𝛽

]
. (9)

By using the identity 𝛿𝑎,𝑏 = 1
|K |

∑
𝛾∈K 𝜔

𝛾 · (𝑎−𝑏) and a little
arithmetic, we get

𝑃[𝑐 𝑗 = 𝛼 |𝒚] =
𝜂

|K| 𝐴 𝑗 (𝛼), 𝛼 ∈ K (10)

where

𝐴 𝑗 (𝛼) =
∑︁
𝛽∈K

𝜔−𝛼𝛽
∑︁
𝒃∈C⊥

[
𝑁−1∏
𝑛=0

∑︁
𝛾∈K

𝜔−𝛾 (𝑏𝑛−𝛽𝛿 𝑗,𝑛 )𝑃[𝑦𝑛 |𝛾]
]
.

III. MAP DECODING ALGORITHM

Let S = R[𝑍]/⟨𝑍4 − 1⟩, be a set of all polynomials over R,
modulo 𝑍4 − 1, where 𝑍 is a dummy variable. Note that the
multiplicative group of monic monomials in S is equivalent
to the additive group of Z4. For convenience, we define a
mapping 𝜁 : Z4 → S, such that 𝜁 (𝛼) = 𝑍𝛼, where a
natural extension to elements and matrices is to apply 𝜁 (·)
componentwise. Given 𝑓 (𝑍) = ∑

𝛼∈Z4 𝑓𝛼𝑍
𝛼 ∈ S and 𝑍−𝛽 ∈ S,

𝛽 ∈ Z4, then

𝑓 (𝑍) · 𝑍−𝛽 =
∑︁
𝛼∈Z4

𝑓𝛼𝑍
𝛼−𝛽 =

∑︁
𝛼∈Z4

𝑓𝛼+𝛽𝑍
𝛼 ∈ S. (11)

Furthermore, let C′ ⊆ C be a linear [𝑁, 𝐾 − 1] subcode of
C, such that 1 ∉ C′, where 1 is the all-one element of length
𝑁 . We assume that all codewords 𝒄 ∈ C′ are enumerated, and
arranged in a matrix 𝐴, such that the 𝑘-th row of 𝐴 is equal
to the 𝑘-th codeword 𝒄𝑘 . Similar to denotations in [36], let
𝐷 = 𝜁 (𝐴) and 𝐷 = 𝜁 (−𝐴), be two 4𝐾−1 × 𝑁 matrices.

We again assume a codeword 𝒄 ∈ C is transmitted over
a memoryless channel, and 𝒚 is received. Following the
group algebra description of MAP decoding from [36], we
first compute the reliability element 𝒘 ∈ S𝑁 , where each
component is a log-likelihood polynomial, defined as

𝑤𝑛 (𝑍) =
∑︁
𝛼∈Z4

log 𝑃[𝑦𝑛 |𝛼]𝑍𝛼, 𝑛 = 0, . . . , 𝑁 − 1. (12)

We compute sums of logarithms of probabilities of receiving
the channel output 𝒚 conditioned on the sent codeword, as

𝒕⊤ = 𝐷𝒘⊤ ∈ S4𝐾−1
, (13)

where we use Proposition 2 from [36], which we summarize
here, [36, Proposition 2]: Given a reliability element 𝒘 and

a codeword 𝒄𝑘 ∈ C the following identity holds:

𝑡𝑘 (𝑍) = ⟨𝒘; 𝜁 (−𝒄𝑘)⟩

=
∑︁
𝛼∈Z4

𝑡𝑘,𝛼𝑍
𝛼 =

∑︁
𝛼∈Z4

𝑁−1∑︁
𝑛=0

log 𝑃[𝑦𝑛 |𝛼 + 𝑐𝑘,𝑛]𝑍𝛼

=
∑︁
𝛼∈Z4

log 𝑃[𝒚 |𝒄𝑘 + 𝛼1]𝑍𝛼, 𝒄𝑘 ∈ C.

(14)

Next, we recompute the sums of logarithms of probabilities
into products of probabilities, 𝒗 ∈ S4𝐾−1

, as follows

𝑣𝑘 (𝑍) =
∑︁
𝛼∈Z4

e𝑡𝑘,𝛼𝑍𝛼, 𝑘 = 0, . . . , 4𝐾−1 − 1. (15)

Finally, we compute soft decisions 𝒔⊤ = 𝐷⊤𝒗⊤ ∈ S𝑁 , where

𝑠𝑛 (𝑍) =
∑︁
𝛼∈Z4

𝑍𝛼
∑︁
𝒃∈C

𝑃[𝒚 |𝒃]𝛿𝑏 𝑗 ,𝛼, 𝑛 = 0, . . . , 𝑁 − 1. (16)

The MAP decision is by definition, 𝑐𝑛 = 𝛽, such that 𝑠𝑛,𝛽 =

max𝛼∈Z4 {𝑠𝑛,𝛼} (i.e. 𝛽 is the index of the largest real-valued
term in the polynomial 𝑠𝑛 (𝑍) ∈ S), for all 𝑛 = 0, . . . , 𝑁 − 1.
It is clear that the most computationally expansive steps are
multiplications with 𝐷 and 𝐷. In the following subsection,
we will show how this can be simplified in the case of the
Kerdock code. In the case of the Preparata code, we will use
the dual MAP decoding rule, given in (10).

