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Abstract—This paper investigates intelligent reflecting surface
based backscatter communication (IRS-BackCom), in order
to realize computational task offloading of energy-constrained
mobile edge computing network in a self-sustainable manner.
Specifically, the system operation is divided into two phases. In
the first one, the ambient signal energy from a power beacon
(PB) either provides the energy supply of local computing and
energy harvesting circuits, or flows into the energy storage,
when reaching the IRS. In the second one, the stored energy
is used to enable IRS-BackCom for partial computational da-
ta offloading and energize local computing circuit. Based on
this, the maximization problem of sum computational bits is
formulated. By jointly optimizing the beamforming vector at
the PB, the backscatter matrix at the IRS, the time scheduling
of two-phase process, as well as the time of local computing,
sum computational bits are maximized. In addition, this paper
proposes element clustering to realize BackCom, so as to reduce
the control and computation complexity of IRS. According to
different operating mechanisms, two cluster operation modes
are considered, namely independent cluster operation mode and
joint cluster operation mode. Simulation results demonstrate
the achievable sum computational bits by the proposed IRS-
BackCom schemes.

Index Terms—Intelligent reflecting surface (IRS), backscatter
communication (BackCom), energy harvesting (EH), mobile edge
computing (MEC), element clustering.

I. INTRODUCTION

UBIQUITOUS Internet-of-Things (IoT) applications have
penetrated into various aspects of human lives, such as

industrial or agriculture monitoring, intelligent transportation,
automatic navigation, home automation, health care, etc. For
many IoT services, computation- and latency-sensitive tasks
are often involved, which unusually require powerful computa-
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tion capability [1]. Nevertheless, most IoT devices have rather
limited computing power because of stringent cost and size
consideration. On the other hand, severely restricted energy
supply due to finite battery capacity is widely believed to
be another serious impediment to the expansion of potential
IoT services in practice. Currently, there is an urgent need
to exploit the methods of utilizing computation- and energy-
constrained IoT devices to meet increasing resource-hungry
applications [2].

To handle the challenges posed by data processing, mobile
edge computing (MEC) techniques have been extensively
investigated. The core idea of MEC techniques is to offload
data processing tasks to the surrounding MEC server having
powerful computation capacity, based on which the tasks can
be completed more quickly and the computation latency is
reduced [3]. According to whether partial or full computational
data is offloaded, MEC networks are often classified into two
modes [4]. The first one is termed as partial computation
offloading. In some scenarios, a computation task can split into
two parts. Using the mode of partial computation offloading,
they are separately processed through local computing and
data offloading. The second one is named after binary com-
putation offloading [5]. In other scenarios, it is unrealistic to
partition a computation task. Adopting the mode of binary
computation offloading, such a task is either locally computed
or entirely offloaded to MEC servers [6].

For mitigation of adverse effects of limited energy supply,
energy harvesting (EH) techniques have attracted much at-
tention [7], [8]. The techniques aim to harvest ambient radio
frequency (RF) signals to supply the energy consumption of
wireless devices [9]. Clearly, the development of EH provides
an optional way for data offloading in low-consumption IoT.
With the integration of MEC and EH, a novel paradigm,
namely wireless powered MEC, is spawned. Wang et al. [10]
investigated a single-user wireless powered MEC system.
Relying on the harvested energy, computation task allocation
for local computing and data offloading and transmission en-
ergy allocation were optimized to minimize the total transmit
power. Bi and Zhang [11] considered a multi-user wireless
powered MEC network in the mode of binary computation
offloading. By jointly optimizing binary decision-making and
the time scheduling, the weighted sum computation rate was
maximized.

By exploiting EH to harvest wireless energy, the shortage of
energy consumption is alleviated to some extent. Nevertheless,
it is often inadequate for power-hungry tasks to rely only
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on EH techniques. To further reduce energy consumption
and raise energy efficiency, backscatter communication (Back-
Com) techniques are developed in a wireless powered MEC
network. By modulating ambient wireless signal, new data
from a backscatter transmitter is able to overwrite the original
data carried by the signal [12]. Gong et al. [13] proposed to
customize deep reinforcement learning to maximize energy
efficiency in data offloading. Zou et al. [14] investigated
BackCom-based wireless powered MEC sensor networks and
minimized the total energy consumption. Shi et al. [5] con-
sidered a practical non-linear EH model and maximized the
weighted sum computational bits of edge users. Ye et al. [15]
studied delay minimization in a hybrid wireless powered MEC
network leveraging BackCom and active transmissions (AT)
simultaneously. Xu et al. [16] minimized the total energy con-
sumption of wireless devices in a wireless powered BackCom-
based MEC network by allocating computation offloading and
wireless resource. Nguyen et al. [2] investigated OFDMA-
based wireless powered MEC using BackCom.

