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Abstract

This paper introduces a novel approach of utilizing the reconfigurable intelligent surface (RIS) for

joint data modulation and signal beamforming in a multi-user downlink cellular network by leveraging

the idea of backscatter communication. We present a general framework in which the RIS, referred to as

modulating intelligent surface (MIS) in this paper, is used to: i) beamform the signals for a set of users

whose data modulation is already performed by the base station (BS), and at the same time, ii) embed

the data of a different set of users by passively modulating the deliberately sent carrier signals from the

BS to the RIS. To maximize each user’s spectral efficiency, a joint non-convex optimization problem is

formulated under the sum minimum mean-square error (MMSE) criterion. Alternating optimization is

used to divide the original joint problem into two tasks of: i) separately optimizing the MIS phase-shifts

for passive beamforming along with data embedding for the BS- and MIS-served users, respectively,

and ii) jointly optimizing the active precoder and the receive scaling factor for the BS- and MIS-served

users, respectively. While the solution to the latter joint problem is found in closed-form using traditional

optimization techniques, the optimal phase-shifts at the MIS are obtained by deriving the appropriate

optimization-oriented vector approximate message passing (OOVAMP) algorithm. Moreover, the original

joint problem is solved under both ideal and practical constraints on the MIS phase shifts, namely,

the unimodular constraint and assuming each MIS element to be terminated by a variable reactive

load. The proposed MIS-assisted scheme is compared against state-of-the-art RIS-assisted wireless

communication schemes and simulation results reveal that it brings substantial improvements in terms

of system throughput while supporting a much higher number of users.

The authors are with the Department of Electrical and Computer Engineering at the University of Manitoba, Canada (emails:

urrehmah@myumanitoba.ca, {Faouzi.Bellili, Amine.Mezghani, Ekram.Hossain}@umanitoba.ca). This work was supported by

the Natural Sciences and Engineering Research Council of Canada (NSERC) and Futurewei Technologies.

ar
X

iv
:2

10
8.

10
50

5v
1 

 [
cs

.I
T

] 
 2

4 
A

ug
 2

02
1



2

Index Terms

Reconfigurable intelligent surface (RIS), RIS-assisted multi-user MIMO, active and passive beam-

forming, modulation, data encoding, backscatter communication, modulating intelligent surface (MIS)

I. INTRODUCTION

A. Background

Reconfigurable intelligent surfaces (RISs) have recently emerged as a promising technology

for beyond-5G/6G wireless communications as it can improve both the spectral and energy

efficiencies of wireless systems. RISs also offer the benefits of low-cost and easy integration

into the currently deployed wireless systems [1]–[4]. Specifically, a RIS consists of an array of

reconfigurable passive reflective elements which enable one to control the wireless propagation

environment. RIS is an energy-efficient technology since it allows to passively beamform the

incoming signals without the need for a power amplifier as required in traditional multiple-

input multiple-output (MIMO) base stations (BSs) [4]–[7]. It does so by suitably optimizing the

phase shifts applied by each reflective element to constructively combine the incoming signals

so as to achieve improved received power at the end users. The active transmit precoding at the

BS together with the RIS phase shifts (for passive beamforming) can be jointly optimized in

order to maximize the spectral-efficiency [7]–[11] or the energy-efficiency of the system [12],

[13]. Moreover, a RIS can also be utilized to simultaneously perform passive beamforming

and physical information transfer [14], [15] (e.g., synchronization data or the channel state

information [CSI] estimated at the RIS). In [16], the authors presented a massive backscatter

wireless communication (MBWC) scheme to encode information on Wi-Fi signals reflected by

the RIS. So far, the vast majority of the work has focused on utilizing the RIS for passive

beamforming and the idea of using it also to embed information in a multi-user cellular network

has not been explored. In this paper, by leveraging the idea of backscatter communication [16]–

[18], we propose a general framework in which the RIS is used for data embedding on the

reflected or re-emitted signals by changing the imdepence of each RIS reflective element. In

the proposed framework, the RIS can be used to either: i) perform passive beamforming for

users served by a BS, or ii) embed information through backscatter communication, or iii) do

both simultaneously. In this setting, the RIS phase shifts vary with the inevitable changes in the

propagation medium to perform passive beamforming for one set of users, and also with every
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transmit symbol vector in order to modulate the carrier by data for another set of users. We

name the smart surface with such capability as “modulating intelligent surface (MIS)” 1.

B. Motivation

The benefits of MISs, that can beamform and modulate signals at the same time, are three-fold:

1) In traditional purely reflective RIS-based schemes, the users’ received signals are subject to

severe attenuations stemming from the product path-loss of the BS-RIS and RIS-user links

since both links are used for data communication. Using a MIS, however, allows the BS

to focus all of the transmit power (of a reference signal) towards the strongest path in the

BS-MIS link and the modulated signals are passively generated at the MIS by appropriately

designing its phase shifts. In this way, the information-bearing signals undergo the path-loss

of the MIS-user link only before reaching the intended users.

ii. The total number of users which can be served is not limited by the number of channel paths

that are available in the BS-MIS link, but rather by the number of reflective elements in the

MIS. Therefore, more users than the number of BS antennas can be served by allocating

power towards a MIS having a high number of antenna elements and then serving the users

through the MIS.

iii. The MIS can serve users by recycling the incoming signals transmitted by the BS without

any RF chains, thus making the entire approach very cost-effective.

A practical implementation of the proposed MIS-based scheme requires the BS in part to: i)

convey the optimized phase shifts to the MIS through a high speed communication link, and ii)

radiate a carrier RF signal to provide the MIS with the required power for passively embedding

the data of a predefined set of users. Ideally, the MIS must be installed at a location that is

in line-of-sight (LOS) to the BS to minimize the power loss. There are two possible ways to

transmit the optimized phase shifts to the MIS: i) through an optical fibre link between the

BS and the MIS, ii) through a high-speed reliable wireless link (e.g., Terahertz wireless links)

between the BS and the MIS, if they are in close proximity to each other.

C. Contributions

We consider a single-cell downlink MIMO system assisted by a single MIS which is equipped

with a large number of passive phase shifter elements. The MIS helps the BS in better serving

1Such type of antenna surfaces is also known as space-time-coding digital metasurfaces in the antenna literature [19].
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one portion of the users through passive beamforming and also embeds the information-bearing

data for the remaining users on a separate carrier signal that it receives from the BS. In this

regard, we build on our recent work in [8] and propose a general method to jointly optimize:

• the active BS precoder,

• the receive scaling factors for the BS- and MIS-served users,

• the MIS phase shifts used for passive beamforming towards the BS-served users, and

• the data embedding on the reflected signal (i.e., modulation of the reflected signal) for the

MIS-served users.

The major contributions embodied by this paper are summarized as follows.

• To the best of our knowledge, this is the first work that studies the use of RISs for passive

beamforming and data embedding at the same time in a multi-user setup. We solve the

problem of maximizing the users’ spectral-efficiencies by jointly optimizing the transmit

precoding matrix at the BS, the receive scaling factor for the BS- and MIS-served users,

and the MIS phase shifts. By building on our recent work in [8], we formulate the joint

optimization problem under the sum minimum mean-square error (MMSE) criterion in order

to minimize the mean-square error (MSE) of the received symbols for all users at the same

time.

