
1

Neural Networks Based Beam Codebooks:

Learning mmWave Massive MIMO Beams that

Adapt to Deployment and Hardware
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Abstract

Millimeter wave (mmWave) and massive MIMO systems are intrinsic components of 5G and be-

yond. These systems rely on using beamforming codebooks for both initial access and data transmission.

Current beam codebooks, however, generally consist of a large number of narrow beams that scan all

possible directions, even if these directions are never used. This leads to very large training overhead.

Further, these codebooks do not normally account for the hardware impairments or the possible non-

uniform array geometries, and their calibration is an expensive process. To overcome these limitations,

this paper develops an efficient online machine learning framework that learns how to adapt the codebook

beam patterns to the specific deployment, surrounding environment, user distribution, and hardware

characteristics. This is done by designing a novel complex-valued neural network architecture in which

the neuron weights directly model the beamforming weights of the analog phase shifters, accounting for

the key hardware constraints such as the constant-modulus and quantized-angles. This model learns the

codebook beams through online and self-supervised training avoiding the need for explicit channel state

information. This respects the practical situations where the channel is either unavailable, imperfect,

or hard to obtain, especially in the presence of hardware impairments. Simulation results highlight

the capability of the proposed solution in learning environment and hardware aware beam codebooks,

which can significantly reduce the training overhead, enhance the achievable data rates, and improve

the robustness against possible hardware impairments.
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I. INTRODUCTION

Millimeter wave (mmWave) MIMO is an essential ingredient of the future wireless com-

munication networks—from 5G to IEEE 802.11ay and beyond [2]–[5]. These systems use large

antenna arrays to obtain enough beamforming gains and guarantee sufficient receive signal power.

Due to the cost and power consumption of the mixed-signal circuits at the high frequency

bands, though, fully-digital transceiver architectures that assign an RF chain per antenna are

not feasible [6]. Instead, these mmWave systems resort to analog-only or hybrid analog/digital

architectures [7] to implement the beamforming/combining functions. Further, because of the

hardware constraints on these large-scale MIMO systems and the difficulty in channel estimation

and feedback, they typically adopt pre-defined single-lobe beamforming codebooks (such as DFT

codebooks [8]) that scan all possible directions for both initial access and data transmission.

Examples of using these codebooks include the Synchronization Signal Block (SSB) beam sets

and Channel State Information Reference Signal (CSI-RS) codebooks in 5G [9], and hierarchical

beam patterns in IEEE 802.11ad [10]. The classical beam-steering codebooks, however, have

several drawbacks: (i) They incur high beam training overhead by scanning all possible directions

even though many of these directions may never be used, (ii) they normally have single-lobe

beams which may not be optimal, especially in non-line-of-sight (NLOS) scenarios, and (iii)

they are typically predefined and do not account for possible hardware imperfections (such as

phase mismatch or arbitrary array geometries) with very expensive calibration processes [11].

To overcome these limitations, we propose a novel online machine learning framework

that learns how to adapt the codebook beam patterns to the surrounding environment, the

user distribution, and the given hardware of the specific base station deployment—building

what we call environment and hardware aware beam codebooks.

A. Prior Work:

Designing MIMO beamforming codebooks has been an important research and development

topic for a long time at both academia and industry [12]–[19]. The motivation for all this prior

work has been mainly to enable efficient limited-feedback operation in MIMO systems. For

example, the authors of [12], [13] investigated the design of beamforming codebooks for MISO

communication systems with Rayleigh channels. The same problem was then considered in

[14], [15] for spatially and temporally correlated channels. For systems with multiple antennas

at both the transmitters and receivers, [16], [17] developed precoding/combining codebooks and
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analyzed the system performance under various channel models. The use of beam codebooks

have been also adopted by several cellular and wireless LAN standards [18], [19]. The codebook

approaches in [12]–[19], however, were generally designed to optimize the feedback of small-

scale MIMO and are hard to extend to massive MIMO systems without the requirement of huge

codebook sizes and large training overhead. Further, the codebooks in [12]–[19] adopted fully-

digital architectures and did not consider the hardware constraints at the transmitter/receiver

arrays which could highly affect the design of these codebooks. Incorporating these constraints

is essential for the development of efficient mmWave MIMO codebooks.

For mmWave systems, [7], [8], [20], [21] developed a set of new beamforming codebooks

for analog-only and hybrid analog/digital architectures. In [20], narrow-beam codebooks were

developed to aid the beam training processing mmWave systems. The narrow beams, however,

may lead to large training overhead. This motivated designing hierarchical codebooks in [7], [8]

that consist of different levels of beam widths. For frequency selective channels, [21] developed

iterative hybrid analog/digital beamforming codebooks. The codebooks in [7], [8], [20], [21],

however, have several limitations. First, they were generally designed for unconstrained archi-

tectures and then approximated for these constraints, i.e., they were not particularly optimized

for these hardware constraints. Second, they were mainly designed to have single-lobe narrow

beams that cover all the angular directions and are not adaptive to the particular deployment

characteristics (surrounding environment, user distributions, etc.), which requires large training

overhead. Further, these codebooks assumed fully-calibrated uniform arrays and experience high

distortion in practical hardware with fabrication impairments. All that motivated the development

of environment and hardware aware codebook learning strategies, which is the focus of this paper.

B. Contribution:

In this paper, we consider hardware-constrained large-scale MIMO systems and propose an

artificial neural network based framework for learning environment and hardware adaptable

beamforming codebooks. The main contributions of the paper can be summarized as follows

• First, we design a supervised machine learning model that can learn how to adapt the patterns

of the codebook beams based on the surrounding environment and user distribution. This

is done by developing a novel complex-valued neural network architecture in which the

weights directly model the beamforming/combining weights of the analog phase shifters.

The proposed model accounts for the key hardware constraints such as the phase-only,
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constant-modulus, and quantized-angle constraints [6]. The training process was designed

to approach the performance of equal-gain transmission/combining [22], which is the upper

bound of the analog-only beamforming solutions.

• Then, we develop a second neural network architecture that relies on online and self-

supervised training and avoids the need of explicit channel state information. This respects

the practical situations where the channel state information is either unavailable, imperfect,

or hard to obtain, especially in the presence of hardware impairments. The developed

architecture learns in an online and self-supervised fashion how to adapt the codebook beam

patterns to suit the surrounding environment, user distribution, hardware impairments, and

unknown antenna array geometry.