Consider the codeword 𝒄 = 𝒖 · 𝐺 ∈ Z𝑁4 , where 𝐺 ∈ Z𝐾×𝑁4
is the generator matrix and 𝒖 ∈ Z𝐾4 is the corresponding
information sequence. Let (𝒖0, 𝒖1) and (𝐺0, 𝐺1) represent
the dyadic expansions of the information sequence and the
generator matrix, respectively. From the dyadic expansion of
the information sequence, it follows that

𝒄 = 𝒖 · 𝐺 = (𝒖0 + 2 · 𝒖1) · 𝐺 = 𝒖0 · 𝐺 + 2 · (𝒖1 ⊗ 𝐺0), (17)

where the last equality follows from Lemma 1 in [25]. It is
well known that in the case of the Kerdock and Preparata
codes, the 𝐺0 is the generator matrix of the corresponding
RM subcode [1].

A. MAP Decoding of Kerdock codes

Let 𝐺 be the Kerdock generator matrix, defined in (3). We
will define three auxiliary matrices, 𝐴0 ∈ Z4×𝑁 , 𝐴1 ∈ Z𝑁×𝑁
and 𝐴2 ∈ Z𝑁×𝑁 , together with their row sets (sets of row
elements), A0, A1 and A2. Let the rows of 𝐴0 be 𝛼1, 𝛼 ∈ Z4.
Let the rows of 𝐴1 be equal to 𝒊 ·𝐺, where 𝒊 ∈ Z𝐾2 is a binary
sequence of length 𝐾 , such that the first value is always zero.
Finally, let the rows of 𝐴2 be equal to 2· (𝒊⊗𝐺0), where 𝒊 is the
same as in the previous case. Note that 𝐴2 = 2 · 𝐴1 = 2 · 𝐻2𝑚 ,
where 𝐻2𝑚 is the binary Hadamard matrix, which follows from
the fact that the associated binary code of the Kerdock code
is the RM(1, 𝑚) code. We can now define the Kerdock code
as

K = {𝒂0 + 𝒂1 + 𝒂2 |𝒂0 ∈ A0, 𝒂
1 ∈ A1, 𝒂

2 ∈ A2}, (18)

while the linear subcode K ′ ⊆ K, that does not contain the
all-one codeword, can be represented as

K ′ = {𝒂1 + 𝒂2 |𝒂1 ∈ A1, 𝒂
2 ∈ A2}. (19)
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Algorithm 1 In-place Fast Walsh-Hadamard transform

Input: 𝒂,
Output: 𝒂,

1: for ℎ = 1; ℎ < 𝑁; ℎ← 2 · ℎ do
2: for 𝑖 = 0; 𝑖 < 𝑁; 𝑖 ← 𝑖 + 2 · ℎ do
3: for 𝑗 = 𝑖 to 𝑖 + ℎ do
4: 𝑥 ← 𝑎 𝑗 , 𝑦 ← 𝑎 𝑗+ℎ, {Save current values}
5: 𝑎 𝑗 ← 𝑥 + 𝑦, {Calculate new 𝑎 𝑗 value}
6: 𝑎 𝑗+ℎ ← 𝑥 + 𝑍2 · 𝑦, {Calculate new 𝑎 𝑗+ℎ value}
7: end for
8: end for
9: end for

Note that this representation is equivalent to the trace repre-
sentation of the Kerdock code, introduced in [1]. Let 𝐷1 =

𝜁 (𝐴1) and 𝐷2 = 𝜁 (𝐴2). Similarly, let 𝐷1 = 𝜁 (−𝐴1) and
𝐷2 = 𝜁 (−𝐴2) = 𝐷2. As any row of 𝐴 can be represented
as a sum of rows from 𝐴1 and 𝐴2, it follows that any row
𝒅𝑘 = 𝜁 (𝒄𝑘) of 𝐷 can be represented as 𝒅1

𝑛 ⊙ 𝒅2
𝑙 , where 𝒅1

𝑛 is
a row from 𝐷1 and 𝒅2

𝑙 is a row from 𝐷2.
Given the channel output 𝒚, we again start the decoding

process by computing 𝒘 ∈ S𝑁 using eq. (12). We note that

𝑡𝑘 (𝑍) = ⟨𝒘; 𝒅
1
𝑛 ⊙ 𝒅2

𝑙 ⟩ = ⟨𝒘 ⊙ 𝒅
1
𝑛; 𝒅2

𝑙 ⟩, (20)

where the last equality follows from the commutativity of
multiplication. Instead of applying eq. (13), we first define
a matrix 𝐵 ∈ S𝑁×𝑁 , with rows 𝒃𝑛 = 𝒘 ⊙ 𝒅1