• To solve the underlying joint optimization problem, we first split it using alternating op-

timization [20] into two simpler sub-optimization tasks, one for finding the optimum MIS

phase shifts and the other for jointly optimizing the active BS precoder and the receive

scaling factors for both the BS- and MIS-served users. The solution to the latter sub-

optimization task is found in closed form.

• We apply the OOVAMP algorithm to optimize the MIS phase shifts under two different

constraints, namely, i) the unimodular constraint, and ii) assuming each MIS element to

be terminated by a tunable reactive load.

• We present various numerical results to compare the proposed scheme against the standard

approach in which a RIS is used for passive beamforming only while active MMSE

precoding is used at the BS for all users. In this context, we consider two baseline techniques

that rely on i) semi-definite relaxation (SDR) [9], [21], and ii) OOVAMP-based alternating

optimization [8] to find the adequate RIS phase shifts. The latter approach boils down to

a special case of the herein proposed scheme when the number of MIS-served users is
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equal to zero. The simulation results show that using MISs for joint beamforming and

information embedding significantly outperforms the classical schemes in which RISs are

used for passively beamforming the signals they receive from the BS. We also study the

resilience of the proposed scheme under CSI mismatches stemming from imperfect CSI

acquisition in practice.

D. Paper Organization and Notations

The rest of this paper is organized as follows. The system model along with the problem

formulation for jointly optimizing the active BS precoder and the MIS phase-shifts are discussed

in Section II. Section III discusses the OOVAMP algorithm and its constituent modules. In Section

IV, we solve the optimization problem at hand under multiple constraints using the underlying

OOVAMP algorithm. Lastly, numerical results are presented in Section V before drawing out

the conclusion in Section VI.

Notations: Lowercase letters (e.g., r) denote scalar variables. Vectors are denoted by small

boldface letters (e.g., z) and the k-th element of z is denoted as zk. Exponent on a vector (e.g.,

zn) denotes component-wise exponentiation on every element of the vector. Capital boldface

letters (e.g., A) are used to denote matrices, while aik and ai stand, respectively, for the (i, k)-

th entry and the i-th column of A. The zero matrix of size M × N is denoted as 0M×N .

CM×N stands for the set of matrices of size M × N with complex elements and A−k means

(A−1)
k. Rank(A) and Tr(A), return, respectively, the rank and the trace of any matrix A. We

also use ‖.‖2, ‖.‖F, (.)∗, (.)T, (.)H to denote the L2 norm, Frobenius norm, the conjugate,

the transpose, and the conjugate transpose operators, respectively. The operator < . > returns

the empirical average of all the elements/entries of any vector or matrix. Moreover, vec(.) and

unvec(.) denote vectorization of a matrix and unvectorization of a vector back to its original

matrix form, respectively. Diag(.) operates on a vector and generates a diagonal matrix by placing

that vector in the diagonal whereas diag(.) operates on a matrix and returns its main diagonal in

a vector. The statistical expectation is denoted as E{.}. A random vector with complex normal

distribution is represented by x ∼ C N (x; u,R), where u and R denote its mean and covariance

matrix, respectively. Similarly, a random matrix with complex normal distribution is represented

by X ∼ CMN (X; M,U,V), where M, U and V denote its mean and covariance matrices

among its rows and columns, respectively. The imaginary unit is represented by j =
√
−1 and the

∠(.) operator returns the angle of any complex number. The proportional relationship between
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any two entities (functions or variables) is denoted by ∝. Lastly, the operators ⊗, � and ∗ stand

for the Kronecker, the Hadamard, and the column-wise Khatri-Rao products, respectively.

II. SYSTEM MODEL, ASSUMPTIONS, AND PROBLEM FORMULATION

Consider a BS that is equipped with N antenna elements that is serving a total of M single-

antenna users (in the downlink) with the help of a MIS that has K > M reflective elements. Also

consider a scheme in which the data for B out of the total M users are directly modulated/encoded

by the BS (in baseband). Those B users (B < N ) are referred to as the BS-served users. For

the remaining R = M − B users, the BS will simply send a known/reference signal which

will then be modulated by appropriately phase-shifting it using the MIS reflective elements.

For this reason, we call those R users as the MIS-served users although, strictly speaking, both

types of users are being served by the BS2. The goal is to optimally design the MIS phase

shifts not only to modulate the data for the MIS-served users but also to passively beamform

the signals for the BS-served users. As illustrated by Fig. 1, each b-th BS-served user has

a direct link to the BS which is expressed by a channel vector hb-ub,b ∈ CN . The BS-user

channel vector for each r-th MIS-served user3 is denoted by hb-us,r ∈ CN . The surface-user

channels for the b-th BS-served user and the r-th MIS-served user are denoted, respectively,

by hs-ub,b ∈ CK and hs-us,r ∈ CK . Let Hb-s ∈ CK×N denote the channel matrix of the MIMO

MIS-BS link with Rank(Hb-s) ≥ B. The signal received at the MIS is phase-shifted by a

diagonal matrix Diag(υ) ∈ CK×K , where υ ∈ CK is the phase-shift vector that might be

subject to various constraints in practice. In particular, under the unimodular constraint, we

have |υk| = 1 for k = 1, · · · , K, or equivalently, υk = ejθk for some phase shift θk ∈ [0, 2π].

Let Hb-ub = [hb-ub,1,hb-ub,2, · · · ,hb-ub,B] ∈ CN×B, Hb-us = [hb-us,1,hb-us,2, · · · ,hb-us,R] ∈ CN×R,

Hs-ub = [hs-ub,1,hs-ub,2, · · · ,hs-ub,B] ∈ CK×B, and Hs-us = [hs-us,1,hs-us,2, · · · ,hs-us,R] ∈ CK×R.

For mathematical convenience, we gather the channels between the BS (resp. MIS) and all users

2Indeed, although being applied at the MIS, the information-bearing phase shifts are designed centrally at the BS as function

of the users’ data.
3Although the MIS-served users do not receive data transmitted by the BS, they will experience interference from the direct

BS-user link of the BS-served users.
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BS

MIS K elements

User 1

User B

hb-ub,1

hb-ub,B

Hb-s hs-ub,1 hs-ub,B

... ...
· · ·

· · ·
. . .

User 1

User R

hs-us,1

hs-us,R

Fig. 1: MIS-assisted multi-user MIMO system in which the MIS is concurrently used for

beamforming and data embedding.

in a single matrix Hb-u (resp. Hs-u):

Hb-u = [Hb-ub Hb-us] ∈ CN×M , (1)

Hs-u = [Hs-ub Hs-us] ∈ CK×M . (2)

Let ȳm be the noiseless signal received by the m-th user and define ȳ , [ȳ1, ȳ2, · · · , ȳM ]T. In the

sequel, without loss of generality, we assume that {ȳ1, ȳ2, · · · , ȳB} and {ȳB+1, ȳB+2, · · · , ȳM}

pertain to the BS-served and MIS-served users, respectively. Then, ȳ can be decomposed as

ȳ = ȳb + ȳs where ȳb (resp. ȳs) is the information-bearing signal intended to the BS-served

(resp. MIS-served) users which are given by:

ȳb = HH
s-uDiag(υ)Hb-sFsb + HH

b-uFsb, (3)

ȳs = HH
s-uDiag(υ)Hb-s

(√
Psvb

)
. (4)

In (3), sb ∼ C N (s; 0, IB) is the unknown symbol vector being transmitted by the BS (to the B-

served users), and υ = [υ1, υ2, · · · , υK ]T ∈ CK is a vector that gathers all the phase shifts used

by the MIS. Moreover, F ∈ CN×B is the active precoding matrix that is used for beamforming

purposes at the BS, which satisfies ‖F‖2F = Pb, where Pb is the fraction of power being allocated

to the BS-served users. In (4),
√
Psvb is a separate reference (which is constant and known) being
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transmitted by the BS towards the MIS with ‖vb‖22 = 1 and Ps is the fraction of transmit power

being allocated to the MIS-served users. The total transmit power is denoted by P = Pb + Ps.

