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Abstract— Interactive applications with automated feedback
will largely influence the design of future networked infras-
tructures. In such applications, status information about an
environment of interest is captured and forwarded to a compute
node, which analyzes the information and generates a feedback
message. Timely processing and forwarding must ensure the
feedback information to be still applicable; thus, the quality-of-
service parameter for such applications is the end-to-end latency
over the entire loop. By modelling the communication of a
feedback loop as a two-hop network, we address the problem
of allocating network resources in order to minimize the delay
violation probability (DVP), i.e. the probability of the end-to-end
latency exceeding a target value. We investigate the influence
of the network queue states along the network path on the
performance of semi-static and dynamic scheduling policies. The
former determine the schedule prior to the transmission of the
packet, while the latter benefit from feedback on the queue
states as time evolves and reallocate time slots depending on
the queue’s evolution. The performance of the proposed policies
is evaluated for variations in several system parameters and
comparison baselines. Results show that the proposed semi-static
policy achieves close-to-optimal DVP and the dynamic policy
outperforms the state-of-the-art algorithms.

Index Terms—Feedback applications, end-to-end delay, de-
lay violation probability, network state information, semi-static
scheduling, dynamic scheduling, MDP.

I. INTRODUCTION

Interactive applications with automated feedback are ar-
guably one of the most discussed application class when it
comes to large-scale impact in future networked infrastructures
today [1]. In the literature, we can broadly distinguish two
sub-cases of this new application class, namely cyber-physical
systems (CPS) and human-in-the-loop systems [2]–[4]. In both
cases, however, the underlying principle is the same: status
information about a plant or an environment of interest is
captured, and forwarded to a compute node, where the infor-
mation is analyzed and potentially a feedback is generated in
form of an actuation command or an augmentation/perceptual
feedback; see Fig. 1. In CPS, we encounter applications where
direct actuation is applied to a physical object, for instance, in
the context of industrial automation and automated driving. In
contrast, augmented reality, cognitive assistance, and also to
some extent virtual reality fall under the category of human-
in-the-loop systems, where no direct actuation results from the
feedback; instead, a human is presented perceptual feedback
which potentially triggers some human reaction [4].
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Fig. 1. Architecture of interactive applications with automated feedback.
Sensor (S), controller (C), and actuator (A) operate in a closed loop via a
two-hop wireless network path.

Key features about these applications is their tight integra-
tion with reality as well as the degree of automation that
they allow. Furthermore, by offloading these applications to
networked infrastructures, an almost ubiquitous availability of
corresponding services will be enabled in the future. However,
the successful deployment of such applications rests crucially
on a timely processing and forwarding along the pipeline to
ensure that the feedback information is timely with respect to
the original sensing data. Thus, the quality-of-service (QoS)
parameter for interactive applications is the latency over the
entire loop, i.e. from capturing the status information until the
point in time when the corresponding feedback information is
exposed [5]. For instance, motion-to-photon latency in virtual
reality is a well-known concept that captures this QoS param-
eter. Loosely speaking, one might refer to this QoS parameter
as the end-to-end latency with the crucial differentiation that
a flow conversion occurs at the point of computation. In fact,
depending on the application, for a certain fraction of sensing
data no feedback is generated at all, for instance in the case
of cognitive assistance. Finally, different applications may also
require time-varying end-to-end latencies. For instance, in CPS
it is known that the criticality of sensing information can vary,
leading to time-varying end-to-end latency constraints as the
plant dynamics evolve.

Given the relevance of interactive applications, as well as
their novel QoS requirements, a central question relates to
the optimal support of such applications by networked infras-
tructures. Truly ubiquitous service offering mandates wireless
connectivity to the point of computation. Furthermore, general
latency requirements mandate near-by computational service,
typically provided by edge computing [6]. Hence, a networked
infrastructure realizing an interactive application needs to
provide bounded end-to-end latencies over a concatenated,
heterogeneous network path with at least one compute element
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incorporated [1]. This complicates the provisioning of end-to-
end latencies, as the individual elements of the network path
are typically subject to multiple random effects, such as fading
in case of the wireless links, operating system scheduling
effects in case of the compute backend, and/or cross-traffic
for both the communication and computation elements [7]. As
a consequence, the end-to-end latency becomes essentially a
random variable, which also depends on parameterizations of
the network path such as resource allocation, task prioritization
etc. In order to steer the parameterization of the network
path facing the uncertainty from different effects, a suitable
metric is to minimize the delay violation probability (DVP),
defined as the probability of the end-to-end latency exceeding
a (constant or varying) target value. The key question then
is to manage network path resources to minimize the DVP.
Addressing this question is at the heart of this work.

Acknowledging the fact that latency targets might vary over
time, as well as cross-traffic contributing to the utilization
of the individual elements of the path, we are interested in
the fundamental question if initial conditions of the network
path should influence the path parameterization. By initial
conditions, we refer to the queue states along the network
path, which is modelled as a concatenated queuing network.
This might be included in at least two different ways. On
the one hand, once a new sensor reading is available, a
semi-static resource allocation might be determined which is
kept during the subsequent evolution of the system until the
corresponding actuation command is delivered to the actuator.
On the other hand, a dynamic policy constantly adjusts the
resource allocation during the evolution of the system until
the actuation command is delivered. Obviously, a constant
adaptation of the resource allocation should provide a better
performance in terms of observed delay violations at the price
of increased signaling load. But exactly how such algorithms
should work, which complexity they bring, and which perfor-
mance differences they imply for interactive applications is to
the best of our knowledge open to date.

In this paper, the above questions are investigated for a two-
hop network path incorporating the loop communication of
the status information to a compute node and of the feedback
message to an actuator, cf. Fig. 1. The two-hop system follows
an uplink/downlink model where network resources need to
be assigned in competition. This applies to communication
systems where time resources are typically shared between
uplink and downlink, such as WirelessHART, LTE TDD, and
5G TDD NR. The end-to-end latency of packets is dominated
by the random delay caused by the retransmission of lost
packets and thus the processing delay introduced by the
compute node is assumed to be negligible. Packet transmission
follows a time-slotted medium access where network resources
are organized in frames. In each frame, the available time
slots are entirely allocated to the two links that compete for
resources. Therefore, given the initial queue states of the two
links, we investigate scheduling policies that allocate time slots
of each frame to the links in order to minimize the DVP of
packets belonging to interactive applications.