• Finally, we extensively evaluate the performance of the proposed codebook learning ap-

proaches based on the publicly-available DeepMIMO dataset [23]. These experiments adopt

both outdoor and indoor wireless communication scenarios at different signal-to-noise ratios

(SNRs) and codebook sizes. Further, this evaluation is done both for uniform-perfect arrays

and for arrays with arbitrary geometries and hardware impairments. These experiments

provide a comprehensive evaluation of the proposed codebook learning approaches.

The simulation results verify the effectiveness of the proposed solutions in providing the

sought-after environment and hardware awareness. In particular, the proposed solutions show

significant improvements compared to classical beam-steering codebooks in several cases: (i) For

arbitrary user distributions in which our approaches learn how to adapt the beams to focus on

where the users are and significantly reduce the required beam training overhead, (ii) for NLOS

scenarios with multiple equally-strong paths where the developed codebook learning solutions

learn multi-lobe beams that achieve much higher data rates, and (iii) for arrays with hardware

impairments or unknown geometries, where our neural networks learn how to adapt the beam

patterns for the given arrays and mitigate the impact of hardware impairments. All that highlights

a promising direction where machine learning can be integrated into the communication systems

to develop deployment and hardware specific beam codebooks.

Notation: A is a matrix, a is a vector, a is a scalar, and A is a set. AT , AH , A† are its

transpose, Hermitian, and pseudo-inverse respectively. [A]m,n is the element in the mth row and

nth column. diag(a) is a diagonal matrix with the entries of a on its diagonal. A ⊗ B is the

Kronecker product of A and B, and A ◦B is their Khatri-Rao product. N (m,R) is a complex

Gaussian random vector with mean m and covariance R. E [·] is used to denote expectation.
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Fig. 1. The adopted system model where a base station of M antennas can communicate with LOS or NLOS users using a

beam codebook. The proposed machine learning model in this paper learns how to efficiently adapt the codebook beams based

on the given deployment, user distributions, and hardware characteristics.

II. SYSTEM AND CHANNEL MODELS

In this section, we describe in detail our adopted system and channel model. Further, we

describe how the model considers arbitrary arrays with possible hardware impairments.

A. System Model

We consider the communication system shown in Fig. 1 where a base station (BS) with M

antennas is deployed in a certain environment and is capable of serving both the LOS and NLOS

mobile users in this environment. For simplicity, we assume that the users have single antennas.

The proposed solutions in this paper, however, could be extended to the case with multi-antenna

users. Next, considering the uplink transmission, if the user transmits a symbol s ∈ C, then the

received signal at the BS after combining can be expressed as

y = wHhs+ wHn, (1)

where the transmitted symbol satisfies the average power constraint E [|s|2] = Ps and n ∼

NC (0, σ2
nI) is the receive noise vector at the BS. The M × 1 vector h ∈ CM×1 denotes

the uplink channel between the mobile user and the BS antennas and w represents the BS
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combining vector. Given the cost and power consumption of the mixed-signal components at

the mmWave frequencies, it is hard to dedicate an RF chain for each antennas and apply fully-

digital precoding/combining at mmWave massive MIMO systems [6]. Alternatively, mmWave

base stations adopt analog-only or hybrid analog-digital beamforming approaches that move all

or some of the beamforming/combining processing to the RF domain [4], [6]. To account for that,

we assume that the BS employs an analog-only architecture where the beamforming/combining

is implemented using a network of phase shifters as depicted in Fig. 1. With this architecture,

the combining vector w can be written as

w =
1√
M

[
ejθ1 , ejθ2 , . . . , ejθM

]T
, (2)

which can only perform phase shift to the signal received by each antenna.

B. Channel Model

We adopt a general geometric channel model for h [24], [25]. Assume that the signal propa-

gation between the mobile user and the BS consists of L paths. Each path ` has a complex gain

α` (that includes the path-loss) and an angle of arrival φ`. Then, the channel can be written as

h =
L∑
`=1

α`a(φ`), (3)

where a(φ`) is the array response vector of the BS. The definition of a(φ`) depends on the array

geometry and hardware impairments which we discuss in the following subsection.

C. Arbitrary Array Geometry and Hardware Impairments

Most of the prior work on mmWave signal processing has assumed uniform antenna arrays with

perfect calibration and ideal hardware [6]–[8], [20]. In this paper, we consider a more general

antenna array model that accounts for arbitrary geometry and hardware imperfections. We show

that our online beam codebook learning approaches can efficiently learn beam patterns for these

arrays and adapt to their particular characteristics. This leads to several advantages for these

systems since (i) there are scenarios where designing arbitrary arrays is needed, for example, to

improve the angular resolution or enhance the direction-of-arrival estimation performance [26],

[27], (ii) the fabrication process of large mmWave arrays normally has some imperfections, and

(iii) because the calibration process of the mmWave phased arrays is an expensive process that

requires special high-performance RF circuits [11]. While the codebook learning solutions that
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we develop in this paper are general for various kinds of arrays and hardware impairments,

we evaluate them in Section VIII with respect to two main characteristics of interest, namely

non-uniform spacing and phase mismatch between the antenna elements. For linear arrays, the

array response vector can be modeled to capture these characteristics as follows

a(φ`) =
[
ej(kd1 cos(φ`)+∆θ1), ej(kd2 cos(φ`)+∆θ2), . . . , ej(kdM cos(φ`)+∆θM )

]T
, (4)

where dm is the position of the m-th antenna, and ∆θm is the additional phase shift incurred

at the m-th antenna (to model the phase mismatch). Without loss of generality, we assume

that dm and ∆θm are fixed yet unknown random realizations, obtained from the distributions

N ((m− 1)d, σ2
d) and N

(
0, σ2

p

)
, respectively.