Now, let wb ∼ C N (w; 0, σ2
wIB) and ws ∼ C N (w; 0, σ2

wIR) denote the additive white Gaussian

noise (AWGN) vectors pertaining to the BS-served and MIS-served users, respectively. Therefore,

the noisy received signal at all the users, y, is given by:

y = αbȳb + αsȳs +
[
αbw

T
b , αsw

T
s

]T
, (5)

wherein αb and αs are some real-valued receive scaling factors4. They are only utilized to

facilitate the optimization of the other variables (i.e., the BS precoder and the MIS phase shifts)

since the receivers can blindly estimate these scalars based on the received symbol sequence

[22], [23].

Remark. The system model in (5) is an approximation of the exact system model which is

expressed as follows: αbIB 0B×R

0R×B αsIR

(ȳb + ȳs +
[
wT

b , wT
s

]T)
. (6)

The approximation will allow better tractability for the receive scaling factors, αb and αs, and

the precoding matrix, F, by decoupling αs from the other two variables in the joint optimization

problem solved in Section IV-B. Therefore, we use the approximate model in (5) to optimize

the variables and then use those optimized variables together with the exact system model in (6)

to compute the performance metrics such as sum-rate in Section V.

Consequently, by using (3) and (4) in (5), it follows that:

y = αb
(
HH

s-uDiag(υ)Hb-sFsb + HH
b-uFsb

)
+ αs

(
HH

s-uDiag(υ)Hb-s

√
Psvb

)
+
[
αbw

T
b , αsw

T
s

]T
.

(7)

Contrarily to the reference signal vb, the optimized MIS phase-shift vector varies in space (with

changes in the channel) and in time (with every transmit symbol vector). We now extend the

system model in (7) for a transmit block of length, L, as follows:

Y = αb

[
HH

s-uDiag(υ1)Hb-sFsb,1 + HH
b-uFsb,1, · · · ,HH

s-uDiag(υL)Hb-sFsb,L + HH
b-uFsb,L

]
+ αs

√
Ps

[
HH

s-uDiag(υ1)Hb-svb, · · · ,HH
s-uDiag(υL)Hb-svb

]
+
[
αbW

T
b , αsW

T
s

]T
.

(8)

4This is a common practice in the precoding optimization literature [22], [23].
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We further gather the information symbols for the BS-served (resp. MIS-served) users in one

matrix denoted as Sb , [sb,1, · · · , sb,L] ∈ CB×L (resp. Ss ∈ CR×L) and we define S ,
[
ST

b , ST
s

]T.

We also stack the phase-shift vectors being used at all time indices l = 1, · · · , L in one

single matrix Υ = [υ1, υ2, · · · ,υL] ∈ CK×L. The goal is to maximize each user’s signal-

to-interference-plus-noise ratio (SINR) by minimizing the error in its received symbols under

the sum MMSE criterion. A lower bound on the spectral efficiency for user m can be expressed

in terms of the MMSE of its received symbol error [24] as follows:

CMMSE
m = log2

(
1

MMSEm

)
. (9)

The MSE of the received symbol for user m and time index l is given by Eyml,sml

{
|yml − sml|2

}
,

and for M users and a transmit block of length L, the sum symbol MSE is given by:
M∑
m=1

L∑
l=1

Eyml,sml

{
|yml − sml|2

}
= EY,S

{
‖Y − S‖2F

}
. (10)

Thus, our optimization problem under the sum MMSE criterion can be formulated as follows:

arg min
αs,αb,F,Υ

EY,S

{
‖Y − S‖2F

}
, (11a)

subject to ‖F‖2F = Pb, (11b)

|υkl| = 1, k = 1, 2, · · · , K, l = 1, 2, · · · , L. (11c)

We take the expectation involved in (11a) with respect to (w.r.t.) the random matrices S, Wb,

and Ws to further simplify the objective function (see Appendix A) thereby resulting in the

following optimization problem:

arg min
αs,αb,F,Υ

∥∥∥∥αb

[
HH

s-uDiag(υ1)Hb-sF + HH
b-uF, · · · ,HH

s-uDiag(υL)Hb-sF + HH
b-uF

]
−
[
[IB,1, 0B×R,1]

T, · · · , [IB,L, 0B×R,L]T
]∥∥∥∥2

F

+

∥∥∥∥αs

√
Ps

[
HH

s-uDiag(υ1)Hb-svb, · · · ,HH
s-uDiag(υL)Hb-svb

]
−
[
0L×B ST

s

]T ∥∥∥∥2
F

+ LBσ2
wα

2
b + LRσ2

wα
2
s .

(12a)

s.t. ‖F‖2F = Pb, (12b)

|υkl| = 1, k = 1, 2, · · · , K, l = 1, 2, · · · , L. (12c)

We shall denote the objective function in (12a) by f(αs, αb,F,Υ) throughout the rest of the

paper. The optimization problem in (12) is non-convex due to the unimodular constraint on the
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MIS phase-shifts in (12c). We aim to solve the problem by utilizing the OOVAMP algorithm in

the same way as done in [8].

The OOVAMP [8] is a low-complexity algorithm which is designed to solve optimization

problems involving a linear objective function and non-linear constraints [8], [25]. The modular

structure of OOVAMP decouples the constraint from the objective function. This favorable prop-

erty allows OOVAMP to optimize the same objective function under different constraints by mod-

ifying the OOVAMP module that satisfies the constraint (simple scalar functions). OOVAMP has

better convergence properties than other iterative algorithms (e.g., alternating direction method

of multipliers [ADMM]) [26] because of its automatic calculation of the optimal stepsize in

every iteration.

III. OPTIMIZATION ORIENTED VAMP FOR MATRICES

OOVAMP is a recently developed extension [8] of the standard max-sum VAMP algorithm

[25] which solves constrained optimization problems involving linear objective functions under

both linear and non-linear constraints. Moreover, asymptotic optimality can be claimed for the

computed solution under certain mild conditions using state evolution arguments. In this section,

we present an extended version of the OOVAMP algorithm to optimize matrices involving linear

mixing. Given the knowledge of two matrices, A ∈ CM×N and Z ∈ CM×K , the OOVAMP

algorithm solves the following optimization problem:

arg min
X ∈ CN×K

‖AX− Z‖2F (13a)

s.t. fik(xik) = 0 i = 1, · · · , N, k = 1, · · · , K. (13b)

The algorithm consists of the following two modules.