𝑛, 𝑛 = 0, . . . , 𝑁 −1.
Note that every component of 𝐵 is equal to

𝑏𝑛,𝑙 (𝑍) =
∑︁
𝛼∈Z4

log 𝑃[𝒚𝒍 |𝑎1
𝑛,𝑙+𝛼]𝑍

𝛼, 𝑛, 𝑙 = 0, . . . , 𝑁−1. (21)

Next, we will compute the matrix of the sums of logarithms
of probabilities

𝑇 = 𝐵 · 𝐷T
2 . (22)

This multiplication can be efficiently implemented by ap-
plying a modified fast Walsh-Hadamard transform (FWHT),
presented in Algorithm 1, to every row of 𝐵, 𝒕𝑛 = FWHT(𝒃𝑛),
𝑛 = 0, . . . 𝑁 − 1. Note that every component of 𝑇 is equal to

𝑡𝑛,𝑙 (𝑍) =
∑︁
𝛼∈Z4

𝑍𝛼
𝑁−1∑︁
𝑗=0

log 𝑃[𝒚𝒍 |𝑎1
𝑛, 𝑗 + 𝑎2

𝑙, 𝑗 + 𝛼],

𝑛, 𝑙 = 0, . . . , 𝑁 − 1.

(23)

Let 𝑉 ∈ S𝑁×𝑁 be a matrix of products of probabilities, with
components

𝑣𝑛,𝑙 (𝑍) =
∑︁
𝛼∈Z4

𝑍𝛼 exp
{
𝑡𝑛,𝑙,𝛼

}
=

∑︁
𝛼∈Z4

𝑍𝛼
𝑁−1∏
𝑗=0

𝑃[𝒚𝒍 |𝑎1
𝑛, 𝑗 + 𝑎2

𝑙, 𝑗 + 𝛼]

=
∑︁
𝛼∈Z4

𝑃[𝒚𝒍 |𝒄𝑘 + 𝛼1]𝑍𝛼,

(24)

where 𝒄𝑘 = 𝒂1
𝑛 + 𝒂2

𝑙
and 𝑛, 𝑙 = 0, . . . , 𝑁 − 1.

Algorithm 2 MAP decoding of Kerdock codes

Input: 𝒚,
Output: 𝒔

1: Compute the reliability element 𝒘 using eq. (12).
2: for 𝑛 = 0; 𝑛 < 𝑁; 𝑛← 𝑛 + 1 do
3: 𝒕𝑛 ← FWHT(𝒘 ⊙ 𝒅

1
𝑛),

4: end for
5: for 𝑛 = 0; 𝑛 < 𝑁; 𝑛← 𝑛 + 1 do
6: {Compute element 𝒗𝑛 ∈ S𝑁 as follows}
7: for 𝑙 = 0; 𝑙 < 𝑁; 𝑙 ← 𝑙 + 1 do
8: 𝑣𝑛,𝑙 (𝑍) ←

∑
𝛼∈Z4 𝑍𝛼 exp{𝑡𝑛,𝑙,𝛼}

9: end for
10: end for
11: 𝒔← 0 {Initialize 𝒔 to the all-zero value}
12: for 𝑛 = 0; 𝑛 < 𝑁; 𝑛← 𝑛 + 1 do
13: 𝒔← 𝒔 + FWHT(𝒗𝑛) ⊙ 𝒅1

𝑛,
14: end for

Next, we compute 𝑄 = 𝑉 · 𝐷2 ∈ S𝑁×𝑁 , with

𝑞𝑛,𝑙 (𝑍) =
𝑁−1∑︁
𝑗=0

𝑍
𝑎2
𝑙, 𝑗 · 𝑣𝑛, 𝑗

=
∑︁
𝛼∈Z4

𝑍𝛼
𝑁−1∑︁
𝑗=0

𝑃[𝒚 |𝒄𝑘 + (𝛼 − 𝑎2
𝑙, 𝑗 )1] .

(25)

where 𝒄𝑘 = 𝒂1
𝑛 + 𝒂2

𝑗
, and 𝑛, 𝑙 = 0, . . . , 𝑁 − 1. This product can

also be efficiently implemented by applying FWHT transforms
to every row of 𝑉 . Finally, let the element of soft decisions
𝒔 ∈ S𝑁 be equal to

𝒔 =
𝑁−1∑︁
𝑗=0

𝒅1
𝑗 ⊙ 𝒒 𝑗 , (26)

with

𝑠𝑛 (𝑍) =
𝑁−1∑︁
𝑖=0

𝑍𝑎
2
𝑖,𝑛 · 𝑞𝑛,𝑙

=
∑︁
𝛼∈Z4

𝑁−1∑︁
𝑗=0

𝑁−1∑︁
𝑖=0

𝑃[𝒚 |𝒄𝑘 + (𝛼 − 𝑎2
𝑙, 𝑗 − 𝑎

1
𝑖,𝑛)1]

=
∑︁
𝛼∈Z4

𝑍𝛼
∑︁
𝒃∈C

𝑃[𝒚 |𝒃]𝛿𝑏 𝑗 ,𝛼, 𝑛 = 0, . . . , 𝑁 − 1.