III. PROBLEM DEFINITION

In this paper, we investigate the design of mmWave beamforming codebooks that are adaptive

to the specific deployment (surrounding environment, user distribution/traffic, etc.) and the given

hardware (array geometry, hardware imperfections, etc.), as shown in Fig. 1. Next, we formulate

the beam codebook optimization problem before showing in Sections IV-V how neural network

based machine learning can provide efficient approaches for learning adaptive codebooks. Given

the system and channel models described in Section II, the SNR after combining for user u can

be written as

SNRu =

∣∣wHh
∣∣2

|w|2
ρ, (5)

with ρ = Ps

σ2
n

. If the combining vector w is selected from a codebook W , with cardinality

|W| = N , then, the maximum achievable SNR for use u is obtained by the exhaustive search

over the beam codebook as

SNR?u = ρmax
w∈W

∣∣wHh
∣∣2, (6)

where we set |w|2 = 1 as these combining weights are implemented using only phase shifters

with constant magnitudes of 1/
√
M , as described in (2). Our objective in this paper is to design

the codebook W to maximize the SNR averaged over the candidate set of user channels H,
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which are the channels of the candidate users in the environment surrounding the deployed BS.

This problem can then be written as

Wopt = arg max
W

∑
h∈H

 max
wn∈W,
n=1,...,N

∣∣wH
n h
∣∣2 , (7)

s. t. |[wn]m| =
1√
M
, ∀n = 1, ..., N,m = 1, ...,M, (8)

where the constraint in (8) is imposed to uphold the phase-shifters constraint, i.e., the analog

beamformer can only perform phase shifts to the received signal but is not capable of adapting

the gain. It is worth mentioning here that while we are focusing on receive beamforming design

in this paper, the same solution can be used for transmit codebook design by acquiring SNR

feedback from the users.

The objective of problem (7) is to find the beam codebook that maximizes the average SNR

gain for all the candidate users. Since we only have a finite beamforming codebook, which is

far less than the number of users, it is impossible to achieve the maximum combining SNR

for each user (which is given by the equal-gain combining [22]). In this sense, we might

expect to find a codebook such that each beamformer serves a group of users that share similar

channels. Due to the large number of channels in H as well as the non-convex constraints (8),

problem (7) in general is very hard to solve by using the classical optimization methods and

beamforming design approaches [7], [21], [28], [29]. Therefore, and motivated by the powerful

learning and optimization capabilities of neural networks, we consider leveraging neural network

based machine learning to efficiently solve the optimization problem (7). Depending on whether

the channel state information is available or not, two different machine learning frameworks

are designed, namely supervised and self-supervised solutions, in Sections IV and V to learn

beam codebooks that adapt to the given deployment and hardware—generating what we call

environment and hardware aware beam codebooks.

IV. SUPERVISED MACHINE-LEARNING SOLUTION

Designing environment-aware mmWave beam codebooks requires an adaptive and data-driven

process. Data collected from the environment surrounding a base station, like channels and/or

user-received power, is a powerful source of information as it encodes information on user

distributions and users’ multi-path signatures. Such data could be used to tailor the beamforming

codebook to those users and that environment. The challenge here is the need for a system capable
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Fig. 2. This schematic shows the overall architecture of the neural network used to learn the beamforming codebooks. It

highlights the network architecture and the auxiliary components, equal-gain-combining and MSE-loss units, used during the

training process. It also gives a slightly deeper dive into the inner-workings of the cornerstone of this architecture, the complex-

valued fully-connected layer.

of sifting through the data, analyzing it, and designing the codebook in a manner that respects

the phase-shifter constraint. This clearly calls for a system with a sense of intelligence.

This section addresses that challenge and proposes an elegant solution that is environmentally

adaptable, data-driven, and hardware compatible. In its core, this solution relies on machine

learning and, in particular, artificial neural networks [30]. It follows a supervised learning

approach to analyze the channel structure and learn the phases of the suitable beamforming

vectors. Its elegance stems from the way it learns the codebook; the weights of the neural

network directly relate to the angles of the phased arrays, making them the actual parameters of

the network. Therefore, during every training cycle (forward and backward passes) the codebook

will be updated directly.

A. Model Architecture

Before going into the details of how a codebook is learned, it is important to explain the

architecture of the proposed neural network and its relation to the optimization problem in (7).
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This architecture consists of three main components, as depicted in Fig. 2. Those components

are the complex-valued fully-connected layer, the power-computation layer, and finally the max-

pooling layer. A forward pass through these three layer is equivalent to evaluating the cost

function of (7) over a single channel h.

1) Complex-valued fully-connected layer: The first layer consists of N neurons that are

capable of performing complex-valued multiplications and summations. Each neuron, as shown

in Fig. 2, learns one beamforming vector and performs inner product with the input channel

vector. Formally, this is described by the following matrix multiplication

z = WHh, (9)

where W = [w1, . . . ,wN ] ∈ CM×N is the beamforming codebook, (.)H is the conjugate

transpose (Hermitian) operation, h is a user’s channel vector, and z ∈ CN×1 is the vector

of the combined received signal. This equation could be re-written in the following block matrix

form  zr

zim

 =

 Wr −Wim

Wim Wr

T  hr

him

 , (10)

where zr, zim ∈ RN are the real and imaginary parts of z, Wr,Wim ∈ RM×N are matrices

containing the real and imaginary components of the elements of W, and, finally, hr,him ∈ RM

are the real and imaginary components of the channel vector h. What is interesting about (10)

is that it provides a peek behind the curtains to the inner-workings of the complex-valued fully-

connected layer.

Contrary to the norm in designing neural networks, the elements of the beamforming matrix W

are not the weights of the fully-connected layer. Instead, they are derived from the actual neural

network weights, which are the phased arrays making up the beamforming codebook. This is

done through an embedded layer of phase-to-complex operations, as shown in Fig. 2. This layer

transforms the phased arrays into unit-magnitude complex vectors by applying elements-wise

cos and sin operations and scale them by 1/
√
M as follows

W =
1√
M

(cos (Θ) + j ∗ sin (Θ)) , (11)

where Θ = [θ1, . . . ,θN ] is an M × N matrix of phased arrays, and θn = [θ1n, . . . , θMn]T ,

∀n ∈ {1, . . . , N} is a single phase vector. The use of this embedded layer is the network’s way

of learning beamforming vectors that respect the phase shifter constraint.
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2) Power-computation layer: The output of the complex-valued fully-connected layer feeds

into the power-computation layer. It performs element-wise absolute square operation and outputs

a real-valued vector q given by

q = [q1, q2, . . . , qN ]T =
[
|z1|2, |z2|2, . . . , |zN |2

]T
, (12)

which has the received power of each beamformer in the codebook.

3) Max-pooling layer: The power of the best beamformer is, finally, found by the last layer,

the max-pooling layer. It performs the following element-wise max operation over the elements

of q

g = max {q1, q2, . . . , qN} , (13)

and outputs g, which is the power of the best beamformer. This value is used to assess the

quality of the codebook by comparing it to a desired receive power value. The details on what

this desired value is and how the quality is assessed are detailed in the following subsection.

