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On the Optimal Memory-Load Tradeoff of Coded
Caching for Location-Based Content

Kai Wan, Member, IEEE, Minquan Cheng, Mari Kobayashi, Senior Member, IEEE, and Giuseppe
Caire, Fellow, IEEE

Abstract—Caching at the wireless edge nodes is a promising
way to boost the spatial and spectral efficiency, for the sake of
alleviating networks from content-related traffic. Coded caching
originally introduced by Maddah-Ali and Niesen significantly
speeds up communication efficiency by transmitting multicast
messages simultaneously useful to multiple users. Most prior
works on coded caching are based on the assumption that each
user may request all content in the library. However, in many
applications the users are interested only in a limited set of
content that depends on their location. For example, assisted
self-driving vehicles may access super High-Definition maps of
the area through which they are travelling. Motivated by these
considerations, this paper formulates the coded caching problem
for location-based content with edge cache nodes. The considered
problem includes a content server with access to N location-based
files (e.g., High-Definition maps), K edge cache nodes located at
different regions, and K users (i.e., vehicles) each of which is in
the serving region of one cache node and can retrieve the cached
content of this cache node with negligible cost. Depending on the
location, each user only requests a file from a location-dependent
subset of the library. The objective is to minimize the worst-case
load (i.e., the worst-case number of broadcasted bits from the
content server among all possible demands). For this novel coded
caching problem, we propose a highly non-trivial converse bound
under uncoded cache placement (i.e., each cache node directly
copies some library bits in its cache), which shows that a simple
achievable scheme is optimal under uncoded cache placement. In
addition, this achievable scheme is also proved to be generally
order optimal within a factor of 3. Finally, we extend the coded
caching problem for location-based content to the multiaccess
coded caching topology originally proposed by Hachem et al.,
where each user is connected to L nearest cache nodes. When
L ≥ 2, we characterize the exact optimality on the worst-case
load.

Index Terms—Coded caching, location-based content, edge
cache nodes, uncoded cache placement.

I. INTRODUCTION

Caching reduces peak traffic by taking advantage of devices’
memories distributed across the network to duplicate content
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during off-peak hours, such that the network traffic is shifted
from peak to off-peak hours. A caching system is operated in
two phases: i) placement phase: each user stores some bits
in its cache without knowledge of later demands; ii) delivery
phase: after each user has made its request and according to
cached content, the server transmits packets in order to satisfy
the user demands. The goal is to minimize the transmission
load such that user demands can be satisfied.

Information theoretic coded caching was originally pro-
posed by Maddah-Ali and Niesen (MAN) in [1] for a shared-
link caching system where a server with a library of N equal-
length files is connected to K users through a noiseless shared
link and each user can store M files in its local cache. Each
user demands an arbitrary file in the library during the delivery
phase. The MAN scheme uses a combinatorial design in the
placement phase such that each multicast message transmitted
during the delivery phase simultaneously satisfies the demands
of multiple users. Under the constraint of uncoded cache
placement (i.e., each user directly caches a subset of the
library bits) and for the worst-case load among all possible
demands, the MAN scheme was proved to be optimal when
N ≥ K [2], [3]. Provided the observation that some MAN
linear combinations are redundant if there exist files demanded
by several users, the authors in [3] improved the MAN delivery
scheme and achieved the optimal worst-case load under the
constraint of uncoded cache placement for any K. It was
also proved in [4] that the multiplicative gap between the
optimal caching scheme with uncoded cache placement and
any caching scheme with coded cache placement is at most 2.

Caching at the wireless edge nodes reduces both the
backhaul traffic and the transmission time for high-volume
data delivery [5], [6]. Although extensively considered in the
literature, the end-user-caches, e.g. mobile devices, have some
limitations as they have typically small storage size (compared
to the library size) and are useful only for one user device. By
contrast, the caches at edge devices, e.g. small base stations,
have larger storage capability and can be accessed by multiple
users. In addition, location-based content could be placed
into the edge caching devices at different locations, such that
when the mobile clients enter one area, they can retrieve the
location-based content for this area from the corresponding
edge caching devices.

Coded caching for location-based content: Recently the
emerging vehicular applications (such as autonomous vehi-
cles, intelligent transportation, high-quality Internet navigation
and entertainment, etc.) bring a revolutionary change to the
traditional vehicular transportation, and meanwhile lead to a
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Fig. 1: Vehicular network coded caching problem for
location-based content.

dramatically increasing number of demands on data services.
To scope with the large volumes of data, edge caching was
widely used in the vehicular networks, to list a subset of
literature [7]–[14]. Motivated by this type of applications, in
this paper we focus on the coded caching problem for location-
based content. In order to keep the problem tractable and
nevertheless provide some fundamental insight, we consider
a very simplistic model of vehicular network with edge cache
nodes as illustrated in Fig. 1, including one content server with
access to N location-based files such as High-Definition (HD)
maps and/or location-based advertising, entertainment, and
services. Following the original MAN coded caching model,
we assume that each content file has equal size of B bits. The
content server is connected to K edge cache nodes through
an error-free shared link. We assume that each cache node
is in a fixed assigned location and has a local cache with
size MB bits; for example, the cache nodes could be roadside
units (RSUs), mobile edge caching (MEC) servers, unmanned
aerial vehicles (UAVs) hovering on assigned geographic areas.
Each cache node is accessible to the vehicles in one area
without load cost;1 that is, we count only the transmission
load from the content server. The whole road modelled as a
ring is divided into K non-overlapping regions of equal size,
each of which is connected to one cache node.2 Each vehicle in
one region demands one location-based file corresponding to
its region. The set of possible demanded files in the kth region
is denoted by Dk, for each k ∈ [K], where the set Dk ⊆ [N]
is formed by three subsets: two subsets of equal size a that
represent files also present in the neighbouring regions to the
left Dk−1 and to the right Dk+1, respectively; a subset of size

1 The cost-free access between edge caches and users can be justified by
dedicated local links of very high capacity (e.g. wideband mmWave proximity
links). Models of this kind are widely assumed in the literature of coded edge
caching systems such as FemtoCaching [15], multiaccess coded caching [16],
and coded caching with shared-caches [17].

2 The ring networks are very popular and widely studied model in the
literature, such as circular Wyner model for interference networks with limited
interference from neighbours [18], [19], multiaccess coded caching [16], etc.
A ring network is interesting in the theoretic sense, because the boundary
effect at both ends is ignored.
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Fig. 2: The information theoretic model of the considered coded
caching problem for location-based content with K = 4, N = 8, and

a = b = 1.

b that represent files uniquely present in Dk.
We treat the considered problem as an information theoretic

coded caching problem with K users (i.e. vehicles) such that
each user is located at one distinct region,3 as illustrated
in Fig. 2. In the cache placement phase, each cache node
stores some content of the N files without knowledge of the
users’ later demands. In the delivery phase, the user at the kth

region requests a file in Dk. According to the users’ demands,
the central server broadcasts RB bits to all users, such that
each user can recover its demanded file from the broadcasted
packets and the stored content of its connected cache node.
The objective is to minimize R for the worst-case demand(s)
over the restricted set of possible (location-based) demands.

Relation to the existing works: Our considered problem
differs from the existing works [7]–[14] for the vehicular
networks with edge cache nodes on two aspects: (i) we
consider a coded caching problem for which we need to design
the cache placement of the cache nodes and the multicast
messages transmitted by the content server to minimize the
broadcasted load, while the techniques in [7]–[13] are based
on uncoded caching; (ii) there exists some overlap on the
demand sets of each two neighbouring regions in our problem,
which is not considered in [7]–[14]. Coded caching with
location-based content delivery was also considered in [20].
Different from our edge caching model, the users in the
setting considered in [20] have their own cache memories and
are mobile with uniform access probability to each location,
where each location corresponds to one specific file and the
placement phase is done without knowing the locations of the
users.

Our considered problem can be seen as a special case of
the coded caching problem with different demand sets, where
the set of possible demanded files by each cache-aided user
is different. The exact optimality results on the memory-load
tradeoff were fully characterized in [21] for the two-user two-

3 In a more practical scenario with multiple vehicles per region, one direct
solution is to divide the whole transmission into multiple rounds, where in
each round we serve one user in each region. However, the converse bounds
derived in this paper would not directly apply. It is one of our on-going works
to characterize the optimal memory-load tradeoff for this case.
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file case, and were partially characterized in [22], [23] for the
two-user N-file case. For the general case where the users are
divided into classes and the users in the same class have the
same demand set, some achievable schemes were proposed
in [24], [25]. Namely, these schemes let each user use some
fraction of its cache to store the common files among different
groups and remaining fraction to store the unique files in its
group, such that the MAN caching scheme could be used
to transmit the common files among different groups and
the unique files in each group, respectively. Very recently,
by focusing on a special case where there exist the same
number of common files in the demand sets of each α-subset
of users (e.g. α = K reduces to the setup of [1]), the authors
in [26] showed that the direct use of the MAN caching scheme
regardless the users’ demand sets can yield unbounded gains
over the best selfish caching scheme which lets each user only
cache some bits from the files in its demanded files.