By integrating MEC, EH and BackCom techniques, a wire-
less powered self-sustainable system of data offloading can be
realized. Recently, rapid development of intelligent reflecting
surface (IRS) [17], [18] offers an excellent opportunity to up-
grade the level of such a system, since it is able to significantly
augment the performance of BackCom and EH. Being a pro-
grammable two-dimensional metasurface [19]–[21], IRS con-
sists of a great many passive elements, which can collaborate
to effectively control the reflection property of the incoming
electromagnetic (EM) wave. Owing to low price, low power
consumption, easy scalability and high-level degree of spatial
freedom, IRS is often employed to enhance signal reception
as well as communication security and covertness [22]–[24].
With the advance of IRS techniques, MEC and BackCom
have entered into a new stage. Bai et al. [25] investigated
IRS-aided MEC networks, and latency-minimization problems
were formulated and solved. Furthermore, wireless powered
IRS-aided MEC was studied [26]. When IRS was integrated
with BackCom, Yan et al. [27] proposed to employ BackCom
to simultaneously enhance the primary communication and
send the new private data to the receiver. Zhao et al. [28]
investigated the performance of backscatter link and direct
link in IRS-assisted communications. In [29], [30], IRS-based
BackCom (IRS-BackCom) was employed to convert harm
into benefit for resisting undesired signal and to improve the
transmission security, respectively.

Up to now, existing works have investigated how to apply
EH and BackCom techniques to MEC networks. Meanwhile,
IRS-aided MEC networks have also been studied, where IRS
is used as a reflection device to enhance signal reception.
Currently, none of researches have taken into account wireless
powered MEC assisted by IRS-BackCom, where IRS acts as a
backscatter device. Motivated by this fact, this paper will lever-
age wireless powered IRS-BackCom to realize data offloading.
Such a system is particularly appealing, because it can leverage
EH techniques to cover energy expenditure when BackCom
with low consumption is employed to offload data bits to
an MEC server. Moreover, by integrating IRS into wireless

powered backscatter-enabled MEC, introduced inherent spatial
diversity can improve communication performance of wireless
network beyond all doubt. The main contributions of this paper
are summarized as follows.

• To the best of our knowledge, it is the first attempt to
apply IRS-BackCom to MEC networks. Distinguished
from the conventional BackCom, the introduction of IRS
improves degree of spatial freedom and enhances control
over EM environment greatly. As a result, the backscatter
transmitter for data offloading is upgraded from single-
input channel to multiple-input channel. Based on this,
multiple MEC servers are considered to exploit the spatial
diversity.

• In wireless powered MEC assisted by IRS-BackCom,
the maximization problem of sum computational bits is
formulated. By jointly optimizing the beamformer at the
power beacon (PB), the backscatter matrix at the IRS,
the time scheduling of two-phase process, as well as
the time of local computing, sum computational bits are
maximized. What’s more, the computational complexity
is analyzed.

• To reduce the control and computing complexity for
the IRS comprising a large number of elements, this
paper proposes to employ element clustering to realize
BackCom, with two cluster operation modes presented,
namely independent cluster operation mode and joint
cluster operation mode. Then, their computational com-
plexities are also computed.

• Simulations are performed to show how the sum compu-
tational bits of system depend on element number of IRS,
element cluster number, the transmit power of the PB, the
average distance from the IRS to the MEC servers, and
the number of the MEC servers. The simulation results
demonstrate that the proposed IRS-BackCom schemes
can achieve as high sum computational bits as active
antennas. Moreover, the IRS-BackCom schemes based on
element clustering are capable of achieving quite cred-
itable sum computational bits, while more fine-grained
element control of IRS may yield a higher communication
performance.

The rest of this paper is structured as follows. In section
II, the system model of wireless powered MEC assisted by
IRS-BackCom is presented. Then, the maximization problem
of sum computational bits is formulated. Section III presents
an optimization solution to the maximization problem of sum
computational bits. Section IV proposes to employ element
clustering to realize rate maximization of BackCom. Section
V demonstrates communication performance achieved by the
proposed schemes via simulations. Section VI draws the
conclusions of this paper.

Notations: In this paper, R and C represent the sets of real
and complex number, respectively. Let lowercase, boldfaced
lowercase and uppercase letters denote scalars, vectors, and
matrices, respectively. The notations (·)T , (·)H , (·)−1, tr(·),
| · |, ‖·‖ and Re(·) represent transposition, conjugate transpose,
inversion, trace, modulus, Euclidean norm or Frobenius norm,
real part of the arguments, respectively. � is a positive
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(a) IRS-based backscatter communication
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(b) Time scheduling of two-phase process

Fig. 1. An illustration of wireless powered MEC model, where IRS-based backscatter communication is employed for data offloading.

semidefinite operator. diag{x} is the diagonal matrix having
the entries of x on its main diagonal.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As illustrated in Fig. 1, a self-sustainable wireless powered
MEC system is considered, where an N -antenna PB serves
as an ambient RF source to supply a wireless device (WD)
for some computational task processing. The WD is wired
together with an L-element IRS, a CPU and an energy storage,
which enable separate energy harvesting, local computing and
data offloading. It is assumed that each task is comprised of
bit-wise independent data bits, thus the WD is capable of
offloading its partial data to K single-antenna MEC servers
via IRS-BackCom with K < L and K = {1, 2, · · · ,K}.
Meanwhile, local computing may also be performed for the
remaining computational bits [31]. By exploiting the spatial
freedom of multiple MEC servers, the performance loss due
to channel fading can be reduced. Another assumption is
that all channels are reciprocal and follow quasi-static block
fading. Moreover, we leave out the task processing time at the
MEC servers and the return transmission delay from the MEC
servers to the WD.

