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Interference Management of Analog Function
Computation in Multi-Cluster Networks

Haoyu Zhang, Li Chen, Nan Zhao, Senior Member, IEEE,
Yunfei Chen, Senior Member, IEEE, and F. Richard Yu, Fellow, IEEE

Abstract—Computation over multiple access channels (Co-
MAC) has been proposed to solve the problem of spectrum
scarcity in wireless networks, which combines communication
and computation efficiently using the superposition property of
wireless channels. In this paper, we consider a multi-cluster
CoMAC network, whose performance is affected by the inter-
cluster interference and the non-uniform fading. To minimize the
sum mean squared error of signals aggregated at different fusion
centers (FCs), we propose a transceiver design for multi-cluster
CoMAC. Specifically, we adopt a uniform-forcing transmitter
design to formulate the receiver design as a quadratic sum-
of-ratios problem with nonconvex quadratic constraints. Then,
we propose a branch-and-bound algorithm to find its optimal
solution with a given error tolerance. To solve the problem in
a decentralized way, we develop a distributed algorithm based
on the primal decomposition theory. Each subproblem is solved
by using the successive convex approximation method. Further
combining Lagrange duality, we derive the optimal solution
structure of each subproblem, based on which we can find the
solution with lower complexity. Simulation results demonstrate
the effectiveness of the proposed distributed transceiver design.

Index Terms—Computation, interference management, multi-
ple access channel, multiple cluster, transceiver design

I. INTRODUCTION

FUTURE wireless networks need to support the ubiquitous
deployment of massive nodes [1]. How to quickly col-

lect and process data from these dense nodes with limited
spectrum is a challenging issue. The traditional “transmit-
then-compute” scheme based on orthogonal multiple access
will result in excessive latency and low efficiency in spectrum
utilization. Since future wireless networks are more interested
in the fusion of massive data rather than the individual data,
a seminal scheme, called computation over multiple access
channels (CoMAC), was proposed to achieve ultrafast data
aggregation [2]. It exploits the signal-superposition property
of multiple access channel (MAC) to compute the desired

This research was supported by National Key R&D Program of China
(Grant No. 2021YFB2900302), and National Natural Science Foundation of
China (Grant No. 61601432). (Corresponding author: Li Chen.)

Haoyu Zhang and Li Chen are with the Department of Electronic En-
gineering and Information Science, University of Science and Technol-
ogy of China, Hefei 230027, China (e-mail: hyzhangY@mail.ustc.edu.cn;
chenli87@ustc.edu.cn).

Nan Zhao is with the School of Information and Communication Engi-
neering, Dalian University of Technology, Dalian 116024, China (e-mail:
zhaonan@dlut.edu.cn).

Yunfei Chen is with the School of Engineering, University of Warwick,
Coventry CV4 7AL, U.K. (e-mail: yunfei.chen@warwick.ac.uk).

F. Richard Yu is with the Department of Systems and Computer En-
gineering, Carleton University, Ottawa, ON K1S 5B6, Canada (e-mail:
richard.yu@carleton.ca).

functions of data at distributed nodes. These desired functions
are called nomographic functions, which can be represented
as a post-processed sum of pre-processed node readings [3].

The idea of CoMAC originates from a pioneer work on
function computation [2]. Instead of fighting the inter-node in-
terference caused by concurrent transmissions [4], it harnesses
interference to facilitate computation by designing a structured
code. As the number of nodes grows, the coding scheme
becomes degenerated. To maintain the superior abilities the
coding provides, a user scheduling paradigm was presented in
[5] to search good nodes for CoMAC. Coding has been exten-
sively applied in many cases for CoMAC, such as the case of
bivariate Gaussian source [6] and correlated Gaussian source
[7]. While considering independent Gaussian sources, uncoded
analog CoMAC, where transmitted signals are merely scaled
from the sensing data, can outperform CoMAC with coding
[8]. Many follow-up works on the analog CoMAC have been
proposed due to its low complexity and high energy efficiency.
One vein of this research focuses on the theoretical properties
and the pre-processing and post-processing functions design
[9]–[11].

It is worth mentioning that the above research on analog
CoMAC does not consider the fading property of practical
MAC. CoMAC requires signal alignment, which refers to
aligning the received magnitudes of multiuser signals. Differ-
ent fading at distributed nodes will bring challenges to signal
alignment, which can be coped with by the transceiver design.
Transceivers for single-function CoMAC were investigated in
[12] and [13], where each node is equipped with a single
antenna to support uni-modal sensing. In [12], a transmission
scheme of channel inversion was adopted to combat the non-
uniform fading of different nodes. Then, the computation-
optimal transmitting-receiving policy was derived in [13].
Specifically, nodes with the smallest channel coefficients
transmitted signals with full power, while others were of a
channel-inversion type. These works were all about CoMAC
of scalar-valued functions. Future wireless networks equipped
with large-scale arrays will make it possible for CoMAC to
support vector-valued function computation. Such studies have
enabled the fusion center (FC) to compute multiple functions
simultaneously to realize multi-modal sensing [14]. Besides
the non-uniform fading, the implementation of CoMAC faces
other practical challenges, such as massive channel state in-
formation (CSI) requirement for the FC. When the number of
nodes is large, traditional individual CSI acquisition schemes
will incur large latency [15], [16]. To tackle this challenge,
several novel signaling procedures were proposed to reduce
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the latency induced by massive CSI acquisition [17], [18].
Subsequently, the authors in [19] presented an automatic
repeat request based CoMAC scheme to avoid massive CSI
aggregation. To further enhance the performance of CoMAC,
an advanced wireless technology called intelligent reflecting
surface was applied to improve poor channel conditions by
reconfiguring its propagation environment [20], [21].

Analog CoMAC has recently found a new application in
distributed machine learning. Future wireless networks will be
required to support ubiquitous artificial intelligence services
from the core to the end devices of the networks, which
will result in heavy communication overheads [22], [23].
CoMAC can be applied in this area as a communication-
efficient technique, e.g., transceivers were proposed to enable
each node to concurrently send its gradient to the server via
an MAC, based on which fast global model aggregation was
realized at the server [24], [25].