However, except some asymptotic optimality guarantees for
some specific cases, the optimality for the coded caching
problem with different demand sets is generally open. In our
paper, we focus on a special structure of different demand
sets, where the number of common demanded files by each
two neighbouring users is denoted by a and the number of
unique demanded files by each user is denoted by b.

Our Contributions: In addition to the formulation of on
the novel coded caching problem for location-based content,
our main contributions are as follows:
• By proposing a highly non-trivial converse bound under

uncoded cache placement, we prove that the memory
sharing among two simple memory-load tradeoff points
(0,K) and (2a + b, 0), and one achieved tradeoff point
by the MAN scheme

(
N
K ,

K−1
2

)
, is optimal under uncoded

cache placement. The converse strategy in [2], [3] for the
MAN caching problem under uncoded cache placement
leads to a loose converse in our problem, because it sums
many redundant inequalities in order to derive the final
lower bound.

• Compared to a novel cut-set converse bound, this achiev-
able scheme is proved to be order optimal within a factor
of 3.

• We also formulate our location-based content problem
with the multiaccess coded caching topology, as illus-
trated in Fig. 4. In this multiaccess coded caching topol-
ogy originally considered in [16], each user is connected
to L ≥ 2 neighbouring cache nodes. By extending the pro-
posed achievable scheme and the cut-set converse bound
to this novel model, we characterize the exact optimality.
It is interesting to see that when L ≥ 2, it does not reduce
the load if each user is allowed to access more than 2
caches. This result provides a very important insight on
the design of edge caching schemes for location-based
content, showing that essentially localized access through
high-capacity proximity links to the neighbouring caches
is indeed sufficient to achieve the optimal load of the
(costly) cellular broadcast channel.
Paper Organization: The rest of this paper is organized

as follows. Section II formulates the coded caching problem
for location-based content and reviews some related results.

Section III introduces the main results in this paper. Section IV
extends the proposed bounds to the multiaccess coded caching
problem for location-based content. Section V concludes the
paper, while some proofs can be found in the Appendix.

Notation Convention: Calligraphic symbols denote sets,
bold symbols denote vectors, and sans-serif symbols denote
system parameters. We use | · | to represent the cardinality of
a set or the length of a vector. Sets of consecutive integers are
denoted as [a : b] := {a, a+ 1, . . . , b} and [n] := [1 : n]. The
symbol ⊕ represents bit-wise XOR. a! = a× (a−1)×· · ·×1
represents the factorial of a. < b >a represents the modulo
operation on b with integer divisor a and in this paper we let
< b >a∈ {1, . . . , a} (i.e., we let < b >a= a if a divides b).
We use the convention that

(
x
y

)
= 0 if x < 0 or y < 0 or

x < y.

II. SYSTEM MODEL AND RELATED RESULTS

A. System Model

The information theoretic formulation of the (K, a, b) coded
caching problem for location-based content is given as follows,
illustrated in Fig. 2. A central server has access to a library of
N location-based files, denoted by W1, . . . ,WN, each of which
contains B i.i.d. bits. B is assumed to be large enough such
that any subpacketization on the files is possible. We consider a
one-dimensional cyclic route. K cache nodes are distributed on
the route where the distance between two neighbouring cache
nodes is identical. Each cache node can cache up to MB bits.
Each user on the route can retrieve the cached content from
its nearest cache node. Thus the whole route is divided into K
regions, each of which corresponds to one cache node. Based
on the location of the kth region, each user connected to the
cache node k is only interested in the files whose indices are
in the set Dk. Intuitively, Dk is the union of three disjoint
parts:

• Dk,1 := Dk∩D<k−1>K
, representing the a common files

which can also be demanded by the users in the kth region
and in the left-hand side neighbouring region, i.e., the
(< k − 1 >K)

th region.
• Dk,2 := Dk \

(
∪j∈[K]\{k}Dj

)
, representing the b files

which can only be demanded by the users in the kth

region.
• Dk,3 := Dk∩D<k+1>K

, representing the a common files
which can also be demanded by the users in the kth region
and in the right-hand side neighbouring region, i.e., the
(< k + 1 >K)

th region.

Due to the topology of the one-dimensional cyclic route, there
does not exist any file which can be demanded by two users
in two non-neighbouring regions, i.e., Dk1 ∩ Dk2 = ∅ where
< k1 − k2 >K∈ [2 : K − 2]. Hence, we have N := K(a + b)
and

Dk := [(k − 1)(a+ b) + 1 : ka+ (k − 1)b]︸ ︷︷ ︸
:=Dk,1

∪ [ka+ (k − 1)b+ 1 : k(a+ b)]︸ ︷︷ ︸
:=Dk,2
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∪
[
< k(a+ b) + 1 >K(a+b):< (k + 1)a+ kb >K(a+b)

]︸ ︷︷ ︸
:=Dk,3

.

(1)

The server communicates with K users through an error-free
shared link. Each user connected to cache node k can retrieve
the content stored in cache node k. In this paper, we focus
on the communication bottleneck on the shared link from the
server to the users; thus we assume that each user can retrieve
the cached content from its connected cache node without any
cost.

The system operates in two phases.
Cache Placement Phase: During the cache placement

phase, each cache node stores information about the N files
in its local cache without knowledge of the users’ demands.
We denote the cached content of cache node k ∈ [K] by
Zk = φk(W1, . . . ,WN), where

φk : [0 : 1]NB → [0 : 1]MB, k ∈ [K]. (2)

Let Z = (Z1, . . . , ZK) be the cached content of all cache
nodes.

Delivery Phase: As explained in Footnote 3, we assume
that there is exactly one user in each region who makes the
request in the delivery phase, where the user in the kth region is
called user k, for each k ∈ [K]. The demand vector is defined
as d := (d1, . . . , dK), where dk ∈ Dk represents to the index
of the file demanded by user k ∈ [K]. The demand vector d
is known to the server and all users. Given (Z,d), the server
broadcasts the message X = ψ(d,W1, . . . ,WK), where

ψ : D1 × · · · × DK × [0 : 1]NB → [0 : 1]RB, (3)

for some non-negative number R referred to as load.
Decoding: Each user k ∈ [K] decodes its desired file

Fdk = ξk(d, Zk, X), where

ξk : D1 × · · · × DK × [0 : 1]MB × [0 : 1]RB → [0 : 1]B, k ∈ [K].
(4)

Objective: For any cache size M ∈ [0,N], we aim to
determine the minimum worst-case load among all possible
demands, defined as the smallest R such that there exists
an ensemble of placement functions φk, k ∈ [K], encoding
function ψ, and decoding functions ξk, k ∈ [K], satisfying all
the above constraints. The optimal load is denoted by R?.

Note that if K = 1, we have a = 0 and N = b. The
considered problem becomes the 1-user MAN coded caching
problem, where the uncoded caching scheme is optimal. In the
rest of this paper, we consider K ≥ 2.

Uncoded Cache Placement: The cache placement policy
is uncoded if the bits of the files are directly copied into
the cache nodes. Under the constraint of uncoded cache
placement, we can partition each file Wi where i ∈ [N] into
subfiles as

Wi = {Wi,T : T ⊆ [K]}, (5)

where Wi,T represents the bits of Wi exclusively cached by
the cache nodes in T . The optimal load under the constraint
of uncoded cache placement is denoted by R?u.

B. Optimality of the MAN Scheme under Uncoded Cache
Placement for the Shared-link Model

In the following, we briefly introduce the MAN coded
caching scheme [1] for the shared-link MAN coded caching
model, including a server with N files and K cache-aided users
with cache size M.

We focus on the memory size M = Nt
K , where t ∈ [0 :

K]. By dividing each file Wi where i ∈ [N] into
(
K
t

)
non-

overlapping and equal-length subfiles, Wi = {Wi,T : T ⊆
[K], |T | = t}, we let each user k ∈ [K] cache Wi,T where k ∈
T . Hence, each user totally caches N

(K−1
t−1)
(Kt)

B = Nt
K B = MB

bits, satisfying the memory size constraint.
In the delivery phase, we assume that the demand vector

is d = (d1, . . . , dK) ∈ [N]K. For each set S ⊆ [K] where
|S| = t + 1, the server broadcasts a multicast message
XS = ⊕

k∈S
Wdk,S\{k}. Each user k ∈ S caches all subfiles but

Wdk,S\{k} in XS . Since the server transmits
(

K
t+1

)
multicast

messages, each of which contains B/
(
K
t

)
bits, the achieved

memory-load tradeoff is

(M,RMAN) =

(
Nt

K
,
K− t
t+ 1

)
, ∀t ∈ [0 : K]. (6)

The lower convex envelope of the memory-load tradeoff
points in (6) was proved to be optimal under the constraint
of uncoded cache placement and N ≥ K [2], [3]. More
precisely, for any coded caching scheme with uncoded cache
placement Z, we can divide each file into 2K subfiles as in (5).
We consider one demand vector d = (d1, . . . , dK) where
di 6= dj if i 6= j, and one permutation of [K] denoted by
u = (u1, . . . , uK). We then construct a genie-aided super-user
with cached content

Z ′ =
(
Zu1

, Zu2
\ (Wdu1

∪ Zu1
), . . . ,

ZuK
\ (Wdu1

∪ Zu1
∪Wdu2

∪ Zu2 ∪ · · · ∪WduK−1
∪ ZuK−1

)
)
,

who is able to recover (Wd1 , . . . ,WdK) from (X,Z ′). This
is because, this super-user first decodes Wdu1

from (X,Zu1),
then decodes Wdu2

from (X,Zu1 , Zu2 \ (Wdu1
∪ Zu1)), and

does the similar procedure iteratively until decoding WduK
.