To better illustrate the operating mechanism of system, only
one time block T is here considered, when all channels remain
constant. While the PB transmits its energy-bearing signal s
during T , the operation of IRS is divided into two phases.
In the first phase T1, the signal energy reaching the IRS
is partially used to supply the power consumption of local
computing and energy harvesting circuits, while the rest of
energy flows into the energy storage. In the second phase T2,
the stored energy is used to supply IRS-BackCom circuit to
offload partial data bits and energize local computing circuit.
In the whole time block, the starting and ending time of local
computing at the WD is uncertain, each of which may occur
at any time.

In the first phase, the received signal at the IRS is given by

yI,1 =
√
PHw1s+ nI , (1)

where P is the transmit power budget at the PB. H ∈ CL×N
denotes the channel gain from the PB to the IRS. w1 represents
the beamformer for the signal s with E[|s|2] = 1 in the
first phase. nI ∈ CL×1 is white Gaussian noise at the IRS

with nI ∼ (0, σ2
I I). In practice, the harvested energy at the

IRS is usually a non-linear model, which can be expressed
as a non-linear function [4], [32]. Generally speaking, the
harvested power rises along with the growth of received power
until it is saturated. To approximately characterize the non-
linear model and the saturation region of energy harvesting in
practice, a two-piece linear harvested energy model is widely
adopted [33], [34]. Mathematically, the harvested power is
described as

Ph =

{
χPr, χPr < Ps,
Ps, otherwise, (2)

where χ is the energy harvesting efficiency at the IRS. Pr
and Ps denote the received power and the saturation power,
respectively. In this model, it is assumed that Ps is much larger
than Pr. Thus, the total amount of harvested energy at the IRS
is linearly proportional to the received power. Ignoring the
noise power, the harvested energy at the IRS is given by

E = χT1P‖Hw1‖2. (3)

Note that we has subtracted out the power consumption of
energy harvesting circuit here.

In the second phase, when the signal s from the PB impinges
on the IRS, the received signal at the k-th MEC server is given
by

yk,2 =
√
PhHk w2s+

√
P fHk ΘHw2s+ nk, (4)

where w2 represents the beamformer at the PB in the second
phase. Θ denotes the reflection-coefficient matrix. nk is white
Gaussian noise at the k-th MEC server with nk ∼ (0, σ2

k).
hk ∈ CN×1 and fk ∈ CL×1 denote the channel gains from
the PB and the IRS to the k-th MEC server, respectively.
Let fHk ΘHw2s = θHΦkw2s, where Φk = diag{fHk }H and
θ = [Θ1,1,Θ2,2, · · · ,ΘL,L]

H with [·]l,l representing the l-
th diagonal element of matrix. Since the backscatter can be
executed at the IRS, the original signal s is modulated to K
new information-bearing signals xk with E[|xk|2] = 1. To be
precise, the modulation can be mathematically expressed as
θs =

∑K
k=1 θkxk, where

[∑K
k=1 θkθ

H
k

]
l,l
≤ 1 holds. Thus,

it can be deduced that the received signal at the k-th MEC
server can be rewritten as

yk,2 =
√
PhHk w2s+

√
P

(
K∑
i=1

θHi xi

)
Φkw2 + nk. (5)



4

The signal-to-interference-plus-noise-ratio (SINR) at the k-th
MEC server is given by

γk,2 =
|wH2 ΦH

k θk|2

|hHk w2|2 +
∑K
i=1,i6=k |wH2 ΦH

k θi|2 + σ2
k/P

. (6)

As the element number and the phase resolution of IRS
increase, the power consumption of IRS grows up. Math-
ematically, the energy consumption of IRS is described as
T2Lµ, where µ denotes power consumption of one element.
By harnessing the wireless energy to offload partial task bits to
the MEC servers via IRS-BackCom, the achievable offloading
bits for the bandwidth W are given by

Rb = T2W

K∑
k=1

log (1 + γk,2) . (7)

On the other hand, the data bits locally executed at the WD and
the corresponding energy consumption are respectively given
by

Rc =
Tcfc

Cc
, (8)

Ec = εcTcf
3
c , (9)

where fc denotes the local computing frequency of the CPU,
Cc is the required number of CPU cycles when computing
one bit and εc is the energy consumption coefficient of the
processor’s chip at the WD.

B. Problem Formulation

This paper aims to maximize sum computational bits by
jointly optimizing the beamforming vector at the PB, the
backscatter matrix at the IRS, the time scheduling of two-
phase process, as well as the time of local computing 1. The
optimization problem is formulated as

(P1) max
w1,w2,θk,T1,T2,Tc

Rb +Rc, (10a)

s.t. Tr(w1wH1 ) ≤ 1, (10b)

Tr(w2wH2 ) ≤ 1, (10c)[
K∑
k=1

θkθ
H
k

]
l,l

≤ 1,∀l ∈ L, (10d)

E ≥ T2Lµ+ Ec, (10e)
T1 + T2 = T, (10f)
T1 ≥ 0, T2 ≥ 0, 0 ≤ Tc ≤ T. (10g)

Note that the exchange of information between the PB and
the IRS is smooth enough, thus they can jointly optimize
the parameters w1, w2, T1, T2 and Tc to maximize the sum
computational bits.

1To design the beamforming vector at the PB and the backscatter matrix
at the IRS, it is necessary to acquire the channel state informations from the
PB to the IRS, from the PB to the MEC servers and from the IRS to the
MEC servers. In [17], [18], [35], many existing channel estimation schemes
involving IRS have been summarized and can be used as a reference for
channel estimation in the scenario of IRS-BackCom.