1) Linear MAP Estimator: At iteration t, the linear MAP (LMAP) estimator receives extrinsic

information (message) from the separable (i.e., entry-wise) MAP projector of X in the form of

a mean matrix, Rt−1, and a common scalar precision, γt−1. Then, under the Gaussian prior,

CMN
(
X; Rt−1, γ

−1
t−1IN , IK

)
, it computes the LMAP estimate, X̄t, along with the associated

posterior precision, γ̄t, as follows:

X̄t =
(
AHA + γt−1IN

)−1 (
AHZ + γt−1Rt−1

)
, (14)

γ̄t = NTr
([

AHA + γt−1IN
]−1)−1

. (15)
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The extrinsic information on X is updated as:

CMN (X; X̄t, γ̄
−1
t IN , IK)/ CMN (X; Rt−1, γ

−1
t−1IN , IK),

and then sent back in the form of a mean matrix, R̃t =
(
X̄tγ̄t −Rt−1γt−1

)
/ (γ̄t − γt−1), and a

scalar precision, γ̃t = γ̄t − γt−1, to the separable MAP projector of X.

2) Separable MAP Projector: Because the constraint on X is component-wise, the constraint

on its entries, xik, is modeled as a prior with some precision, γp, i.e., px(xik) ∝ exp
(
−γp|fik(xik)|2

)
with γp →∞, which results in the following prior distribution on X:

pX(X) =
N∏
i=1

Q∏
k=1

px(xik). (16)

This module computes the MAP estimate, X̂t, of X from the joint distribution

pX(X) CMN
(
X; R̃t, γ̃

−1
t IN , IK

)
. The MAP estimate can be computed through a component-

wise projector function as follows:

x̂ik,t = gik(r̃ik,t, γ̃t) , arg min
xik

[
γ̃t|xik − r̃ik,t|2 − ln px(xik)

]
, (17)

or equivalently:

gik(r̃ik,t, γ̃t) = arg min
xik

[
γ̃t|xik − r̃ik,t|2 + γp|fik(xik)|2

]
. (18)

The parameter γp in (18) accounts for the weight given to the prior on xi inside the scalar MAP

optimization. Therefore, taking γp → ∞ enforces the constraint. The derivative of the scalar

MAP projector w.r.t. r̃ik,t is given by [25]:

g′ik(r̃ik,t, γ̃t) ,
∂gik(r̃ik,t, γ̃t)

∂r̃ik,t
=

1

2

(
∂gik (r̃ik,t, γ̃t)

∂<{r̃ik,t}
− j

∂gik (r̃ik,t, γ̃t)

∂={r̃ik,t}

)
= γ̃tγ̂t, (19)

where γ̂t is the posterior precision. The matrix-valued projector function and its derivative are

defined as follows:

G(R̃t, γ̃t) ,


g11(r̃11,t, γ̃t) g12(r̃12,t, γ̃t) · · · g1K(r̃1K,t, γ̃t)

g21(r̃21,t, γ̃t) g22(r̃22,t, γ̃t) · · · g2K(r̃2K,t, γ̃t)
...

... . . . ...

gN1(r̃N1,t, γ̃t) gN2(r̃N2,t, γ̃t) · · · gNK(r̃NK,t, γ̃t)

 , (20)

G′(R̃t, γ̃t) ,


g′11(r̃11,t, γ̃t) g′12(r̃12,t, γ̃t) · · · g′1K(r̃1K,t, γ̃t)

g′21(r̃21,t, γ̃t) g′22(r̃22,t, γ̃t) · · · g′2K(r̃2K,t, γ̃t)
...

... . . . ...

g′N1(r̃N1,t, γ̃t) g′N2(r̃N2,t, γ̃t) · · · g′NK(r̃NK,t, γ̃t)

 . (21)
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Similar to the LMAP module, the MAP projector module computes an extrinsic mean matrix,

Rt =
(
X̂tγ̂t − R̃tγ̃t

)
/ (γ̂t − γ̃t), and a scalar precision, γt = γ̂t − γ̃t, and sends them back to

the LMAP module for the next iteration. The process is repeated until convergence.

It is worth mentioning that the extrinsic parameters, i.e., the extrinsic mean matrix and the

scalar precision, calculated by each module act as a Gaussian prior on the subsequent estimate

of the adjacent module, thus making OOVAMP parameter-free. Another major advantage of

OOVAMP is that it decouples the constraint from the objective function and also allows the

projector function to be separable. While the LMAP module optimizes the objective function

with no constraints, the latter are enforced by the projector function. This modular property makes

OOVAMP an attractive algorithm for solving optimization problems involving linear mixing and

under various component-wise constraints. The algorithmic steps of OOVAMP are shown in

Algorithm 1.

Algorithm 1 Optimization-oriented max-sum matrix VAMP
Given A ∈ CM×N , Z ∈ CM×Q, a precision tolerance (ε) and a maximum number of iterations (TMAX)

1: Initialize R0, γ0 ≥ 0 and t← 1

2: repeat

3: // LMAP.

4: X̄t =
(
AHA + γt−1IN

)−1 (
AHZ + γt−1Rt−1

)
5: γ̄t = NTr

([
AHA + γt−1IN

]−1)−1
6: γ̃t = γ̄t − γt−1
7: R̃t = γ̃−1t

(
X̄tγ̄t −Rt−1γt−1

)
8: // Separable MAP Projector

9: X̂t = G
(
R̃t, γ̃t

)
10: γ̂t = γ̃−1t

〈
G′
(
R̃t, γ̃t

)〉
11: γt = γ̂t − γ̃t
12: Rt = γ−1t

(
γ̂tX̂t − γ̃tR̃t

)
13: t← t+ 1

14: until
∥∥∥X̂t − X̂t−1

∥∥∥2
2
≤ ε

∥∥∥X̂t−1

∥∥∥2
2

or t > TMAX

15: return X̂t
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IV. OOVAMP-BASED SOLUTION FOR THE OPTIMIZATION PROBLEM

In this section, we apply the OOVAMP algorithm, introduced in Section III, to simultaneously

optimize the matrix of phase shifters, Υ, the optimal precoding matrix F, and the scaling factors,

αb and αs (i.e., to solve the optimization problem in (12)). We follow the optimization procedure

presented in [8], and decouple the joint optimization problem into two sub-problems through

alternating optimization. In one side, we optimize Υ by utilizing OOVAMP and, on the other

side, we find the optimal transmit precoding, F, and scalars αb and αs. It is a simple iterative

approach that optimizes a subset of all variables at a time while fixing the other set of variables

and the process is repeated until convergence. More specifically, we divide the optimization

problem in (11) into the following two sub-optimization problems:

1)

Υ̂ = arg min
Υ

f(αs, αb,F,Υ) (22a)

s.t. |υkl| = 1, k = 1, 2, · · · , K, l = 1, 2, · · · , L. (22b)

2)

arg min
αs,αb,F

f(αs, αb,F, Υ̂) (23a)

s.t. ‖F‖2F = Pb. (23b)

A. Optimizing the MIS Phase Shifts

Here, we derive the OOVAMP modules (i.e., LMAP estimator and separable projector function)

to solve the sub-optimization problem in (22) which is restated explicitly as follows:

arg min
Υ

∥∥∥∥αb

[
HH

s-uDiag(υ1)Hb-sF + HH
b-uF, · · · ,HH

s-uDiag(υL)Hb-sF + HH
b-uF

]
−
[
[IB,1, 0B×R,1]

T, · · · , [IB,L, 0B×R,L]T
]∥∥∥∥2

F

+

∥∥∥∥αs

√
Ps

[
HH

s-uDiag(υ1)Hb-svb, · · · ,HH
s-uDiag(υL)Hb-svb

]
−
[
0L×B ST

s

]T ∥∥∥∥2
F

+ LBσ2
wα

2
b + LRσ2

wα
2
s

(24a)

s.t. |υkl| = 1, k = 1, 2, · · · , K, l = 1, 2, · · · , L. (24b)
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Next, we re-express the objective function in (24a) in a form that is similar to the general