From the above discussion, it is noted that the transceiver
designs are only developed for the single-cluster CoMAC
network so far. In order to realize ubiquitous coverage, prac-
tical wireless networks often contain multiple clusters [26],
each with a FC to support the fast data aggregation. Thereby,
CoMAC for a multi-cluster network is of great interest, where
each FC only serves the nodes in its cluster to complete its
CoMAC task. Simultaneous tasks in different clusters will
make FCs suffer from inter-cluster interference. Compared
with conventional multi-cluster networks [27], [28], multi-
cluster CoMAC concerns more on the computed functions
of simultaneous data streams, which leads to different inter-
cluster interference structure. Except for interference, the
performance of multi-cluster CoMAC is also affected by signal
misalignment errors. How to manage inter-cluster interfer-
ence while suppressing signal misalignment errors has been
studied in very few works [29], [30]. Only considering a
two-cluster network with high transmit signal-to-noise ratio
(SNR), a scheme called signal-and-interference alignment was
proposed to simultaneously eliminate inter-cluster interference
and realize signals alignment [29]. With given single-antenna
receiver, Cao et al. in [30] investigated the optimal transmit
power policies of each node by utilizing a set of interference
temperature (IT) constraints. However, for a general multi-
cluster CoMAC network, how to design its corresponding
transceivers has never been studied before.

Motivated by the above observation, we consider a general
multi-cluster CoMAC network and study how to reduce the
mean squared errors (MSEs) between the target function
values and the computed ones at different FCs. Assume that
there exists a multi-antenna FC in each cluster to aggregate
data streams from nodes it serves. Due to the path loss and
the low transmit power of nodes, a node may be connected to
more than one FC. The concurrent transmission of all nodes
makes each FC exposed to the inter-cluster interference. To
tackle this issue, we present a transceiver design to suppress
the computation errors induced by signal misalignment, in-
terference and noise. A sum-MSE minimization problem is
formulated under per-node power constraints for the joint
design of receivers at FCs. A global optimal scheme with
a given relative error tolerance ε is proposed to solve it. In

addition, to reduce the computational complexity, a suboptimal
algorithm is presented to find a high-quality approximate
solution. The main contributions of this paper are summarized
as follows.

• Multi-Cluster CoMAC Problem Formulation: We formu-
late a quadratic sum-of-ratios problem (QSRP) with non-
convex quadratic constraints to design new transceivers
for multi-cluster CoMAC. The objective function is com-
posed of inter-cluster interference and noise, in which re-
ceivers are coupled. Note that this problem is challenging
due to the non-convexity of both the objective function
and the constraints.

• ε-Optimal Branch-and-Bound Algorithm: We design a
branch-and-bound (BB) scheme to find the ε-optimal so-
lution to the formulated problem. By using the argument
cut based relaxation techniques in [31], we formulate a
convex relaxation of the QSRP to compute the lower
bound of the global optimum. Combined with “branch”,
“upper bound” and other procedures shown later on, the
global optimal solution can be obtained with guaran-
teed convergence. The proposed BB scheme provides an
important benchmark for measuring the performance of
suboptimal algorithms for the same problem.

• Distributed Low-Complexity Algorithm: Since each FC
cannot tolerate the inherent high complexity of the BB
algorithm and only has local CSI in the practical imple-
mentation, we also propose a distributed low-complexity
algorithm based on the primal decomposition theory
[32]. More specifically, we introduce slack variables to
constrain the transmit power of nodes that interfere with
each FC. With given slack variables, the original problem
can be decomposed into several parallel subproblems.
Each FC can use the successive convex approximation
(SCA) method to independently solve its own subprob-
lem. Then, the slack variables can be updated based on
the master problem. By solving the master problem and
subproblems iteratively, the MSE of each cluster can be
reduced parallelly until the algorithm converges. When
the number of antennas is sufficiently large, we also
provide an asymptotically optimal beamformer design in
closed-form for the formulated QSRP.

The remainder of the paper is organized as follows. Section
II presents the system model and the problem formulation for
multi-cluster CoMAC. Section III introduces the proposed cen-
tralized global optimal BB algorithm. A distributed algorithm
is developed in Section IV. Section V provides the simulation
results. Concluding remarks are given in Section VI.

Notations: R and C denote the real and complex spaces,
respectively. Bold lowercase and bold uppercase letters denote
column vectors and matrices, respectively. The operators (·)T ,
(·)∗ and (·)H correspond to the transpose, conjugate and
Hermitian transpose, respectively. <{x} and = (x) refer to the
real and imaginary parts of a complex number x, respectively.
‖a‖ denotes the Euclidean norm of the vector a. |C| denotes
the number of elements in a set C. Finally, 0L and 1L denote
the all-zero vector of dimension L and the all-one vector of
dimension L, respectively.
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Fig. 1. CoMAC system model. (a) Single-cluster CoMAC. (b) Multi-cluster CoMAC.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first discuss the transceiver design for
single-cluster CoMAC and then extend it to multi-cluster
CoMAC networks to combat the inter-cluster interference and
non-uniform fading.

A. Single-Cluster CoMAC

As illustrated in Fig. 1a, there are M nodes and a FC in the
network. Each node is equipped with a single antenna and the
FC is equipped with Nr antennas. The data of the m-th node is
sm ∈ R. The FC aims at computing the desired function based
on the signals transmitted by nodes, which can be expressed
as

f = ψ
[ M∑
m=1

ϕm (sm)
]
, (1)

where ϕm (·) : R → R is the pre-processing function of
the m-th data and ψ (·) : R → R is the post-processing
function of the FC. By choosing specific ϕm (·) and ψ (·),
some common functions (e.g., arithmetic mean function and
polynomial function) can be computed.

The pre-processed signal at the m-th node is xm = ϕm (sm)
with xm ∈ R, and the received signal of the FC after
concurrent transmissions of all nodes is

y =

M∑
m=1

hmwmxm + z, (2)

where wm ∈ C is the transmitter scalar of the m-th data, hm ∈
CNr is the wireless channel vector and z ∈ CNr represents the
noise vector with each element distributed as CN

(
0, σ2

n

)
. The

pre-processed signals are assumed to be normalized to have
unit variance, i.e., E

{
x2m
}

= 1,m = 1, 2, . . . ,M , and satisfy
E {xmxn} = 0,∀m 6= n and E {xmzl} = 0, l = 1, 2, . . . , Nr,
where zl is the l-th element of z. The desired value at the
FC is the summation part of the desired function in (1), i.e.,
x =

∑M
m=1 ϕm (sm). The estimated value of x, denoted as x̂,

is given by

x̂ =
1
√
η

aHy =
1
√
η

M∑
m=1

aHhmwmxm +
aHz
√
η
, (3)

where a ∈ CNr is the receiver and η is a normalizing factor.
Compared with x, the distortion of x̂ is given by

MSE (x̂, x) = E
[
|x̂− x|2

]
=

M∑
m=1

∥∥∥∥aHhmwm√
η

− 1

∥∥∥∥2 +
σ2
n‖a‖

2

η
,

(4)

which can be used to measure the performance of the single-
cluster CoMAC1.