III. MAXIMIZATION OF SUM COMPUTATIONAL BITS

The problem (P1) is non-convex because of the coupling
variables w1, w2, θk, T1, T2 and Tc in the objective function
and constraints. In the following, we will present a solving pro-
cedure, by decomposing the problem (P1) into three tractable
optimization problems.

A. Harvested Energy Maximization per Unit Time

In this subsection, we will optimize the beamformer w1 to
harvest the most wireless energy from the PB during T1. Based
on this, more computational bits can be computed locally or
offloaded to the MEC servers. Since the harvested energy at the
IRS per unit time only depends on the optimization variable
w1, this optimization problem is formulated as

max
w1

E

T1
, (11a)

s.t. Tr(w1wH1 ) ≤ 1. (11b)

By invoking spectral decomposition, the Hermitian matrix
HHH can be decomposed into HHH = UH1 ΛU1, where Λ
is a diagonal matrix with elements equal to the eigenvalues
of HHH. Let v1 = U1w1. We have E = ‖Hw1‖ = vH1 Λv1.
Then, this problem is equivalent to

(P2) max
v1

vH1 Λv1, (12a)

s.t. Tr(v1vH1 ) ≤ 1. (12b)

It is not difficult to derive that the maximum value of the
objective function is equal to the maximum diagonal element
of Λ.

B. Rate Maximization of BackCom

In this subsection, we consider the rate maximization prob-
lem of BackCom during T2. From the problem (P1), it is not
difficult to find that Rc is only related to the optimization
variables w2 and θk with the exception of T2. Without regard
to T2, this problem can be equivalently reformulated as

max
w2,θk

K∑
k=1

log (1 + γk,2) , (13a)

s.t. Tr(w2wH2 ) ≤ 1, (13b)[
K∑
k=1

θkθ
H
k

]
l,l

≤ 1,∀l ∈ L. (13c)

In this problem, w2 and θk are deeply coupled in the objective
function and constraints. Moreover, the objective function is
a sum of M logarithm functions. Therefore, it is challenging
to solve this non-convex optimization problem.

To make it more tractable, Lagrangian dual transform is
firstly employed to tackle the logarithm functions. Specifically,
introducing auxiliary variables αk, the logarithm functions are
given by

log (1 + γk,2) = max
αk≥0

log (1 + αk)− αk +
(1 + αk) γk,2

1 + γk,2
.

(14)



5

Then, the problem is equivalently expressed as

max
w2,θk,αk

K∑
k=1

log (1 + αk)− αk +
(1 + αk) γk,2

1 + γk,2
, (15a)

s.t. αk ≥ 0,∀k ∈ K, (15b)
(13b) and (13c). (15c)

Using quadratic transform [36], the objective function of
this problem is further expressed as

K∑
k=1

log (1 + αk)− αk +
(1 + αk) γk,2

1 + γk,2

=

K∑
k=1

log (1 + αk)− αk +
(1 + αk) |Ak|2

Bk

=

K∑
k=1

log (1 + αk)− αk

+

K∑
k=1

2
√
1 + αkRe{β∗kAk} −

K∑
k=1

|βk|2Bk

,f(w2,θk, αk, βk), (16)

where βk is an auxiliary variable and the superscript ∗ repre-
sents the conjugate of scalar. Ak and Bk are given by

Ak = wH2 ΦH
k θk, (17)

Bk = |hHk w2|2 +
K∑
i=1

|wH2 ΦH
k θi|2 + σ2

k/P. (18)

Therefore, the problem is further formulated as

(P3) max
w2,θk,αk,βk

f(w2,θk, αk, βk), (19a)

s.t. αk ≥ 0,∀k ∈ K, (19b)
(13b) and (13c). (19c)

The problem (P3) can be solved by using the block coordinate
descent (BCD) method to cyclically optimize the variables w2,
θk, αk and βk, which is a three-step process.

Step 1) With w2 and θk given, we separately take the deriva-
tive of them to find the optimal α◦k and β◦k . Mathematically,
let

∂f(w2,θk, αk, βk)

∂αk
= 0, (20)

∂f(w2,θk, αk, βk)

∂βk
= 0. (21)

Then, it is deduced that

α◦k =
ζ2k + ζk

√
ζ2k + 4

2
, (22)

ζk = Re{β∗kwH2 ΦH
k θk}, (23)

β◦k =

√
1 + α◦kwH2 ΦH

k θk

|hHk w2|2 +
∑K
i=1 |wH2 ΦH

k θi|2 + σ2
k/P

, (24)

where w2 and θk denote the temporal optimization results in
the last cyclical iteration, respectively. According to [37], [38],
αk can be also updated using the SINR γk,2.

