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Abstract

This work proposes a tractable estimation of the maximum a posteriori (MAP) threshold of various

families of sparse-graph code ensembles, by using an approximation for the extended belief propagation

generalized extrinsic information transfer (EBP-GEXIT) function, first proposed by Méasson et al. We

consider the transmission over non-binary complex-input additive white Gaussian noise channel and

extend the existing results to obtain an expression for the GEXIT function. We estimate the MAP

threshold by applying the Maxwell construction to the obtained approximate EBP-GEXIT charts for

various families of low-density parity-check (LDPC), generalized LDPC, doubly generalized LDPC,

and serially concatenated turbo codes (SC-TC). When codewords of SC-TC are modulated using Gray

mapping, we also explore where the spatially-coupled belief propagation (BP) threshold is located with

respect to the previously computed MAP threshold. Numerical results indicate that the BP threshold of

the spatially-coupled SC-TC does saturate to the MAP threshold obtained via EBP-GEXIT chart.

Index Terms

EBP-GEXIT charts, Maxwell construction, MAP threshold, Spatially-coupled codes, Threshold

saturation, Generalized and doubly-generalized LDPC codes, Serially concatenated turbo codes

March 11, 2021 DRAFT

ar
X

iv
:2

10
3.

05
95

3v
1 

 [
cs

.I
T

] 
 1

0 
M

ar
 2

02
1



2

I. INTRODUCTION

For an arbitrary channel code ensemble, there are three fundamental limits on the channel pa-

rameter above which reliable communication is not possible; capacity threshold, MAP threshold,

and BP threshold. Capacity threshold corresponds to the limit imposed by the channel, MAP

threshold provides the limit for the given specific channel code ensemble1, and BP threshold

corresponds to the limit that can be achieved in practice via BP decoding. While finding the

capacity and BP thresholds are possible for a various channels and code ensembles, finding the

MAP threshold, in general, is known to be difficult [1]–[3].

It is known that, multiple copies of a given code ensemble can be appropriately spatially

coupled such that the BP threshold of the spatially-coupled code approaches the MAP threshold

of the uncoupled ensemble and this phenomenon is termed as threshold saturation [4]. Threshold

saturation of various families of channel codes has been studied in the literature [4]–[10]. While

threshold saturation phenomenon has been proved analytically for the binary erasure channel

(BEC), it is conjectured for numerically involved codes such as generalized LDPC (GLDPC)

and serially concatenated turbo codes (SC-TC) over the additive white Gaussian noise (AWGN)

channel. Since the MAP threshold is the fundamental limit that one can hope to approach via

spatial coupling, it is desirable to find the MAP threshold of the uncoupled code ensemble.

Méasson et al. have proposed an analytical method to estimate the MAP threshold of LDPC

and parallel turbo codes over any binary memoryless symmetric (BMS) channel. In this method,

the MAP threshold is obtained by applying the Maxwell construction to the EBP-GEXIT chart

of the given code ensemble (details can be found in [1, Sec. 3.20], [3]). For the BEC, when the

closed form expression for the density evolution (DE) equation is known, the EBP-GEXIT chart

can be obtained analytically [3]. While finding this EBP-GEXIT chart is possible for the BEC,

obtaining it for general BMS may become computationally prohibitive for numerically involved

1For example LDPC code ensemble defined by a specific degree distribution for variable and check nodes.
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codes such as GLDPC and doubly generalized LDPC (DGLDPC) codes. In [11] and [12], authors

have proposed a method to find an approximate EBP-GEXIT chart for LDPC/GLDPC/DGLDPC

codes and SC-TC respectively. The existing works, either for obtaining the exact or approximate

EBP-GEXIT charts, consider the situation when the underlying channel is BMS. Obtaining the

EBP-GEXIT charts for a complex-input non-binary channel is also desirable.

In this paper, we study the problem of finding an approximate EBP-GEXIT chart for ensem-

bles of LDPC/GLDPC/DGLDPC codes and SC-TC, when the transmission is over non-binary

complex-input AWGN channel and the codewords are modulated by an arbitrary modulation

scheme. We first consider the situation when the constellation of modulated symbols is mapped

according the Gray mapping. In this case, we consider the equivalent bit-interleaved coded-

modulation (BICM) channel [13], which is a BMS channel and provide a method to find an

approximate EBP-GEXIT chart. For the situation of an arbitrary mapping where the channel

inputs could be complex alphabets, we extend the existing results to obtain an expression for

the GEXIT function for complex AWGN channel and then provide a numerical approximation

method to find the EBP-GEXIT chart. For all the cases, we estimate the MAP thresholds for

various codes by applying the Maxwell construction to these approximate EBP-GEXIT charts.

When codewords of SC-TC are mapped according to Gray mapping, we also explore where the

spatially-coupled BP threshold is located with respect to the previously estimated MAP threshold

by using the formalism provided in [9]. We observe that the BP threshold of the spatially-coupled

SC-TC does saturate to the MAP threshold obtained via our approximate EBP-GEXIT chart.

Organization: In Section II, we discuss the system model and summarize some preliminaries

about the EBP-GEXIT charts. The proposed numerical method for tractable computation of an

approximate EBP-GEXIT chart for Gray and non-Gray mapping is discussed in Section III and

Section IV respectively. Spatial coupling of SC-TC is discussed in Section V. In Section VI, we

provide numerical results for several LDPC/GLDPC/DGLDPC and serially concatenated turbo

codes and finally conclude in Section VII.
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Fig. 1: Block diagram of a digital communication system considered in this paper.

II. SYSTEM MODEL AND PRELIMINARIES

A. System model

LDPC(λ, ρ) denotes LDPC code ensemble, where λ(x) =
∑

i λix
i−1 and ρ(x) =

∑
j ρjx

j−1

denote the edge perspective degree distributions for variable nodes (VNs) and check nodes (CNs)

respectively [1]. Let Λ(x) and P (x) be the corresponding node perspective degree distribution

pairs for VNs and CNs respectively. While for LDPC codes, every CN correspond to the single

parity check code and every VN correspond to the repetition code, for GLDPC codes some of

the CNs correspond to an arbitrary linear code and for DGLDPC codes both VNs and CNs

correspond to a general linear code [14]. We assume that all VNs are unpunctured and have

degrees strictly greater than one. For SC-TC, we denote the outer and inner convolutional codes

by O and I respectively and the corresponding SC-TC code ensemble is denoted by S(O, I).

We consider the digital communication system illustrated in Fig. 1. The binary channel code

used at the transmitter is either a LDPC code or SC-TC. A sequence of message bits b is encoded

to get a codeword sequence c = [c1 c2 . . . cn] of length n. The encoded bits are then interleaved

to get an interleaved sequence of codebits c′ = [c′1 c
′
2 . . . c′n]. For a 2m-ary modulation scheme,

coded bit sequence c′ is first divided into N = n/m vectors each of length m and denoted by

c′ = [c′(1) c′(2) . . . c′(N)], where c′(t) = [c′(t−1)m+1 c
′
(t−1)m+2 . . . c′tm] for t = 1, 2, . . . , N .

Let us denote the entries in c′(t) as c′(t) = [c′t,1 c
′
t,2 . . . c′t,m]. Modulated symbols are denoted

by x = [x1 x2 . . . xN ], where each xt is a complex modulated symbol corresponding to c′(t).

Let X = {ξ1, ξ2, . . . , ξ|X|} denotes the set of complex constellation symbols. The constellation
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of modulated symbols can be labeled according to any arbitrary mapping rule.

The noise is introduced by the AWGN channel with noise variance σ2. The noise affected

version yt of the t-th transmitted symbol xt is given by yt = xt + nt, where each noise sample

nt is chosen independently and identically distributed (i.i.d.) according to the complex normal

distribution CN(0, σ2), for t = 1, 2, . . . , N . In this work, it is convenient to parameterize the

channel using its entropy, denoted by h = H(X), (h ∈ [0, |X|]) [13]. The family of AWGN

channels parameterized by entropy h is denoted by {AWGN(h)}h and as in [1], [2], we assume

that {AWGN(h)}h is ordered by physical degradation and it is smooth with respect to h.