Hence, we have

H(Wd1 , . . . ,WdK |Z ′) = H(Wd1 , . . . ,WdK |Z ′, X)

+ I(Wd1 , . . . ,WdK ;X|Z ′) (7a)
= I(Wd1 , . . . ,WdK ;X|Z ′) ≤ H(X|Z ′) ≤ H(X), (7b)

=⇒ R ≥
∑
i∈[K]

∑
T ⊆[K]\{u1,...,ui}

|Wdui
,T |

B
. (7c)

By considering all demand vectors in which users have
distinct demands and all permutations of users, we sum all
the inequalities in the form of (7c). Because of symmetry, for
each t ∈ [0 : K], on the right side of the sum of all these
inequalities, the coefficients of the term |Wi,T | are the same,
where i ∈ [N] and |T | = t. Note that in (7c), there are

(
K
t+1

)
terms with |T | = t whose coefficient is 1. Hence, the sum of
all inequalities in the form of (7c) is

R ≥
∑
t∈[0:K]

(
K
t+1

)
N
(
K
t

)xt = ∑
t∈[0:K]

K− t
N(t+ 1)

xt, (8a)
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where xt :=
∑
i∈[N]

∑
T ⊆[K]:|T |=t

|Wi,T |
B

. (8b)

From the memory size constraint, it should satisfy∑
t∈[0:K]

txt ≤ KM. (9)

From the file size constraint, it should satisfy∑
t∈[0:K]

xt = N. (10)

Finally, by the Fourier-Motzkin elimination on xq where
q ∈ [0 : K], we obtain R?u is lower bounded by the lower
convex envelope of the memory-load points

(
Nt
K ,

K−t
t+1

)
, where

t ∈ [0 : K], coinciding with that of the MAN scheme.

III. MAIN RESULTS

For the considered coded caching problem for location-
based content, the K-user MAN scheme could be directly used,
which achieves the memory-load tradeoff points in (6). How-
ever, in the following theorem, we show that this topology-
agnostic scheme is strictly sub-optimal.

Theorem 1. For the (K, a, b) coded caching problem for
location-based content, when b(K−1) < 2a, the optimal load
under the constraint of uncoded cache placement is

R?u =

{
K− K+1

2(a+b)M, if 0 ≤ M ≤ a+ b;
(K−1)(2a+b)

2a − K−1
2a M, if a+ b < M ≤ 2a+ b.

(11)

When b(K − 1) ≥ 2a, the optimal load under the constraint
of uncoded cache placement is

R?u = K− K

2a+ b
M. (12)

�

Proof: Achievability. When b(K − 1) < 2a, the optimal
load under uncoded cache placement in (11) is achieved by
the memory sharing among the memory-load points (0,K),(
a+ b, K−12

)
, and (2a + b, 0). For (0,K), we let the server

directly transmit Wdk for each k ∈ [K]. For
(
a+ b, K−12

)
=(

N
K ,

K−1
2

)
, we directly use the MAN scheme with t = 1 in (6).

For (2a+b, 0), we let each cache node k cache all the 2a+b
files in Dk. Since the demand of user k is in Dk and user k
can retrieve the cached content of cache node k, the load in
the delivery phase is 0.

When b(K−1) ≥ 2a, the optimal load under uncoded cache
placement in (12) is achieved by the memory sharing between
the memory-load points (0,K) and (2a+ b, 0), which can be
achieved as described above. Note that when b(K− 1) > 2a,
the MAN scheme is strictly sub-optimal for any 0 < M ≤
2a+ b.

Converse. The main technical challenge for Theorem 1 is
the proof of the converse under uncoded cache placement.
Since the set of possible demanded files by each user is a
proper subset of [N], the converse for the original MAN coded
caching problem is not a converse for our considered problem.

Similar to the converse bound for (6), we can consider all
possible demand vectors where users have distinct demands
and all permutations of the K users, and obtain a lower bound
on the load in the form of (7c) for each combination of the
aforementioned demand vector and permutation. Together with
the memory size and file size constraints, we can obtain a
converse bound on R?u, which is a Linear Programming (LP)
with the numbers of constraints and of variables exponential
to K. To compute the closed-form of the optimal solution
for the LP, one idea is to sum all the inequalities in the
form of (7c) as we did for the original MAN coded caching
problem. However, summing all the inequalities loosens the
converse bound in our problem, because some inequalities
are redundant.4 Intuitively, this redundancy is because in this
network topology the demand vectors are not symmetric, nei-
ther the permutations of users; thus the resulting inequalities
are not symmetric. Instead, our main contribution is to
smartly select the non-redundant inequalities. This is done
by carefully selecting the demand vectors and specific
permutation(s) of users for each selected demand vector.
Then we sum these non-redundant inequalities all together,
such that we can obtain a closed-form of the solution for the
LP, which is exactly identical to the optimal load in Theorem 1.
The detailed proof on the converse bound for Theorem 1 could
be found in Sections III-A to III-C.

Remark 1 (Effect of a and b). It is interesting to see from
Theorem 1 that, when b ≥ 2a

K−1 , under the constraint of
uncoded cache placement, coded caching does not have any
advantage compared to the uncoded caching scheme (i.e., the
memory sharing between (0,K) and (2a+ b, 0)). By contrast,
when a increases, coded caching becomes more significant
compared to uncoded caching, as illustrated in Fig. 3. The
coded caching gain of the proposed scheme for Theorem 1
is no more than 2 compared to the uncoded caching scheme,
since we only use the MAN coded caching scheme in (6) with
t = 1. �

By comparing the achieved load in Theorem 1 with a cut-
set converse bound, we obtain the following order optimality
results, whose proof could be found in Appendix A.

Theorem 2. For the (K, a, b) coded caching problem for
location-based content,

• if K is even, we have R?u ≤ 2R?;
• if K is odd, we have R?u ≤ 3R?.

�

Theorem 2 shows that the proposed achievable scheme for
Theorem 1 is generally order optimal within a factor of 3.

Remark 2 (Extension to the multiple-input single-output
(MISO) broadcast channel). The proposed achievable scheme
in this paper could be directly extended to the case where
the server has multiple antennas by using the cache-aided
MISO schemes in [27]–[30]. By leveraging the multiplexing

4For example, if we have two lower bounds on R, say R ≥ 3 and R ≥ 1.
Obviously, R ≥ 1 is redundant. If we sum these two bounds, we have R ≥ 2,
which is looser than R ≥ 3.
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Fig. 3: Coded caching problem for location-based content with
K = 4, b = 2, and various values a.

gain from L antennas at the server, the achieved corner points
become

(
0, KL

)
,
(
a+ b, K−1L+1

)
, and (2a+ b, 0). �

A. Converse Proof of Theorem 1: b(K− 1) < 2a and a+ b ≤
M ≤ 2a+ b

We first focus on the case where b(K − 1) < 2a and a +
b ≤ M ≤ 2a+ b, and use the following example to illustrate
the main idea of our proposed converse bound under uncoded
cache placement.

Example 1 ((K, a, b) = (3, 2, 1) and 3 ≤ M ≤ 5). Consider
the coded caching problem for location-based content with
K = 3, a = 2, and b = 1. In this example, N = K(a+ b) = 9
and

D1 = {1, 2, 3, 4, 5}, D2 = {4, 5, 6, 7, 8}, D3 = {7, 8, 9, 1, 2}.

It can be seen that the N = 9 files could be divided
into two classes, where in the first class denoted by C1 =
{1, 2, 4, 5, 7, 8}, each file may be demanded by two users; in
the second class denoted by C2 = {3, 6, 9}, each file can only
be demanded by one user. The achieved load by the proposed
scheme for Theorem 1 is 5

2 −
M
2 when 3 ≤ M ≤ 5. In the

following, we will prove that it is optimal under uncoded cache
placement.

For any caching scheme with uncoded cache placement Z,
we can divide each file Wi, i ∈ [N], into subfiles Wi =

{Wi,T : T ⊆ [3]}, where Wi,T represents the bits of Wi

exclusively cached by the cache nodes in T . Different from the
converse proof for the MAN coded caching problem described
in Section II-B which considers all possible demand vectors
with distinct demands and all permutations of K users, we
will carefully select the demand vectors and user permutations
which lead to non-redundant inequalities on the load.

We first fix one permutation (u1, u2, u3) = (1, 3, 2). For
this permutation of users, we consider the demand vectors
(d1, d2, d3) where d1 ∈ {1, 2}, d2 = 6 and d3 ∈ {7, 8}. More
precisely, pick one demand vector (d1, d2, d3) = (1, 6, 7), we
construct a genie-aided super user with cache

Z ′ =
(
Zu1

, Zu2
\ (Zu1

∪Wdu1
),

Zu3
\ (Zu1

∪Wdu1
∪ Zu2

∪Wdu2
)
)

=
(
Z1, Z3 \ (Z1 ∪W1), Z2 \ (Z1 ∪W1 ∪ Z3 ∪W7).