Step 2) With θk, αk and βk given, the objective function
of the problem (P3) can be simplified as

max
w2

f(w2,θk, αk, βk) (25a)

⇐⇒max
w2

K∑
k=1

[
2
√
1 + αkRe{β∗kwH2 ΦH

k θk}

− |βk|2
(
|hHk w2|2 +

K∑
i=1

|wH2 ΦH
k θi|2

)]
(25b)

⇐⇒min
w2

wH2 Uw2 − 2Re{wH2 v}, (25c)

where U =
∑K
k=1 |βk|2

(
hkhHk +

∑K
i=1 ΦH

k θiθ
H
i Φk

)
and

v =
∑K
k=1

√
1 + αkβ

∗
kΦ

H
k θk. Based on this, the problem (P3)

is reformulated as

min
w2

wH2 Uw2 − 2Re{wH2 v} (26a)

s.t. Tr(w2wH2 ) ≤ 1. (26b)

The Lagrangian associated with this problem is given by

L(w2, η) = wH2 Uw2 − 2Re{wH2 v}+ η
(
wH2 Iw2 − 1

)
(27)

where η represents the Lagrange multiplier associated with the
constraint. By setting ∂L(w2,η)

∂w2
= 0, we can obtain the optimal

w◦2, which is given by

w◦2 = (ηI + U)
−1 v, (28)

η◦ = min
{
η ≥ 0 : wH2 Iw2 ≤ 1

}
. (29)

Step 3) With w2, αk and βk given, the objective function
of the problem (P3) can be simplified as

max
θk

f(w2,θk, αk, βk) (30a)

⇐⇒max
θk

K∑
k=1

[
2
√
1 + αkRe{β∗kwH2 ΦH

k θk} (30b)

− |βk|2
K∑
i=1

|wH2 ΦH
k θi|2

]
. (30c)

Based on the theory of quadratical constraint quadratic pro-
gramming (QCQP), we have

2Re{β∗kwH2 ΦH
k θk} = β∗kwH2 ΦH

k θk + βkθ
H
k Φkw2,

, θ̂Hk Rkθ̂k = Tr(RkΘ̂k), (31)

|wH2 ΦH
k θi|2 = Tr

(
W2Φ

H
k ΘiΦk

)
, (32)

where W2 , w2wH2 , Θi , θiθ
H
i and Θ̂i , θ̂iθ̂

H
i

Rk =

[
0 βkΦkw2

β∗kwH2 ΦH
k 0

]
, (33)

θ̂k =

[
θk
1

]
. (34)

Based on this, the problem (P3) is reformulated as

(P4) max
Θ̂k

K∑
k=1

[√
1 + αkTr(RkΘ̂k)
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− |βk|2
K∑
i=1

Tr
(
W2Φ

H
k ΘiΦk

) ]
, (35a)

s.t.

[
K∑
k=1

Θ̂k

]
l,l

≤ 1,∀l ∈ L, (35b)[
Θ̂k

]
L+1,L+1

= 1,∀k ∈ K, (35c)

Θ̂k � 0, rank
(
Θ̂k

)
= 1,∀k ∈ K. (35d)

Dropping the constraint rank
(
Θ̂k

)
= 1, this optimization

problem is convex over Θ̂k and can be easily solved by the
CVX solver. Based on its optimal solution Θ̂◦k, singular value
decomposition or the Gaussian randomization method can be
employed to recover the rank-one solution θ◦k.

C. Optimization of Parameters T1, T2 and Tc

Once w1, w2 and θk are obtained, the problem (P1) becomes
more tractable. Since T1 can be computed via T1 = T − T2,
the problem (P1) is firstly rewritten as

(P5) max
T2,Tc

T2W

K∑
k=1

log (1 + γk,2) +
Tcfc

Cc
, (36a)

s.t.
(
χP‖Hw1‖2 + Lµ

)
T2 + εcf

3
c Tc

≤ χTP‖Hw1‖2, (36b)
0 ≤ T2 ≤ T, 0 ≤ Tc ≤ T. (36c)

It can be clearly observed that (P5) is a linear programming
problem, thus it can be easily solved. Up to this point, the
problem (P1) is thoroughly solved.

D. Complexity Analysis

Maximization of sum computational bits in this section cor-
responds to the aforementioned three optimization problems.
For the problem (P1), it is decomposed into three tractable
optimization problems (P2), (P3) and (P5). Compared to the
problems (P2) and (P5), the problem (P3) has the highest
complexity. For the problem (P3), it can be solved by a
three-step iteration process, in which the subproblem (P4)
dominates its complexity. When the interior-point method
(IPM) is employed, the complexity of the subproblem (P4)
is given by [39]

CP4 =
1

ε

√
2K(N + 1) + 2(K + L)

[
8nK(N + 1)3

+ 4n2K(N + 1)2 + (4n2 + 8n)(K + L)
]
, (37)

where n = O{K(L + 1)2}. ε denotes the iteration accuracy.
From multiple observations, we find the iteration number
of the three-step process is often small. Assuming that the
iteration number is Tite, the complexity of the problem (P1) is
approximately given by CP1 = TiteCP4.

IV. RATE MAXIMIZATION OF SUM COMPUTATIONAL BITS
USING ELEMENT CLUSTERING

As the element number of IRS rises sharply, the control
and computing complexity for individually adjusting each of
them goes up rapidly. Different from Section III-B, this section
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Fig. 2. IRS-based backscatter communication based on element clustering.

will employ element clustering to realize BackCom, which
provides a manageable way for the IRS comprising a large
number of elements. In this paper, element clustering complies
with the following simple principle: an IRS is divided into K
clusters equally and each element cluster can work like an
equivalent big element.

Specifically, an IRS is divided into K clusters equally,
with each cluster having L/K elements, as shown in Fig. 2.
The cascaded channel from the PB to the k-th MEC server
through the i-th element cluster is modeled as fHk,iΘiHi =

θHi diag{fHk,i}Hi, k ∈ K, i ∈ K, where fk,i ∈ CL/K×1
and Hi ∈ CL/K×N denote the channel gains from the i-
th element cluster to the k-th MEC server and from the PB
to the i-th element cluster, respectively. Θi and θi represent
the diagonal reflection-coefficient matrix and the reflection-
coefficient vector of the i-th element cluster, respectively.
Based on element clusters, the received signal at the k-th
MEC server is given by (38) at the bottom of next page. In
the following, we will discuss two cluster operation modes
according to different operating mechanisms.