OOVAMP objective function in (13a). In fact, by introducing the following matrices:

A = αbH
H
s-u, (M ×K), (25)

B = (Hb-sF)T, (B ×K), (26)

D = [b1 ⊗ a1, · · · ,bK ⊗ aK ] , (MB ×K), (27)

M =
√
PsαsH

H
s-uDiag(Hb-svb), (M ×K), (28)

X =
[
vec
(
[IB, 0B×R]T − αbH

H
b-uF

)
, · · · , vec

(
[IB, 0B×R]T − αbH

H
b-uF

) ]
, (MB × L), (29)

Z =
[
0L×B, ST

s

]T
, (M × L), (30)

we show in Appendix B that the optimization problem in (24) can be rewritten as follows:

arg min
Υ

‖DΥ−X‖2F + ‖MΥ− Z‖2F + LBσ2
wα

2
b + LRσ2

wα
2
s (31a)

s.t. |υkl| = 1, k = 1, 2, · · · , K, l = 1, 2, · · · , L. (31b)

The steps to derive both OOVAMP modules are detailed in the sequel.

1) LMAP Estimator: The LMAP module performs the minimization of the objection function

in (31a) under the Gaussian prior, CMN
(
Υ; Rt−1, γ

−1
t−1IK , IL

)
, by solving the following

unconstrained optimization problem:

arg min
Υ

1

2
‖DΥ−X‖2F +

1

2
‖MΥ− Z‖2F +

γt−1
2
‖Υ−Rt−1‖2F . (32)

The solution (i.e., the LMAP estimate and the associated posterior precision) to the optimization

problem in (32) is given as follows:

Ῡt =
(
DHD + MHM + γt−1IK

)−1 (
DHX + MHZ + γt−1Rt−1

)
, (33)

γ̄t = KTr
([

DHD + MHM + γt−1IK
]−1)−1

. (34)

2) Scalar MAP Projector: In this section, we introduce two projector functions defined in [8]

to satisfy the two types of constraint on the MIS reflection coefficients, i.e., i) the unimodular

constraint, and ii) a practical constraint on the MIS phase shifts in which each antenna element is

terminated by a variable reactive load. We refer the reader to [8] for more details on the derivation
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and differences in the two projector functions. The projector function and its derivative for the

unimodular constraint is given as follows:

g1,kl (r̃kl) = r̃kl|r̃kl|−1, (35)

g′1,kl (r̃kl) =
1

2
|r̃kl|−1, (36)

where the derivative is taken according to (19).

To optimize the MIS phase shifts under a practical constraint, we consider a reflective el-

ement that is combined with a tunable reactive load5 instead of an ideal phase-shifter6, i.e.,

υkl = −(1 + jχkl)
−1, where χkl ∈ R is a scalar reactance value that must be optimized for each

reflection coefficient. Under the unimodular constraint, the idealistic MIS has a full field of

view (FOV) and the reflection coefficients correspond to ideal phase-shifters and are of the form

υkl = ejθkl , where7 θkl ∈ [0, 2π], whereas under the practical constraint we have a restriction

on the possible values of the MIS phase-shifts, i.e., ∠ − (1 + jχ)−1 ∈
[
-π
2
, π
2

]
. Moreover,

the magnitude of each phase-shift under this constraint is always less than 1 for any χ 6= 0.

Practically, this introduces the phase-dependent amplitude attenuation in the incident wave. The

projector function under this new constraint is defined as:

g2,kl (r̃kl, γ̃) , arg min
υkl

[
γ̃|υkl − r̃kl|2 + γp

∣∣∣∣υkl +
1

1 + jχopt
kl

∣∣∣∣2
]
, (37)

where

χopt
kl = g3 (r̃kl) , arg min

χkl

∣∣∣∣r̃kl +
1

1 + jχkl

∣∣∣∣2. (38)

The solution to the optimization problem in (38), the projector function, and its derivative are

given by:

g3 (r̃kl) =
1

2={r̃kl}

(
1 + 2<{r̃kl}+

√
(1 + 2<{r̃kl})2 + 4={r̃kl}2

)
, (39)

g2,kl (r̃kl) = − (1 + jg3 (r̃kl))
−1 , (40)

g′2,kl (r̃kl) =
∣∣jg′3 (r̃kl) (1 + jg3 (r̃kl))

−2∣∣. (41)

5This can be implemented for instance by an antenna array composed of omni-directional dipole elements loaded with the

reactive elements in the absence of a ground plane to allow for bidirectional beamforming and not just hemispherical coverage.
6The value 1 is the normalized resistive part of the element impedance whereas χkl is the normalized reactive part of the

antenna plus reactive termination. Accordingly υkl represents the induced current flowing across the antenna. We assume the

antenna elements to be uncoupled which holds approximately for half-wavelength element spacing.
7From a practical standpoint, this assumption is difficult to realize. With the reactive-loading constraint, the assumption of a

MIS with full field of view (FOV) becomes more acceptable.
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Fig. 2: Block diagram of the proposed algorithm. The calculation of extrinsic information is

performed by the “ext” blocks.

The matrix valued projector functions, G1(R̃t, γ̃t) and G2(R̃t, γ̃t), and their derivatives, G′1(R̃t, γ̃t)

and G′2(R̃t, γ̃t), are obtained according to (20) and (21). Lastly, the constant transmitted vector

by the BS, vb, is set to the right singular vector of the matrix Hb-s that corresponds to the largest

eigenvalue.

B. Optimal Precoding and Scaling Factors

The receive scaling factor, αs, is decoupled from the other optimization variables, i.e., F and

αb, in the objective function (23a). Therefore, it can be optimized independently of the other

two variables as follows:

arg min
αs

∥∥∥∥αs

√
Ps

[
HH

s-uDiag(υ1)Hb-svb, · · · ,HH
s-uDiag(υL)Hb-svb

]
−
[
0L×B ST

s

]T ∥∥∥∥2
F

+ LRσ2
wα

2
s .

(42)

By defining the matrix:

C ,
√
PsH

H
s-uDiag(Hb-svb)Υ, (43)

we rewrite (42) as:

arg min
αs

∥∥∥αsC−
[
0L×B ST

s

]T∥∥∥2
F

+ LRσ2
wα

2
s . (44)

From (44), we establish the closed-form solution to the optimization problem in (42) as follows:

αopt
s = g4(C) ,

Tr
(
CH
[
0L×B ST

s

]T
+
[
0L×B SH

s

]
C
)

2
(
‖C‖2F + LRσ2

w

) . (45)
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Now, the optimal precoding matrix, F, and receive scaling factor, αb, are obtained as a solution

to the following optimization problem:

arg min
αb,F

∥∥∥∥αb

[
HH

s-uDiag(υ1)Hb-sF + HH
b-uF, · · · ,HH

s-uDiag(υL)Hb-sF + HH
b-uF

]
−
[
[IB,1, 0B×R,1]

T, · · · , [IB,L, 0B×R,L]T
]∥∥∥∥2

F
+ LBσ2

wα
2
b

(46a)

s.t. ‖F‖2F = Pb. (46b)

By defining the matrices:

