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Abstract

With the rapid growth of data traffic in cellular networks, edge caching has become an emerging

technology for traffic offloading. We investigate the caching placement and content delivery in cache-

enabling cellular networks. To cope with the time-varying content popularity and user location in

practical scenarios, we formulate a long-term joint dynamic optimization problem of caching placement

and user association for minimizing the content delivery delay which considers both content transmission

delay and content update delay. To solve this challenging problem, we decompose the optimization

problem into two sub-problems, the user association sub-problem in a short time scale and the caching

placement in a long time scale. Specifically, we propose a low complexity user association algorithm for

a given caching placement in the short time scale. Then we develop a deep deterministic policy gradient

based caching placement algorithm which involves the short time-scale user association decisions in the

long time scale. Finally, we propose a joint user association and caching placement algorithm to obtain

a sub-optimal solution for the proposed problem. We illustrate the convergence and performance of the

proposed algorithm by simulation results. Simulation results show that compared with the benchmark

algorithms, the proposed algorithm reduces the long-term content delivery delay in dynamic networks

effectively.
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I. INTRODUCTION

In recent years, with the popularization of mobile devices and the growing of multimedia

applications, the mobile Internet data traffic and content diversity have grown explosively. The

traditional network structure cannot adapt to the rapid growth of traffic. In order to meet the

huge demands for content traffic in mobile cellular networks, edge caching is proposed as a

promising technique [2].

Because the distribution of files requested by users follows Pareto’s principle, most of the

traffic is composed of a small number of files. By caching these files in base stations (BS),

we can reduce the content transmission delay generated by repeated transmission of the same

high-popular content, which can further reduce the pressure of backhaul link, save the network

bandwidth resources and improve the quality of experience (QoE) of users [2, 3]. However,

there are still some challenges in the application of edge caching technology, such as the limited

storage space of BS and the demand for massive content. Therefore, which file should be cached

in the BS is particularly important for content delivery in cellular networks.

Edge caching technology mainly considers how to implement caching placement and content

delivery. Many researchers have studied on the caching placement strategy in cellular network,

which mainly solves the problem of which content should be cached in BS [4–10]. In [4],

according to the topology of fog radio access networks (Fog-RANs), both centralized and

distributed transmission aware caching placement strategies were designed to minimize users’

average download delay. Considering the diverse content preference of different users, the authors

maximized a weighted sum of network performance and user fairness to obtain the optimal

caching placement strategy in [5]. In [6], a distributed caching placement algorithm based on

belief propagation (BP) was developed to minimize the downloading latency in heterogeneous

cellular networks (HCN).

Besides, there are many studies focusing on improving caching performance by leveraging

device-to-device (D2D) communication or unmanned aerial vehicle (UAV) communication [11–

18]. Considering the limited backhaul capacity, the authors studied UAV assisted secure transmis-

sion for scalable videos in hyper-dense networks via caching in [11]. In [12], the authors proposed

a scheme to guarantee the security of UAV-relayed wireless networks with caching via jointly

optimizing the UAV trajectory and time scheduling. According to the popularity, the caching

placement algorithm was formulated to maximize the total offloading probability of the D2D

Page 29 of 58

IEEE Transactions on Communications

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3

system [13]. A recent work [14] developed a model for synthesizing user preference from content

popularity and proposed a caching placement algorithm to maximize the offloading probability for

cache-enabled D2D communications. The authors jointly optimized the uncoded cache placement

and linear coded D2D delivery to minimize the worst-case D2D delivery load in a cache-aided

D2D system [15]. Condidering both UAV and D2D communications, [16] focused on the caching

placement and trajectory optimization of cache-enabled networks. In [18], considering a multi-

UAV assisted wireless network, the authors jointly optimized caching placement, UAV trajectory

and transmission power to maximize the minimum throughput.

Considering caching placement, jointly optimizing caching placement and content delivery can

greatly improve cache performance gains [19, 20]. In [19], the service caching placement, compu-

tation offloading decisions, and system resource allocation were jointly optimized in mobile edge

computing (MEC) systems. In [20], the authors minimized the average file transmission delay

by jointly optimizing caching placement and bandwidth allocation in two-tier heterogeneous

networks. Caching placement strategy is strongly coupled with user association strategy. While

caching placement strategy directly affects the deployment of user association strategy, the result

of user association can indirectly affect the design of caching placement strategy [21–24]. In [21],

the authors formulated a joint optimization of the caching placement and user association policy

to reduce the content delivery delay. In [23], considering the conditions of the backhaul in terms

of delay and wireless channel quality, a joint optimization of the caching placement and user

association policy was studied in HCN. In cache-enabled dense small cell networks (DSCNs),

the authors in [24] optimized energy consumption and file delivery delay in the same time.

Moreover, they obtained the optimal caching placement and user association at two separate

stages (caching stage and delivery stage), respectively.

However, the above studies only consider edge caching technology in static scenarios. In

practical scenarios, user locations, user requests and wireless channel environments are all time-

varying. The optimum at a certain point of time cannot guarantee the optimum over a long

period of time. In Fog-RANs, a distributed deep Q-learning-based content caching scheme based

on user preference prediction and content popularity prediction was proposed in [25], which

maximized the caching hit rate. In [26], the authors took advantage of time-varying user terminal

movement and content popularity, and then modeled these dynamic networks as a stochastic game

to design a cooperative caching placement strategy. In [27], the authors proposed a long-term

caching placement and resource allocation optimization problem for the content delivery delay
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minimization in dynamic UAV-assisted cellular networks. The researchers in [28] considered the

content popularity in terms of time and space, and then proposed an online content popularity

prediction algorithm.

The above works consider the caching placement and content delivery in the same time scale.

However, while the wireless channel environment changes in milliseconds, content popularity

changes much slower in practical scenarios. For example, a newly released movie would stay

popular for a few days, and then it gradually becomes less popular. Due to the dynamic changes

of user location and channel environment, user association should be performed in a short time

scale. Because content caching placement is largely affected by content popularity, the content

caching placement should be updated in a long time scale. If content caching placement and

user association are operated in the same time scale, edge servers need to update the cached

service frequently. Considering the limited capacity storage and bandwidth of the edge server,

frequent updates bring additional burden to the system [29] and deteriorate the user experience.