A. Independent Cluster Operation Mode

This subsection considers the independent cluster operation
mode for the sake of easy control, in which each cluster
serves a single-antenna MEC server. In other words, the data
offloading task is divided into K parts, each of which is
assigned to one element cluster. Each element cluster sends
the respective subtask to the corresponding MEC server via
BackCom independently. Thus, the received signal at the k-th
MEC server is given by

yk,2 =
√
P [θ1x1, θ2x2, · · · , θKxK ]


θ̃H1 diag{fHk,1}H1

θ̃H2 diag{fHk,2}H2

...
θ̃HKdiag{fHk,K}HK

w2

+
√
PhHk w2s+ nk. (39)

where θi is related to the power reflection ratio Pi of all
elements at the i-th cluster with θi =

√
Pi. Clearly, the power

reflection ratio of all elements for each cluster is set as the
same value. θ̃i is a unit complex vector and used to offset
the phase of diag{fHk,i}Hiw2. It is not difficult to find that
each cluster can be viewed as an equivalent element which
can receive and forward more power. Moreover, the power
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reflection ratio Pi is able to control the reflection power.
Let hk,i =

√
Piθ̃

H
i diag{fHk,i}Hi. The SINR at the k-th MEC

server is given by

γk,2 =
|hk,kw2|2

|hHk w2|2 +
∑K
i=1,i6=k |hk,iw2|2 + σ2

k/P
. (40)

Then, the rate maximization problem of IRS-BackCom using
element cluster in the independent cluster operation mode can
be formulated as

max
w2,Pi

K∑
k=1

log (1 + γk,2) , (41a)

s.t. Tr(w2wH2 ) ≤ 1, (41b)
0 ≤ Pi ≤ 1, i ∈ K. (41c)

To make this non-convex optimization problem tractable, the
Lagrangian dual transform and the quadratic transform [36] are
employed to reformulate the objective function as

f(w2, Pi, αk, βk) =

K∑
k=1

log (1 + αk)− αk

+

K∑
k=1

2
√
1 + αkRe{β∗kAk} −

K∑
k=1

|βk|2Bk, (42)

where

Ak = hk,kw2 =
√
Pkθ̃

H
k diag{fHk,k}Hkw2, (43)

Bk = |hHk w2|2 +
K∑
i=1

|hk,iw2|2 + σ2
k/P

= |hHk w2|2 +
K∑
i=1

Pi|θ̃Hi diag{fHk,i}Hiw2|2 + σ2
k/P. (44)

Therefore, the optimization problem is rewritten as

(P6) max
w2,Pi

K∑
k=1

f(w2, Pi, αk, βk), (45a)

s.t. Tr(w2wH2 ) ≤ 1, (45b)
0 ≤ Pi ≤ 1, i ∈ K. (45c)

Similar to the problem (P3), the problem (P6) can also be
solved by invoking a three-step process to cyclically optimize
the variables w2, Pi, αk and βk.

Step 1) When w2 and θk are given, the optimal α◦k and β◦k

are given by

α◦k = γk,2, (46)

β◦k =

√
1 + α◦kAk

Bk
. (47)

Step 2) When αk, βk and Pi are fixed, the optimization
problem (P6) can be solved similar to Step 2) in Sec-
tion III-B. Specifically, define gHk,i =

√
Piθ̃

H
i diag{fHk,i}Hi,

U =
∑K
k=1 |βk|2

(
hkhHk +

∑K
i=1 gk,igHk,i

)
, and v =

∑K
k=1√

1 + αkβkgk,k. Note that
√
Pi and θ̃i denote the temporal

optimization results in the last iteration. Then, the objective
function is further expressed as

max
w2

f(w2, Pi, αk, βk)⇐⇒ min
w2

wH2 Uw2 − 2Re{wH2 v},
(48)

The Lagrangian associated with this problem is given by

L(w2, η) = wH2 Uw2 − 2Re{wH2 v}+ η
(
wH2 Iw2 − 1

)
, (49)

where η represents the Lagrange multiplier associated with the
constraint. By setting ∂L(w2,η)

∂w2
= 0, we can obtain the optimal

w◦2, which is given by

w◦2 = (ηI + U)
−1 v, (50)

η◦ = min
{
η ≥ 0 : wH2 Iw2 ≤ 1

}
. (51)

Step 3) When αk, βk and w2 are fixed, the problem (P6)
is simplified as

(P7) max
Pi

K∑
k=1

[
2
√
1 + αkRe{

√
Pkβ

∗
k θ̃

H
k diag{fHk,k}Hkw2}

− |βk|2
K∑
i=1

Pi|θ̃Hi diag{fHk,i}Hiw2|2
]
, (52a)

s.t. 0 ≤ Pi ≤ 1, i ∈ K. (52b)

Clearly, this problem is convex and easily solved.