From (Z ′, X), the virtual user can decode W1, W7, and W6,
iteratively. Hence, we have

H(W1,W7,W6|Z ′)
= H(W1,W7,W6|Z ′, X) + I(W1,W7,W6;X|Z ′)
≤ H(X),

=⇒ R ≥ (|W1,∅|+ |W1,{2}|+ |W1,{3}|+ |W1,{2,3}|
+ |W7,∅|+ |W7,{2}|+ |W6,∅|)/B,
=⇒ R ≥ (|W1,∅|+ |W1,{2}|+ |W1,{3}|+ |W7,∅|
+ |W7,{2}|+ |W6,∅|)/B. (13)

Similarly, for this permutation of users, when (d1, d2, d3) =
(1, 6, 8), we have

R ≥ (|W1,∅|+ |W1,{2}|+ |W1,{3}|+ |W8,∅|
+ |W8,{2}|+ |W6,∅|)/B. (14)

When (d1, d2, d3) = (2, 6, 7), we have

R ≥ (|W2,∅|+ |W2,{2}|+ |W2,{3}|+ |W7,∅|
+ |W7,{2}|+ |W6,∅|)/B. (15)

When (d1, d2, d3) = (2, 6, 8), we have

R ≥ (|W2,∅|+ |W2,{2}|+ |W2,{3}|+ |W8,∅|
+ |W8,{2}|+ |W6,∅|)/B. (16)

We then fix one permutation (u1, u2, u3) = (1, 2, 3). For
this permutation of users, we consider the demand vectors
(d1, d2, d3) where d1 ∈ {4, 5}, d2 ∈ {7, 8}, and d3 = 9. More
precisely, when (d1, d2, d3) = (4, 7, 9), we have

R ≥ (|W4,∅|+ |W4,{2}|+ |W4,{3}|+ |W7,∅|
+ |W7,{3}|+ |W9,∅|)/B. (17)

When (d1, d2, d3) = (4, 8, 9), we have

R ≥ (|W4,∅|+ |W4,{2}|+ |W4,{3}|+ |W8,∅|
+ |W8,{3}|+ |W9,∅|)/B. (18)

When (d1, d2, d3) = (5, 7, 9), we have

R ≥ (|W5,∅|+ |W5,{2}|+ |W5,{3}|+ |W7,∅|
+ |W7,{3}|+ |W9,∅|)/B. (19)
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When (d1, d2, d3) = (5, 8, 9), we have

R ≥ (|W5,∅|+ |W5,{2}|+ |W5,{3}|+ |W8,∅|
+ |W8,{3}|+ |W9,∅|)/B. (20)

By summing (13)-(20), we obtain

R ≥ 1

4B
(|W1,∅|+ |W2,∅|+ |W4,∅|+ |W5,∅|+ 2|W7,∅|

+ 2|W8,∅|) +
1

2B
(|W6,∅|+ |W9,∅|)

+
1

4B

∑
i∈{1,2,4,5,7,8}

∑
j∈{2,3}

|Wi,{j}|. (21)

Next we fix one permutation (u1, u2, u3) = (2, 1, 3). For
this permutation of users, we consider the demand vectors
(d1, d2, d3) where d1 ∈ {1, 2}, d2 ∈ {4, 5}, and d3 = 9.
Hence, we can list 4 inequalities. We also fix one permutation
(u1, u2, u3) = (2, 3, 1). For this permutation of users, we
consider the demand vectors (d1, d2, d3) where d1 = 3,
d2 ∈ {7, 8}, and d3 ∈ {1, 2}. Hence, we can also list 4
inequalities. Then we sum these 8 inequalities to obtain

R ≥ 1

4B
(|W4,∅|+ |W5,∅|+ |W7,∅|+ |W8,∅|+ 2|W1,∅|

+ 2|W2,∅|) +
1

2B
(|W9,∅|+ |W3,∅|)

+
1

4B

∑
i∈{1,2,4,5,7,8}

∑
j∈{1,3}

|Wi,{j}|. (22)

Finally, we fix one permutation (u1, u2, u3) = (3, 2, 1). For
this permutation of users, we consider the demand vectors
(d1, d2, d3) where d1 = 3, d2 ∈ {4, 5}, and d3 ∈ {7, 8}.
Hence, we can list 4 inequalities. We also fix one permutation
(u1, u2, u3) = (3, 1, 2). For this permutation of users, we
consider the demand vectors (d1, d2, d3) where d1 ∈ {4, 5},
d2 = 6, and d3 ∈ {1, 2}. Hence, we can also list 4 inequalities.
Then we sum these 8 inequalities to obtain

R ≥ 1

4B
(|W7,∅|+ |W8,∅|+ |W1,∅|+ |W2,∅|+ 2|W4,∅|

+ 2|W5,∅|) +
1

2B
(|W3,∅|+ |W6,∅|)

+
1

4B

∑
i∈{1,2,4,5,7,8}

∑
j∈{1,2}

|Wi,{j}|. (23)

By summing (21)-(23), we have

R ≥
1

3
(|W1,∅|+ |W2,∅|+ |W4,∅|+ |W5,∅|+ |W7,∅|+ |W8,∅|)/B︸ ︷︷ ︸

:=α0

+
1

3
(|W3,∅|+ |W6,∅|+ |W9,∅|)/B︸ ︷︷ ︸

:=β0

+
1

6

∑
i∈{1,2,4,5,7,8}

∑
j∈[3]

|Wi,{j}|/B︸ ︷︷ ︸
:=α1

(24a)

=
1

3
α0 +

1

3
β0 +

1

6
α1. (24b)

By the file size constraint, for the first class of files C1, we
have

6 = (|W1|+ |W2|+ |W4|+ |W5|+ |W7|+ |W8|)/B (25a)

= α0 + α1 +
∑

t1∈{2,3}

∑
i1∈{1,2,4,5,7,8}

∑
T1⊆[3]:|T1|=t1

|Wi1,T1 |
B

;

(25b)

and for the second class of files C2, we have

3 = (|W3|+ |W6|+ |W9|)/B (26a)

= β0 +
∑
t2∈[3]

∑
i2∈{3,6,9}

∑
T2⊆[3]:|T2|=t2

|Wi2,T2 |
B

. (26b)

By the memory size constraint, we have

3M ≥ α1 +
∑

t1∈{2,3}

∑
i1∈{1,2,4,5,7,8}

∑
T1⊆[3]:|T1|=t1

t1|Wi1,T1 |
B

+
∑
t2∈[3]

∑
i2∈{3,6,9}

∑
T2⊆[3]:|T2|=t2

t2|Wi2,T2 |
B

. (27)

The next step is to derive the converse bound on R from the
constraints in (24b), (25b), (26b), and (27). More precisely,
from (25b) we have

1

3
(α0 + α1) +

1

3

∑
t1∈{2,3}

∑
i1∈{1,2,4,5,7,8}

∑
T1⊆[3]:|T1|=t1

|Wi1,T1 |
B

= 2. (28)

From (26b) we have

1

6
β0 +

1

6

∑
t2∈[3]

∑
i2∈{3,6,9}

∑
T2⊆[3]:|T2|=t2

|Wi2,T2 |
B

=
1

2
. (29)

From (27) we have

− 1

6
α1 −

1

6

∑
t1∈{2,3}

∑
i1∈{1,2,4,5,7,8}

∑
T1⊆[3]:|T1|=t1

t1|Wi1,T1 |
B

− 1

6

∑
t2∈[3]

∑
i2∈{3,6,9}

∑
T2⊆[3]:|T2|=t2

t2|Wi2,T2 |
B

≥ −M

2
. (30)

We sum (28)-(30) to obtain

1

3
α0 +

1

6
β0 +

1

6
α1 ≥

5

2
− M

2

+
1

6

∑
t1∈{2,3}

∑
i1∈{1,2,4,5,7,8}

∑
T1⊆[3]:|T1|=t1

(t1 − 2)
|Wi1,T1 |

B

+
1

6

∑
t2∈[3]

∑
i2∈{3,6,9}

∑
T2⊆[3]:|T2|=t2

(t2 − 1)
|Wi2,T2 |

B
(31a)

≥ 5

2
− M

2
. (31b)

By taking (31b) into (24b), we have

R ≥ 1

3
α0 +

1

3
β0 +

1

6
α1 ≥

1

3
α0 +

1

6
β0 +

1

6
α1 ≥

5

2
− M

2
.

(32)

Hence, from (32) we have R?u ≥ 5
2 −

M
2 , which coincides with

the achieved load for Theorem 1 when 3 ≤ M ≤ 5.
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Note that if we consider all the possible demand vectors with
distinct demands and all permutations of users, and sum all the
obtained inequalities from them, the resulting converse bound
is not tight; for example, if M = 3, the resulting non-tight
converse bound provides R?u ≥ 54

95 , while the tight converse
bound is R?u ≥ 5

2 −
M
2 = 1. �

We now generalize the converse bound proof in Example 1
for the case b(K−1) < 2a and a+b ≤ M ≤ 2a+b. Recall that
for each user k ∈ [K], the set of possible demanded files by
user k is Dk defined in (1), where Dk := Dk,1 ∪Dk,2 ∪Dk,3.
By definition, Dk,1 = D<k−1>K,3 and Dk,3 = D<k+1>K,1. We
also have |Dk,1| = |Dk,3| = a and |Dk,2| = b. In addition, as
in Example 1, we divide all the N := K(a+ b) files into two
classes, where

C1 := ∪k∈[K]Dk,1, (33a)
and C2 := ∪k∈[K]Dk,2. (33b)

For any caching scheme with uncoded cache placement Z, we
can divide each file Wi, i ∈ [N], into subfiles Wi = {Wi,T :
T ⊆ [K]}.