(27)

This concludes the algorithm. We summarize the MAP decod-
ing of Kerdock codes in Algorithm 2.

Calculating 𝒔 and forming matrices 𝐵 and 𝑉 have com-
plexity O(𝑁2), while for computing the matrices 𝑇 and 𝑄,
we have 𝑁 uses of the FWHT transform, with complexity
O(𝑁 log2 𝑁), so the total complexity of this decoding al-
gorithm is O(𝑁2 log2 𝑁). A detailed complexity analysis of
Algorithm 2 is given in Table I. All operations are assumed
to be carried out over the polynomial ring S. As polynomials
in S can efficiently be implemented as floating-point arrays
of length 4, with multiplication implemented as circular con-
volution (with complexity 42O(1)) and addition implemented
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TABLE I
THE COMPUTATIONAL COST OF MAP DECODING OF KERDOCK CODES

Steps Short description Complexity
1. Compute 𝒘 O(𝑁 )

2. - 4. FWHT of 𝒘 ⊙ 𝒅
1
𝑛 𝑁O(𝑁 log2 𝑁 ) = O(𝑁2 log2 𝑁 )

5. - 10. Calculate matrix 𝑉 O(𝑁2 )
11. Initialize 𝒔 O(𝑁 )

12. - 14. Compute 𝑄 and 𝒔 𝑁O(𝑁 log2 𝑁 ) = O(𝑁2 log2 𝑁 )

as component-wise addition (with complexity 4O(1)), the
additional computational cost can be treated as a constant term.

B. MAP Decoding of Preparata codes

Consider a Preparata code with a parity-check matrix de-
fined in eq. (3). Given the channel output 𝒚, we begin the
decoding process by calculating the element of likelihoods
𝒘 ∈ S𝑁 , with

𝑤𝑛 (𝑍) =
∑︁
𝛼∈Z4

𝑃[𝑦𝑛 |𝛼]𝑍𝛼 . (28)

Next, we calculate the element 𝒓 as the componentwise Fourier
transform of 𝒘, with

𝑟𝑛 (𝑍) = F (𝒘𝑛) =
∑︁
𝛼∈Z4

𝑍𝛼
∑︁
𝛾∈Z4

𝜔−𝛼𝛾𝑃[𝑦𝑛 |𝛾] . (29)

Let functions | · | and arg{·} represent the modulus and the
argument of a complex number, respectively. We will form
elements 𝝆 ∈ S𝑁 and 𝝓 ∈ S𝑁 , with components

𝜌𝑛 (𝑍) =
∑︁
𝛼∈Z4

log |𝑟𝑛,𝛼 |𝑍𝛼, (30)

and
𝜙𝑛 (𝑍) =

∑︁
𝛼∈Z4

arg{𝑟𝑛,𝛼}𝑍𝛼 . (31)

Next, we compute elements 𝒕 ∈ S4𝐾−1
and 𝒆 ∈ S4𝐾−1

as

𝒕𝑇 = 𝐷𝝆𝑇 , (32)

and
𝒆𝑇 = 𝐷𝝓𝑇 . (33)

Note that similarly as in the case of the Kerdock code, we
can efficiently calculate the element 𝒕, by first computing the
matrix 𝐵 ∈ S𝑁×𝑁 with rows 𝒃𝑛 = 𝝆 ⊙ 𝒅

1
𝑛, 𝑛 = 0, . . . , 𝑁 − 1,

and then computing the matrix 𝑇 ∈ S𝑁×𝑁 with rows 𝒕𝑛 =

FWHT(𝒃𝑛), 𝑛 = 0, . . . 𝑁 − 1. Every component of 𝒕 now
corresponds to one component of matrix 𝑇 . We apply the same
procedure to get the matrix 𝐸 ∈ S𝑁×𝑁 that corresponds to
element 𝒆.

Next, we form an 𝑁 × 𝑁 matrix 𝑉 with components

𝑣𝑛,𝑙 (𝑍) =
∑︁
𝛼∈Z4

exp{𝑡𝑛,𝑙,𝛼} · exp{𝑒𝑛,𝑙,𝛼}𝑍𝛼 . (34)

Let 𝑄 be an 𝑁 × 𝑁 matrix with rows 𝒒𝑛 = FWHT(𝒗𝑛),
𝑛 = 0, . . . , 𝑁 − 1. We calculate element 𝒔 as

𝒔 =
𝑁−1∑︁
𝑛=0

𝒅1
𝑛 ⊙ 𝒒𝑛, (35)