B. Joint Cluster Operation Mode

This subsection considers the joint cluster operation mode,
in which the K element clusters collaborate to serve K single-
antenna MEC servers. In other words, the K element clusters
are regarded as K equivalent elements, which are able to
achieve joint passive beamforming to send K subtasks to the
K MEC servers via BackCom. Thus, the received signal at

yk,2 =
√
P
[
fHk,1, f

H
k,2, . . . , f

H
k,K

]
Θ1 0 0 0
0 Θ2 0 0

0 0
. . . 0

0 0 0 ΘK




H1

H2

...
HK

w2s+
√
PhHk w2s+ nk =

√
P
[
θH1 ,θ

H
2 , · · · ,θHK

]


diag{fHk,1}H1

diag{fHk,2}H2

...
diag{fHk,K}HK

w2s+
√
PhHk w2s+ nk =

√
P

K∑
i=1

θHi diag{fHk,i}Hiw2s+
√
PhHk w2s+ nk. (38)
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TABLE I
SIMULATION PARAMETERS.

Parameter Value
Rician factor from PB to IRS or MEC servers κ1 2

Rician factor from IRS to MEC servers κ2 3
Distance from PB to IRS dpi 60 m

Element number of IRS L 64
Average distance from PB to MEC servers dpm 65 m

Antenna number of PB 4
Antenna gain of the PB 30dBi

Transmit power of the PB P 6 dBW
Power of all noise σ2 10−8 W

Communication bandwidth W 106 Hz
Energy harvesting efficiency of IRS χ 0.8

Local computing frequency of the CPU fc 5× 108 Hz
Required number of CPU cycles Cc 100

Energy consumption coefficient of processor’s chip εc 10−26

Time block T 0.1 s
Number of active antennas replacing IRS Na 2 or 4
Power of active antennas replacing IRS Pa 18 dBm or 9 dBm

the k-th MEC server is given by

yk,2 =
√
PmHs$kw2 +

√
PhHk w2s+ nk

=
√
P

(
K∑
i=1

mH
i xi

)
$kw2 +

√
PhHk w2s+ nk, (53)

where

$k =


θ̃H1 diag{fHk,1}H1

θ̃H2 diag{fHk,2}H2

...
θ̃HKdiag{fHk,K}HK

 . (54)

For the sake of easy control, θ̃1 can be set as a unit random
complex vector, such as 1. It is not difficult to observe that
(53) has a similar form to (4). Clearly, the rate maximization
problem of IRS-BackCom in the joint cluster operation mode
can be solved using the same method as Section III-B, and
thus we don’t repeat here.

C. Complexity analysis

The problem (P6) is solved by three steps. The complexity
of the first step is given by O{2KNL}. The second step
involves the matrix inverse operation and the bisection method,
thus its complexity is determined by O{N3 log2(ηmax−ηmin)}.
Using the IPM method, the complexity of the third step is
approximately given by O{K3+2KNL}. Assuming that the
iteration number is Tite, the complexity of the problem (P1) in
the independent cluster operation mode is approximately given
by Cindependent = TiteO{N3 log2(ηmax−ηmin)+K

3+4KNL)}.
For joint cluster operation mode, it is performed similar to
Section III-B with lower complexity, which is given by

Cjoint =
Tite

ε

√
2K(N + 1) + 4K

[
8nK(N + 1)3

+ 4n2K(N + 1)2 + 8(n2 + 2n)K
]
, (55)

where n = O{K(K + 1)2}.

V. SIMULATION RESULTS

In this section, numerical simulations will be conducted to
show the communication performance of wireless powered
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Fig. 3. Convergence behavior of using the three-step process to maximize
the sum rate of IRS-BackCom in a random observation.

MEC assisted by IRS-BackCom. In simulations, it is assumed
that all involved channels are slowly fading, while all channel
gains remain unchanged in a time block and obey Rician dis-
tribution across a great many blocks. All involved path losses
are given by PL = PL0−25 lg (d/d0) dB, where PL0 = -30 dB
represents the path loss at d0, d is the transmission distance
and d0 = 1m denotes the reference distance. Moreover, the
Rician factors from the PB to the IRS and from the PB to
the MEC servers are denoted by κ1, while those from the IRS
to the MEC servers are given by κ2. Since BackCom occurs
only in the front half-sphere of the IRS, an additional 3 dBi
gain needs to be considered for each element. Assuming that
the directional antenna is employed at the PB, there exists an
antenna gain of 30 dBi from the PB to the IRS. Note that the
proposed strategy and scheme in this paper are also suitable
to other channel models.

This section will present the proposed three schemes and
two counterparts. For convenience, they are represented by
some simple legends as follows.

• Beamforming: Each element of IRS is individually con-
trolled to realize wireless powered MEC assisted by IRS-
BackCom, as detailed in Section II and III.

• IndependentCluster: Element clustering of IRS is em-
ployed, where one cluster serves a single-antenna MEC
server, as detailed in Section IV-A.

• JointCluster: Element clustering of IRS is employed,
where element clusters collaborate to serve K single-
antenna MEC servers, as detailed in Section IV-B.

• ActiveAntennas: Using an active transmitter to offload
computational bits instead of IRS-BackCom. The trans-
mitter has the same position as the IRS, and its transmit
power and antenna number are Pa and Na, respectively.

• RandomPhase: The phase of each element at the IRS
is generated randomly and the amplitude is set as one to
realize wireless powered MEC assisted by IRS-BackCom.