At the receiver, the detector computes the sequence L′ of log-likelihood ratios (LLR) of the

interleaved bit sequence c′ and i-th entry in L′ is given by L′i := log
P[c′i=0|y]

P[c′i=1|y]
, for i = 1, 2, . . . , n.

The deinterleaved LLR sequence L is then given to the corresponding channel decoder. Note

that in practice, iterative schemes are considered within the channel decoder (in the case of

LDPC or SC-TC) or between the detector and the decoder (in the case of Bit interleaved coded

modulation (BICM)). To keep the system model general, we shall discuss the details about the

iterative strategies in the corresponding sections.

For BMS channels, the input alphabet set is given by X = {+1,−1} and in this case, the

distribution of L under the condition X = +1 is referred to as L-density, denoted by cBMS(h) [2,

Sec. II]. For the binary-input AWGN (BAWGN) channel, the L-density is given by cBAWGN(h) =

N(2/σ2, 4/σ2) [1, Ex. 4.21] and its entropy H(cBAWGN(h)) is given by [2, Sec. II],

H(cBAWGN(h)) = EL
[

log2(1 + e−L)
]

:= 1− J(2/σ), (1)

where EL[.] denotes the expectation with respect to the random variable L and the function

J(.) is defined in [15]. Note that J(.) a function of the standard deviation 2/σ of the L-density

cBAWGN(h). Channel with non-binary inputs is known to be asymmetric and L-density cannot

be defined in this case [16]. The entropy of non-binary complex input channel is given by [17]

h = H(X)−
∫
y

∑
x∈X

p(x)p(y|x) log2

{
p(y|x)

p(y)

}
dy. (2)
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B. EBP-GEXIT charts of LDPC codes over BAWGN channel [2]

Let us first recall DE equations for the BP decoding of LDPC codes. The DE equations for

LDPC(λ, ρ) code ensemble are given by [1, Sec. 4.1.4]

aBP,l = cBAWGN(h) ? λ(ρ(aBP,l−1)), (3)

where aBP,l be the density of a randomly chosen VN to CN message in the l-th iteration of

BP decoding and ? is the convolution operator. For defining the EBP-GEXIT chart, we need to

consider a complete fixed-point (FP) family [2, Sec. VII-A]. The family of densities {ax}x and

{cx}x parameterized by x ∈ [0, 1] is called a complete FP family if (i) cx ∈ {BAWGN(h)}h for

some h ∈ [0, 1], (ii) for any x ∈ [0, 1], ax = cx ? λ(ρ(ax)) (ax is a FP density with respect to

cx), (iii) H(ax) = x, and (iv) {ax}x and {cx}x are smooth with respect to x. The EBP-GEXIT

function, denoted by gEBP (x), for LDPC(λ, ρ) code ensemble is then defined as

gEBP (x) :=

∫ ∞
−∞

Λ(ρ(ax))(z)lcx(z)dz, (4)

where lcx(z) is called the GEXIT kernel [1, Ch.4]. For the BAWGN channel with L-density

cBAWGN(h) = N(2/σ2, 2/σ2), an expression for lcBAWGN(h)(z) is given by [2, Example 7]

lcBAWGN(h)(z) =

∫ ∞
−∞

e
− (w−(2/σ2))2

8/σ2

1 + ew+z
dw

/∫ ∞
−∞

e
− (w−(2/σ2))2

8/σ2

1 + ew
dw

 . (5)

The EBP-GEXIT chart is the curve obtained by plotting gEBP (x) versus cx ∀x ∈ [0, 1].

III. EBP-GEXIT CHART OVER THE AWGN CHANNEL WITH GRAY MAPPING

In this section, we consider the situation when modulated symbols are mapped according to

the Gray mapping and study the situation of any arbitrary mapping in the next section.

A. Equivalent bit-channels for Gray mapping

In the presence of an interleaver between the channel coded bits and the modulator, in

Fig. 1 one can consider an equivalent channel, termed as the BICM channel, formed by the
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interleaver, modulator, AWGN channel, detector, and deinterleaver [13], [18]. For obtaining the

EBP-GEXIT chart, we parameterize this BICM channel by its entropy h, denoted as BICM(h).

An ideal interleaver implies that the set of random variables corresponding to {L1, L2, . . . , Ln}

are independent and hence this BICM channel can be equivalently seen as a set of n parallel

independent BMS [19]. For some modulation schemes, the exact distribution of each Li is

known. For example, for BPSK modulation with Gray mapping, each Li is i.i.d. according to

N(2/σ2, 4/σ2). However for an arbitrary modulation scheme, the distribution of LLRs need not

be Gaussian or identical. Further, finding this distribution may become difficult and hence in the

literature good approximations for its distribution are suggested2.

Typically for the Gray mapping, the density of a randomly chosen Li can be well approximated

by a mixture of consistent Gaussian densities. For an integer M suppose cBICM(h) is given by

cBICM(h) =
M∑
j=1

djN(lj, 2lj), (6)

where lj is the mean of the j-th constituent consistent Gaussian density and d1, d2, . . . , dM are

real numbers such that d1 + d2 + . . .+ dn = 1. The entropy of the BICM channel will be

H(cBICM(h)) =
M∑
j=1

dj

[
1− J(

√
2lj)
]
. (7)

While for BPSK modulation we have M = 1, d1 = 1, and l1 = 2/σ2, for other modulation

schemes, lj and dj in Eq. (6) are obtained as per the approximations suggested in [23]. Note

that for non-Gray mapping, finding the exact or approximate distribution of Li becomes difficult.

B. EBP-GEXIT chart for GLDPC/DGLDPC codes over the BICM channel

We first extend the EBP-GEXIT chart proposed for LDPC codes over BAWGN channel to

GLDPC and DGLDPC over BICM channel. Let fC(.) and fV (.) be the functions corresponding

2For example, Fàbregas et al. have suggested a Gaussian approximation for the Gray labeling [20]. For PSK and rectangular

QAM, Szczeciński et al. have suggested approximation as a mixture of Gaussian functions in [21] and [22] respectively.
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to the processing done by a randomly chosen CN and VN respectively while performing the BP

decoding. Then similar to Eq. (3), the DE equation for BICM(h) is given by aBP,l = cBICM(h) ?

fV (fC(aBP,l−1)), where aBP,l is the density of the message passed by a randomly chosen VN

to CN. Note that for an irregular LDPC code, fC(.) = ρ(.) and fV = λ(.) [1, Thm. 4.97] and

for GLDPC and DGLDPC codes, fC(.) and fV (.) needs to be obtained numerically [24], [25].

To find a FP density pair (see Section II-B) corresponding to the given BICM channel with

the L-density cBICM(h), we need to find all possible densities a that satisfy

a = cBICM(h) ? fV (fC(a))). (8)

For the given fixed-density pair (a, cBICM(h)), the EBP-GEXIT function is given by

gEBP (h) :=

∫ ∞
−∞

Λ(fC(a))(z)lcBICM(h)(z)dz, (9)

where lBICM(h)(z) is the GEXIT kernel for BICM(h). From Eq. (6), lBICM(h)(z) can be expressed

in terms of the GEXIT kernel of binary input AWGN channel as follows

lcBICM(h)(z) =
M∑
j=1

ajl
cBAWGN(hj)(z), (10)

where hj = 1− J(
√

2lj) and lcBAWGN(hj)(z) is defined in Eq. (5).

C. Numerical computation of EBP-GEXIT chart for GLDPC/DGLDPC codes

In order to compute the EBP-GEXIT chart in a tractable manner, key steps are to to compute

Eq. (8) and Eq. (9) in a computationally tractable manner, which are explained next.