B. Learning Codebooks

With the neural network architecture in mind, it is time to delve into the details of how a

codebook is learned. This first proposed solution, as its name states, follows a supervised learning

approach. In such approach, a machine learning model is trained using pairs of inputs and their

desired responses, which constitute the training dataset.

1) Desired response: For the beamforming problem in hand, the inputs to the model are

the users’ channels as they are the communication quantity that drives the beamforming design

process. As training targets, there are many possible desired responses that could be used, and

the choice between them should be made based on what the models needs to learn. In this paper,

equal gain combining is adopted as the desired response. This choice is based on the fact that

equal gain combining respects the phase shifters constraint. It is the beamforming that achieves

optimal SNR performance when there are no restrictions on the codebook size. Further, equal

gain combining constitutes an upper bound for the received power of fully-analog transceivers.

The equal-gain combining beamformer is obtained using the phase component of every user’s

channel as follows

wEGC =
1√
M

[
e∠h1 , e∠h2 , . . . , e∠hM

]T
, (14)
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where ∠ stands for the phase of a complex number. Using equal gain combining beamformers,

the desired response for each user can be computed as follows

p =
∣∣wH

EGCh
∣∣2 =

1

M
‖h‖2

1 , (15)

where ‖ · ‖1 is the L1 norm. Putting the users’ channels and their equal-gain combining gains

together provides the training dataset St.

2) Model background training: Using the set St, the model is trained in the background by

undergoing multiple forward-backward cycles. In each cycle, a mini-batch of complex channel

vectors and their equal-gain combining responses is sampled from the training set. The channels

are fed sequentially to the model and a forward pass is performed as describe in Section IV-A.

For each channel vector in the batch, the model combines it with the currently available N

beamforming vectors and outputs the power of the best beamformer for that channel. The quality

of the best combiner is assessed by measuring how close its beamforming gain to that of the

channel equal-gain combiner, obtained by (15). A Mean-Squared Error (MSE) loss is used as a

metric to assess the quality of the codebook over the current mini-batch. Formally, it is defined

as

L =
1

B

B∑
b=1

(gb − pb)2, (16)

where gb is the output of the max-pooling layer for the b-th data pair in the mini-batch, and B is

the mini-batch size. The error signal (derivative of the loss (16) with respect to each phase vector

θn ∈ Θ) is propagated back through the model to adjust the phases of the combining vectors

[31] [32], making up what is usually referred to as the backward pass or backpropagation. This

is formally expressed by the chain rule of differentiation:(
∂L
∂θn

)T
=
∂L
∂g
·
(
∂g

∂q

)T
· ∂q

∂z
· ∂z

∂θn
. (17)

In mathematical terms, ∂L
∂θn

does not exist, for the factor ∂q
∂z

does not satisfy the Cauchy-Riemann

equations [33], meaning that q as a function of the complex vector z is not complex differentiable

(holomorphic). However, the issue could be resolved to enable backpropagation. The details of

that and how the derivatives are computed are discussed in Appendices A and B. Computing

the partial derivative of the loss with respect to phase vector θn allows the backward pass to

modify the codebook Θ and make it adaptive to the environment. The update equation generally

depends on the solver used to carry out the training, e.g., Stochastic Gradient Descent (SGD)
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and ADAptive Moment estimation (ADAM) to name two, but in its simplest form, it could be

given by

θnnew = θncur − η ·
∂L
∂θn

(18)

where η is the optimization step size, commonly known as the learning rate in machine learning,

and θnnew and θncur are, respectively, the new and current n-th phase vector of the codebook.

C. Learning Quantized Codebook

Restriction on the resolution of the phase shifter is common in many mmWave implementa-

tions. This imposes limits on the number of phase vectors that could be realized by a system,

giving rise to learning quantized codebooks. The proposed solution is actually capable of learning

such codebooks. This could be achieved using a quantize-while-training approach, similar to that

in [34] [35]. The training process, presented as forward and backward passes in Sections IV-A and

IV-B, respectively, is tweaked to incorporate a k-means quantizer. The quantizer is implemented

right after updating the parameters of the network in (18). It takes the phase-vector codebook

and vectorize it Θ̃ =
[
θT1 , . . . ,θ

T
N

]
1×NM , and then, it applies k-means on the elements of Θ̃.

The returned cluster centroids, which are a set of scalars, define the new finite set of angles the

phase shifters need to realize. The size of that set (number of centroids) is determined by the

phase shifter resolution, Q bits.

V. SELF-SUPERVISED MACHINE LEARNING SOLUTION

In this section, an alternative neural network architecture is proposed to perform the same

codebook learning process without requiring accurate channel knowledge. The motivations for

developing this model are two fold: (i) The existence of hardware impairments prevents accurate

channel acquisition in mmWave systems as obtaining them could be a difficult process that

requires very large training overhead [7], and (ii) the need for channel information implies that

the codebook learning process has to be performed offline, which may not be favorable for swift

adaptability. To address these problems, we propose a novel self-supervised learning solution.

This solution, as the name suggests, works in a self-sufficient fashion instead of requiring the

supply of a desired response for every training channel.
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A. Self-supervision via Clustering

Before diving into the details of the new proposed architecture, it is helpful to first illustrate

the basic idea of this design. The motivations for this new model are rooted in the lack of

desired responses and the need for online learning. As a result, the model should only rely

on itself to learn how to adjust the codebook beams such that the performance is improved.

This is accomplished by tapping into an intrinsic feature the final codebook must have, channel

space partitioning; as explained in Section III, the codebook has fixed size, and, therefore, each

beamformer is ultimately expected to be optimized to serve a set of users in the environment.

This is mathematically equivalent to partitioning H into subsets of channels

H = H1 ∪H2 ∪ · · · ∪HN , (19)

where

Hn′ ∩Hn = ∅, ∀n′ 6= n and n′, n ∈ {1, . . . , N}. (20)

From a machine learning perspective, this partitioning could be translated into channel clustering

where each beamformer is a cluster representative. Under this new view of the problem, the

machine learning model generates its labels using the following strategy: For the received signal

of an uplink pilot, it identifies the best beamforming vector in the current codebook, say wn
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where n ∈ {1, . . . , N}. Then, it adjusts the direction of that beamformer such that it results

in higher beamforming gain with the current channel. Therefore, when a similar channel form

the same partition, say Hn, is experienced, wn is expected to be the best beamformer again,

increasing its chance to be the representative for Hn. The technical details on how this is done

are presented in the following couple of subsections, in which the model components, forward

pass, and backward pass are explored.