The main contributions of this paper are summarized in the
following:

• We show that the closed-form expression of DVP is
intractable and derive two upper bounds for the DVP
of packets traversing a two-hop network path given the
initial network conditions.

• Novel heuristic scheduling policies that compute a semi-
static resource allocation are proposed.

• Noting that DVP cannot be directly used for dynamic
resource allocation, a dynamic heuristic scheduling policy
that maximizes the network’s throughput is proposed.

• A simulation study of semi-static scheduling policies as
well as a comparison between the dynamic scheduling
policy, the classical Backpressure (BP) [8], Max Weight
(MW) [9], and Weighted-Fair Queuing (WFQ) [10]
scheduling policies is presented.

The rest of the paper is structured as follows. Sec. II
provides a discussion of the related work. Sec. III defines
the model of the two-hop network path and the problem
statement. Sec. IV provides a general derivation of DVP and
discusses its application for scheduling. In Sec. V heuristic
semi-static scheduling policies are derived, while Sec. VI
describes an MDP-based heuristic dynamic scheduler. Sec. VII
evaluates the performance of the proposed scheduling methods
and provides a discussion on their applicability in different
scenarios. Finally, we conclude in Sec. VIII.

II. RELATED WORK

Several existing works tackle the problem of resource allo-
cation in a multi-hop wireless network to support time-critical
applications. Methods that make use of the queue state to allo-
cate network resources follow a theoretical approach [8], [11],
[12]. In their pioneering work [11], Tassiulas et al. derived
the Max Weight scheduling policy, which allocates resources
based on the transmitters’ backlogs and achieves maximum
throughput and minimum delay. Their scenario, however, is
different from the one in this work as they only considered
a single-hop network. For a multi-hop network, maximum
throughput was achieved by the backpressure algorithm [8],
which allocates resources based on the backpressure of queues
in the network. Differently than this work that minimizes
the DVP of time-critical packets, their scheduling policy
focused on throughput optimality. Singh et al. [12] exploited
information about the queue state to schedule transmissions in
order to maximize throughput under delay constraints. Their
approach, however, considers the steady-state performance of
packets and, differently than our approach, does not allocate
resources to optimize the network for a single time-critical
arrival.

From a different perspective, many practical works investi-
gate resource allocation methods for real-time flows in Indus-
trial Wireless Sensor Networks (IWSN). Some of them com-
pute schedules to allow several time-constrained applications
to meet their deadlines assuming deterministic transmission
outcomes [13]–[18]. Saifullah et al. [13], [14] investigated
the problem of real-time scheduling subject to end-to-end
deadlines between sensors and actuators. Differently than our
work, however, communication between sensors and actuators
is deterministic and packet loss is not considered. In their
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recent works [15], [16], communication failures due to packet
loss are considered and retransmissions are used. In contrast
to our work, however, the only provide a deterministic delay
model for the communication between sensors, controller,
and actuators. Similarly, Wang et al. [17] calculated sched-
ules to ensure the worst-case delay of packets in a flow,
however, without assuming random packet loss. Modekurthy
et al. [18] derived a distributed deadline-based scheduling
algorithm based on the Earliest Deadline First policy. Also
in this case, differently than our scenario, packet loss is not
considered and the random end-to-end delay of packets in the
network is not characterized.

Other IWSN works tackle the problem of reliable com-
munication in presence of random packet loss [19]–[21].
Dobslaw et al. [20], allocated resources to each transmitter
in a path based on the required number of retransmissions to
fulfil a given reliability constraint. Differently than our model,
however, their work did not consider a deadline for the packets.
Following a similar approach, Gaillard et al. [21] extended the
pioneer traffic-aware centralized scheduler TASA [22] includ-
ing retransmissions to guarantee flow reliability requirements.
Also in this case, however, traffic is not time-constrained. Yan
et al. [19] developed a scheduling method that allocates time
slots to the transmitters in order to maximize the network
reliability under delay constraints. A major difference of their
work, which is common to Dobslaw and Gaillard et al., is
that reliability constraints are defined for all the flows in
the network. Our approach instead optimizes the network
resources to maximize the application reliability of each time-
critical packet.

Recent works tackle investigate resource allocation methods
providing per-packet delay and reliability performance [23]–
[26]. Similarly to DVP, Chen et al. [23] computed, for each
packet, the number of transmissions required to fulfil the appli-
cation deadline with a given probability. Their work, however,
only considered a single-hop scenario and cannot be applied
to the considered two-hop network path. Brummet et al. [24]
developed a method to dynamically allocate retransmissions
to each packet and at each network hop subject to delay and
reliability requirements. They followed a different approach
as their schedules are designed to fulfil the requirements and
limit the maximum number of retransmissions. Therefore, their
scenario did not optimize network resources to maximize the
per-packet DVP. A similar approach was used by Gong et
al. [25], which allocated time slots to transmitters fulfilling
per-packet delay and reliability constraints while minimizing
the number of resources. Also in this case, however, they
considered a finite number of retransmissions and the network
resources are not optimized to minimize DVP. On the contrary,
Soldati et al. [26] allocated time slots over multiple hops
maximizing the end-to-end reliability of each time-critical
packet subject to a deadline. Differently than our approach that
characterizes the distribution of end-to-end delay considering
the correlation of transmission outcomes over consecutive
transmitters, their scenario assumes that resource allocations
of consequent transmitters are independent.

This work extends our previous work [27] by deriving
semi-static scheduling policies and investigating the impact

of queue state information on the minimum achievable DVP.
We achieve this thanks to a transient queuing model of the
network and by modelling the end-to-end delay of each packet
of interactive applications. This is different from the available
state-of-the-art for multiple reasons. Instead of considering
QoS for a stationary flow, we analyse the random end-to-end
delay incurred for each time-critical arrival. The considered
queuing model allows us to derive scheduling policies taking
into account the correlation between subsequent transmitters
introduced by random transmission outcomes. This is different
from the related work as existing scheduling policies optimize
network resources based on the interaction of multiple inde-
pendent flows sharing the network. Furthermore, by allocating
a finite amount of retransmissions, all the existing methods
allow application packets to be dropped, which may result in
critical failures of feedback systems. Finally, we investigate the
impact of queue state information on semi-static and dynamic
scheduling policies, which, to the best of the knowledge of
the authors, was never tackled in the literature for a two-hop
network path.

III. SYSTEM MODEL AND PROBLEM STATEMENT

We study the communication scheduling problem of a
feedback system consisting of a sensor, a control logic, and an
actuator. The two-hop data communication from the sensor to
the controller, and the controller to the actuator is performed
via error-prone wireless links. We now describe the details
of the model and the network elements, and present the
formulation of the scheduling problem.