TABLE II
THE COMPUTATIONAL COST OF MAP DECODING OF PREPARATA CODES

Steps Short description Complexity
1. Compute 𝒘 O(𝑁 )
2. Compute 𝒓 O(𝑁 )

3. - 6. Compute 𝝆 and 𝝓 O(𝑁 )
7. - 10. Compute 𝑇 and 𝐸 𝑁O(𝑁 log2 𝑁 ) = O(𝑁2 log2 𝑁 )

11. - 16. Calculate matrix 𝑉 O(𝑁2 )
17. Initialize 𝒔 O(𝑁 )

18. - 20. Compute 𝑉 and 𝒔 𝑁O(𝑁 log2 𝑁 ) = O(𝑁2 log2 𝑁 )
21. Compute 𝒈 O(𝑁 )
22. Compute 𝒉 O(𝑁 )

23. - 25. Compute 𝒛 O(𝑁 )

with

𝑠 𝑗 (𝑍) =∑︁
𝛼∈Z4

𝑍𝛼
∑︁
𝒃∈C⊥

𝛿𝑏 𝑗 ,𝛼

𝑁−1∏
𝑛=0

∑︁
𝛾∈Z4

𝜔−𝛾 (𝛼−𝑏 𝑗+𝑏𝑛 )𝑃[𝑦𝑛 |𝛾] . (36)

Note that this is equivalent as

𝒔 = 𝐷𝑇𝒗𝑇 , (37)

where 𝒗 is an element that corresponds to matrix 𝑉 . Next, we
calculate 𝒈, as

𝑔 𝑗 (𝑍) =
∑︁
𝛼∈Z4

𝑍𝛼
∑︁
𝛽∈Z4

𝑠 𝑗 ,𝛽

𝑟 𝑗 ,𝛽
· 𝑟 𝑗 ,𝛽−𝛼 . (38)

After a simple analysis, we can see that

𝑔 𝑗 (𝑍) =∑︁
𝛼∈Z4

𝑍𝛼
∑︁
𝒃∈C⊥

𝑁−1∏
𝑛=0

∑︁
𝛾∈Z4

𝜔−𝛾 (𝑏𝑛−𝑏 𝑗+𝛼𝛿 𝑗,𝑛 )𝑃[𝑦𝑛 |𝛾] . (39)

Next, with the help of (10), we obtain,

ℎ 𝑗 (𝑍) =
∑︁
𝛼∈Z4

𝑍𝛼
∑︁
𝛽∈Z4

𝜔−𝛼𝛽𝑔 𝑗 ,𝛽 . (40)

Finally, we compute

𝑧 𝑗 (𝑍) =
∑︁
𝛼∈Z4

𝑍𝛼
ℎ 𝑗 ,𝛼

4 · 𝑚 𝑗

, (41)

where 𝑚 𝑗 is a scaling factor defined as

𝑚 𝑗 =
∑︁
𝛽∈Z4

𝑠 𝑗 ,𝛽

𝑟 𝑗 ,𝛽
. (42)

This concludes the algorithm. It is easy to see that the
complexity of this algorithm is the same as that of the Kerdock
MAP decoding algorithm, i.e., O(𝑁2 log2 𝑁). We summarize
the MAP decoding of Preparata codes in Algorithm 3. A
detailed complexity analysis of Algorithm 3 is given in Table
II. Similar to the case of the Kerdock MAP decoder, all
operations are done in S. Note that the Fourier transform in
eq. (29) also has complexity 42O(1).



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Algorithm 3 MAP decoding of Preparata codes

Input: 𝒚,
Output: 𝒛

1: Compute the element of likelihoods 𝒘 using eq. (28).
2: Compute the element 𝒓 using eq. (29).
3: for 𝑛 = 0; 𝑛 < 𝑁; 𝑛← 𝑛 + 1 do
4: 𝜌𝑛 ←

∑
𝛼∈Z4 log |𝑟𝑛,𝛼 |𝑍𝛼, {Using eq. (30)}

5: 𝜙𝑛 (𝑍) ←
∑
𝛼∈Z4 arg{𝑟𝑛,𝛼}𝑍𝛼 {Using eq. (31)}

6: end for
7: for 𝑛 = 0; 𝑛 < 𝑁; 𝑛← 𝑛 + 1 do
8: 𝒕𝑛 ← FWHT(𝝆 ⊙ 𝒅

1
𝑛)

9: 𝒆𝑛 ← FWHT(𝝓 ⊙ 𝒅
1
𝑛)

10: end for
11: for 𝑛 = 0; 𝑛 < 𝑁; 𝑛← 𝑛 + 1 do
12: {Compute element 𝒗𝑛 ∈ S𝑁 using eq. (34):}
13: for 𝑙 = 0; 𝑙 < 𝑁; 𝑙 ← 𝑙 + 1 do
14: 𝑣𝑛,𝑙 (𝑍) ←