B. Model Architecture

Fig. 3 presents a schematic of the proposed architecture as it is envisioned in a mmWave

communication system. The following details a forward pass through the different components

of this architecture:

1) Complex-Valued Fully-Connected Layer: similar to its supervised counterpart, the self-

supervised network also adopts complex-valued fully-connected layer as its first layer. However,

as integration into the communication system is in the core of this solution, the layer is imple-

mented using the phase shifters, not a digital processor. As a result, it is referred to in Fig. 3 as

a virtual complex-valued fully-connected layer (virtual layer for short). The function this layer

implements is the same as that in Section IV-A1, and as such, its output is also given by (9).

The main difference between this layer and that in Section IV-A1 comes in the implementation

of the matrix vector multiplication. The virtual layer performs it by requiring the user to send a

sequence of pilots, each of which is received with a different beamformer.

2) Register: the register buffers the received single of each beamformer until a full sweep

across the codebook is completed. This temporary storage is essential as the following layers

need to operate on the outputs of the virtual layers jointly.

3) Power-computation layer: once the system collects the whole outputs (all the beams in

the codebook have been tried), those values are fed into the power-computation layer which

calculates the beamforming gain for each beamformer using (12).

4) Softmax and argmax: this layer is where the self-supervised solution really differs from

the supervised one. Instead of having a max-pooling layer, the output of power-computation

layer is fed into two different layers, a softmax and an argmax. The former is employed to

convert each beamforming gain to a “probability”, which indicates how likely a beamformer is

the optimal one to receive the user’s signal given the current channel. Formally, having (12) as
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input, the n-th element of the output probability vector of the softmax layer s = [s1, . . . , sN ]T

can be expressed as

sn =
e|zn|

2∑N
n=1 e

|zn|2
. (21)

The argmax layer, on the other hand, outputs a one-hot vector c ∈ {0, 1}N , of the same

dimension as s, with 1 at the position where s attains its maximum value and with 0 at all other

positions. This one-hot vector c is the self-generated label. It declares the best beamforming

vector the representative of the cluster, and along with the output of softmax, they help tweak

this best beamformer to make sure it has higher beamforming gain than other beamformers when

it receives a similar channel in the future. This is accomplished by implementing a cross-entropy

loss function. The following subsection will elaborate more on that loss and its role.

C. Learning Codebooks

After a forward pass, the model must do backpropagation to improve its performance, i.e.,

learning better beamforming vectors. With the self-generated label and the probability vector, it

is a matter of using that label to increase the probability of the currently selected beamformer.

1) Loss function: The first step to do backpropagation is to define a loss function that captures

the objective of the model. As stated above, the model aims at clustering the channels and having

the beamforming vectors in the codebook as representatives of those clusters. This is attained

by a cross-entropy loss function given as

L(s, c) = −
N∑
n=1

cn log sn, (22)

where s is the output of the softmax layer and c is the one-hot vector generated by argmax

layer. This loss function makes the one-hot vector a target probability distribution for the model,

and hence, it is not adjustable; the value of L must only be minimized by pushing the softmax

distribution s to be as close to c as possible.

2) Backpropagation: The error signal is generated by differentiating the loss (22) with respect

to each phase vector θn ∈ Θ. This error is backpropagated through the network to adjust the

phases of all the beamforming vectors [31] [32] using the chain rule as follows(
∂L
∂θn

)T
=

(
∂L
∂s

)T
· ∂s

∂q
· ∂q

∂z
· ∂z

∂θn
, (23)

and (18) is used to update the phase vectors of the codebook. The implementation of this chain

of derivatives is illustrated in Fig. 3. There are two issues with the error signal in (23). The
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first is similar to that issue encountered with the supervised model; q as a function of z is not

complex differentiable or holomorphic, which implies that ∂q
∂z

is not defined. The same argument

developed for (17) and presented in Appendices A and B will be used here to obtain that partial.

The second issue comes from the partial ∂z
∂θn

. Referring to (9), it is clear that computing ∂z
∂θn

requires channel information, which is not explicitly available in this case. This is sidestepped

with the help of a simple channel estimator described in the following subsection.

3) Channel Estimator: In order to complete the backpropagation of the error signal, the

content of the register in Fig. 3 is also fed to a channel estimator. This estimator uses the received

signals along with the currently available beamforming codebook to reconstruct a rough estimate

of the channel. Based on (9), we notice that the output zn of each combiner wn is essentially the

projection of the channel h onto the subspace spanned by the combiner wn. Thus, we estimate

a rough version of the channel through

ĥ =
(
WH

)†
z. (24)

This approach does not result in an accurate estimate of the channel, yet it helps the learning

process as shown in Appendix B.

VI. PRACTICALITY OF PROPOSED SOLUTIONS

Both proposed solutions are developed with practicality in mind. They are both geared towards

handling different challenges commonly faced in designing mmWave beam codebooks, especially

with fully-analog architectures. However, that does not mean they operate in the same way. They

approach the codebook learning problem from different angles, as briefly discussed below.

The supervised learning solution relies on explicit channel knowledge and follows a transpar-

ent leaning approach. It requires the mmWave system to operate with some common environment-

independent codebook, like the DFT codebook, and during its operation it collects channel

information from the surroundings. Such information is used to construct the training dataset (St)

as described in Section IV-B. Once a dataset is available, the central unit trains the model in the

background, and upon the completion of the training phase, the new environment-aware codebook

is directly plugged into the system. This method decouples the communication operation from the

codebook learning process, and allows the system to function normally until a better codebook is

learned. Its main drawbacks, however, are the requirement of accurate (or good quality) channel

estimates to construct the training dataset, and the relatively lengthy offline learning process.
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Fig. 4. Two perspective views of the considered communication scenarios. (a) shows the LOS scenario. It is chosen to be

outdoor since the likelihood of LOS connection is higher there. (b) shows the NLOS scenario. Similar to (a), this scenario has

been chosen for the high likelihood of having NLOS users indoors.