1) Numerical computation of FP density in Eq. (8): We assume that the density a in Eq. (8)

is consistent normal, i.e., for some real number ma, the density a is N(ma, 2ma). This consistent

Gaussian assumption proposed by Chung et al. [26] is also used for classical EXIT charts analysis

[15]. Using the consistent Gaussian assumption for a is the key idea that simplifies the operations

required towards finding the EBP-GEXIT curve. We next explain how FP density in Eq. (8) can

be efficiently approximated using a classical EXIT-like mono-dimensional FP equation.
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Similar to the EXIT-chart analysis, we consider the mutual information (MI) IEv between

the LLRs and their corresponding VNs bits. It is given by IEv = J(
√

2ma) where 2ma is the

variance of the density a and J(.) is defined in Eq. (1). Note that J(.) is a one-to-one function

and this implies that the density a can be uniquely determined from it. Similarly, let IEc be the

MI corresponding to the density fC(a) of the CN to VN message and suppose IEc = ΓC(IEv).

Note that in notation ΓC(.), we have used the alphabet Γ to indicate the transfer function and

the subscript C is used for the CN processing. The MI corresponding to the VN to CN message

is a function of h and IEc , denoted by ΓV (IEc , h). Using this EXIT based mono-dimensional

representation, the FP density equations Eq. (8) can be equivalently stated as follows

IEv = ΓV
(

ΓC
(
IEv
)
, h
)
. (11)

For the given BICM channel with entropy h, the FP density pairs now consists of all those

consistent normal densities a such that the corresponding IEv = J(
√

2ma) satisfy Eq. (11).

Observe that the FP density in Eq. (8) is now represented by a FP equation Eq. (11) since

both IEv and h are scalars. All possible pairs a and cBICM(h) that satisfy Eq. (8) can be found

efficiently via a grid search by varying IEv and h in the range [0, 1]3. This simplifies the process

of finding the FP density pairs in Eq. (8).

For the irregular LDPC codes, the operations ΓC(.) and ΓV (., .) can be simplified as follows

ΓC(IEv) =
∑
j

ρj

(
1− J

[√
(j − 1)[J−1(1− IEv)]2

])
ΓV (IEc , h) =

∑
i

λi
M∑
j=1

djJ

[√
(i− 1)

[
J−1(IEc)

]2
+ 2lj

]
,

(12)

where IEc = ΓC(IEv) and 2lj is the variance of the j-th constituent density in the mixture

cBICM(h). For GLDPC and DGLDPC codes, ΓC(.) and ΓV (., .) are evaluated point-wise by

means of Monte Carlo simulations and stored before computation of Eq. (11) [24], [25].

3One can also use any other efficient methods to find the fixed-points.
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2) Numerical computation of the EBP-GEXIT function : For the given BICM(h), let Sh be the

set of all possible IEv ∈ [0, 1] that satisfy Eq. (11). Recall that corresponding to each IEv there

is a density a = N(ma, 2ma) with IEv = J(
√

2ma). Each a corresponding to IEv ∈ Sh provides

a point on the EBP-GEXIT curve that is computed using Eq. (9). and Eq. (10). We now provide

tractable computation of these equations. We first explain calculations towards Λ(fC(a)) under

our Gaussian assumption. For any IEv ∈ Sh, suppose IEc = ΓC
(
IEv
)

and mb = [J−1(IEc)]
2/2.

This implies that the density fC(a) of a randomly chosen message from CNs is consistent

Gaussian with mean mb, i.e., fC(a) = N(mb, 2mb). For a VN of degree j, the density obtained

by taking the convolution of the input density j times is also a consistent Gaussian density of

mean jmb. Let us denote this density by bj = N(jmb, 2jmb). The density Λ(fC(a)) is thus the

mixture of densities bj given by Λ(b)(fC(a)) =
∑

j Λjbj(z). Substituting this in Eq. (9) we get,

gEBP (h) =

∫ ∞
−∞

[∑
j

Λjbj(z)
]
lcBICM(h)(z)dz =

∑
j

ΛjEbj
[
lcBICM(h)(z)

]
, (13)

where Ebj [.] is now expectation over the Gaussian density bj . The expectation Ebj [lcBICM(h)(z)]

can be computed efficiently using the Gauss-Hermit quadrature weights as follows [27]:

• Let Hd be the Hermite polynomial of degree d with roots k1, k2, . . . , kd, for some d ∈ Z.

• Let zi =
√

4jmbki + jmb. Then an approximate value of Ebj
[
l(cBICM(h)(z))

]
is given by

Ebj
[
l(cBICM(h)(z))

]
≈ 1√

π

d∑
i=1

2d−1d!
√
π

d2[Hd−1(ki)]2
lcBICM(h)(zi), (14)

where lcBICM(h)(zi) is defined in Eq. (10) and can either be computed using numerical

integration or using the approximation suggested in Appendix C.

To summarize, the consistent Gaussian assumption enables the computation of the complete

FP family (via grid search) and the evaluation of the EBP-GEXIT function (via Gauss-Hermit

quadrature weights) computationally feasible. Detailed steps are provided in Algorithm 1.

Remark 1. On contrary to the definition of complete FP family (see Section II-B), a and cBICM(h)

pairs obtained using Algorithm 1 are not parameterized by some x ∈ [0, 1], since we find these
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Algorithm 1 EBP-GEXIT chart for LDPC/GLDPC/DGLDPC codes
(1) Choose h ∈ [0, 1] and let cBICM(h) be the L-density corresponding to BICM(h).

(2) Find Sh :=
{
IEv : s.t. IEv satisfies Eq. (11)

}
, via grid search of IEv in the range [0, 1].

(3) Compute gEBP (h) using Eq. (13) for the set of densities a corresponding to each IEv ∈ Sh.

(4) Plot all possible values gEBP (h) obtained in step (3) versus the chosen h.

(5) Repeat the process for various values of h ∈ [0, 1].

I−1 π−1 O−1

π

cBICM(h)
Le(I)

b`

La(O)

b`

Le(O)La(I)

a`−1

Fig. 2: Block diagram of an iterative decoder of a serially concatenated system

pairs exhaustively. However it can be easily verified that H(a) = x for some x ∈ [0, 1] and the

set of a and cBICM(h) obtained do form a complete FP family. �

D. EBP-GEXIT chart for serially concatenated codes over the BICM channel

We first derive an expression for the EBP-GEXIT chart for SC-TC that is inspired from [28].

The block diagram of a classical turbo decoder [19] of a SC-TC system is shown in Fig. 2.

Observations from the BICM channel with L-density cBICM(h) are given to the inner decoder

I−1 as an a priori LLRs, denoted by La(I). The inner decoder performs the BCJR algorithm

[1] and provides the extrinsic LLRs Le(I) of the inner-decoded bits. After interleaving, these

constitute the a priori LLRs La(O) of the outer-coded bits of the decoder O−1. The outer decoder

also runs the BCJR algorithm and provides the extrinsic LLRs Le(O) of the outer-coded bits.

To find the EBP-GEXIT chart, we need to first consider the DE equations for SC-TC (see [1,

Problem 6.7]). Let b` and a` denote the densities of Le(I) (or La(O)) and Le(O) (or La(I)) in

the `-th iteration of BP decoding. Note that b` is a function of the L-density cBICM(h) from

March 11, 2021 DRAFT
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the demodulator and the density a`−1 of a priori LLRs available from the outer code in the

`− 1-th iteration. Let b` = fI(cBICM(h), a`−1), where fI(., .) denote the density transfer function

corresponding to the processing done by I. Similarly, let fO(.) denote the density transfer function

corresponding to O, i.e., a` = fO(b`). The DE equation for SC-TC described in Fig. 2 will be

a` = fO

(
fI(cBICM(h), a`−1)

)
4. For the given h, density a is called as a FP density if

a = fO

(
fI(cBICM(h), a)

)
. (15)

Analogous to parallel concatenation [28], given a FP density pair cBICM(h) and a, the EBP-

GEXIT function gBP (h) for S(O, I) is given by

gEBP (h) :=

∫ ∞
−∞

fI(cBICM(h), a)(z)lBICM(h)(z)dz, (16)

where recall that lBICM(h)(z) is the GEXIT kernel for BICM(h) (see Eq. (10)).