Fix one integer k ∈ [K]. For this integer, we consider two
permutations of users, (k,< k − 1 >K, . . . , < k − K+ 1 >K)
and (k,< k + 1 >K, . . . , < k + K− 1 >K).

For the first permutation (u1, u2, . . . , uK) = (k,< k −
1 >K, . . . , < k − K + 1 >K), we consider the demand
vectors (d1, . . . , dK) where duj ∈ Duj ,1 for j ∈ [K − 1],
and duK

∈ DuK,2, totally aK−1b demand vectors. For each
(d1, . . . , dK), we construct a genie-aided super user with cache

Z ′ =
(
Zu1

, Zu2
\ (Wdu1

∪ Zu1
), . . . ,

ZuK
\ (Wdu1

∪ Zu1
∪ · · · ∪WduK−1

∪ ZuK−1
)
)
. (34)

From (X,Z ′) we can decode Wdu1
, . . . ,WuK

, iteratively.
Hence,

H(Wdu1
, . . . ,WduK

|Z ′) = H(Wdu1
, . . . ,WduK

|Z ′, X)

+ I(Wdu1
, . . . ,WduK

;X|Z ′) (35a)

= I(Wdu1
, . . . ,WduK

;X|Z ′) ≤ H(X), (35b)

which leads to

R ≥

|Wdu1
,∅|+

∑
j1∈[K]\{u1}

|Wdu1
,{j1}|

 /B

+

|Wdu2 ,∅|+
∑

j2∈[K]\{u1,u2}

|Wdu2 ,{j2}|

 /B

+ · · ·+ |WduK
,∅|/B (36a)

=

|Wdk,∅|+
∑

j1∈[K]\{k}

|Wdk,{j1}|

 /B

+

|Wd<k−1>K
,∅|+

∑
j2∈[K]\{k,<k−1>K}

|Wd<k−1>K
,{j2}|

 /B

+ · · ·+ |Wd<k−K+1>K
,∅|/B. (36b)

Considering all the demand vectors (d1, . . . , dK) where duj
∈

Duj ,1 for j ∈ [K − 1], and duK
∈ DuK,2, we list aK−1b

inequalities in the form of (36b) and sum them all together
to obtain

R ≥ 1

aB

∑
i1∈Dk,1

|Wi1,∅|+
∑

j1∈[K]\{k}

|Wi1,{j1}|


+

1

aB

∑
i2∈D<k−1>K,1

|Wi2,∅|+
∑

j2∈[K]\{k,<k−1>K}

|Wi2,{j2}|

+ · · ·+

1

aB

∑
iK−1∈D<k−K+2>K,1

(
|WiK−1,∅|+

∑
jK−1∈[K]\{k,

<k−1>K,...,<k−K+2>K}

|WiK−1,{jK−1}|

)
+

1

bB

∑
iK∈D<k−K+1>K,2

|WiK,∅|. (37)

For the second permutation (u1, u2, . . . , uK) = (k,< k +
1 >K, . . . , < k+K− 1 >K), we consider the demand vectors
(d1, . . . , dK) where duj

∈ Duj ,3 for j ∈ [K − 1], and duK
∈

DuK,2, totally aK−1b demand vectors. For each of such demand
vectors, we construct a genie-aided super user with cache as
in (34) and obtain an inequality as in (36a). By summing all
the obtained aK−1b inequalities, we have

R ≥ 1

aB

∑
i1∈Dk,3

|Wi1,∅|+
∑

j1∈[K]\{k}

|Wi1,{j1}|


+

1

aB

∑
i2∈D<k+1>K,3

|Wi2,∅|+
∑

j2∈[K]\{k,<k+1>K}

|Wi2,{j2}|


+ · · ·+ 1

aB

∑
iK−1∈D<k+K−2>K,3

(
|WiK−1,∅|+

∑
jK−1∈[K]\{k,

<k+1>K,...,<k+K−2>K}

|WiK−1,{jK−1}|

)
+

1

bB

∑
iK∈D<k+K−1>K,2

|WiK,∅| (38a)

=
1

aB

∑
i1∈D<k+1>K,1

|Wi1,∅|+
∑

j1∈[K]\{k}

|Wi1,{j1}|


+

1

aB

∑
i2∈D<k+2>K,3

|Wi2,∅|+
∑

j2∈[K]\{k,<k+1>K}

|Wi2,{j2}|


+ · · ·+ 1

aB

∑
iK−1∈D<k+K−1>K,1

(
|WiK−1,∅|+

∑
jK−1∈[K]\{k,

<k+1>K,...,<k+K−2>K}

|WiK−1,{jK−1}|

)
+

1

bB

∑
iK∈D<k+K−1>K,2

|WiK,∅|, (38b)

where (38b) comes from that Di,3 = D<i+1>K,1 for any i ∈
[K].

We sum (37) and (38b) to obtain

R ≥ 1

2a

∑
k1∈{k,<k+1>K}

∑
i1∈Dk1,1

|Wi1,∅|
B

+
1

a

∑
k2∈([K]\{k,<k+1>K})

∑
i2∈Dk2,1

|Wi2,∅|
B
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+
1

2b

∑
k3∈{<k−1>K,<k+1>K}

∑
i3∈Dk3,2

|Wi3,∅|
B

+
1

2a

∑
i4∈C1

∑
j∈[K]\{k}

|Wi4,{j}|
B

, (39)

where C1 = ∪k∈[K]Dk,1 defined in (33a).
By considering all k ∈ [K], we list K inequalities in the

form of (39), and then sum them all together to obtain

R ≥ K− 1

aK

∑
i1∈C1

|Wi1,∅|
B︸ ︷︷ ︸

:=α0

+
1

bK

∑
i2∈C2

|Wi2,∅|
B︸ ︷︷ ︸

:=β0

+
K− 1

2aK

∑
i3∈C1

∑
j∈[K]

|Wi3,{j}|
B︸ ︷︷ ︸

:=α1

. (40)

By the file size constraint, for the first class of files C1, we
have

α0 + α1 +
∑

t1∈[2:K]

∑
i1∈C1

∑
T1⊆[K]:|T1|=t1

|Wi1,T1 |
B

= aK; (41)

and for the second class of files C2, we have

β0 +
∑
t2∈[K]

∑
i2∈C2

∑
T2⊆[K]:|T2|=t2

|Wi2,T2 |
B

= bK. (42)

By the memory size constraint, we have

α1 +
∑

t1∈[2:K]

∑
i1∈C1

∑
T1⊆[K]:|T1|=t1

t1|Wi1,T1 |
B

+
∑
t2∈[K]

∑
i2∈C2

∑
T2⊆[K]:|T2|=t2

t2|Wi2,T2 |
B

≤ KM. (43)

We take K−1
aK × (41) + K−1

2aK × (42)− K−1
2aK (43) to obtain

K− 1

aK
α0 +

K− 1

2aK
β0 +

K− 1

2aK
α1

≥ (K− 1)(2a+ b)

2a
− K− 1

2a
M

+
K− 1

2aK

∑
t1∈[2:K]

∑
i1∈C1

∑
T1⊆[K]:|T1|=t1

(t1 − 2)
|Wi1,T1 |

B

+
K− 1

2aK

∑
t2∈[K]

∑
i2∈C2

∑
T2⊆[K]:|T2|=t2

(t2 − 1)
t2|Wi2,T2 |

B
(44a)

≥ (K− 1)(2a+ b)

2a
− K− 1

2a
M. (44b)

By taking (44b) into (40), we have

R ≥ K− 1

aK
α0 +

1

bK
β0 +

K− 1

2aK
α1 (45a)

≥ K− 1

aK
α0 +

K− 1

2aK
β0 +

K− 1

2aK
α1 (45b)

≥ (K− 1)(2a+ b)

2a
− K− 1

2a
M, (45c)

which leads to R?u ≥
(K−1)(2a+b)

2a − K−1
2a M, coinciding with

the achieved load for Theorem 1 when b(K − 1) < 2a and
a+ b ≤ M ≤ 2a+ b.

B. Converse Proof of Theorem 1: b(K − 1) < 2a and 0 ≤
M ≤ a+ b

We then focus on the case where b(K − 1) < 2a and 0 ≤
M ≤ a+b. We go back to Example 1 and consider the memory
size regime 0 ≤ M ≤ 3.

Example 2 ((K, a, b) = (3, 2, 1) and 0 ≤ M ≤ 3). Recall
that in this example we have N = K(a + b) = 9 and D1 =
{1, 2, 3, 4, 5} , D2 = {4, 5, 6, 7, 8}, D3 = {7, 8, 9, 1, 2}. The
achieved load by the proposed scheme for Theorem 1 is 3− 2

3M
when 0 ≤ M ≤ 3. In the following, we will prove that it is
optimal under uncoded cache placement.