Therefore, a few works have considered both caching placement and content delivery over

multiple time scales [30–36]. In [30], the researchers proposed an iterative algorithm to solve

the joint optimization of content placement and content delivery in different time scales. In [31],

under the constraint of user satisfaction, a file caching scheme was proposed to minimize the

average time. In [32], the authors proposed a two time-scale dynamic caching scheme for adaptive

bitrate streaming in vehicular networks. In [33], in order to enhance the QoE for the video

streaming, the authors designed the long-term transmission-aware caching placement and the

short-term transmission strategy in cloud radio access networks. In [34], the authors proposed

an optimal BS-user association algorithm in the short time scale and a greedy content caching

algorithm in the long time scale. In [35], the authors studied the BS association and file caching

problem considering the spatial diversity of the file popularity in different time scales. All of

these studies assume that the entire network states are known beforehand or the law of change

is known. They are suitable for some specific use cases or need some special knowledge in

advance. Dynamic network states are complex and unstable, and hence it is difficult to get the

states directly. It requires intelligent mechanisms that can adapt to these variations.

Furthermore, reinforcement learning based algorithms have been an emerging tool to obtain

optimal solutions [25, 26, 37, 38]. In [37], the authors proposed an extended deep deterministic

policy gradient algorithm (DDPG) to learn control policies of UAV over multiple objectives.

In [38], a multi-agent multi-armed bandit algorithm is developed for to solve the D2D caching
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problem. However, these studies do not consider the time-varying content popularity and user

location in practical scenarios.

A. Motivation and Contribution

As mentioned above, in dynamic networks, most of the existing research contributions aim at

solving the problem in the same time scale and ignore the differences in the change rate of user

locations and content popularity. A few works have considered the time-scale problem, but they

rarely consider that the dynamic network states are unknown. Therefore, we adopt intelligent

mechanism to learn the change law of dynamic networks in different time scales. In addition,

they omit the delay caused by the dynamic update of cached content. In actual systems, cached

content needs to be obtained from the content provider’s server, and this delay cannot be ignored.

Sometimes, it affects the system performance significantly.

This article studies the joint optimization of multiple time-scale caching placement and user

association in a dynamic environment with time-varying user location and content popularity. We

propose an optimization problem to minimize the long-term sum delay of content transmission

delay and content update delay. In order to solve this long-term dynamic optimization problem,

we optimize caching placement and user association in a long and a short time scales, respec-

tively. Due to the high complexity of the long-term problem in dynamic networks, we utilize

deep reinforcement learning algorithm to learn the strategy by interacting with environment

and obtain caching placement. Meanwhile, to reduce the computational complexity, we adopt

a distributed computing process to obtain the user association. The main contributions of this

paper are summarized as follows:

• We propose a framework of cache-enabling cellular networks for multiple time-scale caching

placement and user association. In the dynamic network with time-varying user location and

content popularity, we consider the spatial and temporal diversity of users’ requests and the

realistic time-scale separation. Then we propose a joint dynamic optimization problem of

caching placement and user association to minimize the long-term content delivery delay.

Specifically, the content delivery delay is composed of content transmission delay and

content update delay.

• We propose a joint optimization algorithm of caching placement and user association based

on multiple time-scales. Since the time scale of user movement is shorter than content

popularity, we decompose the optimization problem into two sub-problems. For short time-
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Fig. 1: Cache-enabling cellular networks with dynamic user locations and content popularity.

scale user association, we propose a low-complexity distributed user association algorithm

based on BP. For long time-scale caching placement, we model the sub-problem as a Markov

decision process (MDP) and propose a caching placement algorithm based on DDPG. We

realize the combination of BP algorithm and DDPG algorithm. Specifically, the proposed

DDPG algorithm is improved by BP which helps calculate the reward in DDPG.

• We provide the simulation results to verify the convergence and network performance

of the proposed algorithm. The simulation results show that the joint optimization of

caching placement and user association can significantly improve content delivery efficiency.

Compared with the benchmark algorithms, the proposed algorithm can effectively reduce

the content transmission delay and content update delay, and obtain a better network

performance.

B. Organization

The rest of this paper is organized as follows: We present the system model and formulate

the optimization problem in Section II. In Section III, we propose an iterative algorithm to solve

the optimization problem. Then, simulation results are provided in Section IV and conclusions

are drawn in Section V. The main symbols and variables used in this paper are summarized in

Table I.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a cellular network consisting of M BSs and K mobile users.

We define the set of BSs as M = {1, 2, ...,M}. Each BS is equipped with a cache device with

the cache capacity of z bits. Due to its capacity limitation, it can only store some of the files

in the file library. BS is connected to the core network through backhaul links and all files are

stored in the core network. We denote the set of users dy K = {1, 2, ..., K}. We assume that

users move within a fixed area, such as a university campus.

Suppose that the library has N files, denoted by N = {1, 2, ..., N}. Without loss of any

generality, we assume all the files have the same size of f bits. Because the file can be divided

into blocks of the same length [2]. BS obtains files from core network through backhaul links

and caches popular files during off-peak time.

As shown in Fig. 1, we consider a dynamic scenario with time-varying user location and con-

tent request. We optimize a long-term caching placement problem. The entire caching placement

process is represented by the time series T = {1, 2, ..., T}. T represents a time frame, which is

the long time scale. We suppose that the content popularity changes over the long time scale.

Each BS performs a pre-cache at the beginning of each time frame. The cached contents remain

unchanged during a time frame. For the convenience of description, each T is discretized d into

several equal time slots denoted by T = {1, 2, ..., t}. We assume that T = Gt, where G is a

constant, t represents a time slot, which is the short time scale. User position changes over the

short time scale and users request files from BS in each time slot t.