It is known that the density transfer functions fI(., .) and fO(.) of Eq. (15) are required to

be computed numerically [1, Sec. 6.5] and this may make finding the FP density pairs of and

computation of gEBP (h) computationally complex. To simplify these calculations, we propose to

use the EXIT function [29] corresponding to the processing done by the inner and outer codes.

Let IAI
, IEI

, IAO
, and IEO

be the MI between the LLRs La(I), Le(I), La(O), and Le(O) and the

corresponding bits respectively. Suppose ΓI(., .) and ΓO(.) to denote the MI EXIT function for

I and O respectively, with IEI
= ΓI(h, IAI

) and IEO
= ΓO(IAO

). Using this, the FP equation

corresponding to Eq. (15) will be IAI
= ΓO

(
ΓI
(
h, IAI

))
. Similar to the previous section, FP

density of Eq. (15) can be obtained by finding the fixed-points of IAI
= ΓO

(
ΓI
(
h, IAI

))
. since

IAI
∈ [0, 1] and h ∈ [0, 1]. To find the EBP-GEXIT function corresponding to h and IAI

, we

project IAI
on N(ma, 2ma) with ma = J−1(IAI

)2/2 and the integration in Eq. (16) can be

computed efficiently using Gauss-Hermit quadrature weights [27].

4While DE equation of [1, Prob. 6.7] considers separate density transfer functions for systematic and parity bits, we consider

the combined transfer function ΓO(.) corresponding to the LLRs of the complete codeword (i.e. both systematic and parity bits).
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IV. EBP-GEXIT CHART OVER THE AWGN CHANNEL WITH NON-GRAY MAPPING

In this section, we consider the case when modulated symbols are mapped according to any

non-Gray mapping. Note that for any non-Gray mapping, the EXIT chart of the detector is not

flat and hence the decoding of the system illustrated in Fig. 1 becomes doubly iterative [30]. This

implies that for LDPC codes one needs to iterate between VNs and CNs but also between the

detector and the decoder (similarly for SC-TC). Hence for the computation of the EBP-GEXIT

chart we need to consider the complex input AWGN channel. We first extend the existing results

to obtain an expression for the GEXIT function for non-binary complex input AWGN channel

and then provide a method for its tractable computation.

A. GEXIT function for non-binary complex-input AWGN channel

We make use of the definition of the GEXIT function defined in [2] and follow the approach

proposed in [17, Sec. III] to derive an expression for the GEXIT function for non-binary complex-

input AWGN channel. We first introduce some notation that we shall need in this section.

Corresponding to the t-th transmitted symbol xt ∈ X, define a vector φt of length |X| as follows

φt :=
[
P(Xt = ξ1|y∼t) P(Xt = ξ2|y∼t) . . . P(Xt = ξ|X||y∼t)

]
(17)

where y∼t = [y1 . . . yt−1 yt+1 . . . yN ] and t = 1, 2, . . . , N . Observe that φt corresponds to

the likelihood of Xt given all received symbols except the t-th symbol. In the presence of

an ideal interleaver between the channel code and the modulator (see Fig. 1), X1, X2, . . . , XN

can be assumed to be independent and hence P(Xt = ξj|y∼t) will not depend on y∼t for any

1 ≤ j ≤ |X|. This implies that P(Xt = ξj|y∼t) will be a function of the a priori knowledge

available about Xt. We obtain a general expression for the GEXIT function and make use of

this independent assumption for its numerical computation. Let Φt denotes the random vector

corresponding to φt. Let ft,ξ be the distribution of vector Φt under the condition Xt = ξ, i.e.,

ft,ξ(φt) := P
[
Φt = φt|Xt = ξ

]
, where ξ ∈ X. Let φt,[ξ] denotes the entry in vector φt that
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corresponds to likelihood of the symbol ξ ∈ X, i.e., φt,[ξ] := P(Xt = ξ|y∼t). The notation [ξ] in

φt,[ξ] denotes the index of the entry in the vector φt associated with ξ ∈ X. We now derive an

expression for |X|-ary complex-input memoryless AWGN channel.

Theorem 1. Consider φt, ft,ξ(φ), and φt,[ξ] as defined above (see Eq. (17)). Then the GEXIT

function g(h) for |X|-ary complex-input memoryless AWGN channel with entropy h is given by

g(h) = 1
N

∑N
t=1

At(h)
Bt(h)

, where At(h) and Bt(h) are given by

At(h) =
∑
ξ∈X

∫
φt

ft,ξ(φt)

∫
yt

e−
|yt−ξ|

2

2σ2

2πσ2

[
|yt − ξ|2 − 2σ2

]
log2

{ ∑
ξ′∈X

φt,[ξ′]
φt,[ξ]

exp

[
|yt − ξ|2 − |yt − ξ′|2

2σ2

]}
dytdφ

Bt(h) =
∑
ξ∈X

∫
yt

e−
|yt−ξ|

2

2σ2

2πσ2

[
|yt − ξ|2 − 2σ2

]
log2

{ ∑
ξ′∈X

exp

[
|yt − ξ|2 − |yt − ξ′|2

2σ2

]}
dyt.

The proof is given in Appendix A. The fraction gt(h) := At(h)/Bt(h) in Theorem 1 is

termed as the t-th GEXIT function [17]. We next find the EBP-GEXIT function. Similar to

Eq. (17), consider ΦBP,l
t corresponding to the likelihood of Xt given y∼t in the l-th round of

BP decoding and let fBP,lt,ξ be the density of ΦBP,l
t under the condition Xt = ξ. The BP-GEXIT

function gBP,l(h) in the l-th round of BP-decoding is obtained by substituting ft,ξ = fBP,lt,ξ in

Theorem 1 and the BP-GEXIT function is defined as gBP (h) := liml→∞ g
BP,l(h) [2]. The EBP-

GEXIT function is obtained by computing gBP (h) for each FP density pair. To apply Maxwell

construction, we next provide the area theorem for |X|-ary complex-input AWGN channel.

Theorem 2. Consider a family of channel codes of rate k/n and transmission using the digital

communication system of Fig. 1 over {AWGN(h)}h using 2m-ary modulation scheme. Then

1

m

∫ m

0

g(h)dh =
k

n
.