The self-supervised solution, in contrast, trades explicit and accurate channel knowledge for

faster training and adaptation. The need for accurate channel estimates in itself is a burden to

the mmWave system, especially when hardware impairments are factored in. Hence, the self-

supervised solution is designed to transcend that need. As shown in Section V-C, the model

is implemented as an integral component of the mmWave system and does not run in the

background. The learning instead is performed online while the system is operating. This provides

a more adaptable and faster training in terms of implementation. However, this adaptability comes

with its own shortcomings. The first one is a subtle degradation in the quality of the learned

codebook compared to that of the supervised solution (as will be discussed in Section VIII). It

is a direct consequence of implementing a simple yet noisy channel estimator. The other issue

is an unstable communication performance at the beginning of the learning process. Different to

the transparent nature of the supervised solution, the self-supervised solution learns on the job,

and as a results the codebook itself evolves over time.

VII. EXPERIMENTAL SETUP AND MODEL TRAINING

In order to evaluate the performance of the proposed codebook learning solutions, two commu-

nication scenarios are considered. They are designed to represent two different communication

settings. The first has all users experiencing LOS connection with the basestation while the other
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TABLE I

HYPER-PARAMETERS FOR CHANNEL GENERATION

Parameter value

Name of scenario O1 28 I2 28B

Active BS 3 1

Active users 800 to 1200 1 to 700

Number of antennas (x, y, z) (1, 64, 1) (64, 1, 1)

System BW 0.2 GHz 0.2 GHz

Antenna spacing 0.5 0.5

Number of OFDM sub-carriers 1 1

OFDM sampling factor 1 1

OFDM limit 1 1

has them experiencing NLOS connection. The following two sections provide more details on

the scenarios and the training and testing processes.

A. Communication Scenarios and Datasets

Two communication scenarios are used for performance evaluation. The first one is, as men-

tioned earlier, a LOS scenario, see Fig. 4-(a). It is an outdoor scene where all users have LOS

connection with the mmWave base station. The second scenario, on the other hand, is chosen

to be an indoor NLOS scenario where all users have NLOS connection with the mmWave base

station. Both scenarios are for an operating frequency of 28 GHz, and both are part of the

DeepMIMO dataset [23]. Using the data-generation script of DeepMIMO, two sets of channels,

namely SLOS and SNLOS, are generated, one for each scenario. Table I shows the data-generation

hyper-parameters. For the supervised solution, both sets undergo processing to generate the labels

and create two sets of pairs as described in Section IV-B2. The new datasets are henceforth

referred to as SLOS
t1

and SNLOS
t1

. For the self-supervised solution, on the other hand, labels are

not needed, and, therefore, the two sets SLOS and SNLOS are used as they are. For the sake of

convenience, these two sets will be re-named SLOS
t2

and SNLOS
t2

.

B. Model Training

The two models are trained and tested on their datasets introduced in the earlier section,

Section VII-A. The training of both solutions follow the same strategy. It starts by data pre-
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TABLE II

HYPER-PARAMETERS FOR MODEL TRAINING

Parameter value

Solution Supervised Self-supervised

Batch size 500 500

Learning rate 0.1 0.1

Epoch number 5 5

Data split (training-testing) 70%-30% 70%-30%

processing. The channels in each dataset are normalized to improve the training experience

[32], which is a very common practice in machine learning. As in [36] [37], [38] and [39],

the channel normalization using the maximum absolute value in the training dataset helps the

network undergo a stable and efficient training. Formally, the normalization factor is found as

follows

∆ = max
h∈S
|hm,u|2 (25)

where hm,u ∈ C is the mth element in the channel vector of the uth user, and S ∈ {SLOS
t1

,SNLOS
t1

,

SLOS
t2

,SNLOS
t2

}. Using the normalized channels, each solution is, then, trained on portion of the

samples of the dataset and validated on the rest. The data split percentage between training and

testing along with other training hyper-parameters are listed in Table II. Example model-training

scripts of the developed codebook learning solutions are available in [40] and [41].

VIII. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed solutions using the scenarios

described in Section VII. The numerical results show that our proposed models can adapt to both

different environments and user distributions as well as imperfect array manufactures, meaning

that the proposed codebook learning approaches are aware of the deployment and the hardware.

A. Simulation Results for the Supervised Solution

The performance of the proposed supervised solution is studied first in a LOS setting. Fig. 5(a)

shows the achievable rate versus the codebook size under 0 dB and 5 dB SNRs. The learned

codebook exhibits interesting behavior compared to a 64-beam DFT codebook and an EGC

receiver. With half the number of beams of a DFT codebook, the learned codebook achieves
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Fig. 5. The achievable rate versus the number of beams of the codebook using the supervised solution in: (a) LOS scenario

and (b) NLOS scenario. It shows the performance under two receive SNRs, 0 and 5 dB.

more than 80% of the rate that the DFT achieves. This is very important and interesting as

smaller codebook size means less beam training overhead. Further, this figure shows that when

the learned codebook is allowed to have the same number of beams as the DFT codebook, the

performance of the proposed solution clearly surpasses that of the DFT beam-steering codebooks.

This is quite intriguing as, typically, a DFT codebook performs very well in a LOS setting.

Generally, the supervised solution can produce a codebook that gets closer to the upper bound

(EGC receiver) than a DFT codebook could, which is an immediate result of its adaptability.

The solution is also evaluated in a NLOS setting, which is expected to be more interesting and

challenging; in a NLOS scenario, there is usually no single dominant path from a user to the base

station, but there are multiple almost equally-dominant paths reflecting off of some scatterers.

Therefore, to achieve good performance, a codebook should be able to capture as much of those

dominant paths as possible such that the average received SNR after beamforming is increased.

Similar to the LOS case, Fig. 5(b) depicts the achievable rate of the proposed solution versus

the number of beams. What is interesting here is how the learned codebook outperforms

the 64-beam DFT codebook with way less number of beams, only 16 beams are enough

to match the DFT performance—the reason behind that will be discussed in the following

paragraph. As the number of learned beams increases, its performance edges closer to the upper

bound, achieving almost 90% of the upper bound with 64 beams.