A. Transmission Model

User mobility can be quantified as a finite Markov state transition model k ∈ K, ck ∈
C = {C1, C2, · · · , CI}. We assume that there are I states. C represents the set of all states

of possible user locations and the transition probability between different states is represented as

P{Ct+1|Ct}. We assume that the user location state Ct is constant in time slot t, and changes in

the next time slot. The connectivity between the users and the BSs in time slot t is denoted by a

K ×M matrix Lt. ltkm = 1 indicates that user k associates with BS m in time slot t, and ltkm = 0

otherwise. Since each user associates with one BS in the same time slot, we have
∑
m∈M

ltkm = 1.

The set of users who associate with BS m in time slot t is denoted by Um = {k ∈ K|ltkm = 1}.
In this work, the symbol B represents system bandwidth, pm is the average transmission power

at BS m, and σ2 is the variance of the Gaussian noise. The path-loss between BS m and the
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TABLE I: Main Symbol and Variable List

Notation Description

M Number of BSs

K Number of users

N Number of contents

G
The ratio of long time scale

to short time scale T = Gt
z Cache capacity of BS

f Size of content

T The long time scale

t The short time scale

ltkm

Indicator of whether user k
associated with BS m in time

slot t

xT
nm

Indicator of whether content n
cached in BS m in time frame T

C = {C0, C1, · · · , CI} User position Markov state set

E = {E0, E1, · · · , EJ}
Content popularity Markov

state set

P{Ct+1|Ct} The transition probability of

user position

P{ET+1|ET } The transition probability of

content popularity

pTnk
Probability of user k request

content n in time frame T
B System bandwidth

pm Transmission power of BS m
σ2 Variance of the Gaussian noise

ht
km

Channel coefficient between

BS m and user k in time slot t
α Pathloss exponent

SINRt
km

SINR of user k associated

with BS m in time slot t

Rt
km

Transmission rate from BS m
to user k in time slot t

Dt
nk

Content transmission delay

when user k requests content

n in time slot t

DT
1

The average delay in time

frame T

DT
2

Content update delay in time

frame T

user k is modeled as (dtkm)
−α, where dtkm is the distance between BS m and user k in time

slot t, and α is the path-loss exponent. The random channel between BS and user is Rayleigh

fading, whose coefficient ht
km has the average power of one. We assume that all the downlink

channels spanning from the BSs to the users are independent and identically distributed (i.i.d.).

Page 35 of 58

IEEE Transactions on Communications

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



9

The signal-to-interference-plus-noise ratio (SINR) of user k from BS m in time slot t is

SINRt
km =

(ht
km)

2
(dtkm)

−α
Pm

∑

q∈M\{m}
(ht

kq)
2
(dtkq)

−α
Pq+σ2 . (1)

Users can access to the system only if the signal can meet the minimum signal threshold

according to 3GPP standards.

In order to make full use of the spectrum resources, we divide the bandwidth according to the

number of users associated with the BS [28]. Therefore, the downlink transmission rate from

BS m to user k in time slot t is

Rt
km = B

∑K
k=1 l

t
km

log (1 + SINRt
km) . (2)

B. Content Request and Cache Model

Content popularity distribution is based on users’ requests for contents. We assume the proba-

bility for users request each content, i.e., popularity of each content, follows a Zipf distribution.

Let pTnk = 1 indicates that user k requests the content n in time frame T , otherwise pTnk = 0.

Content popularity is time-varying, and we model this time-varying popularity as a finite state

Markov sequence E ∈ E = {E1, E2, · · · , EJ}. Each state is a probability distribution of users’

requests. We assume that there are J states. The popularity of the content chunk k transfers

over time between the states, and the transition probability is represented by P{ET+1|ET}. We

assume that the content popularity ET is constant in time frame T , and changes in the next time

frame.

We assume that each BS has a finite-capacity storage, denoted by z, and the BS actively

caches content in each time frame. If the requested content is cached in the associated BS, the

content will be transmitted directly to the user. Otherwise, the BS would obtain the content from

core network through backhaul link, and then transmits it to the user. Let us denote caching

placement strategy by XT , where xT
nm = 1 represents the BS m caches content n in time frame

T , otherwise xT
nm = 0. The set of BSs which cache content n in time frame T is denoted by

An =
{
m ∈M|xT

nm = 1
}

.

C. Delivery Delay Model

In our system, the content delivery delay is composed of content transmission delay and

content update delay.
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1) Content Transmission Delay: Since each time frame T is divided into several time slots

t, the content transmission delay is composed of content transmission delay in each time slot t.

The content transmission delay from BS m to user k in time slot t is represented by Dt
nk.

Since each user can associate with one fix BS in the same time slot, we consider the condition

that ltkm = 1. According to whether BS caches content n, we have the following two cases.

Case 1: BS m has cached content n in time slot t, and user k can directly get content n from

BS m. The content transmission delay in time slot t is

Dt
nk = pTnk

f
Rt

km
, ltkmx

T
nm = 1 . (3)

Case 2: BS m does not cache content n in time slot t, which is ltkmx
T
nm = 0. BS m downloads

content n from core network and then transmits the content to users. BSs connect to core network

through a wired backhaul link. Without loss of generality, we assume that the wired backhaul

link is one hop, and the average backhaul delay from BS to core network is [39]

D0 =
((

1 + 1.28λb

λg

)
κ
)
(a+ bf) , (4)

where λb and λg denote the density of BSs and gateways, respectively. In addition, a, b and κ

are constants that reflect the processing capability of the nodes. Specifically, the first and second

terms represent the effect of number of connecting nodes and packet size on delay, respectively.