For any caching scheme with uncoded cache placement Z,
with the definition of α0, β0, and α1 given in (24a), it has
been proved in (24b) that

R ≥ 1

3
α0 +

1

3
β0 +

1

6
α1. (46)

We will derive another lower bound for R in terms of α0, β0,
and α1, by using another strategy to select demand vectors
and permutation of users.

We first fix one permutation (u1, u2, u3) = (1, 3, 2). For
this permutation of users, we consider the demand vectors
(d1, d2, d3) where d1 ∈ {1, 2}, d2 ∈ {4, 5}, and d3 ∈ {7, 8}.
For each of such 8 demand vectors, we can generate an
inequality on R; for example if (d1, d2, d3) = (1, 4, 7), by
generating a genie-aided super user with cache Z ′ = (Z1, Z3\
(W1 ∪ Z1), Z2 \ (W1 ∪ Z1 ∪ W7 ∪ Z3)), we can recover
(W1,W4,W7) from (Z ′, X), and thus

R ≥ |W1,∅|/B+ |W1,{2}|/B+ |W1,{3}|/B+ |W7,∅|/B
+ |W7,{2}|/B+ |W4,∅|/B. (47)

By considering all such 8 demand vectors, we can list 8
inequalities in the form of (47), and sum them all together
to obtain

R ≥ 1

2B
(|W1,∅|+ |W2,∅|+ |W4,∅|+ |W5,∅|+ |W7,∅|

+ |W8,∅|) +
1

2B
(|W1,{2}|+ |W1,{3}|+ |W2,{2}|+ |W2,{3}|

+ |W7,{2}|+ |W8,{2}|). (48)

We then fix one permutation (u1, u2, u3) = (1, 2, 3). For
this permutation of users, we consider the demand vectors
(d1, d2, d3) where d1 ∈ {4, 5}, d2 ∈ {7, 8}, and d3 ∈ {1, 2}.
By considering all such 8 demand vectors, we can list 8
inequalities in the form of (47), and sum them all together
to obtain

R ≥ 1

2B
(|W1,∅|+ |W2,∅|+ |W4,∅|+ |W5,∅|+ |W7,∅|

+ |W8,∅|) +
1

2B
(|W4,{2}|+ |W4,{3}|+ |W5,{2}|+ |W5,{3}|

+ |W7,{3}|+ |W8,{3}|). (49)

By summing (48) and (49), we have

R ≥
∑

i∈{1,2,4,5,7,8}

 1

2B
|Wi,∅|+

1

4B

∑
j∈{2,3}

|Wi,{j}|

 . (50)
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Next we fix one permutation (u1, u2, u3) = (2, 1, 3), and
consider the demand vectors (d1, d2, d3) where d1 ∈ {1, 2},
d2 ∈ {4, 5}, and d3 ∈ {7, 8}. Hence, we can list 8 inequalities.
We also fix one permutation (u1, u2, u3) = (2, 3, 1), and
consider the demand vectors (d1, d2, d3) where d1 ∈ {4, 5},
d2 ∈ {7, 8}, and d3 ∈ {1, 2}. Hence, we can also list 8
inequalities. Then we sum these 16 inequalities to obtain

R ≥
∑

i∈{1,2,4,5,7,8}

 1

2B
|Wi,∅|+

1

4B

∑
j∈{1,3}

|Wi,{j}|

 . (51)

Finally we fix one permutation (u1, u2, u3) = (3, 2, 1), and
consider the demand vectors (d1, d2, d3) where d1 ∈ {1, 2},
d2 ∈ {4, 5}, and d3 ∈ {7, 8}. Hence, we can list 8 inequalities.
We also fix one permutation (u1, u2, u3) = (3, 1, 2), and
consider the demand vectors (d1, d2, d3) where d1 ∈ {4, 5},
d2 ∈ {7, 8}, and d3 ∈ {1, 2}. Hence, we can also list 8
inequalities. Then we sum these 16 inequalities to obtain

R ≥
∑

i∈{1,2,4,5,7,8}

 1

2B
|Wi,∅|+

1

4B

∑
j∈{1,2}

|Wi,{j}|

 . (52)

By summing (50)-(52), we obtain

R ≥
∑

i∈{1,2,4,5,7,8}

 1

2B
|Wi,∅|+

1

6B

∑
j∈[3]

|Wi,{j}|

 (53a)

=
1

2
α0 +

1

6
α1. (53b)

We take 2
3 × (46) + 1

3 × (53b) to obtain

R ≥ 2

9
α0 +

2

9
β0 +

1

9
α1 +

1

6
α0 +

1

18
α1 (54a)

=
7

18
α0 +

2

9
β0 +

1

6
α1. (54b)

Recall that the file size constraints are given in (25b)
and (26b), while the memory size constraint is given in (27).
From (25b), we have

7

18
α0 +

7

18
α1 +

7

18

∑
t1∈{2,3}

∑
i1∈{1,2,4,5,7,8}∑

T1⊆[3]:|T1|=t1

|Wi1,T1 |
B

=
7

3
. (55)

From (26b), we have

2

9
β0 +

2

9

∑
t2∈[3]

∑
i2∈{3,6,9}

∑
T2⊆[3]:|T2|=t2

|Wi2,T2 |
B

=
2

3
. (56)

From (27), we have

2

9
α1 +

2

9

∑
t1∈{2,3}

∑
i1∈{1,2,4,5,7,8}

∑
T1⊆[3]:|T1|=t1

t1|Wi1,T1 |
B

+
2

9

∑
t2∈[3]

∑
i2∈{3,6,9}

∑
T2⊆[3]:|T2|=t2

t2|Wi2,T2 |
B

≤ 2

3
M. (57)

By taking (55) + (56)− (57), we have

7

18
α0 +

2

9
β0 +

1

6
α1 ≥ 3− 2

3
M. (58)

From (54b) and (58), we have

R ≥ 3− 2

3
M. (59)

Hence, from (59) we have R?u ≥ 3− 2
3M, which coincides with

the achieved load for Theorem 1 for 0 ≤ M ≤ 3. �

We are now ready to generalize the converse proof in Exam-
ple 2 for the case where b(K−1) < 2a and 0 ≤ M ≤ a+b. For
any caching scheme with uncoded cache placement Z, with
the definition of α0, β0, and α1 in (40), it has been proved
in (40) that

R ≥ K− 1

aK
α0 +

1

bK
β0 +

K− 1

2aK
α1. (60)

Now we fix one integer k ∈ [K]. For this integer, we
consider two permutations of users, (k,< k − 1 >K, . . . , <
k − K+ 1 >K) and (k,< k + 1 >K, . . . , < k + K− 1 >K).

For the first permutation (u1, u2, . . . , uK) = (k,< k−1 >K

, . . . , < k − K + 1 >K), we consider the demand vectors
(d1, . . . , dK) where duj

∈ Duj ,1 for j ∈ [K], totally aK demand
vectors. For each (d1, . . . , dK), we construct a genie-aided
super user with cache as in (34) and derive an inequality as
in (36b). By considering all such aK demand vectors, we list
aK inequalities, and sum them all together to obtain

R ≥ 1

aB

∑
i1∈Dk,1

|Wi1,∅|+
∑

j1∈[K]\{k}

|Wi1,{j1}|


+

1

aB

∑
i2∈D<k−1>K,1

|Wi2,∅|+
∑

j2∈[K]\{k,<k−1>K}

|Wi2,{j2}|


+ · · ·+ 1

aB

∑
iK−1∈

D<k−K+2>K,1

(
|WiK−1,∅|+

∑
jK−1∈[K]\{k,

<k−1>K,...,<k−K+2>K}

|WiK−1,{jK−1}|

)
+

1

aB

∑
iK∈D<k−K+1>K,1

|WiK,∅|. (61)

For the second permutation (u1, u2, . . . , uK) = (k,< k +
1 >K, . . . , < k+K− 1 >K), we consider the demand vectors
(d1, . . . , dK) where duj

∈ Duj ,3 = D<uj+1>K,1 for j ∈ [K],
totally aK demand vectors. For each of such demand vectors,
we construct a genie-aided super user with cache as in (34) and
derive an inequality as in (36b). By summing all the obtained
aK inequalities, we have

R ≥ 1

aB

∑
i1∈D<k+1>K,1

|Wi1,∅|+
∑

j1∈[K]\{k}

|Wi1,{j1}|


+

1

aB

∑
i2∈D<k+2>K,1

|Wi2,∅|+
∑

j2∈[K]\{k,<k+1>K}

|Wi2,{j2}|

+ · · ·+

1

aB

∑
iK−1∈D<k+K−1>K,1

(
|WiK−1,∅|+

∑
jK−1∈[K]\{k,

<k+1>K,...,<k+K−2>K}

|WiK−1,{jK−1}|

)
+

1

aB

∑
iK∈D<k+K>K,1

|WiK,∅|. (62)
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By summing (61) and (62), we obtain

R ≥ 1

a

∑
i1∈C1

|Wi1,∅|
B

+
1

2a

∑
i2∈C1

∑
j∈[K]\{k}

|Wi2,{j}|
B

. (63)