The proof is given in Appendix B. Having obtained an expression for the GEXIT function,

we next consider a tractable computation of the EBP-GEXIT chart.
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Detector
AWGN(h)

VNs

IEv

a(l)

IEc

b(l)

IEd

d(l)

IAd

c(l)

CNs

Fig. 3: Considered decoding scheduling for the LDPC-coded serially concatenated scheme

B. Numerical computation of the complete FP family

We now find the complete FP family for LDPC codes. Towards this, we need to consider the

DE equations of the system illustrated in Fig. 3. In one iteration of decoding, first a message is

passed from the detector to VNs. This message is a function of the channel parameter h and the

incoming message from VNs in the previous iteration. VNs then pass messages to CNs, which

are then passed back to VNs after CN processing. Finally, an average message from the VNs is

sent back to the detector. Let a(l), b(l), c(l), and d(l) be the density of a randomly chosen message

from VNs-to-CNs, CNs-to-VNs, VNs-to-detector, and detector-to-VNs in the `th iteration (note

that this scheduling is in spirit equivalent to the combined VN and detector approach proposed

in [31, Fig. 5]). The DE equations are then given by

a(`) = d(`−1) ? fV (b(`−1)), b(`) = fC(a(`))

c(`) = f ′V (b(`)), d(`) = fD(c(`), h),

(18)

where the function fD(., .) depends on the underlying detector, f ′V (.) correspond to the VN-

to-detector processing and recall that fV (.) and fC(.) correspond to VN and CN processing

respectively. Note that the function fD(., .) depends on the channel parameter h. In (18) when

a(`) = a(`−1) then such a density will be a fixed point density (see Section II-B), i.e., for the

given h the density a is called as fixed point density if it satisfies the following equation

a = fD

(
f ′V
(
fC(a)

)
, h
)
? fV

(
fC(a)

)
. (19)

Similar to Section III-C1, we project the densities in (18) on their respective MIs. Let

IEv , IEc , IAd , and IEd be the MIs corresponding to a(l), b(l), c(l), and d(l) respectively. Similarly
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consider the respective MI transfer functions denoted by ΓV (.),ΓC(.),Γ′V (.), and ΓD(.). Using

this the DE equations in (18) can be represented as

I
(`)
Ev

= ΓV
(
I

(`−1)
Ec

, I
(`−1)
Ed

)
, I

(`)
Ec

= ΓC(I
(`)
Ev

)

I
(`)
Ad

= Γ′V (I
(`)
Ec

), I
(`)
Ed

= ΓD(I
(`)
Ad
, h),

(20)

From Eq. (20), the FP density in Eq. (19) can be expressed as

IEv = ΓV
(

ΓC(IEv),Γ
D
(

Γ′V (ΓC(IEv)), h
))

. (21)

Similar to Section III-C1, all possible pairs a and h that satisfy FP density in Eq. (19) can

be found efficiently from Eq. (21) via grid search by varying IEv and h in the ranges [0, 1] and

[0, H(X)] respectively (recall that H(X) is the entropy of the input alphabet set X to the AWGN

channel). For SC-TC, DE equations similar to Eq. (18) and Eq. (20) can be written and the FP

family can be obtained in a similar manner. We skip these details.

C. Numerical computation of the EBP-GEXIT function

We now provide a method for numerical computation of the GEXIT function derived in

Theorem 1. In this theorem, as the expression for At(h) and Bt(h) is the same for t = 1, 2, . . . , N ,

we get A1(h) = . . . = AN(h) = A(h) and B1(h) = . . . = BN(h) = B(h) and hence

g(h) =
1

N

N∑
t=1

At(h)

Bt(h)
=
A(h)

B(h)
. (22)

For the sake of convenience, we shall now drop the suffix t from the expression of At(h) and

Bt(h). We remove the suffix t from the terms ft,ξ(φt), Φt, and Yt as well. Let us denote the

term inside the integration with respect to y in the expression of A(h) by R1(y, φ, ξ, σ), i.e.,

R1(y, φ, ξ, σ) :=
[
|y − ξ|2 − 2σ2

]
log2

{ ∑
ξ′∈X

φ[ξ′]

φ[ξ]

exp

[
|y − ξ|2 − |y − ξ′|2

2σ2

]}
. (23)

Using this A(h) can be written as

A(h) =
∑
ξ∈X

∫
φ

fξ(φ)

∫
y

e−
|y−ξ|2

2σ2

2πσ2
R1(y, φ, ξ, σ)dydφ,

(a)
=
∑
ξ∈X

∫
φ

fξ(φ)

(
EY |X=ξ

[
R1(Y, φ, ξ, σ)

])
dφ

(b)
=
∑
ξ∈X

EΦ|X=ξ

[
R2(Φ, ξ, σ)

]
, (24)
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where R2(Φ, ξ, σ) := EY |X=ξ

[
R1(Y, φ, ξ, σ)

]
. The equality in (a) is obtained since the integration

with respect to y is equal to the expectation of R1(y, φ, ξ, σ) with respect to the random variable

Y under the condition X = ξ. The equality in (b) is obtained since the integration with respect

to φ is equal to the expectation of R2(φ, ξ, σ) with respect to the random vector Φ under the

condition X = ξ. For computing A(h), the key step now is to compute R2(φ, ξ, σ) and its

expectation with respect to random variable Φ|X = ξ. These computations are described next.

• Computing R2(φ, ξ, σ) defined in Eq. (24): The function R2(φ, ξ, σ) is given by

R2(φ, ξ, σ) =

∫
y

e−
|y−ξ|2

2σ2

2πσ2
R1(y, φ, ξ, σ)dy (25)

Observe that the distribution of complex random variable Y under the condition X = ξ

is bivariate Gaussian with mean ξ and variance σ2. This expectation can be computed

efficiently via two-dimensional Gauss-Hermit quadrature weights as follows [32]:

– Suppose ξ = ξr + iξi where ξr and ξi are the real and imaginary parts of ξ.

– Let Hd be the Hermite polynomial of degree d with roots k1, k2, . . . , kd.

– Let z(j1, j2) =
[√

2σkj1 + ξr
]

+ i
[√

2σkj2 + ξi
]
, wj1 = 2d−1d!

√
π/d2[Hd−1(kj1)]

2,

and wj2 = 2d−1d!
√
π/d2[Hd−1(kj2)]

2 for j1, j2 = 1, 2, . . . , d. Then R2(φ, ξ, σ) can be

approximated as

R2(φ, ξ, σ) ≈ 1

π

d∑
j1=1

d∑
j2=1

wj1wj2R1

[
z(j1, j2), φ, ξ, σ

]
,

where R1

(
z(j1, j2), φ, ξ, σ

)
is defined in Eq. (23).

• Computing A(h): In presence of an ideal interleaver between codewords and the modulator,

the set of random variables X1, X2, . . . , XN can be assumed to be independent. This

implies Φ1,Φ2, . . . ,ΦN are also independent. Without loss of generality we next provide

computation steps for any i-th vector Φi. For the system of Fig. 1, note that φi does not

depend on y∼i and hence Eq. (26) can be simplified to

φi =
[
P(Xi = ξ1) P(Xi = ξ2) . . . P(Xi = ξ|Z|)

]
. (26)
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Recall M is the map corresponding to the given 2m-ary modulation scheme, i.e., M :

c′(i) → xi, where xi ∈ X is a complex constellation symbol corresponding to the given

modulation scheme and c′(i) = [c′i,1 c
′
i,2 . . . c′i,m] for i = 1, 2, . . . , N (see Section II). Let

LM
a (i) = [LM

a (i, 1) LM
a (i, 2) . . . LM

a (i,m)] be the a priori LLRs available at the input of the

detector. These LLRs are obtained after deinterleaving the VN-to-detector processing. Since

c(i) = [ci,1 ci,2 . . . ci,m] denotes the deinterleaved codebit sequence, LM
a (i, j) is given by

LM
a (i, j) = log

P(Ci,j = 0)

P(Ci,j = 1)
,∀j ∈ {1, . . .m} (27)

For each symbol ξl ∈ X = {ξ1, ξ2, . . . , ξ|X|}, suppose M−1(ξl) = [bl,1 bl,2 . . . bl,m] for

l = 1, 2, . . . , |X|. Then the l-th entry in φi in Eq. (26) can be calculated as follows

P(Xi = ξl) =
m∏
j=1

P[Ci,j = bl,j], (28)

where P[Ci,j = bl,j] is obtained from Eq. (27). To compute A(h) =
∑

ξ∈X EΦ|X=ξ

[
R2(Φ, ξ, σ)

]
,

we need to find the distribution fξ(φ) of Φ|X = ξ (see Eq. (24)). However finding this

multivariate distribution, in general, is not straightforward. Hence we choose to obtain this

expectation numerically as follows:

– Let IAd be the MI available at the input of the detector (see Fig. 2). Project IAd ∈ [0, 1]

on the consistent Gaussian density N(md, 2md), where md = J−1(IAd)
2/2.