The non-uniform fading of different nodes may result in
unacceptable signal misalignment error in (4). In order to
combat it, the novel uniform-forcing transceiver design in [12]
is given as follows.
Uniform-forcing transmitter: Fixing the beamforming vector
a, each transmitter can be computed as

wm =
√
η
(
aHhm

)−1
,∀m. (5)

Considering each node’s power constraints |wm|2 ≤ Pt,∀m,
η can be computed as

η = Ptmin
m

∥∥aHhm
∥∥2. (6)

Single-cluster receiver: Fixing transmitters wm,∀m, the
beamforming vector a can be obtained by multiplying the
solution to the following problem by a scaling factor.

P0 : min
a
‖a‖2

s.t.
∥∥aHhm

∥∥2 ≥ 1,∀m.
(7)

The above problem has the same form as the single-
group multicast beamforming design. It is NP-hard due to its
nonconvex quadratic constraints. An approximate solution to
it can be obtained by semidefinite relaxation (SDR) or SCA
method [12], and its global optimal solution can be found by
the BB scheme [33].

B. Multi-Cluster CoMAC Network

In this subsection, we extend the single-cluster CoMAC to a
multi-cluster network with M spatially distributed nodes and

1The distortion of f̂ = ψ (x̂) with respect to f = ψ (x) is measured
by MSE(f̂ , f). According to Cauchy continuity and the continuity of the
function ψ (·), if MSE (x̂, x) → 0, MSE(f̂ , f) → 0 holds, so that
MSE (x̂, x) can replace MSE

(
f̂ , f

)
as the performance metric of single-

cluster CoMAC.
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K FCs. A quantitative example is shown in Fig. 1b. Each
FC is equipped with Nr antennas and each node is equipped
with a single antenna. The multi-cluster system model is
characterized by the sets Ck,Dk, Ek, Ik and I ′k,∀k, i.e.,

1) The set of nodes belonging to the k-th cluster is denoted
by Ck and for each k there exists at least one k′ 6= k such
that Ck ∩ Ck′ 6= ∅. The nodes belonging to both the k-th
and the k′-th clusters (nodes in the overlaps Ck ∩Ck′ ) are
called “common nodes”, which will cause interference
between clusters, while the interference generated by
nodes i /∈ Ck can be negligible at the k-th FC and is
treated as noise.

2) The k-th FC takes the nodes in Ck into consideration, but
only serves the nodes in Dk ⊆ Ck. The common nodes in
Dk that cause interference to the l-th FC can be denoted
as Cl ∩ Dk.

3) Ek denotes the set of the non-common nodes in Dk.
4) Ik denotes the set of clusters to which the nodes inter-

fering with the k-th FC belong.
5) I ′k denotes the set of clusters interfered by nodes in Dk.
The i-th node in Dk can be labeled as the (k,i)-th node with

i ∈ {1, 2, ..., |Dk|} and k ∈ {1, 2, ...,K}. The reading of the
(k,i)-th node is sk,i. The desired function of the k-th FC can
be written in the form as

fk = ψk

[ ∑
i∈Dk

ϕk,i (sk,i)
]
, (8)

where ϕk,i (·) : R → R is the pre-processing function of
the (k,i)-th node, and ψk (·) : R → R is the post-processing
function of the k-th FC.

Let wk,i ∈ C be the transmitter scalar of the (k,i)-th node
and hk,i,l ∈ CNr be the wireless channel vector from the (k,i)-
th node to the l-th FC. Throughout the rest of the paper, we
assume that hk,i,l ∼ CN (0, κk,i,lINr ) and is independent of
hk′ ,i′ ,l,∀

(
k, i
)
6=
(
k

′
, i

′)
. After concurrent transmissions of

the pre-processed signals xk,i = ϕk,i (sk,i) ,∀k,i, the received
signal of the k-th FC, denoted as yk, is given as

yk =
∑
i∈Dk

hk,i,kwk,ixk,i +
∑
l∈Ik

∑
j∈Ck∩Dl

hl,j,kwl,jxl,j + zk,

(9)
where zk ∈ CNr is the noise vector with each element
distributed as CN

(
0, σ2

n

)
. Each xk,i satisfies E{x2k,i} =

1,∀i ∈ Dk,∀k, E {xk,ixl,j} = 0,∀ (k, i) 6= (l, j) and
E {xk,izk,l} = 0, l=1,2, . . . ,Nr.

C. Problem Formulation
The received signal of the k-th FC is processed by the

receiver ak ∈ CNr . Then, the estimated value before post-
processing at the k-th FC can be denoted as

x̂k =
∑
i∈Dk

xk,i︸ ︷︷ ︸
desired signal

+
∑
i∈Dk

(
1
√
ηk

aHk hk,i,kwk,i − 1

)
xk,i︸ ︷︷ ︸

signal misalignment error

+

∑
l∈Ik

∑
j∈Ck∩Dl

1
√
ηk

aHk hl,j,kwl,jxl,j︸ ︷︷ ︸
inter−cluster interference

+
1
√
ηk

aHk zk︸ ︷︷ ︸
noise

(10)

where
√
ηk is the normalizing factor of the k-th cluster. Similar

to the single-cluster CoMAC, the mean squared error of x̂k can
be measured as E[

∣∣x̂k −∑i∈Dk xk,i
∣∣2]. Then, the performance

of the multi-cluster CoMAC system is given by (11), as shown
at top of the next page.