By considering all k ∈ [K], we list K inequalities in the
form of (63), and sum them to obtain

R ≥ 1

a

∑
i1∈C1

|Wi1,∅|
B

+
K− 1

2aK

∑
i2∈C1

∑
j∈[K]

|Wi2,{j}|
B

(64a)

=
1

a
α0 +

K− 1

2aK
α1. (64b)

Note that, since b(K − 1) < 2a, we have 1 − (K+1)b
2(a+b) =

2a−b(K−1)
2(a+b) > 0. Hence, we take (K+1)b

2(a+b) × (60) +(
1− (K+1)b

2(a+b)

)
× (64b) to obtain

R ≥ 2aK+ b(K− 1)

2(a+ b)aK
α0 +

K+ 1

2(a+ b)K
β0 +

K− 1

2aK
α1. (65)

Recall that the file size constraints are given in (41) and (42),
while the memory size constraint is given in (43). By taking
2aK+b(K−1)
2(a+b)aK ×(41)+ K+1

2(a+b)K×(42)− K+1
2(a+b)K×(43), we obtain

2aK+ b(K− 1)

2(a+ b)aK
α0 +

K+ 1

2(a+ b)K
β0 +

K− 1

2aK
α1

≥ K− K+ 1

2(a+ b)
M+

1

2(a+ b)aK

∑
t1∈[2:K]∑

i1∈C1

∑
T1⊆[K]:|T1|=t1

((t1 − 2)aK+ t1a− b(K− 1))
|Wi1,T1 |

B

+
K+ 1

2(a+ b)K

∑
t2∈[K]

∑
i2∈C2

∑
T2⊆[K]:|T2|=t2

(t2 − 1)
|Wi2,T2 |

B

(66a)

≥ K− K+ 1

2(a+ b)
M, (66b)

where (66b) comes from that b(K − 1) < 2a. From (65)
and (66b), we have

R ≥ K− K+ 1

2(a+ b)
M, (67)

which leads to R?u ≥ K − K+1
2(a+b)M, coinciding with the

achieved load for Theorem 1 when b(K − 1) < 2a and
0 ≤ M ≤ a+ b.

C. Converse Proof of Theorem 1: b(K− 1) ≥ 2a

In the end, we focus on the case where b(K − 1) ≥ 2a.
For any caching scheme with uncoded cache placement Z, we
will first prove that

R ≥ 1

b

∑
i∈C2

|Wi,∅|
B

=
1

b
β0, (68)

where C2 and β0 are defined in (33b) and (40), respectively.
More precisely, each time we consider a demand vector

(d1, . . . , dK), where dk ∈ Dk,2 for each k ∈ [K]. Since

Wd1,∅, . . . ,WdK,∅ are not cached by any cache node and from
(Z1, . . . , ZK, X) we can recover Wd1,∅, . . . ,WdK,∅, we have

R ≥ H(X)

B
≥ H(X|Z1, . . . , ZK)

B
(69a)

=
H(X,Wd1,∅, . . . ,WdK,∅|Z1, . . . , ZK)

B
(69b)

≥
H(Wd1,∅, . . . ,WdK,∅|Z1, . . . , ZK)

B
(69c)

=
H(Wd1,∅, . . . ,WdK,∅)

B
(69d)

=
|Wd1,∅|

B
+ · · ·+

|WdK,∅|
B

. (69e)

By considering all demand vectors (d1, . . . , dK), where dk ∈
Dk,2 for each k ∈ [K] , we list bK inequalities in the form
of (69e), and sum them all together to obtain (68).

In the following, we will prove the converse bound for case
where b(K−1) ≥ 2a, by the help of the derived lower bounds
of R in (40) and (68), the file constraints in (41) and (42), and
the memory size constraint in (43).

More precisely, since b(K − 1) ≥ 2a, we have 1 −
2aK

(K−1)(2a+b) = b(K−1)−2a
(K−1)(2a+b) ≥ 0. Hence, by taking

2aK
(K−1)(2a+b) × (40) +

(
1− 2aK

(K−1)(2a+b)

)
× (68), we obtain

R ≥ 2

2a+ b
α0 +

1

2a+ b
β0 +

1

2a+ b
α1. (70)

Next, by taking 2
2a+b × (41) + 1

2a+b × (42)− 1
2a+b × (43), we

obtain
2

2a+ b
α0 +

1

2a+ b
β0 +

1

2a+ b
α1

≥ K− K

2a+ b
M+

1

2a+ b

∑
t1∈[2:K]

∑
i1∈C1

∑
T1⊆[K]:|T1|=t1

(t1 − 2)

|Wi1,T1 |
B

+
1

2a+ b

∑
t2∈[K]

∑
i2∈C2

∑
T2⊆[K]:|T2|=t2

(t2 − 1)
|Wi2,T2 |

B

(71a)

≥ K− K

2a+ b
M. (71b)

From (70) and (71b), we have

R ≥ K− K

2a+ b
M, (72)

which leads to R?u ≥ K− K
2a+bM, coinciding with the achieved

load for Theorem 1 when b(K− 1) ≥ 2a.

IV. EXTENSION TO MULTIACCESS CODED CACHING
SYSTEMS

An ideal coded edge caching model with a line multiaccess
topology, referred to as multiaccess coded caching, was orig-
inally introduced in [16]. Different from our considered edge
caching topology in Section II where each user is connected
to the nearest cache node, in [16] each user is connected
to L ∈ [K] cache nodes in a cyclic wrap-around fashion.
Since [16], the multiaccess coded caching problem was widely
considered, where different achievable and converse bounds
were proposed in [31]–[36], while the optimality remains open
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Server with
8 files of 𝐵 bits

4 users with 
distinct 

demand sets
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with cache 

size 𝑀𝐵

𝒟1 = {1,2,3}

𝑍1

𝒟2 = {3,4,5}

𝑍2 𝑍3

𝒟3 = {5,6,7}

4

𝒟4 = {7,8,1}

𝑍4

Error-free shared link

Fig. 4: The information theoretic model of the multiaccess coded
caching problem for location-based content with K = 4, N = 8,

a = b = 1, L = 2.

(even for the uncoded cache placement). In the following, we
consider the (K, a, b, L) multiaccess coded caching problem
for location-based content, as illustrated in Fig. 4. The only
difference from the considered system model in Section II is
that, each user k ∈ [K] is connected to the L cache nodes in
{k,< k + 1 >K, . . . , < k + L − 1 >K}, and can retrieve the
cached content of its connected cache nodes without any cost.
When L = 1, it reduces to the system model in Section II.
Hence, in this section, we consider L ∈ [2 : K]. Note that,
different from the multiaccess coded caching problem in [16]
where each user may request any file in the library, in the
considered problem the set of possible demanded files by user
k is Dk, where Dk is defined in (1).

Our objective in the (K, a, b, L) multiaccess coded caching
problem for location-based content is to design the cache
placement and delivery phases, such that the worst-case load
among all possible demands is minimized, where the optimal
worst-case load is denoted by R?.

We characterize the exact optimality for the considered
problem in the following theorem.

Theorem 3. For the (K, a, b, L) multiaccess coded caching
problem for location-based content where L ∈ [2 : K], we
have

R? =

{
K− K

a+bM, if 0 ≤ M ≤ a+ b;

0, if M ≥ a+ b.
(73)

�

Proof:
Achievability. When M = 0, obviously we have R = K.

In the following we will show that the memory-load tradeoff
(M,R) = (a + b, 0) is achievable. By the memory sharing
between (0,K) and (a+b, 0), we can achieve R = K− K

a+bM
when 0 ≤ M ≤ a+ b, which coincides with (73).

Let us focus on M = a+ b. In the cache placement phase,
each cache node k ∈ [K] caches Wn where n ∈ Dk,1 ∪ Dk,2.
Since |Dk,1 ∪ Dk,2| = a + b, the memory size constraint is
satisfied.

In the delivery phase, user k ∈ [K] requests Wdk where
dk ∈ Dk. By (1), we have Dk = Dk,1 ∪ Dk,2 ∪ Dk,3 and
Dk,3 = D<k+1>K,1. Hence, Dk = Dk,1 ∪ Dk,2 ∪ D<k+1>K,1.
If Dk ∈ Dk,1 ∪ Dk,2, user k can retrieve Wdk from cache
node k; otherwise, user k can retrieve Wdk from cache node
< k + 1 >K. Hence, when M = a+ b, we achieve R = 0.

Converse. Let us focus on the regime 0 ≤ M ≤ a+ b. For
any achievable scheme with the memory-load tradeoff (M,R),
we consider a cut of all K cache nodes and K users. Recall
that Dk(i) denotes the ith smallest element in Dk. For each
i ∈ [a+b], we assume that Xi is transmitted by the server for
the demand vector (D1(i),D2(i), . . . ,DK(i)). Note that

∪i∈[a+b] ∪k∈[K]{Dk(i)} =
(
∪i1∈[a] ∪k1∈[K] {Dk1(i1)}

)
∪
(
∪i2∈[a+1:a+b] ∪k2∈[K] {Dk2(i2)}

)
(74a)

=
(
∪k1∈[K]Dk1,1

)
∪
(
∪k1∈[K]Dk1,2

)
(74b)

= C1 ∪ C2 = [N], (74c)

where C1 and C2 are defined in (33a) and (33b), respectively.
Hence, from (Z1, . . . , ZK, X1, . . . , Xa+b), we can decode Wn

for each n ∈ [N]; thus (recall that N := (a+ b)K)

KMB+ (a+ b)RB ≥ H(Z1, . . . , ZK, X1, . . . , Xa+b) (75a)
≥ H(W1, . . . ,WN), (75b)

=⇒ R ≥ K− K

a+ b
M, (75c)

=⇒ R? ≥ K− K

a+ b
M, (75d)

which coincides with (73).