It is obvious that the bigger the package size, the bigger the delay. The content transmission

delay in time slot t is

Dt
nk = pTnkD0 + pTnk

f
Rt

km
, ltkm = 1, xT

nm = 0 . (5)

So the content transmission delay when user k requests content n in time slot t is

Dt
nk =

∑
m∈M

ltkm

((
1− xT

nm

)
pTnkD0 + pTnk

f
Rt

km

)
. (6)

The average delay in time frame T is

DT
1=

1
K

∑
t∈T

∑
k∈K

∑
n∈N

Dt
nk . (7)

Remark 1. From (6), we notice that the cache capacity z of BS affects caching placement

strategy XT . The larger z causes a decrease in content transmission delay. At the same time,

the larger z can get higher cache hit ratio and lower backhaul bandwidth cost.
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2) Content Update Delay: The caching placement strategy is updated every time frame, so

content update delay is determined by the delay caused by downloading updated content from

core network. According to the caching placement strategy, if the required content n has been

cached at the BS m in the T − 1 time frame denoted by xT−1
nm = 1, there is no need to re-

download the content in the T time frame. Otherwise xT−1
nm = 0, the BS would download the

content from core network. Therefore, content update delay in time frame T is

DT
2=

1
M

∑
n∈N

∑
m∈M

D0max
{
0,

(
xT
nm − xT−1

nm

)}
, (8)

where D0 is the average backhaul delay from BS to core network according to (4).

Remark 2. From (6) (8), we notice that the content transmission delay and the content update

delay are obtained in short time scale and long time scale respectively. The long time scale T

is determined by the time interval of content popularity change and the short time scale t is

determined by the time interval of user location change. The ratio of long time scale to short

time scale G affects caching placement strategy XT and user association Lt. G reflects the

relative speed of the change of content popularity and the change of user location. The larger

G causes an decrease in content update delay.

D. Problem Formulation

Given the above models, we formulate the joint optimization problem of caching placement

and user association for minimizing the long-term content delivery delay. The content delivery

delay in each time frame contains content transmission delay and content update delay. Let us

hence formulate the delay optimization problem as follows:

min
XTLt

D̄ =
∑
T∈T

(
DT
1 +DT

2

)
(9a)

s.t.
∑
n∈N

xT
nmf ≤ z,∀m ∈M (9b)

xT
nm ∈ {0, 1} ,∀n ∈ N ,∀m ∈M (9c)∑

m∈M
ltkm = 1,∀k ∈ K (9d)

ltkm ∈ {0, 1} ,∀k ∈ K,∀m ∈M (9e)
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The constrain (9b) is the caching capacity limitation of each BS. The constrain (9d) means

each user can associate with one BS in the same time slot t. The optimization problem in (9) is

an integer programming problem, which is NP-complete. Hence, it is very challenging to find

the optimal solution to problem (9). In the next section, we show how to solve this optimization

problem.

Remark 3. From (7), we find that the long-term content delivery delay contains the content

transmission delay of each user. From (9d), we notice that the user must access to a BS according

to user association strategy. Hence, the system ensures that each user’s request would be satisfied

in each time slot. By this way, the system can guarantee that all the access users can get the

basic service. This means that our optimization objective focuses on the system performance as

well as users’ quality of service.

III. PROPOSED ALGORITHM FOR MINIMIZATION DELAY

Compared with the time scale of content popularity changing, content request occurs in a

shorter time scale. Therefore, we apply a multiple time-scale approach to make user association

and caching placement decisions respectively. Generally, a short time-scale user association

decision can affect the caching placement decision for the next time frame. The long time-scale

caching placement decision can affect the short time-scale user association decision in this time

frame.

We decompose the optimization problem into the following two sub-problems: (i) a short

time-scale user association algorithm; (ii) a long time-scale caching placement algorithm. Every

time slot, the user association decision is made based on the known caching placement decision.

However, caching placement decision must consider both the time varying user association and

the content popularity. We now discuss how to address the two sub-problems.

1) User association problem: For a given caching placement solution XT and user location

Ct, probability of user request ET , the problem becomes the following short time-scale

problem:

min
Lt

D̄t = 1
K

∑
k∈K

∑
n∈N

Dt
nk

s.t.
∑
m∈M

ltkm = 1,∀k ∈ K

ltkm ∈ {0, 1} ,∀k ∈ K,∀m ∈M

. (10)
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13

2) Content caching placement problem: Based on the user association {Lt, L2t, · · · , Lxt} in

time frame T − 1, the problem becomes the following long time-scale problem:

min
XT

D̄ =
∑
T∈T

(
DT
1 +DT

2

)
s.t.

∑
n∈N

xT
nmf ≤ z,∀m ∈M

xT
nm ∈ {0, 1} ,∀n ∈ N ,∀m ∈M

. (11)

A. Short Time-Scale User Association Algorithm

There is a complicated global functions of many discrete variables to solve. Although we

can exploit the exhaustive search algorithm to solve the optimization problem, the algorithm

complexity is exponential. So it is only suitable for small scale networks. With a problem of

product form, the given function can be decomposed into several “local” functions. We can

derive the approximately various marginal functions from the global function by BP algorithm.

Compared with centralized computing algorithm, the BP algorithm reduces the computational

complexity greatly. Meanwhile, the BP algorithm can achieve a good balance in convergence

and accuracy [4, 40].

We propose a BP based distributed algorithm to solve the user association problem (10) by

sum-product algorithm [41]. The distributed BP algorithm is based on the factor graph. In the

bipartite factor graph, we divide the vertex set into variable nodes and function nodes. The two

vertexes connected by one edge called adjacent nodes. And each variable node is adjacent to one

or several function nodes. Similarly, each function node is connected to one or several variable

nodes. We now establish the factor graph model [41] and map the optimization problem (10) to

it.