Following a similar idea of the transceiver design to the
single-cluster network, the transceiver for multi-cluster Co-
MAC can be designed as follows.
Uniform-forcing transmitter: Fixing beamforming vectors
ak,∀k, each transmitter can be computed as

wk,i =
√
ηk
(
aHk hk,i,k

)−1
,∀i ∈ Dk,∀k. (12)

The transmitters should satisfy |wk,i|2 ≤ Pt,∀k, i, and then
ηk can be computed as

ηk = Ptmin
i

∥∥aHk hk,i,k
∥∥2,∀i ∈ Dk,∀k. (13)

Multi-cluster receiver: Fixing transmitters wk,i,∀k, i, the
design of receivers is given in the following proposition.

Proposition 1 (Receiver Design for Multi-cluster CoMAC):
The receiver of each FC can be obtained by solving the
following problem

P1 : min
{ak}

K∑
k=1

∑
l∈Ik

∑
j∈Ck∩Dl

∥∥aHk hl,j,k
∥∥2∥∥aHl hl,j,l
∥∥2 +

K∑
k=1

σ2
n

Pt
‖ak‖2

s.t.
∥∥aHk hk,j,k

∥∥2 > 1,∀j ∈ Dk,∀k.
(14)

Proof: See Appendix A.
Compared with P0 in (7), P1 is more complex due to the

non-convexity of the objective function and constraints. In the
following sections, we first find a global optimal value of P1
as the network performance benchmark. We then consider a
practical scenario where each FC only has the CSI of the nodes
within its own cluster, and find an approximate solution with
polynomial complexity.

III. BB-BASED OPTIMIZATION ALGORITHM

In this section, we assume that each FC has global CSI and
propose a centralized global optimization algorithm to solve
P1 based on the BB scheme, which is often used to obtain the
global optimal solutions for nonconvex problems.

A. Overview of the BB Algorithm

The BB algorithm is an enumeration algorithm, which
continuously divides the feasible region into smaller sub-
regions. The lower bound of the original problem over a
given subregion can be obtained by solving the related convex
relaxation problem over the same region. The minimum value
among the lower bounds from all obtained subregions is
selected as the current optimal lower bound. The current
optimal upper bound can be obtained from some other local
optimization/heuristic algorithms which can generate the best
known feasible solution. A subregion is discarded if the lower
bound on it is larger than the current optimal upper bound,
and we call it as an inactive subregion. As the number of
subregions in the partition increases, the gap between the upper
bound and lower bound decreases. The algorithm terminates
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MSE =

K∑
k=1

E

[∣∣∣∣x̂k − ∑
i∈Dk

xk,i

∣∣∣∣2
]

=

K∑
k=1

∑
i∈Dk

∥∥∥∥aHk hk,i,kwk,i√
ηk

− 1

∥∥∥∥2 +

K∑
k=1

∑
l∈Ik

∑
j∈Ck∩Dl

∥∥aHk hl,j,kwl,j
∥∥2

ηk
+

K∑
k=1

σ2
n‖ak‖

2

ηk
.

(11)

when the non-decreasing lower bounds and non-increasing
upper bounds are close enough to each other. Constructing
a tight convex relaxation of the original nonconvex problem is
crucial, which determines the quality of the upper and lower
bounds. With better lower and upper bounds, more inactive
subregions can be deleted, and the algorithm will converge
faster.

Recently, the BB algorithm has been applied in the beam-
forming design of wireless networks, e.g., the single-group
multicast beamforming problem [31]. Inspired by the argument
cut based relaxation in [31], we propose a novel BB method
for globally solving P1.

B. Convex Relaxation Problem

In this subsection, we formulate a convex lower bounding
function for the nonconvex objective function in P1 and relax
the nonconvex constraints.

Lemma 1 (Lower Bound of Objective Function): The lower
bounding function of the objective function f0 in P1, denoted
as Lf0, can be expressed as the following quadratic function.

Lf0 =

K∑
k=1

∑
l∈Ik

∑
j∈Ck∩Dl

ll,j,l
∥∥aHk hl,j,k

∥∥2 +

K∑
k=1

σ2
n

Pt
‖ak‖2,

(15)
where ll,j,l and ul,j,l are positive scalars satisfying

1√
ll,j,l

≥
∥∥aHl hl,j,l

∥∥ ≥ 1
√
ul,j,l

≥ 1,∀l,∀j ∈ Dl/El. (16)

Proof: It follows from (16) that∥∥aHk hl,j,k
∥∥2∥∥aHl hl,j,l
∥∥2 ≥ ll,j,l∥∥aHk hl,j,k

∥∥2 > 0, (17)

and thus Lf0 ≤ f0 holds.
Before relaxing the nonconvex constraints, we first trans-

form the constraints for non-common nodes into∥∥aHk hk,j,k
∥∥ > 1,∀k, ∀j ∈ Ek, (18)

If the (k, |Dk|)-th node is a non-common node, we can
further convert

∥∥aHk hk,|Dk|,k
∥∥ ≥ 1 to aHk hk,|Dk|,k ≥ 1 to

reduce the number of nonconvex constraints. This is because
that, for any ak satisfying

∥∥aHk hk,|Dk|,k
∥∥ ≥ 1, there always

exists a θk ∈ R such that exp (iθk) aHk hk,|Dk|,k ≥ 1. Treating
exp (−iθk) ak as a new optimization variable does not change
the structure of the original objective function f0. Next,
we introduce the following lemma to relax the nonconvex
constraints (16) and (18).

Lemma 2 (Convex Relaxation of Constraints): Define the
argument of aHk hk,j,k as ϕk,j , where ϕk,j ∈ [ϕ

k,j
, ϕk,j ], 0 <

0

A

B C

DE

Im

Re

, ,

1

k j ku
, ,

1

k j kl

Fig. 2. An illustration of the convex envelope Conv(Y
[0,π

2
]

k,j ).