K ,
L∑
l=1

(
HH

s-uDiag(υl)Hb-s + HH
b-u

)H (
HH

s-uDiag(υl)Hb-s + HH
b-u

)
(47)

E , [IB 0B×R]
L∑
l=1

(
HH

s-uDiag(υl)Hb-s + HH
b-u

)
, (48)

the optimization problem in (46) becomes a constrained MMSE transmit precoding optimization

for MIMO systems. The problem can be solved jointly by Lagrange optimization. We construct

the Lagrangian function for the optimization problem in (46) as follows:

L(F, αb, λ) = Tr
(
α2

bKFFH − αbEF− αbF
HEH

)
+LB+LBα2

bσ
2
w +λ

(
Tr
(
FFH

)
− Pb

)
, (49)

with λ ∈ R being the Lagrange multiplier. The closed-form solutions for optimal αb and F are

given below and we refer the reader to [22] for more details:

αopt
b = g5 (K, E) ,

√
1

Pb

√√√√Tr

([
K +

LBσ2
wIN

Pb

]−2
EHE

)
, (50)

Fopt = g6 (K, E) ,

√
Pb

[
K + LBσ2

wIN
Pb

]−1
EH√

Tr
([

K + LBσ2
wIN
Pb

]−2
EHE

) . (51)

Since we have now found the solution to both optimization problems in (22) and (23), we

can combine their solutions together into one algorithm. We define the MSE at iteration t as

follows:

Et , f
(
α̂s,t, α̂b,t, F̂t, Υ̂t

)
. (52)

The algorithm stops when |Et − Et−1| < εEt−1, where ε ∈ R+ is some precision tolerance.

The overall block diagram and the algorithmic steps are shown, respectively, in Fig. 2 and

Algorithm 2. The convergence and complexity of the OOVAMP-based approach are discussed
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Algorithm 2 OOVAMP-based joint optimization algorithm
Given Hs-u, Hb-u, Hb-s, Ss, a precision tolerance (ε), and a maximum number of iterations (TMAX)

1: Initialize Υ̂0, R0, γ0 ≥ 0 and t← 1, and obtain vb from Hb-s

2: Compute Ĉ0, K̂0 and Ê0 by substituting Υ̂0 into (43), (47) and (48).

3: α̂s,0 = g4

(
Ĉ0

)
4: α̂b,0 = g5

(
K̂0, Ê0

)
5: F̂0 = g6

(
K̂0, Ê0

)
6: repeat

7: // LMAP Estimator

8: Compute matrices A, B, D, M, X and Z by substituting α̂s,t−1, α̂b,t−1 and F̂t−1 into

(25) to (30).

9: Ῡt =
(
DHD + MHM + γt−1IK

)−1 (
DHX + MHZ + γt−1Rt−1

)
10: γ̄t = KTr

([
DHD + MHM + γt−1IK

]−1)−1
11: γ̃t = γ̄t − γt−1
12: R̃t = γ̃−1t

(
Ῡtγ̄t −Rt−1γt−1

)
13: // Separable MAP Projector

14: Υ̂t = G1

(
R̃t

)
15: γ̂t = γ̃−1t

〈
G′1

(
R̃t

)〉
.

16: γt = γ̂t − γ̃t
17: Rt = γ−1t

(
γ̂tΥ̂t − γ̃tR̃t

)
18: //Find αs, αb and F through their closed-form solutions.

19: Compute Ĉt, K̂t and Êt by substituting Υ̂t into (43), (47) and (48).

20: α̂s,t = g4

(
Ĉt

)
21: α̂b,t = g5

(
K̂t, Êt

)
22: F̂t = g6

(
K̂t, Êt

)
23: t← t+ 1

24: until |Et − Et−1| < εEt−1 or t > TMAX

25: return υ̂t, F̂t, α̂t.
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in [8]. Because of the monotone convergence theorem in real analysis [27], Algorithm 2 is

guaranteed to converge since the MSE is minimized in every step and the objective function,

f(αs, αb,F,Υ), is lower bounded by zero. The algorithm can be efficiently implemented by

exploiting matrix structures, and by using the singular value decomposition (SVD) form of

OOVAMP so that the computational complexity is of O(MNL(K +N)).

V. NUMERICAL RESULTS AND PERFORMANCE ANALYSIS

A. Simulation Model and Parameters

We present Monte-Carlo simulation results to assess the performance of the proposed MIS-

based communication scheme. We assume that the MIS is located at a fixed distance of 500

m from the BS and the users are spread uniformly at a radial distance of 10 m to 50 m from

the MIS. A path-based propagation channel model, also known as parametric channel model

[24], is used. Such a model is more appropriate for systems with large antenna arrays. One key

parameter of such a channel model is the number of multi-path components of the BS-MIS

channel which governs the effect of channel correlation.

TABLE I: Simulation parameters with their notations and values

Parameter Notation, Value Parameter Notation, Value

Number of channel paths in the MIS-BS link QMIS = 10 MIS-BS distance dMIS = 500 m

Number of channel paths in the BS-user link Qb-u = 2 User-BS distance d = 500 m

Number of channel paths in the MIS-user link Qs-u = 2 User-MIS distance d′ ∈ [10, 50] m

Path-loss exponent for the MIS-BS, MIS-user link η = 2.5 Noise variance σ2
w = −100 dBm

Path-loss exponent for the BS-user link η = 3.7 Channel path gains distribution cq ∼ C N (0, 1)

Reference distance d0 = 1 m Path-loss at the reference distance C0 = −30 dB

Assuming a uniform linear array with N antennas at the BS and a square uniform planar array

with K antenna elements at the MIS, the channel between the MIS and the BS is generated

according to:

Hb-s =
√
L(dMIS)

QMIS∑
q=1

cqaMIS(ϕq, ψq)aBS(φq)
T. (53)
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The channel vectors for the link between each single antenna m-th user and the MIS, and each

m-th user and the BS are modeled, respectively, as follows:

hs-u,m =
√
L(d′m)

Qs-u∑
q=1

cm,qaMIS(ϕm,q, ψm,q), m = 1, · · · ,M, (54)

hb-u,m =
√
L(dm)

Qb-u∑
q=1

cm,qaBS(φm,q), m = 1, · · · ,M. (55)

The term L(d) = C0(d/d0)
η in (53), (55), (54) is the distance-dependent path-loss factor, where

C0 denotes the path-loss at a reference distance d0 = 1 m, and η is the path-loss exponent. To

account for channel correlation effects, we set the number of multi-path components lower than

the number of BS antennas and the MIS antenna elements for the BS-MIS channel, thereby

making the channel matrix rank-deficient. Therefore, in the simulations, we set the number of

BS-served users lower than the rank of the BS-MIS channel matrix Hb-s. For brevity, the details

on the array steering vectors, aMIS and aBS, are omitted, and interested readers are referred to

[8] for complete information on the channel model. Table I describes the various simulation

parameters along with their values used in the simulations. Moreover, we split the total transmit

power, P , between the BS- and MIS-served users according to the share of each type of users,

i.e., Pb = B
M
P and Ps = R

M
P . The results are averaged over 1000 independent Monte-Carlo

trials.