– Generate a sequence of modulated symbols x1, x2, . . . , xN according to uniform distri-

bution for large enough N . (We choose N = 10000 in our simulations.)

– Generate a sequence of a priori LLRs LM
a (1),LM

a (2), . . . ,LM
a (N) corresponding to

x1, x2, . . . , xN , where each entry in LM
a (i) =

[
LM
a (i, 1) LM

a (i, 2) . . . LM
a (i,m)

]
is

chosen i.i.d. according to N(md, 2md) distribution.

– Compute the sequence of vectors φ1, φ2, . . . , φN , where each entry in φi is calculated

from LM
a (i) using Eq. (26) and Eq. (28), for i = 1, 2, . . . , N .

– Given a particular symbol ξ ∈ X, let Sξ denotes the set of vectors φi such that the

corresponding generated xi = ξ for i = 1, 2, . . . , N .

DRAFT March 11, 2021



19

– By approximating expectation of R2(Φ, ξ, σ) by computing the average over Sξ, the

expression of A(h) =
∑

ξ∈X EΦ|X=ξ

[
R2(Φ, ξ, σ)

]
is now approximated by

A(h) ≈
∑
ξ∈X

1

|Sξ|
∑
φi∈Sξ

R2

(
φi, ξ, σ

)
,

where R2

(
φi, ξ, σ

)
is computed using step 1) as explained above.

• Computing B(h): When φ[ξ] = φ[ξ′] for any ξ, ξ′ ∈ X, B(h) of Theorem 1 can be written

in terms of R2(φ, ξ, σ) and computed as B(h) =
∑

ξ∈XR2

(
φ =

[
1
|X|

1
|X| . . .

1
|X|

]
, ξ, σ

)
.

V. SPATIAL COUPLING ANALYSIS OF SC-TC

In this section, we provide a procedure for spatial coupling of SC-TC to evaluate their BP

thresholds. This formalism was first introduced in [9] and is in spirit analogous to [7], [33], [34].

Inspired from the formalism of spatially-coupled protograph-based LDPC codes, the proposed

procedure provides a similar formalism allowing to evaluate spatial coupling parameters such as

termination, mapping, choice of base matrices, BP decoding, rate loss, and wave effect of LLRs.

As for spatially-coupled protograph-based LDPC codes, spatially-coupled SC-TC can be

obtained by the edge spreading rule on the factor-like graph [9]: (i) this latter is duplicated

say L times; (ii) then the outer-code encoded bits v are divided into ms + 1 clusters; (iii) these

latter are exchanged between the graph copies by interchanging the ends of homologous sockets

following the matrix B := [b0, b1, . . . bms ] ∈ [0, 1]ms+1, where bi represents the v bits fraction

passed from the graph copy t to (t+ i).

Similar to spatially-coupled LDPC codes, ms is called the syndrome former memory, L the

coupling length, and the coupling matrix B verifies the constraint
∑ms

i=0 bi = 1. For a better

illustration of the described edge spreading rule construction, an example is illustrated in Fig. 4a.

As one can observe, some clusters will remain unconnected on the rightmost copies and some

vacant points on the leftmost copies. Thus suggest that some form of termination should be

envisioned. Filling the remaining bundles connections at the boundaries of the obtained graph

is classically solved as follows:
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1 2

1 2

1 2

1 2

1 2

1 2 1 2

1 2

...
1 2

(a) Terminated encoder. Here B = [0.5, 0.5].

stage i

...

...

...

...

(b) An arbitrary stage at the receiver

Fig. 4: Terminated SC-TC transmitter and receiver

• ms add inner codes constituents at the rightmost end in order to connect the last remaining

bundles.

• ”padd” with known information bits at the ms first and the ms last stages in order to fill

the vacant bundles connection points. These are showed in Fig. 4a with black circles.

The rate of the coupled scheme is given by RL = R − ms
L+ms

R. Because of the chosen

termination strategy, we induce a rate loss, i.e. ms
L+ms

R, that vanishes to 0 as L→ +∞. Note that

termination methods such as tail-biting [35] and code modification [36] can also be considered.

A. EXIT analysis of spatially-coupled SC-TC

Input-output transfer functions of the SISO components can be computed. These functions rep-

resent the MI associated with extrinsic LLR messages at the output of SISO components versus

the MI associated with the a priori LLR messages. In cases where DE can be computationally

complex or unfeasible, the EXIT chart is a powerful tool to study the asymptotic convergence
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of concatenated systems under iterative decoding. First introduced in [29], its idea relies on

the fact that the density of LLRs exchanged during the iterative decoding can be accurately

modeled as consistent Gaussian. One can thus evaluate the convergence of the overall system by

tracking either the mean or the variance of the LLRs. In our case, it is not possible to provide

analytical expressions of the exchanged LLRs densities for general constituent convolutional

codes. Therefore, we propose express EXIT decoding transfer functions of the proposed spatially-

coupled SC-TC system under BP decoding (for details refer [9]).

In order to define the main notation, let us consider the i-th stage of the spatially-coupled

factor-like graph of Fig. 4b. The corresponding notations are defined as follows:

• all variables corresponding to the stage i are referred to with the subscript i;

• Ika (i+) (resp. Ike (i+)) is the a priori (resp. extrinsic) MI between the LLRs transmitted from

O−1
i (resp. from I−1

i+k) to O−1
i+k (resp. to O−1

i );

• Same definitions hold for the Ike (i−) and Ika (i−) with respect to the O−1
i and O−1

i−k.

Concerning the scheduling for spatially-coupled SC-TC decoding and analogously to BP for

LDPC codes [1], we perform all inner updates (inner code pass) then all outer decoders updates

(outer code pass) of each iteration the following mixtures rules:

• Ike (i+) = Ie(Ii).bk and Ia(Ii) =
∑
Ika (i+).bk

• Ike (i−) = Ie(Oi).bk and Ia(Oi) =
∑
Ika (i−).bk

• The a priori MIs got from the added boundary nodes are equal to 1.

The threshold of the spatially-coupled SC-TC is then defined as the lowest Eb/N0 such as

Iap(Oi)→ 1,∀i.

VI. NUMERICAL RESULTS

In this section, we provide numerical results for various families of LDPC/GLDPC/DGLDPC

and serially concatenated turbo codes. We choose BPSK, QPSK, 16-QAM, and 64-QAM mod-

ulation schemes for simulations. For simulations, we consider the following schemes:
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• S1: An outer rate 1/2 systematic recursive [5, 7] convolutional code with an inner rate 1

recursive accumulator of transfer function 1/1 +D with BPSK modulation

• S2: Two serially concatenated rate-1/2 systematic recursive [5, 7] convolutional codes with

64-QAM Gray mapping

• S3: An outer rate 1/2 systematic recursive [5, 7] convolutional code with an inner rate 1

recursive accumulator of transfer function 1/1 +D with 16-QAM Gray mapping

• S4: Two serially concatenated rate-1/2 systematic recursive [5, 7] convolutional codes with

16-QAM SP mapping

• S5: (4, 8)-regular LDPC code ensemble of rate 1/2 with 64-QAM Gray mapping

• S6: (2, 15)-regular ensemble of design rate 7/15 based on the Hamming(15, 11) component

code designed in [24] with QPSK modulation

• S7: DGLDPC ensemble of rate 7/15 from [37] with BPSK modulation. The structure of

the generalized VNs and CNs for S7 is illustrated next. Suppose the generator matrices G1

and G2 are given by G1 =


1 0 0 1 1 0

0 1 0 0 1 1

0 0 1 1 0 1

 , G2 =



1 1 1 0 0 0

0 1 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 1


. All VNs have degree

6 and correspond to repetition codes of length 6 (69% of all nodes), linear codes defined

by G1 (1%), linear codes defined by G2 (22%) and single parity check codes of length 6,

denoted by SPC(6), (8%). All CNs nodes correspond to SPC(12).