ϕ
k,j
≤ ϕk,j < 2π. Let Y

[ϕ
k,j
,ϕk,j ]

k,j denote the set of ak defined

by the inequality (16) and S
[ϕ
k,j
,ϕk,j ]

k,j denote the set of ak de-
fined by the inequality (18). Suppose that ϕk,j−ϕk,j ≤ π, then

the convex envelope of S
[ϕ
k,j
,ϕk,j ]

k,j is given by (19), and the

convex envelope of Y
[ϕ
k,j
,ϕk,j ]

k,j is given by (20), as shown at
top of the next page, where ak,j = (cos(ϕ

k,j
) + cos(ϕk,j))/2

and bk,j = (sin(ϕ
k,j

) + sin(ϕk,j))/2.
Proof: The relaxation of (18) is same as [31, Proposition

1], and we omit its proof here for brevity. To prove that

Conv(Y
[ϕ
k,j
,ϕk,j ]

k,j ) is a relaxation of Y
[ϕ
k,j
,ϕk,j ]

k,j , we first

give an illustration on how Y
[0,π2 ]

k,j and Conv(Y
[0,π2 ]

k,j ) appear

in Fig. 2. Y [0,π2 ]

k,j is the filled region between the arc
_

AB

and the arc
_

CE, which is obviously a nonconvex set, and
Conv(Y

[0,π2 ]

k,j ) is the region bounded by five lines AB,
BC, AE, ED and CD. The points A, B, C, E are four

extreme points of the set Conv(Y
[ϕ
k,j
,ϕk,j ]

k,j ), which are(
1√
uk,j,k

cos
(
ϕk,j

)
, 1√

uk,j,k
sin
(
ϕk,j

))
,
(

1√
uk,j,k

cos
(
ϕ
k,j

)
,

1√
uk,j,k

sin
(
ϕ
k,j

))
,
(

1√
lk,j,k

cos
(
ϕ
k,j

)
, 1√

lk,j,k
sin
(
ϕ
k,j

))(
1√
lk,j,k

cos
(
ϕk,j

)
, 1√

lk,j,k
sin
(
ϕk,j

))
, respectively. Then

the lines AB, BC and AE are given by (20c), (20a) and (20b),
respectively. And the lines CD and ED are given by (20d)
and (20e), respectively, as CD and ED are perpendicular to
BC and AE, respectively.
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Conv(S
[ϕ
k,j
,ϕk,j ]

k,j ) =
{

ak| sin(ϕ
k,j

)<
{

aHk hk,j,k
}
− cos(ϕ

k,j
)=
{

aHk hk,j,k
}
≤ 0,

sin
(
ϕk,j

)
<
{

aHk hk,j,k
}
− cos

(
ϕk,j

)
=
{

aHk hk,j,k
}
≥ 0,

ak,j<
{

aHk hk,j,k
}

+ bk,j=
{

aHk hk,j,k
}
≥ a2k,j + b2k,j

} (19)

Conv(Y
[ϕ
k,j
,ϕk,j ]

k,j ) =
{

ak| sin(ϕ
k,j

)<
{

aHk hk,j,k
}
− cos(ϕ

k,j
)=
{

aHk hk,j,k
}
≤ 0, (20a)

sin
(
ϕk,j

)
<
{

aHk hk,j,k
}
− cos

(
ϕk,j

)
=
{

aHk hk,j,k
}
≥ 0, (20b)

ak,j<
{

aHk hk,j,k
}

+ bk,j=
{

aHk hk,j,k
}
≥
(
a2k,j + b2k,j

) 1
√
uk,j,k

, (20c)

cos(ϕ
k,j

)<
{

aHk hk,j,k
}

+ sin(ϕ
k,j

)=
{

aHk hk,j,k
}
≤ 1√

lk,j,k
, (20d)

cos(ϕk,j)<
{

aHk hk,j,k
}

+ sin(ϕk,j)=
{

aHk hk,j,k
}
≤ 1√

lk,j,k

}
. (20e)

When ϕk,j − ϕ
k,j

= 2π, ak ∈ Conv(S
[0,2π]
k,j ) is equiv-

alent to ak ∈ C and ak ∈ Conv(Y
[0,2π]
k,j ) is equivalent

to <
{

aHk hk,j,k
}
≤ 1/

√
lk,j,k. It is easy to verify that,

when the width of the interval [ϕ
k,j
, ϕk,j ] goes to zero,

the set Conv(S
[ϕ
k,j
,ϕk,j ]

k,j ) becomes S
[ϕ
k,j
,ϕk,j ]

k,j and the set

Conv(Y
[ϕ
k,j
,ϕk,j ]

k,j ) becomes Y
[ϕ
k,j
,ϕk,j ]

k,j , so the convex en-
velopes become tight.

Proposition 2 (Argument Cut based Relaxation Problem):
The convex relaxation of P1 can be formulated as

P2 : min
{ak}

K∑
k=1

∑
l∈Ik

∑
j∈Ck∩Dl

ll,j,l
∥∥aHk hl,j,k

∥∥2 +

K∑
k=1

σ2
n

Pt
‖ak‖2

s.t. (19),∀k, ∀j ∈ Ek
(20),∀k,∀j ∈ Dk/Ek,

(21)
which is a quadratic programming (QP) problem.

Proof: In Lemma 1, we give a lower bound of the
objective function in P1. In Lemma 2, we relax the nonconvex
constraints in P1 to convex ones. Therefore, P2 is a convex
relaxation problem of P1.

C. Proposed BB-Based Algorithm

To solve P2, we need to know the ranges of each
1/
∥∥aHl hl,j,l

∥∥2 in (16) and each ϕk,j in Lemma 2. Define
v = [d,ϕ] ∈ Rp+M+ , where the elements in d ∈ Rp+ denote
1/
∥∥aHl hl,j,l

∥∥2,∀l,∀j ∈ Dl/El, ϕ consists of the argument
variables {ϕk,j} and p =

∑K
k=1 |Dk/Ek| denotes the number

of common nodes. Let V , LBt and UBt denote the the range
of v, the optimal lower bound, and the optimal upper bound
of the optimal value of P1 at the t-th iteration, respectively.
Define lb (V ) and ub (V ) as the lower bound and the upper
bound over the box V , respectively. Let Ct denote a box list
and {V, lb (V ) , c} denote an item in Ct, where c is the optimal
solution to P2 over the box V . The initial range of v is defined
as Vinit = [v, v]. According to Lemma 1 and 2, the lower
vertices v and the upper vertices v can be given by

v→ 0p+M , v =
[
1Tp , 2π × 1TM

]T
,

where each element in v is a positive number approaching 0.
At the t-th iteration, select a box in Ct such that the lower

bound over it is the smallest one in Ct. Split the selected box
into two smaller sub-boxes. For each sub-box, find its lower
bound and upper bound. The current optimal lower bound is
updated as the minimum value among the lower bounds from
all obtained sub-boxes. The current optimal upper bound is
updated as the minimum value among the upper bounds from
all obtained sub-boxes. Discard the sub-boxes whose lower
bound is larger than the current optimal upper bound. The
detailed steps of the proposed BB algorithm are listed as
follows.