A. Arrivals, Backlogs, and Departures

We model the sensor-controller link, and controller-actuator
link using a packet-flow, discrete-time, two-queue lossy wire-
less network with first-come-first-serve discipline, cf. Fig. 2.
The time is discretized into slots, which are grouped in frames.
A sequence of y packets arrives at the first queue in frame
01. These packets are time critical with a requirement that
they depart the second queue within next w frames, where w
is finite. These packets, for instance, may belong to a time-
critical message whose latency could significantly impact the
application performance, i.e. the stability/safety of a feedback
system. We are thus interested in analyzing the two-queue
network path for the time frames k ∈ {0, 1, . . . , w − 1}. In
this transient regime, the delay incurred by the time-critical
packets depends on the initial backlogs in the queues at frame
0, and the temporal variations in the service received by the
queues.

We use i ∈ {1, 2} to index the queues. Let xi denote the
backlog in queue i in frame 0. Let Ai(k) and Di(k) denote
the cumulative arrivals and departures at queue i, in frame k.

1We consider frame 0 for notational simplicity; nevertheless, our analysis
is equally valid starting the system with any other frame.
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Fig. 2. Network model of the two-hop network path. The available time slots
are entirely allocated to the two queues at each frame until the deadline.

For k = 0, all the quantities are set to zero. For k ≥ 1, we
define

A1(k) = y + x1, (1)

A2(k) = D1(k − 1) + x2, (2)

Di(k) =

k−1∑
j=0

dij , (3)

where dij is the number of packets departed queue i in frame j.
In Eq. (2) a one-step delay is introduced between the reception
of a packet and its service at the second queue indicating that
packets must be fully received before being relayed. In the
following, we use A(k) = A1(k) and D(k) = D2(k). For
analytical simplicity, we assume that a packet received by the
controller is processed within the same frame of reception,
i.e. processing latencies are negligible, and results in a new
packet carrying the feedback information. Sensor and actuator
messages can assume arbitrary size, however, we assume that
their size is fixed to a maximum size of B bits.

The end-to-end virtual delay, denoted by W (k), is defined
as

W (k) = inf {u ≥ 1 : A(k) + x2 ≤ D(k + u− 1)} . (4)

It quantifies the delay faced by the cumulative arrivals till
frame k − 1.

B. Lossy Wireless Network Model

At the link layer, we consider an error-prone time-slotted
system where multiple frequencies can be used for transmis-
sion. Packet loss is caused by fading in the received signal,
which can arise, for instance, from shadowing, mobility, or
external interference. We assume that a frequency diversity
mechanism is used in the network and sequential packet
transmissions are characterized by uncorrelated channel fades.
Whenever critical messages are transmitted via unreliable
wireless links, it is a common approach to deploy frequency
diversity techniques, such as frequency hopping or frequency
scheduling, to avoid sequential packet drops due to correlated
channel fades. Thus, we restrict our analysis to the time
domain.

We model the random service provided for a single packet
transmission as a Bernoulli r.v. according to an average Packet

Error Rate (PER) of the communication link. That is, a
packet is lost with probability pe and received with probability
1−pe. The PER is determined by the average Signal-to-Noise-
and-Interference-Ratio (SINR) which in turn is determined
by the combination of the propagation environment and the
modulation and coding scheme used for transmission.

Each frame comprises of N time slots to be shared between
the transmissions of packets from the two queues in the uplink
and the downlink, cf. Fig. 2. In frame k, let n1

k and n2
k =

N−n1
k denote the slots used for transmitting the packets from

the first queue and the second queue, respectively. Given this
frame allocation, the service offered by the i-th link at frame
k is distributed as a Binomial r.v. given by

bik(nik) ∼ B
(
nik, 1− pe

)
. (5)

The cumulative service provided on the link at queue i in
k consecutive frames is equal to a summation of Binomial
random variables with parameters 1 − pe, which is also a
Binomial r.v. given by

Si(k) =

k−1∑
j=0

bij(n
i
j) ∼ B

k−1∑
j=0

nij , 1− pe

 . (6)

C. Problem Statement

We are interested in optimizing the dynamic service offered
by the wireless links of sensor and controller to minimize the
end-to-end delay of a time-critical arrival while it traverses
the network. In particular, in order to investigate scheduling
policies that exploit initial network conditions, we study the
impact of queue state information on the achievable perfor-
mance of semi-static and dynamic resource allocations.

We define a scheduling policy π as the allocation of time
slots to both queues in every frame until the deadline, i.e. π ,
n1 = {n1

0, n
1
1, . . . , n

1
w−1}, equivalently π , n2 = N − n1.

Different scheduling algorithms are computed based on the
queue state information qk = (q1

k, q
2
k), where q1

k and q2
k denote

the lengths of first and second queues in frame k, respectively.
In the following, we consider scheduling policies that com-

pute semi-static and dynamic resource allocations. On the
one hand, a semi-static scheduling policy, denoted by πS ,
computes a schedule based on the initial state q0. Semi-static
policies can be applied, for instance, to resource-constrained
wireless networks such as WSN, where updating the network
allocation over time is difficult due to the availability of a
single radio interface and unreliable feedback channels. On the
other hand, a dynamic scheduling policy, denoted by πD(qk),
relies on the availability of the queue state qk at a centralized
network logic, which is used to determine the allocation of
slots for the next frame, i.e. at k-th frame n1

k = πD(qk).
An exemplary application of dynamic policies is in cellular
networks, where reliable feedback channels can timely deliver
new queue states to the network coordinator and resource
allocations to the devices.

Given the end-to-end deadline w, we define the Delay
Violation Probability (DVP) of a sequence of time-critical
packets that arrived in frame 0 as the probability that one or
more packets of the sequence do not depart the second queue
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by the end of frame w. For initial backlogs x1, x2 this is
denoted by DVP (w, y, x1, x2) and is given by

DVP (w, y, x1, x2) := P {W (1) > w} . (7)

The above equivalence is obtained using Eq. (4), where the
event {W (1) > w} implies that the cumulative departures
by the end of frame w are smaller than the total number of
packets in frame 0. Note that DVP could potentially be used
as QoS in networked feedback systems; for example, given
a deadline of w frames, DVP represents the probability that
a packet (carrying control command) in response to a packet
generated by the sensor is delivered to the actuator within the
deadline.