∑
𝛼∈Z4 𝑍𝛼 exp{𝑡𝑛,𝑙,𝛼} · exp{𝑒𝑛,𝑙,𝛼}

15: end for
16: end for
17: 𝒔← 0 {Initialize 𝒔 to the all-zero value}
18: for 𝑛 = 0; 𝑛 < 𝑁; 𝑛← 𝑛 + 1 do
19: 𝒔← 𝒔 + FWHT(𝒗𝑛) ⊙ 𝒅1

𝑛,
20: end for
21: Compute element 𝒈 using eq. (38).
22: Compute element 𝒉 using 𝒈 and eq. (40).
23: for 𝑛 = 0; 𝑛 < 𝑁; 𝑛← 𝑛 + 1 do
24: 𝑧𝑛 (𝑍) ←

∑
𝛼∈Z4 𝑍

𝛼 ℎ𝑛,𝛼
4·𝑚𝑛 ,, {Using eq. (41) and (42)}

25: end for

IV. BITWISE APP DECODING ALGORITHM

A linear block code over Z𝑝𝑘 (for some prime 𝑝 and a
positive integer 𝑘) with a p-adic expansion of the generator
matrix (𝐺0, 𝐺1, . . . 𝐺𝑘−1), such that 𝐺0 is of full rank over Z𝑝 ,
is called a splitting code [25]. The lifting decoder technique is
a process of lifting a decoding scheme for the linear code over
Z𝑝 , defined by the generator matrix 𝐺0 to decoding schemes
for the corresponding linear codes over Z𝑝𝑚 , 𝑚 = {1, . . . , 𝑘}
[25, 26]. Instead of iteratively estimating the error element as
done in [25, 26], we will define a residue that can easily be
estimated at run-time and used to decode the codeword layer
by layer.

Consider again the codeword 𝒄 = 𝒖𝐺 ∈ Z𝑁4 , with a dyadic
expansion (𝒄0, 𝒄1). By substituting 𝐺 = 𝐺0+2 ·𝐺1 in eq. (17),
we obtain

𝒄 = 𝒖0 · 𝐺0 + 2 · (𝒖0 · 𝐺1 + 𝒖1 · 𝐺0). (43)

Let (𝒓0, 𝒓1) represent the dyadic expansion of the residue part
𝒖0 · 𝐺0, with

𝒓0 = 𝒖0 ⊗ 𝐺0, (44)

and
𝒓1 =

𝒖0 · 𝐺0 − 𝒖0 ⊗ 𝐺0
2

. (45)

By substituting this back into (43), we get

𝒄 = 𝒖0 ⊗ 𝐺0 + 2 · (𝒓1 + 𝒖0 · 𝐺1 + 𝒖1 · 𝐺0). (46)

𝐺0
𝒖0 +

𝒓1

𝐺1

𝐺0
𝒖1

𝒄0 𝒄1

Fig. 1. Graphical representation of the encoder, defined by eq. (47).

Using [25, Lemma 1], we have

𝒄 = 𝒖0 ⊗𝐺0 + 2 · (𝒓1 ⊕ 𝒖0 ⊗𝐺1 ⊕ 𝒖1 ⊗𝐺0) = 𝒄0 + 2 · 𝒄1. (47)

A graphical representation of the encoder is given in Fig. 1.
Given the channel output 𝒚, we begin the decoding process

by calculating reliability elements 𝒘0, 𝒘1 ∈ R𝑁 as

𝑤0,𝑛 = log
𝑃[𝑦𝑛 |𝑐0,𝑛 = 0]
𝑃[𝑦𝑛 |𝑐0,𝑛 = 1] , 𝑛 = 0, 1, . . . 𝑁 − 1, (48)

and

𝑤1,𝑛 = log
𝑃[𝑦𝑛 |𝑐1,𝑛 = 0]
𝑃[𝑦𝑛 |𝑐1,𝑛 = 1] , 𝑛 = 0, 1, . . . 𝑁 − 1. (49)

Next, we compute 𝒅0 ∈ R𝑁 as

𝒅0 = 𝐷 (𝒘0), (50)

where 𝐷 (·) represents the SISO decoding algorithm corre-
sponding to the binary linear block code, defined by the
generator matrix 𝐺0. In the case of the Kerdock code, the
corresponding binary code is the RM(1, 𝑚) code, while in the
case of the Preparata code, the corresponding binary code is
the extended Hamming code. Low complexity SISO decoding
algorithms for these codes were presented in [36].

Given 𝒅0 it is easy to find the hard decision estimates �̂�0
and �̂�0. We calculate �̂�1 using eq. (45) and �̂� as

�̂� = �̂�1 ⊕ �̂�0 ⊗ 𝐺1. (51)

Let 𝒃 = 𝜙( �̂�), where 𝜙(𝑐) = 1 − 2𝑐 represents the BPSK
modulation. Finally, we compute

𝒅1 = 𝐷 (𝒃 ⊙ 𝒘1). (52)

Elements 𝒅0 and 𝒃 · 𝒅1 correspond to soft estimates of 𝒄0
and 𝒄1, respectively. This concludes the algorithm.