To develop a deeper understanding of the performance of the proposed solution and verify its
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Fig. 6. Beam patterns for the learned codebook using the supervised solution. (a) shows the codebook learned for the LOS

scenario while (b) shows that learned for the NLOS scenario. Two beams from the 64-beam NLOS codebook are singled out

in (c) and (d). They clearly show that the proposed solution is capable of learning multi-lobe beams.

capability of learning beams that adapt to the surrounding environment and user distributions,

we plot the the resulting beam patterns in Fig. 6. More specifically, this figure shows different

beam patterns of two different 64-beam codebooks learned in LOS and NLOS settings. The

patterns in Fig. 6(a) are for the LOS case, and they explain the improvement the learned 64-

beam codebook experiences compared to the DFT codebook. Similar to the DFT codebook, all

the learned beams are directive and have single-lobe, yet they do not spread across the whole

azimuth plane like the DFT beams do. Their spread, instead, follows the user distribution in the

scenario, the red rectangle drawn in Fig. 4(a). This makes each beam in the codebook tuned to

serve a certain group of users and none of the beams is “wasted” by any means. In the NLOS

setting, Fig. 6(b) shows how the solution captures the different NLOS paths in the environment;

the codebook is almost evenly split between the two major scatterers, the two side walls of the

room. As a matter of fact, looking at Fig. 6(c) and Fig. 6(d) reveals that the learned beams

are not exclusively single-lobe, as some beams have multiple lobes that adapt to the main

scatterers in the room. This is a quite important property for a NLOS beam codebook, and it

is evident in the codebook performance in Fig. 5(b); it explains the clear gap in performance

between the learned and DFT codebooks.

To account for quantized phase shifters, the quantization method introduced in Section IV-C

is applied during the training of the supervised model to obtain a quantized codebook. Fig. 7

shows the performance of the learned codebooks with different phase quantization levels (i.e.,

number of bits). Despite its simplicity, this quantization approach can achieve over 80% of the
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Fig. 7. The achievable rate versus the size of the codebook in LOS setting. The figure shows the performance under different

choices of quantized phase shifter.

performance of the full-resolution phase shifters using only 3-bit phase shifters. This performance

is consistent across all codebook sizes. This is very important and interesting for cases where

the resolution of the analog phase shifters is limited.

B. Simulation Results for the Self-supervised Solution

The performance of the self-supervised solution is benchmarked to that of the supervised one in

both LOS and NLOS settings. Fig. 8(a) plots the achievable rate versus the number of beams for

both solutions in a LOS setting and under 5 dB SNR. This figure shows that the self-supervised

codebook has a relatively similar performance to that of the supervised solution. As Fig. 8(a)

demonstrates, the self-supervised approach achieves over 90% and 95% of the achievable rates

obtained by the supervised solution using 32 beams and 64 beams. In addition, the gap between

the two solutions shrinks as more beams are learned. This comparable performance could be

immediately extended to the NLOS case, as depicted in Fig. 8(b) which plots the achievable

rate of the different approached versus codebook size under 5 dB SNR. These results are very

intriguing and promising as the self-supervised solution achieves this performance without

the explicit channel knowledge. This is an important property as stated in the beginning of

Section V. Channel estimation in fully-analog mmWave architectures is a considerable burden,

and when hardware impairments are factored in, that burden amplifies. Hence, shedding light

on the importance of that property make up the core of the following section.
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Fig. 8. The achievable rate vs. number of beams in the codebook with supervised and self-supervised learning solutions in: (a)

a LOS scenario and (b) NLOS scenario. Both figures have the results for 5 dB receive SNR.

C. Performance Evaluation Under Hardware Impairments

The performance of the self-supervised solution is evaluated under hardware impairments using

the model introduced in Section II-C. The channels in datasets SLOS
t2

,SNLOS
t2

, are corrupted with

antenna spacing and phase mismatches that, respectively, have σd = 0.1λ and σp = 0.4π standard

deviations. Fig. 9(a) shows the simulation result of the proposed solution in a LOS setting. It

maintains a similar performance to that presented in Fig. 8(a) and displays an intriguing ability

to combat the challenges imposed by the hardware impairments. This indicates that the self-

supervised solution can efficiently adapt to the corrupted (and arbitrary) array-response

vectors, compensating for the antenna-spacing and phase mismatches. The same performance

can also be observed in the NLOS case. With the same hardware impairment settings, Fig. 9(b)

depicts the achievable rate versus the codebook size in a NLOS setting. The learned codebook

continues to maintain the same trend as that in the LOS case. In fact, with 128 beams, the

codebook learned can attain over 90% of the achievable rate of the upper bound. Such ability is

lacking in classical beam steering codebooks such as the DFT codebook. Compared to Fig. 8(a)

and Fig. 8(b), the performance of DFT codebooks degrades significantly when impairments are

present. The reason lies in the patterns of the corrupted array response vectors, which lose their

directivity and experience critical distortion.

It is important at this stage to pose the following question: How robust is the self-supervised

solution? The answer to that question would provide some perspective on the capacity of the
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Fig. 9. The achievable rate versus number of beams for the self-supervised solution. The performance is evaluated under 5

dB SNR, antenna spacing mismatch with σd = 0.1λ standard deviation, and phase mismatch with σp = 0.4π. (a) shows the

performance in LOS setting while (b) considers NLOS setting.
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Fig. 10. The achievable rate vs. the standard deviation of phase mismatch with self-supervised solution in: (a) LOS and (b)

NLOS settings. The performance is evaluated under 5dB receive SNR, antenna spacing mismatch with standard deviation of

0.1λ, and a 64-beams codebook.

proposed solution to endure hardware impairments. In Fig. 10(a), we plot the achievable rates

versus the standard deviation of the phase mismatch. The figure considers a LOS setting and

a fixed antenna spacing mismatch with a standard deviation of 0.1λ. As the standard deviation

of the phase increases, the self-supervised solution keeps a balanced performance. The DFT

codebook, on the other hand, degrades drastically as the level of corruption increases. This
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Fig. 11. Beam patterns for codebook with 64 beams learned by the self-supervised solution in LOS setting with hardware

impairments (antenna spacing and phase mismatches with, respectively, 0.1λ and 0.4π standard deviations). (a) shows all 64

beams (if plotted for a uniform array), (b) shows one of the codebook beams (if plotted for a uniform array), and, finally, (c)

shows the same beam in (b) when plotted for the corrupted array (i.e., the actual beam pattern out of the corrupted array).

behavior demonstrates the robustness of the proposed codebook learning approach and

its ability to adapt to the various hardware impairments. The same test with the same

antenna spacing mismatch is repeated but in the NLOS setting, and the performance is shown

in Fig. 10(b). The proposed solution exhibits a similar performance to that in the LOS setting,

which further emphasizes the conclusion on its robustness.