We are interested in finding semi-static and dynamic
scheduling policies that minimize the DVP of packets belong-
ing to interactive applications. The policies are obtained by
formulating and solving the following optimization problems.
Let ΠS and ΠD denote the sets of all possible semi-static
and dynamic scheduling policies2. Given y application packets
arrived in frame 0, an optimal semi-static policy πS is obtained
solving

minimize
πS∈ΠS

DVP (w, y, x1, x2) . (8)

A dynamic scheduling policy πD is obtained solving

minimize
πD∈ΠD

DVP (w, y, x1, x2) . (9)

In Eq. (8) and Eq. (9), ΠS ,ΠD denote the sets of all possible
semi-static and dynamic scheduling policies, and are non-
empty as each resulting slot allocation is valid.

In the sequel, we will be using the following definitions.
Given a set of events E1, E2, . . . the union bound is given by

P

{⋃
i

Ei

}
≤ P

{∑
i

Ei

}
.

Furthermore, given a random variable X , for every t > 0, the
Chernoff bound is given by

P {X ≥ x} ≤ E[etX ]

etx
,

where E[·] denotes the expectation operator.

IV. DERIVATION OF DELAY VIOLATION PROBABILITY

We characterize DVP using Stochastic Network Calculus
(SNC) [28]. From Eq. (4), DVP can be obtained in terms of
the virtual delay of the network

DVP (w, y, x1, x2) = P {W (1) > w}
= P {D(w) < y + x1 + x2} . (10)

Applying the input-output relation for a queue with a
dynamic server

D(k) ≥ min
0≤u≤k

[A(u) + S(k − u)] , (11)

we can derive the exact expression of DVP.

2These sets are non-empty; an example policy allocates slots equally to
both links in all frames.

Proposition 1. The delay violation probability (DVP) of a
time critical arrival of y packets at k = 0, given initial queue
backlogs x1, x2 is

DVP(w, y, x1, x2) =

P
{{
S2(w)<y + x1 + x2

}
∪
{
S2(w − 1)<y + x1

}
∪

w⋃
u=2

{
S2(w − u) + S1(u− 1) < y + x1

}}
. (12)

Proof. The proof can be found in Appendix A

From Eq. (12), we observe that the calculation of DVP is
highly non-trivial. The DVP computation requires the knowl-
edge of future, i.e. both the allocations n1

k and the resulting
queue states, in order to calculate the cumulative services.
Thus, it is impossible to use DVP to obtain a scheduling policy
which causally allocates the time slots at each frame within
the deadline using only the past information. Furthermore,
computing the exact value of DVP is not tractable as it requires
the calculation of the probability of union of w events that are
not mutually disjoint.

In this work, we address this issue by deriving upper
bounds for DVP which are then used to design semi-static
and dynamic schedulers. In Sec. V, we investigate semi-static
scheduling policies based on two upper bounds of Eq. (12)
to determine the allocation of slots until the deadline solely
relying on the initial queue states. Then, in Sec. VI, a dynamic
scheduling policy is derived based on another upper bound for
DVP that reallocates the network resources according to the
changes in the queue states.

V. SEMI-STATIC SCHEDULING POLICIES

In this section, we derive an upper bound for DVP, referred
to as DVPUB, and formulate an upper bound minimization
problem, which is then used to compute the proposed semi-
static policies.

Using the union bound for DVP in (12), we obtain DVPUB,
given by

DVPUB(w, y, x1, x2) = P
{
S2(1 + w)<y + x1 + x2

}
+

1+w∑
u=1

P
{
S2(1 + w − u) + S1(u− 1) < y + x1

}
= P

{
S2(1 + w)≤y + x1 + x2 − 1

}
+

1+w∑
u=1

P
{
S2(1 + w − u) + S1(u− 1) ≤y + x1 − 1

}
. (13)

Applying Eq. (6) to Eq. (13), the DVPUB resulting from
the allocation of n1 = {n1

0, . . . , n
1
w − 1} slots at the second
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transmitter and n2 = N −n1 slots at the first one is given by

DVPUB(w, y, x1, x2,n
2) =

y+x1+x2−1∑
x=0

P

{
w∑
i=0

b2i
(
n2
i

)
= x

}

+

1+w∑
u=1

y+x1−1∑
z=0

P


w−u∑
j=0

b2j
(
n2
j

)
+

u−2∑
k=0

b1k
(
n1
k

)
= z


(a)
=

y+x1+x2−1∑
x=0

(
1

pe
− 1

)x(∑w
i=0 n

2
i

x

)
p
∑w

i=0 n
2
i

e

+

1+w∑
u=1

y+x1−1∑
z=0

(
1

pe
− 1

)z
p
∑w−u

j=0 n2
j−

∑u−2
k=0 n

2
k+(u−1)N

e ·(∑w−u
j=0 n2

i −
∑u−2
k=0 n

2
j + (u− 1)N

z

)
. (14)

In step (a), we used the fact that Si(k) is distributed as a
Binomial r.v. as shown in Eq. (6).

We are interested in minimizing the DVPUB to find semi-
static scheduling policies. However, this is highly non trivial
for different reasons. Minimizing DVPUB is a combinatorial
problem and finding a heuristic solution by relaxing the
domain of n2 is challenging as DVPUB consists of the sum of
several binomial coefficients. Thus, it is highly non trivial to
study its convexity. Therefore, following a similar approach as
in [7] a looser convex bound, referred to as Wireless Transient
Bound (WTB), is obtained by applying the Chernoff bound to
Eq. (13).

WTB(w, y, x1, x2) = min
s>0

{
E
[
e−s S

2(1+w)
]
es (y+x1+x2−1)+

1+w∑
u=1

E
[
e−s[S

1(u−1)+S2(1+w−u)]
]
es (y+x1−1)

}
. (15)

The calculation of WTB for a wireless transmitter is ob-
tained by computing the Mellin transform of the cumulative
service of Eq. (6), given by

E
[
e−s S(m,n)

]
= E

[
e−s

∑−1+
∑m−1

j=0
nj

i=0 bi

]

= E
[(
e−s bi

)∑m−1
i=0 ni

]
=
[
(1− pe)e−s + pe

]∑m−1
i=0 ni

, (16)

where bi are i.i.d. Bernoulli random variables for transmission
outcomes. Finally, combining Eq. (15) and (16), we obtain

WTB(w, y, x1, x2,n
2) =

min
s>0

{ [
(1− pe)e−s + pe

]∑w
i=0 n

2
i es (y+x1+x2−1)+

1+w∑
u=1

[
(1−pe)e−s+ pe

](u−1)N−∑u−2
j=0 n

2
j+

∑w−u
i=0 n2

i es (y+x1−1)
}
.