As the decoder 𝐷 (·) of the corresponding binary subcode
has complexity O(𝑁 log2 𝑁) [36] and assuming the calcula-
tion of �̂� (which has the same complexity as the encoding
procedure) takes at most O(𝑁 log2 𝑁), the lifting decoder
also has complexity O(𝑁 log2 𝑁). We summarize the APP
decoding procedure in Algorithm 4. A detailed complexity
analysis of Algorithm 4 for the case of Kerdock and Preparata
codes is given in Table III. Note that operations are now done
using floating-point numbers with some binary and quaternary
computations in step 4 and 5.
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Algorithm 4 Bitwise APP decoding algorithm

Input: 𝒚,
Output: 𝒅0, 𝒅1

1: Compute the reliability element 𝒘0 using eq. (48)
2: Compute the reliability element 𝒘1 using eq. (49)
3: 𝒅0, �̂�0 ← 𝐷 (𝒘0)
4: �̂�1 ← (𝒖0 · 𝐺0 − 𝒖0 ⊗ 𝐺0)/2 {Using eq. (45)}
5: �̂� ← �̂�1 ⊕ �̂�0 ⊗ 𝐺1 {Using eq. (51)}
6: 𝒃 ← 𝜙( �̂�)
7: 𝒅1 ← 𝐷 (𝒃 ⊙ 𝒘1)

TABLE III
COMPUTATIONAL COST OF BITWISE APP DECODING

Steps Short description Complexity
1. - 2. Compute 𝒘0 and 𝒘1 O(𝑁 )

3. Decode 𝒘0 O(𝑁 log2 𝑁 )
4. Calculate 𝒓1 O(𝑁 log2 𝑁 )
5. Calculate �̂� O(𝑁 log2 𝑁 )
6. BPSK modulation of �̂� O(𝑁 )
7. Decode 𝒘1 ⊙ 𝒃 O(𝑁 log2 𝑁 )

V. SIMULATION RESULTS

We will now demonstrate the error-correcting performance
of the new decoders introduced in section III and IV, for
the case of four different Kerdock and Preparata codes of
length5 8, 32, 128 and 512, defined in terms of the irreducible
monic polynomial (ℎ(𝑍)) used to design an extension ring,
as presented in Section II. These codes are the self-dual
Nordstrom-Robinson code, defined by ℎ(𝑍) = 3+𝑍+2𝑍2+𝑍3,
and Kerdock and Preparata codes over finite rings defined
by ℎ(𝑍) = 3 + 2𝑍 + 3𝑍2 + 𝑍5, ℎ(𝑍) = 3 + 𝑍 + 2𝑍4 + 𝑍7

and ℎ(𝑍) = 3 + 2𝑍2 + 3𝑍4 + 𝑍9. All results are presented
for the additive white Gaussian noise channel with a QPSK
modulation. In the case of the MAP decoders, a standard
QPSK modulation defined as 𝜙(𝑐) = 𝐼𝑐, 𝑐 ∈ Z4 is used,
while in the case of the sub-optimal decoders we used a
Gray-coded QPSK with respect to the dyadic expansion of a
quaternary symbol. The performance of the proposed decoding
algorithms is given in terms of the frame error rate (FER)
and the symbol error rate (SER) as a function of the energy
per bit to noise power spectral density ratio (𝐸𝑏/𝑁0). In the
case of the Nordstrom-Robinson code, we also provide the
FER of a naive MAP decoder, implemented using eq. (5) (or
eq. (10), as the Nordstrom-Robinson is self-dual and both
equations give the same result) and show that it matches
the two novel MAP decoders. We also compared our novel
decoding algorithms with the classical lifting decoder [25] and
the Z4 Chase decoder [41, 42] in terms of FER and SER.
The original lifting decoder was implemented as a two stage
decoder, where each stage used a binary hard decision decoder
corresponding to the associated binary code. In the case of the
Preparata codes we used the Meggitt decoder [52] and in the

5Note that the code length here is given as the number of quaternary
symbols. The binary code length would be twice this.

0 2 4 6 8
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10−1

100

Eb/N0

FE
R

Naive MAP decoding
K[8, 4] MAP
P[8, 4] MAP

Fig. 2. FER comparison of different MAP decoders for the Nordstrom-
Robinson code.
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10−1

100

Eb/N0

FE
R

P[8, 4] MAP
P[8, 4] ML
P[32, 26] MAP
P[32, 26] ML
P[128, 120] MAP
P[128, 120] ML
P[512, 502] MAP
P[512, 502] ML

Fig. 3. FER comparison of the novel MAP decoding algorithm with an ML
lower bound for different Preparata codes.

case of the Kerdock codes we used the minimum Hamming
distance decoder. The Z4 Chase decoder improves upon the
original lifting decoder by using the Chase reprocessing step
at every stage, i.e. at stage 𝑖 ∈ {1, 2}, the decoder generates
2𝑒𝑖 binary test patterns of maximum Hamming weight 𝑒𝑖 ,
where ones are restricted to the 𝑒𝑖 least reliable positions
in the corresponding channel output. Out of 2𝑒𝑖 generated
decoder outputs the one that minimizes the Euclidean distance
is chosen as the correct one [42]. In the case of the Preparata
codes we used parameters 𝑒1 = 2 and 𝑒2 = 1, while in the case
of the Kerdock codes we used parameters 𝑒1 = 8 and 𝑒2 = 4.