1) Factor Nodes: To apply BP algorithm, we make some equivalent transformation to the

optimization problem. Problem (10) is equivalent to maximizing − 1
K

∑
k∈K

∑
n∈N

Dt
nk, subject

to the constraints
∑
m∈M

ltkm = 1 for all k. The problem (10) is first transformed into an

unconstrained optimization problem as

max
Lt

∏
k∈K

ht
k (L)

∏
n∈N ,k∈K

ηtnk (X,L), (12)

where

ηtnk (X,L) = exp
(
−Dt

nk

)
, (13)
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Fig. 2: An example of 2 users, 2 BS and 2 content items.

ht
k (L) =

⎧⎨
⎩

1,
∑
m∈M

ltkm = 1,

0, otherwise.
. (14)

In this product form, the optimization problem can be decomposed into many factors, such

as ηtnk (X) and ht
k (L). To simplify the calculation, we define all the factors by (15). Every

factor corresponds to a factor node in the factor graph. As shown in Fig. 2, we establish

the factor graph model [41] and map the optimization problem (10) to it by the following

rule:

F t
j =̇

⎧⎪⎪⎨
⎪⎪⎩

ηtnk, j =
k−1∑
l=1

|Fl|+ ξ (n, k) ,

ht
k, j =

K∑
k=1

|Fk|+ k.

(15)

where Fk = {fn|pnk > 0} denotes the set of files which may be requested by user k, and

|Fk| is the number of elements in the set, and ξ (n, k) denotes the index of file k in the set

Fk.

2) Variable Nodes: Each variable node is related to a user association strategy. For simplic-

ity, the two-dimensional matrix Lt is transformed into an one-dimensional vector by the

following rule:

μi
t=̇ltkm, i = M (k − 1) +m (16)
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15

The process of BP based user association algorithm is as follows.

1) Initialization: Initialize the variable nodes and messages.

2) Message Update: Let mt+1
μi→Fj

(l) denotes the message from a variable node to a factor

node defined by

mt+1
μi→Fj

(l) =
∏

h∈Γμ
i \{j}

mt
Fh→μi

(l). (17)

And mt+1
Fj→μi

(l) denotes the message from a factor node to a variable node defined as

mt+1
Fj→μi

(l) = max
∼{i}

⎧⎨
⎩Fj (l)

∏
h∈ΓF

j \{i}

mt
μh→Fj

(lh)

⎫⎬
⎭ . (18)

The traditional BP algorithm updates the message by sum-product algorithm according to (17)

(18) [41, 42]. We simplify the traditional messages to the log-domain message ratios [4], denoted

as αt
i→j = log

(
mt

μi→Fj
(1)

mt
μi→Fj

(0)

)
and βt

j→i = log

(
mt

Fj→μi
(1)

mt
Fj→μi

(0)

)
, respectively.

Variable Node Update: We have

αt+1
i→j =

∑
l∈Γμ

i \{j}
βt
l→i. (19)

Factor Node Update: When Fj=̇ηnk, we have

βt+1
j→i = ptnk

(
Dt

nk

(
Lt
i,0

)
−Dt

nk

(
Lt
i,1

))
(20)

where L obtains from the message obtained in the previous iteration.

When Fj=̇hk, we have

βt+1
j→i = −αl→j (t) (21)

3) Belief Update: The belief ratio in the logarithmic domain can be obtained by

b̃ti = log

(
bti (1)

bti (0)

)
=

∑
j∈Γμ

i

βt
j→i. (22)

As a result, the estimation of μ̂t
i can be expressed as

μ̂t
i =

⎧⎨
⎩

1, if b̃
t

i > 0,

0, if b̃
t

i < 0.
(23)

In each iteration, each variable node updates its belief and makes an estimate of the belief
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until it converges.

The process of BP based user association algorithm is summarized in Algorithm 1.

Algorithm 1 BP based user association algorithm

1: Initialize: Set BP message αt+1
i→j = 0, βt+1

j→i = 0∀i, j. Initial μi
t and define node ordering η.

2: repeat
3: for each node ηk ∈ η do
4: Update the message αt+1

i→j according to (19).

5: Update the message βt+1
j→i according to (20) (21).

6: Calculate the belief b̃ti according to (22).
7: Estimate μ̂t

i using (23) and update μi
t.

8: end for
9: until Convergence

10: Output: user association Lt.

B. Long Time-Scale Content Caching Algorithm

Because of the bandwidth cost, the caching placement strategy must consider the update cost.

It may not be the optimal strategy in this moment. In order to solve this complicated long-term

optimization problem, we exploit DDPG algorithm to interact with the environment to learn the

optimal caching placement strategy.

We propose a DDPG based caching placement algorithm for minimizing the long-term content

delivery delay in dynamic networks. Specifically, in the short time scale, we obtain the user

association based on the caching placement decisions which is unchangeable during the long

time scale. Then we calculate the long-term reward and solve the long-term optimization problem.

Every long time scale, the reward is obtained by accumulating the short time-scale reward.

1) Markov Decision Process Model: We model the sub-problem as MDP which is defined

by 〈A,S,P ,r,γ〉. In the MDP, the agent will learn how to choose the action to get more future

reward.

A. S is the set of states, sj ∈ S, which indicates the system information. The feature of state

sT is composed of content popularity in time frame T , denoted by sT=ET . The state space

is equivalent to all possible content popularity states.

B. A is the set of actions, which are caching strategies. The feature of action aT is composed

of BSs’ caching strategies in time frame T , denoted by aT=XT . The action space is

equivalent to of all possible X , which is 2mn.
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C. The state transition probability is denoted by P
(
sT+1|sT , a

)
.

D. r represents the instant reward, which means the long time-scale delivery delay in our

system. Specifically, with the given system state, we can get the optimal user association

in every time slot by BP. According to the optimal user associations {Lt, L2t, · · · , Lxt} in

this time frame, we can obtain the average long time-scale delivery delay by r = DT
1 +DT

2 .

E. γ is the discount factor, indicating the coefficient for calculating the cumulative reward.

At each iteration, the agent observes the current state and then chooses an action to execute.

After this, the environment will give a reward r to the agent and move into the next step according

to the state transition probability P
(
sT+1|sT , a

)
. After several iterations, the agent can learn the

optimal caching placement strategy and obtain an optimal long-term reward.