a) Branch: The bisection method is a widely used
branching rule for rectangular subdivision. Specifically, at the
t-th iteration, we select the box with the smallest lower bound
in Ct, denoted as V t, and split it along the longest edge
into two smaller ones, i.e., set l = arg maxn

{
vtn − vtn

}
and

jtl =
(
vtl + vtl

)
/2, split V t into the following two smaller

boxes
V tl =

{
θ ∈ V t|vtl ≤ θl ≤ jtl

}
V tr =

{
θ ∈ V t|jtl ≤ θl ≤ v̄tl

}, (22)

where θl is the l-th component of θ ∈ Rp+M .
b) Lower Bound: For each box V ∈ {V tl , V tr },

compute the lower bound lb (V ) by solving P2 over
the box V . Then Ct+1 can be formed by removing
V t from Ct and adding V tl and V tr if their lower
bounds are smaller than or equal to the current best up-
per bound UBt, i.e., Ct+1 = Ct\ {V t, lb (V t) , ct} ∪
{V ti , lb (V ti ) , cti|lb (V ti ) ≤ UBt, i = l, r}. The optimal lower
bound at the t-th iteration can be updated according to
LBt+1 = minV ∈Ct+1 lb (V ). Since we always solve the
relaxation problem in a smaller box V ∈ {V tl , V tr } than V t,
we can ensure that the optimal lower bound does not decrease
at each iteration.

c) Upper Bound: We can compute an upper bound by
finding a feasible solution to P1 (denoted as

{
ak
}

), which can
be obtained by appropriately scaling the optimal solution to P2
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ak =
âk

min
{{
· · · ,

∥∥∥âHk hk,j,k
∥∥∥ , · · ·}︸ ︷︷ ︸

∀j∈Ek

,
{
· · · ,√uk,j,k

∥∥∥âHk hk,j,k
∥∥∥ , · · ·}︸ ︷︷ ︸

∀j∈Dk/Ek

, 1
} , ∀k. (23)

(denoted as {âk}). Specifically, {âk} may not be feasible to
(16) and (18). Therefore, we use (23), as shown at top of the
next page, to scale {âk} to satisfy the constraints in (16) and
(18). Then, for each V ∈ {V tl , V tr }, the upper bound ub (V )
can be given as

ub (V ) =

K∑
k=1

∑
l∈Ik

∑
j∈Ck∩Dl

∥∥aHk hl,j,k
∥∥2∥∥aHl hl,j,l
∥∥2 +

K∑
k=1

σ2
n

Pt
‖ak‖2.

(24)
If the newly added boxes can provide a smaller upper bound
than the current best upper bound UBt, we can find a better
upper bound, i.e., UBt+1 = min {UBt, ub (V tl ) , ub (V tr )}, so
that we can ensure that the optimal upper bound does not
increase at each iteration.

d) Termination: For a given relative error tolerance, if

UBt − LBt

LBt
≤ ε, (25)

the BB algorithm terminates.
The overall BB-based algorithm for solving P1 is summa-

rized in Algorithm 1.

D. Convergence and Computational Complexity

As the length of the longest edge of the box V goes to zero,
the BB algorithm converges only when the gap between upper
and lower bounds also tends to zero. We provide the following
proposition to show that an ε-optimal value can be obtained
by the proposed BB algorithm.

Proposition 3 (ε-Optimal Value): For any given tolerance
ε, an ε-optimal value is always exists when the size of the
box V t ⊆ Vinit is small enough. More specifically, for any
given ε > 0, we can always find a δ ∈ (0, π/2) satisfying
p

′
/cos2 (δ) + Tmδ/cos2 (δ) − p

′
+ Ktan2 (δ) ≤ ε, where

p
′

=
∑K
k=1

∑
l∈Ik |Ck ∩ Dl| and Tm is a large positive num-

ber such that
∑K
k=1

∑
l∈Ik

∑
j∈Ck∩Dl 2/ll,j,l ≤ Tm. When

vtl − vtl ≤ 2δ, (ub (V t)− lb (V t))/lb (V t) ≤ ε holds, so
(UBt − LBt)/LBt ≤ ε holds.

Proof: See Appendix B.
Remark 1 (Convergence Analysis for the BB Algorithm):

From Proposition 3, when the box V t shrinks to a point, the
gap between the upper and lower bounds over V t becomes
sufficiently small and the proposed BB algorithm converges.
More precisely, when ε → 0, (UBt − LBt)/LBt will con-
verge to 0. Since LBt is uniformly bounded away from 0,
we can further obtain UBt − LBt → 0, which indicates that
the upper and lower bounds converge to the optimal value
of the formulated problem. Therefore, the convergence of the
proposed BB algorithm is guaranteed.

Remark 2 (Complexity Analysis for the BB Algorithm): The
volume of Vinit is 1p(2π)

M . Using the conclusion in [31,
Theorem 1], we can conclude that, for any given ε > 0, the

maximum number of iterations of the BB algorithm is given
by

Tmax =

⌈(
2π

δ

)M(
1

δ

)p⌉
+ 1, (26)

where δ is defined in Proposition 3. In each iteration, the
BB algorithm generates two branches, and each branch corre-
sponds to a QP problem P2. In the worst case, the number
of branches generated in the whole algorithm is 2 · Tmax.
Each QP problem can be solved by a generic interior-point
method (IPM). The complexity of IPM is on the order of
O((KNr)

3
L), where L denotes the quantity ln (1/ε) and ε

denotes the relative accuracy [34]. The worst-case computa-
tional complexity of the proposed BB algorithm is therefore
O
(

2 · Tmax(KNr)
3
L
)

.

Algorithm 1 BB-Based Algorithm

Initialization: Set the iteration index t = 0, V 0 = Vinit
and the tolerance ε. Solve P2 to find the initial lower bound
LB0 = lb

(
V 0
)

and c0. Obtain the initial upper bound
UB0 = ub

(
V 0
)

according to (23) and (24). Initialize C0 ←{
V 0, lb

(
V 0
)
, c0
}

.
Repeat

1: Select a box V t in Ct such that the lower bound lb (V t)
is the smallest one in Ct. Split V t along the longest edge
into two smaller ones V tl and V tr according to (22).