• S8: (3, 6)-regular LDPC code ensemble of rate 1/2 with 64-QAM Natural mapping

Note that S1 to S4 are SC-TC and S5 to S8 are LDPC codes. For S4 and S8 we have chosen

non-Gray mapping. The obtained approximate EBP-GEXIT charts of all the above mentioned

schemes are provided in Fig. 5. For EBP-GEXIT charts, on the X-axis we have the channel

entropy and on the Y-axis we have the corresponding EBP-GEXIT function. Tables I and II

summarize the obtained thresholds. The MAP thresholds are estimated by applying the Maxwell

construction [3] to the approximate EBP-GEXIT charts illustrated in Fig. 5 (refer [1, Sec. 3.20],
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[3] for details about the Maxwell construction). An upper bound (U.B.) on the MAP threshold is

obtained by applying area theorem to the respective EBP-GEXIT charts (see Theorem 2 and [2,

Theorem 5]). Spatial-coupling of LDPC codes with Gray mapping is studied in [10]. While the

BP-threshold of the spatially-coupled S5 system with L = 64 provided in [10] is Eb/N0 = 0.54dB

(h = 0.473), our estimated MAP threshold is Eb/N0 = 0.601dB (h = 0.4682) (see Table II and

for QPSK we have Eb/N0 = Es/N0). The small difference in the two values might be due

to various approximations involved while computing our EBP-GEXIT chart (e.g. polynomial

approximations for the constituent EXIT charts, Gauss-Hermite procedure etc).

For spatially-coupled SC-TC with Gray mapping, we also provide BP threshold of their

respective spatially-coupled versions in Table I5. For obtaining the BP threshold of spatially-

coupled SC-TC, we have chosen B = [1/2, 1/2] (ms = 1) and L = 200. Concerning the

asymptotic EXIT convergence criterion, we choose that if, given a channel parameter, after 105

BP iterations, the a posteriori MI corresponding to the different stages does not converge to

1, then the decoder has failed to recover the transmitted bits. For comparison, in Table I we

also include the threshold bound given by the EXIT chart area theorem, where the EXIT area

is computed for the combined detector and inner code. component [38]. From Table I it can be

seen that, the BP threshold of spatially-coupled SC-TC is close to the MAP threshold estimated

from the EBP-GEXIT chart. The examples where the estimated MAP threshold is away from

their corresponding bounds indicate a suboptimal choice for the outer code. The small difference

between the MAP threshold estimated via the EBP-GEXIT chart and that of BP threshold of

spatially-coupled SC-TC might be due to various approximations involved while computing the

EBP-GEXIT chart. Due to these reasons, we conjecture that the BP threshold of spatially-coupled

SC-TC converges to the MAP threshold estimated using the EBP-GEXIT chart.

5We focus on the spatial coupling of SC-TC with Gray mapping since for other systems the decoding of SC-TC or LDPC

codes becomes doubly iterative [30]. We plan to do spatial coupling analysis of the these systems in future work.

March 11, 2021 DRAFT



24

0 1

1
U.B. on
MAP th.
MAP th.

(a) S1, BPSK, Gray
0 1

1
U.B. on
MAP th.
MAP th.

(b) S2, 64-QAM, Gray
0 1

1
U.B. on
MAP th.
MAP th.

(c) S3, 16-QAM, Gray
0 4

1
U.B. on
MAP th.
MAP th.

(d) S4, 16-QAM, SP

0 1

1
U.B. on
MAP th.
MAP th.

(e) S5, QPSK, Gray
0 1

1
U.B. on
MAP th.
MAP th.

(f) S6, QPSK, Gray
0 1

1
U.B. on
MAP th.
MAP th.

(g) S7, BPSK, Gray
0 6

1
U.B. on
MAP th.
MAP th.

(h) S8, 64-QAM, Natural

Fig. 5: EBP-GEXIT chart of the systems S1 to S8 for various modulators

scheme

MAP threshold BP threshold U.B. on MAP th. EXIT area

via EBP-GEXIT of SC-TC via EBP-GEXIT

h Es/N0 (dB) h Es/N0 (dB) Rate h Es/N0 (dB) h Es/N0 (dB)

S1 0.4893 −2.71 0.4793 −2.55 0.4975 0.4974 −2.79 0.4963 −2.74

S2 0.7448 4.02 0.7435 4.05 0.2488 0.7456 4.00 0.7533 3.80

S3 0.7241 1.20 0.7211 1.27 0.2488 0.7315 1.03 0.7433 0.73

TABLE I: Estimates of MAP thresholds for various SC-TC with Gray mapping

scheme
MAP th. via EBP-GEXIT U.B. on MAP th. via EBP-GEXIT

h Es/N0 (dB) h Es/N0 (dB)

S4 2.4096 3.2393 2.9874 0.1412

S5 0.4682 0.601 0.4949 0.253

S6 0.5123 0.022 0.5238 −0.133

S7 0.514 −3.01 0.514 −3.01

S8 2.7164 10.0549 2.993 9.0319

TABLE II: Estimates of MAP thresholds for various SC-TC and LDPC codes
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It is important to mention that for the serially concatenated systems with a non-Gray mapper as

an inner code and a convolutional code as an outer code, the BP threshold does not exist. From an

EXIT chart point of view, this can be inferred by the fact that the EXIT curves of the constituent

codes intersect before reaching the point (1, 1). A similar behaviour is also exhibited by low-

density generator-matrix (LDGM) codes. Therefore, our method or EBP-GEXIT in general is

not applicable for the MAP threshold estimation of these schemes. This is a well known problem

and different methods are proposed to tackle this limitation (e.g. [6] studies this via potential

threshold approach). Note that for the system S4 considered in our work, we have chosen a SC-

TC system with two convolutional codes as inner and outer codes respectively and a non-Gray

mapping is chosen for modulation. For such a SC-TC system, the combined EXIT curve of the

detector and inner convolutional code is considered and the BP and MAP thresholds are well

defined for such setups (See Fig. 5-(d)).

VII. CONCLUSIONS AND FUTURE WORK

We studied the problem of estimating the MAP threshold for LDPC/GLDPC/DGLDPC codes

and SC-TC families, when the transmission is over non-binary complex-input AWGN channel.

We extended the existing results to obtain the GEXIT function over complex AWGN channel

and provided a tractable method for fast evaluation of an approximate EBP-GEXIT chart,

based on the Gaussian approximation. We estimated the MAP thresholds for various families

of LDPC/GLDPC/DGLDPC codes and SC-TC for Gray and non-Gray mappings. For SC-TC

system with Gray mapping, we also studied the threshold saturation phenomenon. Numerical

results indicate that the BP threshold of spatially-coupled SC-TC does saturate to the MAP

threshold obtained using the EBP-GEXIT chart.

Since our proposed method for the computation of EBP-GEXIT charts only requires the

knowledge of the constituent EXIT charts, this opens up the applicability of our method to a

variety of setups such as multiple-input multiple-output (MIMO) system, intersymbol interference

March 11, 2021 DRAFT



26

(ISI) channel, and Rayleigh fading channel. As a part of the future work, it will also be interesting

to investigate schemes such as LDGM codes for which BP threshold does not exist, under the

light of our proposed framework.

APPENDIX A: GEXIT FUNCTION FOR NON-BINARY COMPLEX-INPUT AWGN CHANNEL

The key idea of the proof of Theorem 1 comes from Lemma 1 of [17]. This lemma provides

an expression for the t-th GEXIT function gt(h) for non-binary real-input AWGN channel.