(17)

Given the initial queue backlogs q0 = {x1, x2}, we aim to
solve the upper bound minimization problem below

arg min
n2∈{1,...,N−1}w

WTB(w, y, x1, x2,n
2). (18)

To solve the integer-programming problem (18), one may
employ exact algorithms (such as branch-and-bound), which
however has run-time that scales exponentially with N and w.
Instead, we relax the integer constraints, show that the relaxed
problem is convex, and use different methods to round the
continuous values of the solution and obtain multiple heuristics
for the minimization of DVPUB.

Let π̃?S denote the optimal solution for the relaxed problem
of (18) which is given by

π̃?S = arg min
n2∈[1,N−1]w

WTB(w, y, x1, x2,n
2). (19)

Theorem 1. The optimization problem in (19) is convex.

Proof. The proof is given in Appendix B.

Thanks to Theorem 1, well-known convex optimization
algorithms, such as the subgradient or interior-point can be
used, which provide scalability for an increasing number of
slots N and frames within the deadline w. In this work, (19)
is solved using the nonlinear programming solver fmincon
available in Matlab™ employing the sequential quadratic pro-
gramming (SQP) algorithm. Once π̃?S is found, a conversion to
the integer domain is needed in order to determine a feasible
solution, which we refer by π̂?S . Although the optimal selection
of an integer solution would require the exploration of the
entire problem’s domain, heuristic methods can be applied
to find a solution in the neighbourhood of π̃?S . To this end,
we investigate different neighbour search methods in order to
achieve near-optimal performances.

The simplest way to derive π̂∗S is to round each frame alloca-
tion of π̃?S to its closest integer value. We refer to this method
as WTB-R. Alternatively, a heuristic policy can be found as
follows. For each frame allocation n1

i ∈ π̃?S , two integer values
are derived applying the floor and ceiling functions. A search
space is constructed by computing all the combinations of the
integer values for each frame until the deadline which leads
to a total of 2w combinations. As final step, Eq. (14) and (17)
are used to evaluate each combination and identify the best
one. The semi-static policies corresponding to the evaluation
of Eq. (14) and (17) over this search space are referred to as
WTB-D and WTB-W, respectively.

The performances of the different heuristics have been
evaluated via extensive simulations over a broad range
of values for each system parameter, i.e. for x1, x2 ∈
{0, 1, 2}, w ∈ {2, 3, 4, 5, 6}, N ∈ {2, 3, 4, 5}, and
pe ∈ {0.2, 0.33, 0.4, 0.5}. For performance comparison,
two additional schedulers have been evaluated, eDVPUB and
eWTB, which exhaustively explore the problem’s domain to
find the policies that respectively achieve the minimum values
of DVPUB, cf. Eq. (14), and WTB, cf. Eq. (17). Furthermore,
the performance of each scheduler is compared with the
performance of the policy that achieves the minimum DVP.
This optimal policy is found by exploring the DVP of all
possible policies via simulations and then, for each policy,
simulations are used to compute its DVP.

Fig. 3 shows the performance of the proposed semi-static
schedulers by computing, for each scheduler and system
configuration, the percentage of feasible policies that achieve
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Fig. 3. Performance of the proposed semi-static schedulers for different
system parameters. For each scheduler, the percentage of existing policies
that achieve higher DVP is evaluated.

higher DVP. As expected, the exhaustive search methods
eWTB and eDVPUB achieve the best results, with eDVPUB
finding, in the large majority of cases, the top 10% semi-static
policies. The performance gap between eWTB and eDVPUB is
introduced by the Chernoff bound in Eq. (16). These methods,
however, do not represent a feasible way of computing poli-
cies as they require the exhaustive exploration of the entire
problem domain. Differently, the heuristic methods WTB-
R/W/D can be used to efficiently find semi-static policies
for arbitrary parameters. The low complex WTB-R achieves
the worst performance. WTB-W and WTB-D achieve similar
performances and show a small performance penalty with
respect to the exhaustive methods, with WTB-W achieving
better performances. This can be explained by the fact that,
in WTB-D, Eq. (17) is used to solve the relaxed problem,
while Eq. (14) to find the integer solution. For this reason,
only WTB-W is presented in the numerical section.

VI. DYNAMIC SCHEDULING POLICY

In order to compute the DVP of time-critical packets, cf.
Eq. (12), the knowledge of future allocation and queue states is
needed. Thus, it is impossible to use DVP to obtain a dynamic
scheduling policy which causally allocates the time slots using
only the past information. To address this problem, we obtain
an upper bound for DVP using Markov’s inequality:

DVP(w, y, x1, x2) = P{D(w) < y + x1 + x2}
= P{D(w) ≤ y + x1 + x2 − 1}
= P{1/D(w) ≥ 1/(y + x1 + x2 − 1)}
≤ (y + x1 + x2)E[1/D(w)]. (20)

From Eq. (20) we infer that minimizing the expectation of
the inverse of the cumulative departures (throughput) of the
network minimizes the upper bound of the DVP and thus
potentially reduces DVP. Using this insight, in the following,
we compute a heuristic schedule by solving the expected
throughput maximization problem stated below:

maximize
πD∈ΠD

E[D(w)] =

w−1∑
k=0

E
[
dik
]
. (21)

In order to solve the optimization problem in Eq. (21), we
formulate a discrete-time, finite-horizon MDP. We use qk to
denote the state of the system and n1

k to denote the action in
frame k. The maximum number of slots in a frame is N and
therefore n1

k ∈ {0, 1, . . . , N}. Given n1
k, from (6) we have

P{s1
k = r} =

(
n1
k

r

)
(1− pe)rpn

1
k−r
e ,

P{s2
k = r} =

(
N − n1

k

r

)
(1− pe)rpN−n

1
k−r

e .