All simulations are done using the Monte-Carlo simulation
with a relative precision 𝛿 = 0.05 for a range of 𝐸𝑏/𝑁0 points,
starting from −1.6𝑑𝐵 with a step of 0.5𝑑𝐵.

FER of the Nordstrom-Robinson code using the naive MAP
decoder compared to the two novel MAP decoders is presented
in Fig. 2. As expected, all three error-rate curves overlap.
If the Euclidean distance between the correct codeword and
the channel output is greater than the distance between the
decoded sequence and the channel output, we assume that
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K[32, 6]
K[128, 8]
K[512, 10]
P[32, 26]
P[128, 120]
P[512, 502]

Fig. 4. FER comparison of different Kerdock and Preparata codes using the
novel MAP decoding algorithms.
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10−3

10−2

10−1

100

Eb/N0

SE
R

K[32, 6]
K[128, 8]
K[512, 10]
P[32, 26]
P[128, 120]
P[512, 502]

Fig. 5. SER comparison of different Kerdock and Preparata codes using the
novel MAP decoding algorithms.

the Maximum-Likelihood (ML) decoder would also make a
mistake. This allows us to simulate the ML lower bound. In
Fig. 3 it is shown that the FER performance of the MAP
decoder perfectly coincides with the ML lower bound, for
several different Preparata codes, as expected. FER of different
Kerdock and Preparata codes using novel MAP decoders is
presented in Fig. 4. SER of different Kerdock and Preparata
codes using novel MAP decoders is presented in Fig. 5. Sub-
optimal decoding of different Kerdock and Preparata codes
compared to optimal decoding is presented in Fig. 6. Note that
Kerdock and Preparata families are not fixed-rate sequences
of codes, i.e. the code rate of Kerdock codes decreases with
length, while the code rate of Preparata codes increases. It
follows that the error-correcting performance of Kerdock codes
increases with length, while the performance of Preparata
codes decreases with length, as seen in Fig. 4 and Fig. 5.

SER performance of the P[128, 120] code using the MAP
decoder, the sub-optimal SISO decoder, the Z4 Chase decoder
and the classical lifting decoder is shown in Fig. 7. As

0 2 4 6 8 10

10−3

10−2

10−1

100

Eb/N0

FE
R

NR MAP
NR Lifting
K[128, 8] MAP
K[128, 8] Lifting
P[128, 120] MAP
P[128, 120] Lifting

Fig. 6. FER of different Kerdock and Preparata codes using a sub-optimal
decoder compared to the optimal MAP decoding.
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10−1

100
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SE
R

MAP
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Chase
Classical lifiting

Fig. 7. SER comparison of the Preparata P[128, 120] code decoded using
MAP, SISO lifting, Chase and classical lifting decoders.

expected, the MAP decoder has the best performance, while
the sub-optimal SISO decoder is better then the classical lifting
and the Chase decoder. The MAP decoder has a coding gain
of about 1𝑑𝐵 and 2𝑑𝐵 compared to the Chase and the classical
lifting decoders, respectively. The sub-optimal SISO decoder
has a coding gain of about 0.5𝑑𝐵 and 1.5𝑑𝐵 compared to the
Chase and the classical lifting decoders, respectively. Different
decoding algorithms are also compared in terms of FER and
results for the case of the K[32, 6] code are shown in Fig. 8.
The MAP decoder is optimal, so it has the best performance.
We again notice that the sub-optimal SISO decoder is better
than the classical lifting decoder and the Chase decoder. In
the case of FER, the coding gain is more significant, and the
MAP decoder achieves a coding gain of about 3𝑑𝐵 compared
to the Chase decoder.

VI. CONCLUSION

This paper introduces two novel low complexity MAP de-
coding algorithms for decoding Kerdock and Preparata codes.
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Fig. 8. FER comparison of the Kerdock K[32, 6] code decoded using MAP,
SISO lifting, Chase and classical lifting decoders.

The complexity of these decoding algorithms is O(𝑁2 log2 𝑁).
A sub-optimal bit-wise soft-decision decoding algorithm,
based on the decoder lifting technique, with complexity
O(𝑁 log2 𝑁) is also introduced. Compared to existing de-
coders, the novel decoders developed in this paper outperform
existing ones in terms of error rate. Future work will deal with
improving the error-correcting performance of the sub-optimal
decoder, as well as developing new SISO decoders for other
quaternary codes.
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