MDP describes the long-term loss of the current action by defining value function denoted by

Q (s, a), which is expressed as

Q (s, a) = E

{ T∑
τ=T

γτ−T rτ |s=sT ,a=aT )

}
, (24)

where sT and aT are the state and the action of time frame T respectively. The optimal solution

is calculated through π∗ (s) = argmin
a

Q∗ (s, a) , ∀s ∈ S, which is the optimal caching placement

strategy. Then the value function is updated when the network chooses an action a under the

state s by Bellman equation, which is defined as

QT+1 (s, a) = (1−η)QT (s, a) + η
{
r + γmax

a
Q (s′, a′)

}
, (25)

where s, a and r represent the state, the action and the reward of time frame T . s′ and a′ are

the state and the action of time frame T + 1 and η represents the learning rate. So we can find

the optimal dynamic caching placement by (24) (25).

2) Deep Deterministic Policy Gradient: The DDPG is model free and uses deep neural

network for function approximation. As shown in Fig. 3, DDPG is an actor-critic method, which

has actor network and critic network [43]. The actor network and critic network both have a

target network and an online network. The actor network generates the determine action on

the current state. The critic network obtains the Q-value and evaluates the current action by

calculating the temporal-difference (TD)-error. At the same time, it determines the direction and

speed for updating the actor network.

In the critic network, Q (s, a) is learned using the Bellman equation (25). We train the critic
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Fig. 3: Framework of the proposed DDPG.

network by minimizing the TD-error:

L
(
θQ

)
=

1

Y

∑
i

(
yi −Q

(
si, ai|θQ

))2
, (26)

where

yi = ri (si, ai) + γQ′
(
si+1, μ

′
(
si+1|θμ

′
)
|θQ′

)
. (27)

And Y is the number of samples which represented by (si, ai, ri, si+1). Q
′ and Q are the Q-

value of critic target network and critic online network, respectively. Besides, θQ
′

is critic target

network parameter, θQ is critic online network parameter, θμ
′

is actor target network parameter.

The actor network is trained by policy gradient. And we modify the action parameters of

policy gradient to obtain a larger Q-value. Then the actor network updates the parameters by

∇θμJ ≈
1

Y

∑
i

(
∇aQ

(
s, a|θQ

))
|s=si,a=μ(si)∇θμμ (s|θμ) |si , (28)

where θμ is actor network parameter and a = μ (si) is the deterministic behavior strategy.

The process of DDPG based caching placement algorithm is summarized in Algorithm 2.

C. Dynamic Solution to the Optimization Problem

For the optimization problem, we decompose it into two sub-problems. As shown in Fig. 4, we

propose a short time-scale user association algorithm and a long time-scale caching placement

algorithm to solve the optimization problem.

As we can see, the proposed user association algorithm can obtain the sub-optimal solution

online. However, the proposed caching placement algorithm needs a learning process which is

offline. Therefore, our system has a process to train model before application. In this process,
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Algorithm 2 DDPG based caching placement algorithm

1: Set hyper parameters and initialize all the networks.
2: repeat
3: for each step do
4: Update content popularity.
5: Select action and update caching placement and get the update delay r0.
6: for t = 1 to T do
7: Update user location.
8: Update user association Lt by Algorithm 1.
9: update r by r = r + rt.

10: end for
11: Get reward r = r + r0.
12: Store transition (sT , aT , rT , sT+1) in the memory space.
13: Train the critic network with (26).
14: Train the actor network with (28).
15: Update the target networks by soft replace.
16: end for
17: until Convergence
18: Output: caching placement XT .

the chosen action may be not the optimal. In the dynamic network, our system can effectively

solve the long-term problem after the training process. Hence, the proposed algorithm is divided

into two processes. One process is the offline process described in Algorithm 1 and Algorithm

2. Another process is the online process described in Algorithm 3.

In each time frame, our system gathers the data in the environment to obtain the content

popularity state. According to Algorithm 2, the system calculates the caching placement strategy

and transmit it to BSs. Then, BSs pre-cache the corresponding contents. In each time slot, The

system updates the user location information if the users move to new positions. According to

such information, the system obtains the user association strategy by Algorithm 1.

D. Analysis of the Proposed Algorithms

Let us analyze the temporal computational complexity and the convergency of the proposed

algorithms.

Algorithm 1: In the traditional BP algorithm [41], factor nodes updating has the temporal

computation complexity of γf = O (N (N + 1)), and variable nodes updating has the temporal

computation complexity of γv = O
(
M2M+1

)
. We assume that the algorithm can obtain the
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Fig. 4: Framework of the proposed two time-scale algorithm.

Algorithm 3 Online joint user association and caching placement algorithm

1: Set hyper parameters and initialize all the networks.
2: repeat
3: Train the networks by Algorithm 1 and Algorithm 2.
4: until Convergence
5: for T ∈ T do
6: Update content popularity.
7: for t ∈ T do
8: Update user location.
9: According to the XT−1, update user association Lt by Algorithm 1.

10: Get the short time-scale reward according to Algorithm 1.
11: end for
12: Get the long time-scale reward.
13: According to long time-scale reward, update caching placement XT by Algorithm 2.
14: end for

suboptimal solution with C iterations. Therefore, the complexity of traditional BP is γbp =

O (Cmax (γf , γv)).

The proposed BP algorithm offloads the computation to each sub-function [4]. Factor nodes up-

dating has the temporal computation complexity of γf = O (N (N + 1)), and variable nodes up-

dating has the temporal computation complexity of γv = O (max (M (M − 1) ,M log (M − 1))).

We assume that the algorithm can obtain the suboptimal solution with C iterations. As a result,

the complexity of traditional BP is γbp = O (Cmax (γf , γv)). As mentioned above, the proposed
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BP algorithm can effectively reduce the computational complexity compare to the traditional BP

algorithm.

The convergence of the proposed BP algorithm depends on the structure of the graph. For

graphs without circles, the maximum a posteriori (MAP) problem can be effectively calculated

through the exchange of messages. The proposed algorithm can reach convergence after several

iterations [42]. The performance of the BP algorithm mainly depends on the objective function,

as well as the scale, sparsity and cycles of the basic factor graph. However, for other general

graphs, such as graphs with cycles, the BP algorithm cannot guarantees convergence because of

the cycles.