Remark 3. From Theorem 3, it can be seen that when L ∈
[2 : K], the optimal load for the considered multiaccess coded
caching problem for location-based content does not depend
on L. In other words, allowing the users to access more than
just their two nearest local caches does not reduce the load
of the common bottleneck link. �

V. CONCLUSIONS

This paper introduced a novel coded caching problem
for location-based content in networks equipped with edge
caching nodes. This is motivated, for example, by a vehicular
network where self-driving vehicles need to access super High-
Definition maps of the region through which they are driving.
In the proposed model, each user is connected to the nearest
cache node and requests a file in a subset of library depending
on its location. Novel information theoretic converse bounds
(with or without the constraint of uncoded cache placement)
and achievable scheme were proposed, from which we can
show the exact optimality on the worst-case load under un-
coded cache placement and the general order optimality within
a factor of 3. We also extended the coded caching problem
for location-based content to the multiaccess coded caching
topology, and characterized the exact optimality if each user
is connected to at least two nearest cache nodes. On-going
works include characterizing the exact optimality without the
constraint of uncoded cache placement, considering the model
where each region contains more than one users, and studying
two-dimensional vehicular networks such as the Manhattan
topology.
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APPENDIX A
PROOF OF THEOREM 2

We divide the proof into two cases, K is even and K is odd,
respectively. For each case, we first propose a general cut-set
bound on the optimal load for the considered problem, and
then upper bound the multiplicative gap between R?u and this
cut-set converse.

A. K is Even

For any achievable scheme with the memory-load tradeoff
(M,R), we consider a cut of K

2 cache nodes with the indices
in V = {1, 3, . . . ,K − 1}, and their connected users. It
can be seen that for any k1 6= k2 and k1, k2 ∈ V , we
have Dk1 ∩ Dk2 = ∅. Denote the ith smallest element in
Dk by Dk(i), where i ∈ [2a + b] and k ∈ [K/2]. For
each i ∈ [2a + b], we assume that Xi is transmitted by
the server for the demand vector (D1(i),D3(i), . . . ,DK−1(i)).
From (Z1, Z3, . . . , ZK−1, X1, X2, . . . , X2a+b), we can decode
Wn where n ∈ ∪k∈VDk; thus by the cut-set bound,

K

2
MB+ (2a+ b)RB

≥ H(Z1, Z3, . . . , ZK−1, X1, X2, . . . , X2a+b)

≥ H
(
(Wn : n ∈ ∪k∈VDk)

)
,

=⇒ R ≥ K

2
− K

2(2a+ b)
M,

=⇒ R? ≥ K

2
− K

2(2a+ b)
M. (76)

Let us then compare the converse bound in (76) with the
achievable bound in Theorem 1.

First, we consider b(K − 1) < 2a and 0 ≤ M ≤ a + b,
for which the achieved load is R?u = K − K+1

2(a+b)M. In this
regime, the converse bound in (76) is the memory shar-
ing between (0,K/2) and

(
a+ b, K2 −

K(a+b)
2(2a+b)

)
, while the

achievable bound is the memory sharing between (0,K) and(
a+ b, K−12

)
. When M = 0, the multiplicative gap between

the achievable bound and the converse bound is 2. When
M = a + b, the multiplicative gap between the achievable
bound and the converse bound is within a factor of 2; this is
because

2

(
K

2
− K(a+ b)

2(2a+ b)

)
− K− 1

2
=

aK

2a+ b
− K− 1

2
(77a)

=
2a− b(K− 1)

2(2a+ b)
> 0. (77b)

Hence, when b(K − 1) < 2a and 0 ≤ M ≤ a + b, we can
prove 2R? ≥ R?u.

Second, we consider b(K−1) < 2a and a+b ≤ M ≤ 2a+b,
for which the achieved load is R?u = (K−1)(2a+b)

2a − K−1
2a M. In

this regime, the converse bound in (76) is the memory sharing
between

(
a+ b, K2 −

K(a+b)
2(2a+b)

)
and (2a + b, 0), while the

achievable bound is the memory sharing between
(
a+ b, K−12

)
and (2a + b, 0). It has been proved that when M = a + b,
the multiplicative gap between the achievable bound and the
converse bound is within a factor of 2. In addition, when
M = 2a+b, the achievable bound coincides with the converse

bound. Hence, when b(K− 1) < 2a and a+ b ≤ M ≤ 2a+ b,
we can prove 2R? ≥ R?u.

Third, we consider b(K− 1) ≥ 2a, for which the achieved
load is R?u = K− K

2a+bM. When 0 ≤ M ≤ 2a+b, the converse
bound in (76) is the memory sharing between (0,K/2) and
(2a+b, 0), while the achievable bound is the memory sharing
between (0,K) and (2a+ b, 0). Hence, in this case, we have
2R? ≥ R?u.

In conclusion, when K is even, the proposed scheme for
Theorem 1 is generally order optimal within a constant of 2.

B. K is Odd

In the following, we consider K is odd and K ≥ 3.
For any achievable scheme with the memory-load trade-

off (M,R), we consider a cut of K−1
2 cache nodes with

the indices in V = {1, 3, . . . ,K − 2}, and their con-
nected users. It can be seen that for any k1 6= k2 and
k1, k2 ∈ V , we have Dk1 ∩ Dk2 = ∅. For each i ∈
[2a + b], we assume that Xi is transmitted by the server
for the demand vector (D1(i),D3(i), . . . ,DK−2(i)). From
(Z1, Z3, . . . , ZK−2, X1, X2, . . . , X2a+b), we can decode Wn

where n ∈ ∪k∈VDk; thus by the cut-set bound,

K− 1

2
MB+ (2a+ b)RB

≥ H(Z1, Z3, . . . , ZK−2, X1, X2, . . . , X2a+b)

≥ H
(
(Wn : n ∈ ∪k∈VDk)

)
,

=⇒ R ≥ K− 1

2
− K− 1

2(2a+ b)
M,

=⇒ R? ≥ K− 1

2
− K− 1

2(2a+ b)
M. (78)

We also compare the converse bound in (78) with the
achievable bound in Theorem 1.

First, we consider b(K − 1) < 2a and 0 ≤ M ≤ a + b,
for which the achieved load is R?u = K − K+1

2(a+b)M. In this
regime, the converse bound in (78) is the memory sharing
between

(
0, K−12

)
and

(
a+ b, K−12 −

(K−1)(a+b)
2(2a+b)

)
, while the

achievable bound is the memory sharing between (0,K) and(
a+ b, K−12

)
. When M = 0, the multiplicative gap between

the achievable bound and the converse bound is within a factor
2K
K−1 ≤ 3. When M = a+b, the multiplicative gap between the
achievable bound and the converse bound is within a factor of
3; this is because

3

(
K− 1

2
− (K− 1)(a+ b)

2(2a+ b)

)
− K− 1

2

= (K− 1)

(
1− 3(a+ b)

2(2a+ b)

)
= (K− 1)

a− b

2(2a+ b)

> 0, (79)

where (79) comes from b(K−1) < 2a and K ≥ 3, which leads
to a > b. Hence, when b(K − 1) < 2a and 0 ≤ M ≤ a + b,
we can prove 3R? ≥ R?u.

Second, we consider b(K−1) < 2a and a+b ≤ M ≤ 2a+b,
for which the achieved load is R?u = (K−1)(2a+b)

2a − K−1
2a M. In

this regime, the converse bound in (78) is the memory sharing
between

(
a+ b, K−12 −

(K−1)(a+b)
2(2a+b)

)
and (2a+b, 0), while the
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achievable bound is the memory sharing between
(
a+ b, K−12

)
and (2a + b, 0). It has been proved that when M = a + b,
the multiplicative gap between the achievable bound and the
converse bound is within a factor of 3. In addition, when
M = 2a+b, the achievable bound coincides with the converse
bound. Hence, when b(K− 1) < 2a and a+ b ≤ M ≤ 2a+ b,
we can prove 3R? ≥ R?u.

Third, we consider b(K− 1) ≥ 2a, for which the achieved
load is R?u = K− K

2a+bM. When 0 ≤ M ≤ 2a+b, the converse
bound in (78) is the memory sharing between

(
0, K−12

)
and

(2a+b, 0), while the achievable bound is the memory sharing
between (0,K) and (2a+ b, 0). It has been proved that when
M = 0, the multiplicative gap between the achievable bound
and the converse bound is within a factor of 3. In addition,
when M = 2a + b, the achievable bound coincides with the
converse bound. Hence, in this case, we have 3R? ≥ R?u.

In conclusion, when K is even, the proposed scheme for
Theorem 1 is generally order optimal within a constant of 3.
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