TABLE I lists some important parameters. When some
parameters are investigated in the following simulation figures,
they are variables rather than the values given in TABLE
I. Since multiple MEC servers are involved, the distances
from the PB to them are generated from the interval [dpm-
10, dpm+10] randomly and uniformly, while those from the
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Fig. 4. The relationship between the sum computational bits Rb + Rc of
system and the element number L of IRS.
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Fig. 5. The effect of element cluster number M of IRS on the sum
computational bits Rb +Rc of system.

IRS to them are taken from the interval [dim-10, dim+10].
In Section III-B, the three-step process is employed

to maximize the sum rate of IRS-BackCom Rsum =∑K
k=1 log (1 + γk,2). Fig. 3 presents the sum rate Rsum in

terms of the iteration number Tite in a random observation.
From Fig. 3, we observe that all curves converge very quickly.
From many observations, we also find that the scheme of
IndependentCluster does not always have a good convergence.
In this case, the best result in the iterative process (the
maximum number of iteration is set as 100) is used as a
suboptimal solution.

Fig. 4 plots how the sum computational bits Rb + Rc of
system depends on the element number L of IRS. From Fig.
4, it is clearly seen that the sum computational bits grow up
with the elements of IRS increasing expect for the scheme of
ActiveAntennas. The reason is that an increase in the elements
of IRS is beneficial to harvesting or reflecting more power
of wireless signal from the PB. However, the rate of growth
tends to slow down as the element number becomes large.
There are two possible reasons: i) The energy consumption
T2Lµ at IRS is a function of the element number; ii) The data
offloading rate is a sum of logarithm functions of the SINRs at
MEC servers, which have a positive relation with the element
number of IRS.

Additionally, from Fig. 4 we observe that the scheme
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Fig. 6. The relationship between the sum computational bits Rb + Rc of
system and the transmit power P of the PB.
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Fig. 7. The relationship between the sum computational bits Rb + Rc of
system and the average distance dim from the IRS to the MEC servers.

of Beamforming yields the best performance, followed by
JointCluster, IndependentCluster and RandomPhase in all the
BackCom schemes. That is primarily because more elements
are individually optimized to suppress co-channel interference.
Compared to ActiveAntennas, the BackCom schemes may
achieve a comparable or better communication performance
with the given transmit power and antenna number. This result
indicates IRS-BackCom can substitute the active transmission
to a certain extent. Fig. 5 depicts how the element cluster
number M affects the sum computational bits Rb + Rc of
system in the scheme of JointCluster. From Fig. 5, it is not
difficult to find that an increase in M contributes to improving
Rb +Rc. The reason is that the elements of IRS are regulated
more critically.

Fig. 6 and Fig. 7 show how the sum computational bits
Rb +Rc of system is affected by the transmit power P of the
PB and the average distance dim from the IRS to the MEC
servers, respectively. From the two figures, we observe that
Rb + Rc grows up when P becomes higher. However, the
growth rate is slowing down. On the contrary, as dim increases,
Rb+Rc decreases but the rate of descent slows down gradually.
The reason of these results in the final analysis is that the
received power at the MEC servers is reduced.

Fig. 8 presents the relationship between the sum compu-
tational bits Rb + Rc and the number K of MEC servers.
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Fig. 8. The relationship between the sum computational bits Rb + Rc of
system and the number of the MEC servers.

Note that here the element number of IRS is set as L =
K × floor(100/K), where floor(x) is a function of x and
rounds x to the nearest integer less than or equal to it. It is
not difficult to find that the sum computational bits go up with
the number of MEC servers for the schemes of Beamforming,
ActiveAntennas and JointCluster, while the schemes of Ran-
domPhase and IndependentCluster have exactly the reverse
results. These results indicate the communication performance
can be improved if the degree of user freedom is deeply
exploited. On the contrary, spatial multiplexing may result in
stronger mutual interference if the transmitter and receivers
are not well coordinated.

VI. CONCLUSIONS AND FUTURE WORKS

This paper proposed to apply IRS-BackCom in the MEC
network and then maximized sum computational bits. By
jointly optimizing the beamforming vector at the PB, the
backscatter matrix at the IRS, the time scheduling of two-phase
process, as well as the time of local computing, sum compu-
tational bits were maximized. In addition, element clustering
was proposed to realize BackCom with two cluster operation
modes presented, namely independent cluster operation mode
and joint cluster operation mode. According to numerical
results, it can be concluded that: 1) As an alternative to
active antennas, IRS can be leveraged for EH and BackCom,
achieving computational data offloading in a self-sustainable
wireless powered manner; 2) The achievable performance
by the scheme of Beamforming is superior to JointCluster
RandomPhase and IndependentCluster, but the complexity of
Beamforming is the highest; 3) The sum computational bits are
improved, when the element number and the transmit power
increase or the average distance from the IRS to the MEC
servers shortens; 4) The sum computational bits go up with
the number of MEC servers for the schemes of Beamforming,
ActiveAntennas and JointCluster, while the schemes of Ran-
domPhase and IndependentCluster have exactly the reverse
results.

Based on this work, several research agendas worthy of fur-
ther investigation are as follows. 1) Considering that channel
estimation is extremely important, it is necessary to investigate
how to estimate channel information accurately and quickly for

the scenario of IRS-BackCom in more depth; 2) Considering
that the computational complexity of the proposed optimiza-
tion scheme is high, it is of significance to design an efficient
algorithm; 3) In addition to the partial offloading strategy in
this paper, the binary offloading strategy needs to be studied;
4) How to apply IRS to multi-tier computing systems is a
promising research direction.
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