We use the sum-rate, Ĉ, for performance evaluation which is defined as follows:

Ĉ =
M∑
m=1

log2

(
1

MMSEm

)
, (56)

where MMSEm refers to the MSE of each m-th user’s received symbol. Since the proposed

approach of using the RIS as a modulating surface (i.e., MIS) is novel, we benchmark it against

the following two traditional schemes wherein the RIS is merely used for passive beamforming

purposes in combination with MMSE precoding at the BS:

i. SCHEME 1: a multi-user MIMO system assisted by one RIS where the optimization of the

phase matrix is solved through alternating optimization and OOVAMP.

ii. SCHEME 2: a multi-user MIMO system assisted by one RIS where the optimization of the

phase matrix is performed using the semidefinite relaxation (SDR) technique.
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(a) M = 8, N = 32, and

K = 256.

(b) M = 8, N = 32, and

P = 25 dBm.

Fig. 3: (a) Sum-rate versus transmit power, and (b) Sum-rate versus the number of MIS-served

users.

B. Performance Results With Perfect CSI

We consider a typical urban or suburban environment where the BS is located faraway from

the users and has no LOS to them. However, the MIS is installed at a location where an LOS

component is present in the BS-MIS link but not in the user-MIS link. We also set the number of

BS antennas to N = 32 and the number of MIS reflective elements to K = 256. Fig. 3(a), depicts

the achievable sum-rate versus the transmit power, P , for the different considered transmission

schemes. The total number of users is equal to M = 8. Here we consider two configurations

for the proposed approach: i) when all the users are served by the MIS, and ii) a hybrid case

wherein the MIS and the BS both serve 4 users each. The configuration in which all the users

are served by the MIS significantly outperforms the scheme in which the RIS is only used for

beamforming (i.e., SCHEME 1). This is because, the MIS-served users do not suffer from the

path-loss between the BS and the MIS. Moreover, at low transmit power (e.g., P = 20 dBm), the

sum-rate for the users solely served by the MIS is, respectively, two and four times the sum-rate

of the BS-served users for the beamforming-only RIS-assisted OOVAMP-based and SDR-based

approaches. For the hybrid configuration, the resulting sum-rate edges SCHEME 1 but, it is lower

than the case when all users are served by the MIS. This confirms that it is more beneficial to

serve the users by the MIS.
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(a) N = 32, K = 256 and

P = 30 dBm.

(b) M = 8, N = 32, and

K = 256.

Fig. 4: (a) Sum-rate versus the number of users, and (b) Sum-rate versus transmit power under

imperfect CSI.

Fig. 3(b) shows a plot of the sum-rate against the share of MIS-served users among the total

number of users. It is observed that the combined sum-rate first decreases and then monotonically

increases with the number of MIS-served users. This is because of the presence of cross-user

interference among the MIS-served and the BS-served users since the MIS is performing both

tasks, i.e., beamforming to assist the BS and also data embedding to serve another set of users.

This implies that there is more loss than gain when the ratio of the MIS-served users to the total

number of users becomes small.

Fig. 4(a) illustrates the sum-rate versus the total number of users being served. The users are

solely served by the BS for one plot and by the MIS for the other. Here we show the benefits

of the approach of using the MIS as a modulating surface to directly serve users. Although the

sum-rate of the BS-served users is higher when the number of users becomes small, the sum-rate

of the MIS-served users keeps increasing with the number of users while the sum-rate of the

BS-served users only increases up to the number of available channel paths which is set to 10.

This is because, the number of users that can be served by the MIS is independent of the number

of BS antennas and the correlation in the MIS-BS channel. The upper limit for the number of

MIS-served users is equal to the number of MIS antenna elements K.
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C. Performance Results With Imperfect CSI

In this section, we asses the performance of the proposed scheme in the presence of channel

estimation errors. Specifically, we consider a scenario where pilot training followed by MMSE

estimation algorithms are used to estimate the cascaded BS-MIS-users and the direct BS-users

channels [28], [29]. We model the estimated channel matrix and vectors using the statistical CSI

error model proposed in [30]–[32] as follows:

Ĥb-s = κHb-s +
√

(1− κ2)L(dMIS)∆b-s, (57)

ĥb-u,m = κhb-u,m +
√

(1− κ2)L(dm)δb-u,m, m = 1, · · · ,M, (58)

ĥs-u,m = κhs-u,m +
√

(1− κ2)L(d′m)δs-u,m, m = 1, · · · ,M, (59)

where κ ∈ [0, 1] denotes the channel estimation accuracy and ∆b-s, δb-u,m and δs-u,m follow the cir-

cularly symmetric complex Gaussian (CSCG) distribution, i.e., vec(∆b-s) ∼ C N (0,1N×N ⊗ IK),

δb-u,m ∼ C N (0, IN) and δs-u,m ∼ C N (0, IK). We first optimize the variables αs, αb, F and Υ

under imperfect CSI and then use the exact CSI matrices to calculate the sum rate.

Fig. 4(b) plots the sum-rate versus transmit power for different values of the channel estimation

accuracy parameter κ. We also include plots for the other schemes (i.e., SCHEMES 1 AND 2)

which use the RIS as a purely reflective surface) under perfect CSI for reference. The results

show the resilience of the proposed MIS-based approach against small channel estimation errors.

At low SNR, it is observed that the proposed design with a low channel estimation accuracy

of κ = 0.90 performs better than the baseline schemes even under perfect CSIs. Moreover, the

performance loss is negligible with a high channel estimation accuracy value of κ = 0.99.

VI. CONCLUSION

We have presented a novel approach of employing the MIS for performing passive beamform-

ing and data embedding for the BS-served and the MIS-served users, respectively, in a multi-

user MIS-assisted downlink MIMO system. The associated joint convex optimization problem

has been formulated under the sum MMSE criterion in order to maximize the users’ spectral

efficiency. Alternating minimization has been used to split the original optimization problem

into two tasks, i.e., separately optimizing the MIS phase shifts and jointly optimizing the BS

precoding and the receive scaling factors for the BS- and MIS-served users. The optimal solution

to the joint optimization problem for precoding is found in closed form. We have optimized the
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MIS phase shifts using OOVAMP by deriving the problem-specific modules of the OOVAMP

algorithm. Moreover, the original joint problem has been solved under both the ideal and a

practical constraint on the MIS phase shifts. Simulation results illustrate highly superior system

throughput performance of the proposed MIS-based scheme over two baseline schemes in which

the MIS is used for beamforming purposes only. Moreover, the proposed approach can support

more number of users simultaneously than existing beamforming approaches wherein the users

are served by the BS only. Finally, the results under imperfect CSI confirm that the performance

remains nearly unchanged in the presence of small channel estimation errors.

Three possible extensions to the proposed framework for MIS-assisted networks are outlined

as follows:

• Optimal power allocation: In the present work, the power split between the BS- and MIS-

served users was not optimized. In fact, we simply split the power between the BS- and

MIS-served users according to the share of each type of users. To utilize the transmit

power efficiently, the joint optimization problem can be extended to optimally allocate

power between the BS- and MIS-served users.

• Optimal user assignment: Instead of splitting the users arbitrarily between the BS and the

MIS, the decision must be taken on the basis of CSI. The users for which the direct BS-

user link is strong enough to provide higher data rate than if they were served by the MIS,

can be served and beamformed by the BS and the MIS, respectively. Similarly, the users

that have a weak direct BS-user link can be served through modulation by the MIS. User

assignment can be optimized to maximize system throughput.

• Jointly optimized reference carrier signal: Presently, we assign the strongest path in the

BS-MIS link to transmit the reference carrier signal pertaining to the MIS-served users.