The queues evolve as below:

q1
k+1 = max(q1

k − s1
k, 0), (22)

q2
k+1 = max(q2

k − s2
k, 0) + min(q1

k, s
1
k). (23)

Note that the number of departures from the first queue in
frame k equals min(q1

k, s
1
k), which are added to the second

queue to be served in frame k + 1.
In the following, we formulate the transition probabilities

for the states. Note that the initial backlogs in the queues are
(y + x1, x2), where y is due to the message of interest. We
have q1

0 = y + x1 and q2
0 = x2. We now analyse the set of

possible states in our system. In any frame k, a feasible state
(q1
k, q

2
k) should satisfy the following conditions:

q1
k ≤ q1

k−1, (24)

q1
k + q2

k ≤ q1
k−1 + q2

k−1. (25)

Conditions Eq. (24) and Eq. (25) follow from the fact that
we ignore arrivals after the message of interest and in every
frame each queue will receive certain service. Note that while
the length of the first queue can only decrease as the packets
are served, the length of the second queue may increase up to
y + x1 + x2 as departures from first queue are added to the
second queue. Therefore, for every state qk in the state space,
sayQ, q1

k ∈ {0, 1, . . . , y+x1} and q2
k ∈ {0, 1, . . . , y+x1+x2}.

This implies that Q can contain at most (y+x1 +1)(y+x1 +
x2 + 1) possible states.

Consider that in frame k, q1
k = l1 and q2

k = l2. We would
like to present the transition probabilities to the states q1

k+1 =
l1+ and q2

k+1 = l2+. We have the following cases.
Case 1: l1+ > l1 or l1+ + l2+ > l1 + l2. From Eq. (24) and

Eq. (25), we infer that

P{q1
k+1 = l1+, q

2
k+1 = l2+|q1

k = l1, q2
k = l2} = 0.

Case 2: 0 < l1+ ≤ l1, 0 < l2+, and l1+ + l2+ ≤ l1 + l2. In this
case s1

k < q1
k = l1 and s2

k < q2
k = l2. From Eq. (22) we have

q1
k+1 = q1

k − s1
k ⇒ s1

k = l1 − l1+.

The number of packets served from the second queue are
computed from Eq. (23).

q2
k+1 = q2

k − s2
k + s1

k ⇒ s2
k = l2 − l2+ + l1 − l1+.

Therefore,

P{q1
k+1 = l1+, q

2
k+1 = l2+|q1

k = l1, q2
k = l2}

= P{s1
k = l1 − l1+, s2

k = l2 − l2+ + l1 − l1+}.
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Case 3: l1+ = 0, 0 < l2+, and l2+ ≤ l1 + l2. In this case
all l1 packets from the first queue are served. This implies
s1
k ≥ q1 = l1. Using similar analysis as above, we obtain

P{q1
k+1 = 0, q2

k+1 = l2+|q1
k = l1, q2

k = l2}
= P{s1

k ≥ l1, s2
k = l2 − l2+ + l1}.

Case 4: l1+ = l1, l2+ = 0. In this case we have s1
k = 0,

and all l2 packets from the second queue are served, i.e. s2
k ≥

q2 = l2. From Eq. (23), we have

P{q1
k+1 = l1, q2

k+1 = 0|q1
k = l1, q2

k = l2}
= P{s1

k = 0, s2
k ≥ l2}.

Note that the case 0 ≤ l1+ < l1 and l2+ = 0 cannot happen as
l1−l1+ packets will be added to the second queue in the current
slot. All the above cases are written assuming that l1 > 0 and
l2 > 0. If either of them is zero, then the transition probability
only involves the probability for service received by the non-
empty queue.

Given the initial state q0 = (y+x1, x2), we are interested in
finding a scheduling policy π?D that solves the maximization
problem of Eq. (21). For this, we define the reward rk of
a policy πD for a given state qk as the expected number
of departures from the system, i.e. the expected number of
packets that are served at the second queue under this policy,
and is given by

rk (qk, πD(qk)) = E
[
dik|πD(qk)

]
= E

[
min

(
q2
k, s

2
k

)
|πD(qk)

]
. (26)

The total reward, obtained evaluating Eq. (26) over a
horizon of w frames, is equal to Eq. (21). Therefore, the
objective of the MDP is equal to the objective of Eq. (21).

Value iteration algorithms solve the MDP optimization re-
cursively computing a value function J based on the Bellman’s
equation [29]. The optimal value function J(qk) given a state
qk is

Jk(qk) = maximize
πD∈ΠD

rk(qk, πD(qk)) +∑
qk+1∈Qk+1

P{qk+1|qk, πD(qk)}Jk+1(qk+1), (27)

where P{qk+1|qkπD(qk)} is the transition probability from
state qk to state qk+1 in one time step using πD(qk), Qk+1

denotes the set of all states reachable from qk with one time
step transition.

By the construct of the MDP, it is easy to see that π?D is
optimal for Eq. (21) which is stated in the following theorem.

Theorem 2. π?D is throughput optimal, i.e.

π?D = arg max
πD∈ΠD

E [D(w)] .

For a finite number of states and actions, the optimal policy
π?D for the MDP can be found by computing the optimal
value function in Eq. (27) by backward recursion (cf. [29]).
The calculation of the optimal dynamic scheduling policy
satisfying Theorem 2 can be performed using the finite-horizon
value iteration algorithm. For each epoch k until the deadline
w and state qk, the value function in Eq. (27) is computed for

all possible actions. Therefore, computing the optimal dynamic
policy requires O ((N + 1) |Q|w) operations. We note that
optimal actions for all the states in Q can be computed a
priori and stored in a table, and for a queue state observed
in a frame the corresponding optimal action can be retrieved
from the table.

VII. PERFORMANCE EVALUATION OF SEMI-STATIC AND
DYNAMIC SCHEDULING POLICIES

In this section, the performance of semi-static and dynamic
scheduling policies are evaluated numerically. The evaluations
leverage C, Matlab™ and python to compute the performance
of, respectively, semi-static and dynamic policies and com-
parison baselines. We evaluate the schemes for variations in
several main system parameters: (1) Different initial queue
backlogs x1, x2; (2) Application deadlines w; (3) Number
of slots per frame N ; and (4) Average service PERs pe. In
Sec. VII-A, we present first a performance comparison of
purely semi-static scheduling policies. In Sec. VII-B, we then
move to purely dynamic policies. Finally, in Sec. VII-C, we
present results on the performance gap between the proposed
semi-static and dynamic scheduling policies.