Lemma 1 of [17]: Consider ft,ξ(φ) and φ[ξ] defined in Section IV-A. Let p(ξ) = P[Xt = ξ],

p(yt|ξ′) = P[Yt = yt|Xt = ξ′], and p′(yt|ξ) = ∂
∂ε
p(yt|ξ), where ε = −1

2σ2 . Then gt(h) for |X|-ary

real-input AWGN channel is given by,

gt(h) =
∑
ξ∈X

p(ξ)

∫
φ

ft,ξ(φ)

∫∞
−∞ p

′(yt|ξ) log2

{∑
ξ′ φ[ξ′]p(yt|ξ′)
φ[ξ]p(yt|ξ)

}
dyt∫∞

−∞
∑

ξ p(ξ)p
′(yt|ξ) log2

{∑
ξ′ p(ξ

′)p(yt|ξ′)
p(ξ)p(yt|ξ)

}
dyt

dφ. �

It can be easily verified that this lemma hold true for complex-input AWGN channel as well

and hence we use it to obtain the required expression for the theorem. Towards this we next

obtain an expression for p′(yt|ξ) and p(yt|ξ′)/p(yt|ξ) for complex-input AWGN channel. We

first obtain an expression for p′(yt|ξ). Since we have assumed that the distribution of the noise

corresponding to both real and imaginary parts is N(0, σ2), the distribution of Yt under the

condition ξ is bivariate Gaussian. Using this we get,

p′(yt|ξ) =
∂

∂ε
p(yt|ξ) =

∂

∂ε

1

2πσ2
e−
|yt−ξ|

2

2σ2
(a)
=
∂σ

∂ε

(
∂

∂σ

1

2πσ2
e−
|yt−ξ|

2

2σ2

)
,

(b)
= p(yt|ξ)

(
|yt − ξ|2 − 2σ2

)
,

(29)

where the equality in (a) follows from the chain rule of derivative. Since ε = −1
2σ2 , σ is a

function of ε and by solving the derivative we get ∂σ
∂ε

= σ3. Substituting this in (a) and solving

the derivative we obtain (b). The fraction p(yt|ξ′)/p(yt|ξ) is given by

p(yt|ξ′)
p(yt|ξ)

=

(
1

2πσ2
e−
|yt−ξ

′|2

2σ2

)/(
1

2πσ2
e−
|yt−ξ|

2

2σ2

)
= exp

[
|yt − ξ|2 − |yt − ξ′|2

2σ2

]
. (30)
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Since in general we have N >> |X|, in presence of an ideal interleaver we can assume that the

transmitted modulated symbols are equally likely, i.e., p(ξ) = 1/|X| for any ξ ∈ X. Using this

and substituting Eq. (29) and Eq. (30) in Lemma 1 of [17] we get the required expression of

the theorem. This completes the proof of the theorem. �

APPENDIX B: PROOF OF THEOREM 2 (AREA THEOREM FOR THE SYSTEM OF FIG. 1)

The proof of Theorem 2 follows directly by applying the generalized area theorem (GAT) [2,

Theorem 1]. While in [2], GAT was derived for BMS, we observe that this GAT is also appli-

cable for any |X|-ary, complex-input memoryless channel. Suppose the channel input symbols

X = [X1 X2 . . . XN ] are transmitted via the set of parallel independent memoryless channels

parameterized by h1, h2, . . . , hN respectively to receive Y = [Y1 Y2 . . . YN ]. Then from GAT,

dH(X|Y) =
N∑
t=1

∂H(Xt|Y)

∂ht
dht.

If all the individual channel parameters h1, h2, . . . , hN in are parameterized in a smooth way by

a common parameter h, then the GEXIT function g(h) is defined as [2]

g(h) =
N∑
t=1

∂H(Xt|Y)

∂ht

dht
dh

∣∣∣
h
.

Each Yt is a function of the t-th channel parameter ht and can be denoted by Yt(ht). Integrating

g(h) from 0 to |X| we get (refer to the discussion after Definition 3 of [2]),∫ h̄

h

g(h) =
1

N

[
H(X|Y(|X|))−H(X|Y(0))

]
(a)
=

1

N

[
k − 0

] (b)
=
km

n
. (31)

The equality in (a) is obtained since the entropy H(X|Y(0)), which is the uncertainty about X

in presence of zero noise, is equal to 0. Note that for the AWGN channel, noise entropy h = |X|

correspond to large enough (ideally infinite) noise variance such that the received Y does not

provide any information about the transmitted X. This implies that H(X|Y(|X|)) = H(X).

Since modulation scheme does not change the entropy of the transmitted codewords we have

H(X) = k, where k is the dimension of the code. The equality in (b) is obtained since for

m-ary modulation scheme we have N = n/m (see Section II) and this completes the proof. �
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APPENDIX C: APPROXIMATION FOR THE GEXIT KERNEL OF BAWGN CHANNEL

For a random variable W ∼ N(2/σ2, 4/σ2) and real number z, define a function f(h, z) as

f(h, z) = EW
[

1

1 + eW+z

]
=

∫ ∞
−∞

1√
2π(4/σ2)

e
− (w−(2/σ2))2

8/σ2

1 + ew+z
dw, (32)

where h = 1− J(2/σ). Using this in Eq. (5) we have lcBAWGN(h)(z) = f(h, z)/f(h, z = 0). The

function f(h, z) can be approximated using Marquardt-Levenberg algorithm [39] as follows.

f(σ, z) ≈


1 if z ≤ L(h)

1− eA3(h)z
3+A2(h)z

2+A1(h)z+A0(h) if L(h) < z < M(h)

0 if z ≥M(h)

(33)

where L(h),M(h), A0(h), A1(h), A2(h), and A3(h) are approximated as polynomials of degree
10 and are given by

L(h) = −92218h10 + 490818h9 − 1127499h8 + 1463798h7 − 1181473h6 + 614716h5 − 207094h4 + 44333h3 − 5817h2 + 467h− 38

M(h) = −33578h10 + 175895h9 − 397298h8 + 506819h7 − 401852h6 + 205453h5 − 68054h4 + 14322h3 − 1837h2 + 136h+ 1

A0(h) = 117.76h10 − 610.96h9 + 1344.72h8 − 1634.10h7 + 1195.44h6 − 538.70h5 + 146.66h4 − 22.38h3 + 1.19h2 − 0.33h

A1(h) = 28.89h10 − 155.08h9 + 369.42h8 − 512.31h7 + 453.43h6 − 262.89h5 + 98.69h4 − 22.90h3 + 3.18h2 + 0.01h

A2(h) = 10.94h10 − 62.92h9 + 154.13h8 − 210.31h7 + 175.60h6 − 93.03h5 + 31.50h4 − 6.78h3 + 0.88h2 − 0.11h

A3(h) = 0.47h10 − 1.58h9 + 1.47h8 + 0.85h7 − 2.78h6 + 2.44h5 − 1.11h4 + 0.29h3 − 0.04h2 + 0.01h.
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[13] A. G. i Fàbregas, A. Martinez, and G. Caire, “Bit-interleaved coded modulation,” Foundations and Trends in Communi-

cations and Information Theory, vol. 5, no. 1-2, pp. 1–153, 2008.

[14] W. Ryan and S. Lin, Channel codes: classical and modern. Cambridge University Press, 2009.

[15] A. Ashikmin, G. Kramer, and S. ten Brink, “Extrinsic information transfer functions: Model and erasure channel properties,”

IEEE Trans. on Info. Theory, vol. 50, no. 11, pp. 2657–2673, Nov. 2004.

[16] A. Bennatan and D. Burshtein, “Design and analysis of nonbinary LDPC codes for arbitrary discrete-memoryless channels,”

IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 549–583, 2006.

[17] P. Nguyen, A. Yedla, and H. P. adn K. Narayanan, “Threshold saturation of spatially-coupled codes on intersymbol-

interference channels,” in Proceedings of IEEE ICC, Ottawa, Canada, June 2012, pp. 2181–2186.
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