2: For each box V ti (i = l, r), find its lower bound lb (V ti )
by solving P2 and its upper bound ub (V ti ) according to
(23) and (24).

3: Update Ct+1 = Ct\
{
V t, lb (V t) , ct

}
∪
{
V ti , lb

(
V ti
)
, cti|

lb (V ti ) ≤ UBt, i = l, r
}

.
4: Update LBt+1 = min

V ∈Ct+1
lb (V ).

5: Update UBt+1 = min {UBt, ub (V tl ) , ub (V tr )}.
6: Set t = t+ 1.

Until (UBt − LBt)/LBt ≤ ε

IV. SCA-BASED DISTRIBUTED ALGORITHM

The BB algorithm in the previous section requires a cen-
tralized controller to coordinate all FCs, which may not be
practical in some applications. Therefore, we only use it as a
network performance benchmark. In this section, we consider
a more practical scenario without a centralized controller
and each FC only has the CSI of the nodes within its own
cluster. We propose a low-complexity distributed algorithm
by exploiting SCA and primal decomposition theory. To gain
more insights, we also consider a special case of each FC
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equipped with massive antennas and develop an asymptotically
optimal beamformer design in closed-form for P1.

A. SCA Transformation

Since all the receivers are coupled in the objective function
of P1, it is not easy to develop a distributed algorithm.
Inspired by the application of IT in beamforming [27], [28],
we introduce a set of slack variables {τk,j} to make P1
decomposable, which satisfy∥∥aHk hk,j,k

∥∥2 ≥ τk,j ,∀k, ∀j ∈ Dk/Ek. (27)

τk,j reflects the magnitude of the transmit power of the (k,j)-th
node. The larger it is, the smaller the transmit power will be,
so the smaller the interference level from the (k,j)-th node to
the FCs not serving it. To ease the notation, we denote τ as
a p× 1 vector composed of τk,j’s, ∀k, ∀j ∈ Dk/Ek. Then, an
equivalent problem of P1 can be formulated in the following
lemma.

Lemma 3 (Equivalent Problem of P1): P1 can be equiva-
lently transformed into

P3 : min
{ak},τ

K∑
k=1

∑
l∈Ik

∑
j∈Ck∩Dl

∥∥aHk hl,j,k
∥∥2

τl,j
+

K∑
k=1

σ2
n

Pt
‖ak‖2

(28a)

s.t.
∥∥aHk hk,j,k

∥∥2 ≥ τk,j ,∀k, ∀j ∈ Dk/Ek (28b)∥∥aHk hk,j,k
∥∥2 ≥ 1,∀k, ∀j ∈ Ek (28c)

τk,j ≥ 1,∀k, ∀j ∈ Dk/Ek. (28d)

Proof: See Appendix C.
It can be observed that {ak} and τ are coupled in (28a).

Thus, we adopt the following lemma to decouple them, i.e.,
Lemma 4 (Linearization of Hyperbolic Constraint): The

hyperbolic constraint∥∥aHk hl,j,k
∥∥2

τl,j
≤ ql,j,k (29)

can be converted into the following linear matrix inequality[
ql,j,k aHk hl,j,k(

aHk hl,j,k
)H

τl,j

]
< 0. (30)

Proof: Applying the Schur complement condition in [35],
(30) can be easily obtained from (29).

From Lemma 4, the convexity of the objective function
(28a) in P3 can be easily verified. Then, P3 is intractable only
due to the nonconvex constraints (28b) and (28c), which is
similar to the case of single-cluster CoMAC. It has been shown
that SCA outperforms SDR in [12]. Thus, we can apply the
similar SCA method in [12] to cope with constraints (28b)
and (28c), as given in the following lemma.

Lemma 5 (Convex Approximation of (28b) and (28c)):
The constraints (28b) and (28c) can be approximated by the
iterative relaxed linear constraints, i.e.,

2<
{

aHk hk,j,khHk,j,kc(s)k
}
−
∥∥∥hHk,j,kc(s)k

∥∥∥2 ≥ τk,j , (31)

2<
{

aHk hk,j,khHk,j,kc(s)k
}
−
∥∥∥hHk,j,kc(s)k

∥∥∥2 ≥ 1, (32)

where c(s)k is the solution at the (s−1)-th iterative optimization.
Proof: Considering auxiliary vector c(s)k ∈ CNr ,(

ak − c(s)k
)H

hk,j,khHk,j,k
(
ak − c(s)k

)
≥ 0 holds. It follows that∥∥aHk hk,j,k

∥∥2 ≥ 2<
{

aHk hk,j,khHk,j,kc(s)k
}
−
∥∥hHk,j,kc(s)k

∥∥2. Thus,
we can obtain (31) and (32).

Combining the above lemmas, P3 can be tackled by sequen-
tially solving a series of convex problems in the following
proposition.

Proposition 4 (Convex Approximation of P3): At the s-th
iteration optimization, P3 can be approximated as

P4
(
{c(s)k }

)
: min
{ak},q

K∑
k=1

∑
l∈Ik

∑
j∈Ck∩Dl

ql,j,k +

K∑
k=1

σ2
n

Pt
‖ak‖2

s.t. (30),∀k, ∀l ∈ Ik,∀j ∈ Ck ∩ Dl
(31),∀k, ∀j ∈ Dk/Ek
(32),∀k, ∀j ∈ Ek
(28d),

(33)
where the optimization variable q is a vector composed of
ql,j,k’s, ∀k, ∀l ∈ Ik,∀j ∈ Ck ∩ Dl.

Proof: By applying (29) and (30), we give a quadratic
representation of (28a). By applying (31) and (32), we convert
the nonconvex constraints (28b) and (28c) into convex ones.
Therefore, P4

(
{c(s)k }

)
is convex.

B. Distributed Beamformer Design

In this subsection, we present a distributed beamforming
design based on the existing decomposition methods [32],
[36]. Specifically, we alternately optimize τ and {ak} so that
the objective function value continues to decrease.