Algorithm 2: As mentioned above, we define the number of BSs as M and the number

of users as K. The number of contents is expressed as N . In DDPG, two stages requesting

enormous computation capacity are the training of actor network and critic network. The temporal

computation complexity of actor network is O
(
ZAiZAu +

∑U−2
u=1 ZAuZAu+1 + ZAuZAU

)
, where

ZAi = S represents the number of neurons in input layer. The number of neurons in output

layer is ZAu = MN . Therefore, the actor network has the temporal computation complexity of

O
(
γa = δMBT1

(
ZAiZAu +

∑U−2
u=1 ZAuZAu+1 + ZAuZAU

))
, where δMB represents the size of

mini batch, and T1 is the upper bound of training step. The temporal computation complexity

of critic network is O
(
γb = δMBT1

(
ZCiZCu +

∑U−2
u=1 ZCuZCu+1 + ZCu

))
, where the number

of neurons in the input layer is ZCi = MN + S and the number of neurons in the output layer

is ZCu = 1. Therefore, the proposed DDPG algorithm has the temporal computation complexity

of O (max (γa, γb)).

Algorithm 3: During each iteration, two subproblem algorithms are performed to solve two

subproblems. The complexity of Algorithm 1, 2 has been analyzed above in Subsection 1, 2. The

complexity of Algorithm 3 is O (max (γa, γb, Gγbp)), where γbp is the complexity of Algorithm

1 and G represents the length of time frame.

IV. NUMERICAL RESULTS

In this section, we show the performance of the proposed algorithm based on the simulation

results. We consider a cellular network with M=4 BSs, and the distance between neighboring

BS is 200 m. K users are randomly distributed in the area. We model the user mobility as

a finite Markov state transition model with three states {C1, C2, C3}, which represent the user
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location distribution respectively. We assume that the transition probabilities of the user position

states are

PC =

⎡
⎢⎢⎢⎢⎣

pC
11 p

C
12 p

C
13

pC
21 p

C
22 p

C
23

pC
31 p

C
32 p

C
33

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0.6 0.1 0.3

0.3 0.6 0.1

0.1 0.3 0.6

⎤
⎥⎥⎥⎥⎦ . (29)

Remark 4. From (1) (2), we notice that the SINR which influences the content transmission

delay is related to user position. Hence, the user location may slightly affect the delay. However,

as long as the signal meets the minimum threshold, the user would access to the BS with smaller

content transmission delay and get the service. It doesn’t affect the service received by users

and the effectiveness of the proposed algorithm. Therefore, the proposed algorithm can perform

well with different distributions of user positions (29).

The popularity of the contents follows a Zipf-like distribution. Whether the user requests the

content or not is determined by the content popularity. We model the content popularity as

a finite Markov state transition model with three states {E1, E2, E3}, which have parameters

γ1=0.2, γ2=0.5 and γ3=0.7 respectively. The content popularity of content n with parameter γj

is

e(j)n =
n−γj

N∑
i=1

i−γj
, for j = 1, 2, 3. (30)

where γj ≥ 0 controls the skewness of popularity. We initial the network state by s=E1. Then

we assume that the transition probabilities of the content popularity states are

PE =

⎡
⎢⎢⎢⎢⎣

pE
11 p

E
12 p

E
13

pE
21 p

E
22 p

E
23

pE
31 p

E
32 p

E
33

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0.6 0.2 0.2

0.1 0.7 0.2

0.2 0.3 0.5

⎤
⎥⎥⎥⎥⎦ . (31)

We define the average bandwidth cost as

CT
bandwidth=

1

MnT
req

∑
m∈M

∑
n∈N

f max
{
0,

(
xT
nm − xT−1

nm

)}
, (32)

where nT
req is the number of user requests in T . The detailed simulation parameters are given in

table II.
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TABLE II: Simulation Parameters

Parameter Value

Number of base stations M 4
Size of each content 10 Mbytes

System bandwidth B 10 MHz

Transmit power of BS p 46 dbm

Noise power σ2 −176 dBm/Hz

Path loss exponent α 4

Discount factor of reward γ 0.9

Learning rate η 0.00001

Constant a 10μs
Constant b 0.01μs/bit
Constant κ 1

To prove the effectiveness of the proposed algorithm, we compare it with three benchmark

algorithms which are solving the problem based on short time scale, long time scale and two

time scales respectively. Specifically, we consider the following algorithms:

• BP algorithm: In each time slot, we obtain the optimal caching placement matrix and user

association matrix by BP [4].

• DDPG algorithm: The caching placement and user association remain unchanged in one

time frame, and we update them by DDPG algorithm which can obtain the long-term optimal

caching placement and user association.

• Least frequently used (LFU) and maximum carrier to interference ratio (Max C/I) algorithm:

The optimal caching placement matrix is calculated by LFU algorithm in each time frame.

And the user association matrix is obtained by Max C/I algorithm in each time slot.

First, we demonstrate the convergence of the proposed algorithm by Fig. 5. In the simulation,

we set N = 20, K = 5 and T = 20 t. Fig. 5 shows that the long-term content delivery

delay gradually converges with the number of iterations increasing. Fig. 5 proves that the long-

term content delivery delay with different parameters has different convergence speeds. For the

parameters, v is the noise added to action selection, and ξ is the discount factor of the noise. From

Fig. 5 we can see, the proposed algorithm with bigger noise v can achieve a better convergence

value while it has a slightly slower convergence rate. Because the agent can get a bigger action

space with the greater noise and the agent is more likely to get the optimal solution. Besides,

the larger ξ means that noise reduces faster. With shorter episodes to explore the action space,

the algorithm can easily obtain a local optimal solution. Otherwise, if we set ξ too small, the
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Fig. 5: Convergence of proposed algorithm comparison with different parameters.