To visualize what the proposed solution is learning exactly, Fig. 11 plots different beam patterns

from a learned codebook with hardware impairments and in a LOS setting. The first figure on

the left, namely Fig. 11(a), shows all beam patterns in the learned codebook when projected

on the angular space of the uniform (uncorrupted) arrays. One of those beams in plotted again

separately in Fig. 11(b). While these beams appear distorted with multiple lobes, they actually

look this way because they match the hardware impairments and mismatches. To prove that,

we plotted the selected beam again in Fig. 11(c) when projecting it on the angular space of

the corrupted beams. In other words, this is the actual far-field beam pattern that the corrupted

array will generate. This beam is clearly depicting the supposed pattern, which is a single-lobe

beam pointing to the user’s direction. All that verifies the interesting capability of the proposed

solution in learning beams that adapt to the surrounding environment and given hardware.
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IX. CONCLUSION

In this paper, we considered hardware-constrained mmWave massive MIMO systems and

developed a machine learning framework that learns environment and hardware aware beam

codebooks. Achieving that was through designing novel complex-valued neural network ar-

chitectures that use the neuron weights to directly model the beamforming weights of the

phase shifters. Further, these architectures account for the key hardware constraints such as the

constant-modulus and quantized-angles constraints. The proposed model is trained online in a

self-supervised manner, avoiding the need for explicit channel state information. The developed

approach was extensively evaluated using the publicly available dataset, DeepMIMO, at both

LOS and NLOS environments. Simulation results show that the developed solution can learn

codebook beams that adapt to the surrounding environment and user distribution, which can

significantly reduce the training overhead and improve the achievable data rates. Further, the

results demonstrated the capability of the proposed solution in adapting the beam patterns to the

given hardware impairments and array geometry. This highlights the potential gains of leveraging

machine learning to develop deployment and hardware aware beamforming codebooks.

APPENDIX

A. Complex Differentiability

The problem with (17) and (23) lie in their complex differentiability, more specifically, the

complex differentiability of ∂q
∂z

and ∂z
∂θn

. We refer to the work of [42] where an argument is

presented to circumvent this limitation. It states that in order to perform backpropagation in a

complex-valued neural network, a sufficient condition is to have a cost function and activations

that are differentiable with respect to the real and imaginary parts of each complex parameter in

the network. Formally, let w = wr + jwim ∈ C and z = f(w) ∈ R such that it does not satisfy

Cauchy-Riemann equations. In this case, z is not complex differentiable, and the suggested way

around this problem is to view wr and wim as two independent variables such that wr, wim ∈ R.

Then, the “gradient” of z is defined as

∇z =

[
∂

∂wr
f(w),

∂

∂wim
f(w)

]T
. (26)

For instance, if z = (wr)2 + (wim)2 ∈ R, then

∇z =

[
∂

∂wr

[
(wr)2 + (wim)2)

]
,

∂

∂wim

[
(wr)2 + (wim)2)

]]T
= 2

[
wr, wim

]T (27)
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B. Computing the Partials

Going back to (17) and (23), the factors ∂q
∂z

and ∂z
∂θn

satisfy the condition, and, hence, we

construct the Jacobian ∂q
∂z

as

∂q

∂z
=



∂q1
∂zr1

0 0 . . . 0 0 ∂q1
∂zim1

0 0 . . . 0 0

0 ∂q2
∂zr2

0 . . . 0 0 0 ∂q2
∂zim2

0 . . . 0 0
...

...
... . . . ...

...
...

...
... . . . ...

...

0 0 0 . . . 0 ∂qN
∂zrN

0 0 0 . . . 0 ∂qN
∂zimN


N×2N

. (28)

The sparsity of the Jacobian follows from the fact that q is the result of an element-wise operation,

see (12). The reason behind its shape, i.e., N × 2N matrix, will be explained shortly. Since the

output of the nth combiner zn is only determined by the nth column of the matrix W (see (9))

and since the nth column of W is only a function in θn (see (11)), we can write the other

Jacobian, namely ∂z
∂θn

, as

∂z

∂θn
=


0 . . . ∂zrn

∂θn1
. . . 0 . . . ∂zimn

∂θn1
. . . 0

0 . . . ∂zrn
∂θn2

. . . 0 . . . ∂zimn
∂θn2

. . . 0
... . . . ... . . . ... . . . ... . . . ...

0 . . . ∂zrn
∂θnM

. . . 0 . . . ∂zimn
∂θnM

. . . 0



T

M×2N

. (29)

Now, to calculate ∂zrn
∂θnm

or ∂zimn
∂θnm

, ∀m = {1, . . . ,M}, we recall (10) and write zr
n and zim

n as

functions of the nth column of W as follows

zr
n =

M∑
m=1

wr
nmh

r
m − wim

nmh
im
m , (30)

zim
n =

M∑
m=1

(
−wim

nm

)
hr
m + wr

nmh
im
m , (31)

where

wr
nm = cos (θnm) , wim

nm = sin (θnm) . (32)

The partials now are computed as follows

∂zr
n

∂θnm
=

∂zr
n

∂wr
nm

· ∂w
r
nm

∂θnm
+

∂zr
n

∂wim
nm

· ∂w
im
nm

∂θnm
, (33)

=− hr
m sin (θnm) + him

m cos (θnm) , (34)
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and

∂zim
n

∂θnm
=

∂zim
n

∂ (−wim
nm)
·
∂
(
−wim

nm

)
∂θnm

+
∂zim

n

∂wr
nm

· ∂w
r
nm

∂θnm
, (35)

=hr
m cos (θnm) + him

m sin (θnm) . (36)

Evaluating (34) and (36) clearly relies on the channel estimates. This should not be a problem

for the supervised solution, but for the self-supervised solution, the estimate obtained using (24),

namely ĥ, is substituted for h.

Having found the partials, the reason behind the choice of the matrix shapes in (28) and (29)

could be explained. The final objective of (17) and (23) is to propagate back the error signal and

update the parameters of the codebook as in (18). The matrix forms of (28) and (29) guarantees

that the computation of ∂L
∂θn

could be performed in simple matrix multiplication, which is critical

for efficient implementation.
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