A. Semi-static Scheduling Policies

As discussed, semi-static scheduling policies in this work
take the initial queue state at the moment of the arrival of a
time-critical packet into account. The semi-static schedule is
then determined prior to the transmission of the corresponding
packet and defines the allocation of slots until the deadline of
the packet. We compare the DVP achieved by the proposed
WTB-W scheduler, cf. Sec. V, with the exhaustive search
methods eDVPUB and Optimum, which compute semi-static
policies, respectively, evaluating Eq. (8) and via simulations.
Due to its high complexity, the performances of the opti-
mal policy is shown for smaller parameter sets. Exhaustive
schemes are shown to evaluate the performance of WTB-B
and do not represent a feasible way of computing semi-static
scheduling policies. The last comparison scheme is a agnostic
allocation of half of the slots for uplink and half of the slots
for downlink transmission. We refer to this scheme as 50/503.
Throughout the evaluation of the semi-static schemes, we keep
the channel error rate pe at 0.2.

Fig. 4 shows the DVP for different application deadlines,
backlogs, while the frame configuration is fixed with N = 4.
WTB-W and eDVPUB achieve close-to-optimal DVP for all
backlog sizes and deadlines. Thus, taking the initial queue
states into account is beneficial and provides up to one order
of magnitude improvement compared to the agnostic 50/50
scheme. As the deadline w increases, the performance gap
of the proposed polices in comparison to the 50/50 scheme
increases. For backlogs x1 and x2 equaling 1, eDVPUB
provides a minor improvement in DVP with respect to WTB-
W at the expense of higher computational complexity, while
for higher backlogs, the performance difference between the
two is negligible.

3In the case of an odd number of slots, one extra slot is allocated to the
first link.
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Fig. 4. DVP achieved by semi-static schedulers for different deadlines w,
increasing backlogs x1, x2, N = 4, pe = 0.2.
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Fig. 5. DVP achieved by semi-static schedulers for different frame sizes N ,
increasing backlogs x1, x2, w = 5, pe = 0.2.
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Fig. 6. DVP achieved by semi-static schedulers for different backlogs x1 and
deadlines w, x2 = 1, N = 4, pe = 0.2.
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Fig. 7. DVP achieved by semi-static schedulers for different backlogs x2 and
deadlines w, x1 = 1, N = 4, pe = 0.2.

In Fig. 5 we study the impact of different frame lengths,
backlogs, while keeping the deadline fixed with w= 5. Again,
the improvement in DVP of the proposed semi-static sched-
ulers with respect to the agnostic 50/50 scheme is confirmed.
The “stepped” behaviour of the 50/50 scheme is caused by
the different ratios of allocated slots to the two links for
even and odd frame lengths. Otherwise, the results show a
minor difference between WTB-W and eDVPUB, while the
optimality gap increases slightly for increasing N when x1

and x2 are equal to 1.

Fig. 6 and Fig. 7 show the impact of initial backlog on the
DVP for different deadlines and a fixed frame configuration
with N = 4. Increasing x1 has a stronger impact than x2 on the
achievable DVP. This is intuitive as packets backlogged in x1

must be sent by both links. We note that the gap between the
proposed semi-static schedulers and the agnostic 50/50 scheme
increases with an increasing backlog x2. In both figures, we
observe again that exploiting the initial queue states leads to a
gain of approximately half order of magnitude with respect to
the agnostic 50/50 scheme with increasing initial backlogs.
As shown in Fig. 6, eDVPUB achieves near-optimal DVP
and the performance gap with respect to WTB-W is constant
with increasing x1. In contrast, in Fig. 7, the gap between the
proposed schedulers and the optimal policy decreases with

increasing x2, achieving close-to-optimal DVP.

B. Dynamic Scheduling Policies
In contrast to the semi-static schemes, dynamic schedulers

benefit from feedback on the queue states as time evolves, giv-
ing them the opportunity to reallocate time slots depending on
the queue’s backlog evolution. This makes dynamic schedulers
causing more overhead and complexity, with the advantage of
potentially achieving a higher performance. Initially, we are
only turning to different dynamic schedulers in this section.
Concretely, we consider the following schemes:
• MDP: Our proposed dynamic scheduler from Section VI.
• Max Weight (MW): Under MW, all slots are allocated to

the link with the maximum backlog [9].
• Weighted-Fair Queuing (WFQ): Under WFQ, slots are

allocated to the links in proportion to the ratio between
their queue sizes [10].

• Backpressure (BP): Under BP, slots are allocated to the
link with maximum backpressure, where the backpressure
at the first link is equal to x1 − x2 while at the second
link it is equal to x2 [8].

In all the figures below, the value of pe is set to 0.4.
Fig. 8 shows the DVP achieved by the dynamic schedulers

for different application deadlines, backlogs, and a fixed frame
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Fig. 9. DVP achieved by dynamic schedulers for different frame sizes N ,
increasing backlogs x1, x2, w = 6, pe = 0.4.
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Fig. 10. DVP achieved by dynamic schedulers for different backlogs x1 and
deadlines w, x2 = 1, N = 4, pe = 0.4.
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Fig. 11. DVP achieved by dynamic schedulers for different backlogs x2 and
deadlines w, x1 = 1, N = 4, pe = 0.4.

configuration with N = 6. We observe that the proposed MDP-
based scheduler outperforms all the other methods. BP and
MW achieve higher DVP as they allocate all the slots to
a single link in each frame. Similar to MDP, WFQ allows
a granular allocation of slots to the links and achieves the
smallest performance gap.

Fig. 9 presents DVP achieved by different policies for
different frame lengths, backlogs, and a fixed deadline w= 6.
Again, MDP achieves lower DVP while the performances
of the other schemes are in line with the previous scenario.
Furthermore, the performance advantage of MDP, with respect
to the comparison schemes, increases with increasing frame
length. This advantage arises from the fact that the action
space of MDP is larger for large N , which results in more
accurate slot allocations.

Fig. 10 and Fig. 11 show the impact of the initial back-
logs on the DVP achieved by different policies for different
deadlines and with a fixed frame configuration N = 4. Again,
increasing x1 has a higher impact on DVP compared to x2.
Due to the allocation of all slots to a link in a frame, the
performance gap of BP and MW increases as x1 and x2

increase. WFQ, however, maintains a constant gap, being able
to adapt the allocations to different initial backlog scenarios.

C. Impact of Network State Information

A direct comparison of the proposed semi-static and dy-
namic scheduling policies allows to quantify the performance
improvement achieved by exploiting up-to-date queue states.
In the following we limit this comparison to the proposed
schemes of this paper, WTB-W and MDP, and additionally
show eDVPUB to represent the close-to-optimal performances
of semi-static policies. Therefore, the semi-static schemes
WTB-W and eDVPUB are benchmarked with the dynamic
MDP scheme. In all following figures, the value of pe is set
to 0.4.