TABLE III: Parameters of Fig. 6

Parameter
Transition probabilities

of user position states

Transition probabilities

of content popularity

states

3C2E

⎡
⎢⎣

0.6 0.1 0.3

0.3 0.6 0.1

0.1 0.3 0.6

⎤
⎥⎦

[
0.6 0.4

0.3 0.7

]

2C3E

[
0.6 0.4

0.3 0.7

] ⎡
⎢⎣

0.6 0.2 0.2

0.1 0.7 0.2

0.2 0.3 0.5

⎤
⎥⎦

2C2E

[
0.6 0.4

0.3 0.7

] [
0.6 0.4

0.3 0.7

]

3C3E

⎡
⎢⎣

0.6 0.1 0.3

0.3 0.6 0.1

0.1 0.3 0.6

⎤
⎥⎦

⎡
⎢⎣

0.6 0.2 0.2

0.1 0.7 0.2

0.2 0.3 0.5

⎤
⎥⎦

noise would be too large for a long time, which affects the stability of algorithm convergence.

As a consequence, when we set the parameters of noise, we need to do a balance between the

speed of convergence and the stability of the algorithm.

Fig. 6 shows the convergence of the proposed algorithm with varying user position states and

content popularity states. The detailed simulation parameters are given in table III. When we

have two user position states and two content popularity states, there are some fluctuations in
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Fig. 6: Convergence of proposed algorithm comparison with varying user position states and
content popularity states.
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Fig. 7: Cache hit ratio and average bandwidth cost comparison with varying cache capacity.

the convergence process of the proposed algorithm, but the convergence point is lower. Besides,

we verify the convergence of the proposed algorithm with different transition probabilities. And

the simulation result shows the availability of the algorithm in different dynamic environments.

Then Fig. 7 reveals the cache hit ratio and average bandwidth cost with varying sizes of the

cache capacity. As we can see, the solid lines denote cache hit ratio. The proposed algorithm

achieves higher cache hit ratio with larger cache capacity. Compared with other algorithms,
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Fig. 8: Long-term content delivery delay comparison with varying cache capacity.

the proposed algorithm does not get the best cache hit ratio. However, the proposed algorithm

considers both content transmission delay and content update delay. As we can observe from

the dotted lines in Fig. 7, the proposed algorithm can greatly reduce the average bandwidth

cost which is brought by the content updating. This is a good proof of Remark 1. Because BP

algorithm obtains the caching placement and user association in each time slot, BP algorithm

gets the highest cache hit ratio and the most average bandwidth cost. The average bandwidth

cost of the proposed algorithm is lower than LFU and Max C/I algorithm, since the optimization

objective is the long-term content delivery delay, which is composed of content transmission

delay and content update delay. According to (8) (32), we find that the smaller the content

update delay, the lower the average bandwidth cost. And the proposed algorithm can get a

tradeoff between the content caching placement and content updating.

We evaluate the performance of the proposed algorithm with varying sizes of the cache capacity

z. Fig. 8 shows that the long-term content delivery delay of the proposed algorithm reduces

significantly compared to other algorithms. When z = 50 Mbytes, the performance of proposed

algorithm is 0.45, 0.55, 0.45 times higher than BP algorithm, DDPG algorithm, LFU and Max

C/I algorithm, respectively. The long-term content delivery delay decreases with the size of cache

capacity increasing, except the delay of BP algorithm. Since BP algorithm updates the caching

placement and user association in each time slot, the total content update delay in one time

frame brings a large time overhead. Therefore, the delay obtained by BP algorithm is larger. The
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Fig. 9: Cache hit ratio and average bandwidth cost comparison with varying user numbers.

delay of DDPG algorithm reduces more slowly compared to the proposed algorithm, because

DDPG updates the caching placement and user association in the same time scale which brings

larger content transmission delay. And the delay of proposed algorithm, LFU and Max C/I gets

better performance which verifies the superiority of the multiple time scales.

Next, we demonstrate the the effectiveness of the proposed algorithm with varying user

number. As shown in 9, the proposed algorithm can get higher cache hit ratio and lower

bandwidth cost compared with other benchmark algorithms. It is clear that the proposed algorithm

can get the most steady performance. The result is consistent with that in Fig. 7. BP algorithm

performs well in a single moment when we ignore the bandwidth cost. But in practical application

scenarios, it is obvious that we cannot ignore the cost.

Fig. 10 shows the long-term content delivery delay comparison with varying number of

users. In the simulation, we set the cache capacity as 50 Mbytes, and other parameters remain

constant. Compared with other algorithms, the proposed algorithm can obtain a smaller delay

and its performance is very stable. As we can see, the delay increases with the number of users

increasing, but the impact on delay is small for the proposed algorithm. In DDPG algorithm,

caching placement and user association are both updated in long time scale. More users will

bring more uncertainty to user association. Therefore, the delay of DDPG algorithm changes

greatly. The delay of BP, LFU and Max C/I increases slower. At the same time, the proposed

algorithm shows significant performance.
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Fig. 10: Long-term content delivery delay comparison with varying user numbers.
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Fig. 11: Long-term content delivery delay comparison with varying time scale.

Fig. 11 demonstrates the long-term content delivery delay comparison with varying time

scale. With the time scale increasing, the proposed algorithm get a smaller delay and a stable

convergence point gradually. From Fig. 11 we can see, when T = t, each algorithm updates

caching placement strategy and user association strategy in the same time-scale, and the proposed

algorithm has no obvious advantages. However, the proposed algorithm performs better with

time-scale increasing. The content update delay is significantly reduced in the proposed algorithm

which applies multiple time-scale method, which verifies Remark 2. This provides a good proof
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for the application of the multiple time-scale algorithm.

V. CONCLUSION

This paper has investigated cache-enabling cellular networks with time-varying user location

and content popularity. To adapt to the dynamic environment, we have formulated a long-term

joint optimization problem of caching placement and user association. We have proposed a joint

optimization algorithm of caching placement and user association based on multiple time scales.

Simulation results have demonstrated the convergence of the proposed algorithm and verified

the feasibility and effectiveness of the proposed algorithm. Besides, from the simulation results,

we can see that the multiple time-scale method can greatly improve the system performance.
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