The remaining paths are used to serve the BS-served users which results in lower sum-rate

for BS-served users. To mitigate this problem, the reference transmitted vector, vb, can

also be jointly optimized with the other variables to enhance the overall throughput of the

system.

APPENDIX A

We have the following function:

f(αs, αb,F,Υ) = EY,S

{
‖Y − S‖2F

}
, (60)
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where

Y = αb

[
HH

s-uDiag(υ1)Hb-sFsb,1 + HH
b-uFsb,1, · · · ,HH

s-uDiag(υL)Hb-sFsb,L + HH
b-uFsb,L

]
+ αs

√
Ps

[
HH

s-uDiag(υ1)Hb-svb, · · · ,HH
s-uDiag(υL)Hb-svb

]
+
[
αbW

T
b , αsW

T
s

]T
,

(61)

S =
[
ST

b , ST
s

]T
. (62)

We explicitly write the function in (60) and then expand it as follows:

f(αs, αb,F,Υ) = EY,S

{
Tr
(
YHY − YHS− SHY + SHS

)}
(63)

= EY,Sb

{
Tr
(
YHY − YH

[
ST

b , 0L×R
]T − YH

[
0L×B, ST

s

]T − [SH
b , 0L×R

]
Y

−
[
0L×B, SH

s

]
Y +

[
SH

b , 0L×R
][
ST

b , 0L×R
]T

+
[
SH

b , 0L×R
][

0L×B, ST
s

]T
+
[
0L×B, SH

s

][
ST

b , 0L×R
]T

+
[
0L×B, SH

s

][
0L×B, ST

s

]T)}
f(αs, αb,F,Υ) = EY,Sb

{
Tr
(
YHY − YH

[
ST

b , 0L×R
]T − [SH

b , 0L×R
]
Y

− YH
[
0L×B, ST

s

]T − [0L×B, SH
s

]
Y +

[
SH

b , 0L×R
][
ST

b , 0L×R
]T

+
[
0L×B, SH

s

][
0L×B, ST

s

]T)}
.

(64)

By defining the matrices:

Yb = αb

[
HH

s-uDiag(υ1)Hb-sFsb,1 + HH
b-uFsb,1, · · · ,HH

s-uDiag(υL)Hb-sFsb,L + HH
b-uFsb,L

]
, (65)

Ye = αb

[
HH

s-uDiag(υ1)Hb-sF + HH
b-uF, · · · ,HH

s-uDiag(υL)Hb-sF + HH
b-uF

]
, (66)

Ys = αs

√
Ps

[
HH

s-uDiag(υ1)Hb-svb, · · · ,HH
s-uDiag(υL)Hb-svb

]
, (67)

W =
[
αbW

T
b , αsW

T
s

]T
, (68)

we expand the terms in (64) and take expectation w.r.t. the random matrices Sb and W thereby

leading to:
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EY,Sb

{
Tr
(
YHY

)}
= EW,Sb

{
Tr
(
YH

b Yb + YH
b Ys + YH

b W + YH
s Yb + YH

s Ys

+ YH
s W + WHYb + WHYs + WHW

)} (69)

= Tr
(
YH

e Ye + YH
s Ys

)
+ LBσ2

wα
2
b + LRσ2

wα
2
s ,

EY,Sb

{
Tr
([

SH
b , 0L×R

]
Y
)}

= EW,Sb

{
Tr
([

SH
b , 0L×R

]
Yb +

[
SH

b , 0L×R
]
Ys

+
[
SH

b , 0L×R
]
W
)} (70)

= Tr
([

[IB,1, 0B×R,1]
T, · · · , [IB,L, 0B×R,L]T

]H
Ye

)
,

EY,Sb

{
Tr
([

0L×B, SH
s

]
Y
)}

= EW,Sb

{
Tr
([

0L×B, SH
s

]
Yb +

[
0L×B, SH

s

]
Ys

+
[
0L×B, SH

s

]
W
)} (71)

= Tr
([

0L×B, SH
s

]
Ys

)
,

and

ESb

{
Tr
([

SH
b , 0L×R

][
ST

b , 0L×R
]T)}

= Tr
([

[IB,1, 0B×R,1]
T, · · · , [IB,L, 0B×R,L]T

]H
×
[
[IB,1, 0B×R,1]

T, · · · , [IB,L, 0B×R,L]T
])
.

(72)

The remaining two terms in (64) can be computed by following (70) and (71). Finally, by

substituting (69)−(72) into (64) and expressing the function in the form of norms we obtain:

f(αs, αb,F,Υ) =

∥∥∥∥αb

[
HH

s-uDiag(υ1)Hb-sF + HH
b-uF, · · · ,HH

s-uDiag(υL)Hb-sF + HH
b-uF

]
−
[
[IB,1, 0B×R,1]

T, · · · , [IB,L, 0B×R,L]T
]∥∥∥∥2

F

+

∥∥∥∥αs

√
Ps

[
HH

s-uDiag(υ1)Hb-svb, · · · ,HH
s-uDiag(υL)Hb-svb

]
−
[
0L×B ST

s

]T ∥∥∥∥2
F

+ LBσ2
wα

2
b + LRσ2

wα
2
s .

(73)



27

APPENDIX B

We have the following two norms:

f1 =

∥∥∥∥αb

[
HH

s-uDiag(υ1)Hb-sF + HH
b-uF, · · · ,HH

s-uDiag(υL)Hb-sF + HH
b-uF

]
−
[
[IB, 0B×R,1]

T, · · · , [IB, 0B×R,L]T
]∥∥∥∥2

F
,

(74)

f2 =

∥∥∥∥αs

√
Ps

[
HH

s-uDiag(υ1)Hb-svb, · · · ,HH
s-uDiag(υL)Hb-svb

]
−
[
0L×B ST

s

]T ∥∥∥∥2
F
. (75)

By defining the matrices, A = αbH
H
s-u ∈ CM×K and B = (Hb-sF)T ∈ CB×K , we rewrite (74) as

follows:

f1 =

∥∥∥∥[ADiag(υ1)B
T, · · · ,ADiag(υL)BT

]
−
[
[IB, 0B×R,1]

T − αbH
H
b-uF, · · · , [IB, 0B×R,L]T − αbH

H
b-uF

]∥∥∥∥2
F
.

(76)

We then define a column-wise Khatri-Rao matrix, D ∈ CMB×K and another matrix, X ∈ CMB×L,

as follows:

D = [b1 ⊗ a1, · · · ,bK ⊗ aK ] , (77)

X =
[
vec
(
[IB, 0B×R,1]

T − αbH
H
b-uF

)
, · · · , vec

(
[IB, 0B×R,L]T − αbH

H
b-uF

) ]
. (78)

Through vectorization, we have the following relation for the norm of a matrix:

‖Dυ − vec(C)‖22 =
∥∥ADiag(υ)BT −C

∥∥2
F . (79)

By using the relation in (79) and substituting the matrices D and X into (76), we get:

f1 = ‖D[υ1, υ2, · · · ,υL]−X‖2F , (80)

or equivalently:

f1 = ‖DΥ−X‖2F . (81)

Similarly, by defining the matrices:

M =
√
PsαsH

H
s-uDiag(Hb-svb), (82)

Z =
[
0L×B, ST

s

]T
, (83)

and then substituting them into (75) one obtains:

f2 = ‖MΥ− Z‖2F . (84)
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