In Fig. 12 the DVP achieved by the proposed scheduling
policies is presented for different deadlines, backlogs, and
fixed frame configuration N = 4. Most importantly, we witness
a significant performance advantage of MDP in comparison
to WTB-W and eDVPUP. This advantage increases with
increasing deadlines, reaching multiple orders of magnitudes.
This effect is intuitive as, at each frame, dynamic scheduling
benefits from up-to-date queue states. A similar effect can be
observed in Fig. 13 where the DVP performance is shown for
different frame lengths, backlogs, and a fixed deadline w= 6.
Finally, Fig. 14 and 15 show the impact of initial backlog on
the DVP for different deadlines and a fixed frame configuration
N = 6. For fixed system parameters, increasing the initial
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Fig. 12. DVP achieved by semi-static and dynamic schedulers for different
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Fig. 13. DVP achieved by semi-static and dynamic schedulers for different
frame sizes N , increasing backlogs x1, x2, w = 6, pe = 0.4.
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Fig. 14. DVP achieved by semi-static and dynamic schedulers for different
backlogs x1 and deadlines w, x2 = 1, N = 6, pe = 0.4.
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Fig. 15. DVP achieved by semi-static and dynamic schedulers for different
backlogs x2 and deadlines w, x1 = 1, N = 6, pe = 0.4.

backlogs results in an increasing DVP, which translates into
smaller performance gaps between semi-static and dynamic
scheduling schemes.

VIII. CONCLUSIONS

In this work, we investigated semi-static and dynamic
scheduling policies to support the feedback-based communi-
cation of interactive applications. In particular, we proposed
scheduling policies aimed at minimizing the end-to-end la-
tency experienced by individual messages traversing the feed-
back loop, i.e. the delay from capturing the status information
until the point in time when the corresponding feedback infor-
mation is exposed. The proposed scheduling policies allocate
time slots to the transmitters in order to minimize the delay
violation probability (DVP) taking the network queue states
into account. On the one hand, semi-static policies compute
schedules based on the initial queue states by efficiently
minimizing the WTB, which is derived applying the union
and Chernoff bounds. On the other hand, dynamic policies
solve a throughput-optimal MDP, which allocates time slots
depending on the queue’s backlog evolution. Via simulations
of several main system parameters and comparison baselines,
we demonstrate the effectiveness of the proposed methods

in reducing DVP. The results show that the proposed WTB-
W semi-static scheduling policy achieves up to one order of
magnitude improvement compared to a queue-agnostic scheme
and close-to-optimal DVP. Furthermore, simulations prove the
superiority of the proposed MDP dynamic scheduler in reduc-
ing DVP compared to the existing Backpressure, Max Weight,
and Weighted-Fair Queuing algorithms. Finally, we quantified
the performance improvement achieved by exploiting up-to-
date queue states with a direct comparison of the proposed
semi-static and dynamic scheduling policies. MDP achieves a
significant performance advantage in comparison to WTB-W
reaching multiple orders of magnitude.

The contributions of this paper leave space for interesting
future work. The proposed scheduling policies can be inves-
tigated for more complex systems, for instance taking into
account flow transformation within the feedback loop, asym-
metric transmitter PERs, and non-stationary link qualities. Fur-
thermore, the problem can be extended considering multiple
feedback loops sharing the same network, thus minimizing
the DVP of packets from multiple applications. Finally, an
interesting next step is to investigate the application of the
proposed scheduling policies in the existing wireless systems,
such as NCS operating in IWSN or in 5G cellular networks.
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APPENDIX

A. Proof of Proposition 1

Combining (10) and (11), the DVP can be calculated as

DVP(w, y, x1, x2) =

= P{D(w) < y + x1 + x2}

= P
{

min
0≤u≤w

[
S2(w − u) +A2(u) < y + x1 + x2

]}
= P

{
min

0≤u≤w

[
S2(w − u) +D1(u− 1) + x2

]
< y + x1 + x2

}
= P

{{
S2(w)<y + x1 + x2

}
∪
{
S2(w − 1)<y + x1

}
∪

w⋃
u=2

{
min

0≤v≤u−1
[S2(w − u) + S1(u− 1− v)+

A(v) < y + x1]
}}

= P
{{
S2(w)<y + x1 + x2

}
∪
{
S2(w − 1)<y + x1

}
∪

w⋃
u=2

{
S2(w − u) + S1(u− 1) < y + x1

}}
.

B. Proof of Theorem 1

To simplify the analysis of Eq. (17), we use α = (1 −
pe)e

−s + pe and β = ka + x1 − 1

WTB(n2) = min
s>0

α
∑w

i=0 n
i

es (β+x2)+

1+w∑
u=1

α(u−1)N−∑u−2
j=0 n

j+
∑w−u

k=0 nk

es β

= min
s>0

es β

[
α
∑w

i=0 n
i

esx2+

1+w∑
u=1

α(u−1)N−∑u−2
j=0 n

j+
∑w−u

k=0 nk

]
. (28)

Applying the definition of convexity to Eq. (28), ∀n,m ∈
N1×w, λ ∈ [0, 1] we obtain Eq. (29). From Eq. (29), (1) we
have applied the definition of convexity to the exponentials
αf(λn1+(1−λ)n2) knowing that they are convex and (2) we
have used the fact that the minimum of the sum is smaller or
equal of the sum of the minima.
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WTB (λn + (1− λ)m)

= min
s>0

es β

[
α
∑w

i=0 λn
1
i +(1−λ)n2

i esx2 +

1+w∑
u=1

α(u−1)N−∑u−2
j=0 λn

1
j+(1−λ)n2

j+
∑w−u

k=0 λn1
k+(1−λ)n2

k

]
(1)
≤ min

s>0
es β
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esx2

(
λα

∑w
i=0 n

1
i + (1− λ)α

∑w
i=0 n

2
i

)
+
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u=1

α(u−1)N
(
λα−

∑u−2
j=0 n

1
j + (1− λ)α−

∑u−2
j=0 n

2
j + λα

∑w−u
k=0 n1

k + (1− λ)α
∑w−u

k=0 n2
k

)]

= min
s>0

es β

[
λ

(
α
∑w

i=0 n
1
i esx2 +

1+w∑
u=1

α(u−1)Nα−
∑u−2

j=0 n
1
jα−

∑u−2
j=0 n

1
j

)
+

(1− λ)

(
α
∑w

i=0 n
2
i esx2 +
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α(u−1)Nα−
∑u−2

j=0 n
2
jα−
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2
j
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