When fixing τ , P4
(
{c(s)k }

)
can be decomposed into K

parallel subproblems, i.e., the k-th subproblem at the s-th
iteration can be formulated as

Psub
k

(
τ , c(s)k

)
: min

ak,qk

∑
l∈Ik

∑
j∈Ck∩Dl

ql,j,k +
σ2
n

Pt
‖ak‖2

s.t. (30),∀l ∈ Ik,∀j ∈ Ck ∩ Dl
(31),∀j ∈ Dk/Ek
(32),∀j ∈ Ek,

(34)

where qk is composed of ql,j,k’s, ∀l ∈ Ik,∀j ∈ Ck ∩ Dl.
We can observe that the k-th FC only needs the CSI from

the nodes in Ck to it. Each subproblem is convex and can be
solved by generic convex programming solver SeDuMi. Let(
a(s)k ,q(s)

k

)
denote the s-th solution of the SCA procedure.

Once getting
(
a(s)k ,q(s)

k

)
, we then solve Psub

k

(
τ , c(s+1)

k

)
with

c(s+1)
k = a(s)k , and repeat the process until a stopping condition

is met. The initial c(1)k can be obtained by randomly generating
a(0)k satisfying (28b) and (28c).

When the SCA procedure terminates, each FC can update
τ by solving the following master problem

Pmas : min
τ

K∑
k=1

P ?k (τ )

s.t. τ ≥ 1p,

(35)
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where P ?k (τ ) is the objective function value at the k-th FC,
and the constraint comes from (28d).

According to the primal decomposition theory, we apply the
subgradient projection method to solve the master problem.
Define the subgradient vector of P ?k (τ ) as gk ∈ Rp×1 and
the global subgradient vector as g ∈ Rp×1. Each FC can
get the subgradient vector gk by solving its own subproblems
and the global subgradient vector g can be obtained using the
following proposition.

Proposition 5 (Global Subgradient): The vector g is given
by

g =

K∑
k=1

gk. (36)

Proof: See Appendix D.
Due to the partial connection characteristics of the system,

it can be observed from each subproblem that each FC only
needs the slack variables that reflect the transmit power of
the common nodes in its cluster, e.g., the k-th FC only needs
τk,j ,∀j ∈ Dk/Ek and τl,j ,∀l ∈ Ik,∀j ∈ Ck ∩ Dl. Therefore,
after receiving the subgradient vectors of its neighbor clusters,
i.e., Ik ∪ I ′k, the k-th FC can start computing its global
subgradient g without waiting for the subgradient vectors of
all clusters to be received. Then, the vector τ is updated as

τ (n+ 1) =

[
τ (n)− µ (n) · g

‖g‖
− 1p

]+
+ 1p, (37)

where n denotes the iteration index, µ is the step size which
decreases with the iteration process, i.e., µ (n) = µ(1)/

√
n

(µ(1) > 0 is the initial step size), and [·]+ denotes the
projection onto the nonnegative orthant.

Finally, the decentralized algorithm for solving P1 is sum-
marized in Algorithm 2.

Algorithm 2 SCA-Based Distributed Algorithm

Initialization: Set τ (0) to a vector satisfying (28d) and the
iteration index n to 0
Repeat

1: Each FC uses SCA method to compute its subgradient
vector and broadcasts it to other FCs (via the backhaul
link between each FC).

2: Upon receiving the subgradient vectors from its neighbor
clusters, each FC computes the global subgradient vector
g and updates τ according to (36) and (37), respectively.

3: Set n = n+ 1.
Until termination criterion is met

C. Optimal Beamforming Structure

Algorithm 2 can find good feasible solutions to P1. How-
ever, it cannot offer a fundamental understanding of the
beamforming structure for multi-cluster CoMAC. Besides, the
complexity of the SCA method can be prohibitively high if
the number of antennas is large. To gain more insight, we

analyze the optimal beamforming structure of Psub
k

(
τ , c(s)k

)
in the following Lemma 6.

Lemma 6 (The Optimal Solution Structure of Psub
k

(
τ , c(s)k

)
):

The optimal solution of Psub
k

(
τ , c(s)k

)
is a linear combination

of the channels between the k-th FC and the nodes in the same
cluster, i.e.,

a?k =
∑
j∈Dk

v?k,j,khk,j,k +
∑
l∈Ik

∑
j∈Ck∩Dl

v?l,j,khl,j,k, (38)

where v?k,j,k = Pt
σ2
n
λ?k,jh

H
k,j,kc(s)k and v?l,j,k = Pt

σ2
n

(
t
(2)?
l,j,k

)∗
with

λ?k,j and t(2)?l,j,k being the optimal Lagrange multipliers.
Proof: The Lagrangian of Psub

k

(
τ , c(s)k

)
is defined in (68).

Ignoring items not related to ak, we can rewrite it as

Lk (ak) =
σ2
n

Pt
‖ak‖2−

∑
j∈Dk

2λk,j<
{

aHk hk,j,khHk,j,kc(s)k
}

−
∑
l∈Ik

∑
j∈Ck∩Dl

(
t
(2)
l,j,k

(
aHk hl,j,k

)H
+ t

(3)
l,j,kaHk hl,j,k

)
.

(39)
By the Karush-Kuhn-Tucker conditions, at the optimality of
Psub
k

(
τ , c(s)k

)
, the gradient of Lk (ak) with respect to ak

satisfies ∇akLk (ak) = 0. Since ∇x<
{

cHx
}

= c∗/2 for the
complex vector c and ∇x

(
xHCx

)
= (Cx)

∗ for the Hermitian
matrix C, we obtain

a?k =
∑
j∈Dk

Pt
σ2
n

λ?k,jh
H
k,j,kc(s)k hk,j,k +

∑
l∈Ik

∑
j∈Ck∩Dl

Pt
σ2
n

(
t
(2)?
l,j,k

)∗hl,j,k.
(40)

Define Hk =
[
· · · ,hk,j,k, · · · ,hl,j,k, · · ·

]
∈ CNr×|Ck|

as the channel matrix for the k-th cluster and vk =[
· · · , vk,j,k, · · · , vl,j,k, · · ·

]T
as the corresponding linear

combination coefficients vector. We can rewrite (38) as a?k =

Hkv?k. As the SCA method iteratively updates c(s)k , a?k is
updated accordingly without changing its structure. Assume
that the rank of Hk satisfies rk ≤ min (Nr, |Ck|). Then, Hk

can be decomposed as UkΣkVk by the truncated singular-
value decomposition, where Uk ∈ CNr×rk is composed of
the orthonormal vectors that can span the column space of Hk.
Thus, the optimal solution of Psub

k

(
τ , c(s)k

)
, i.e., a?k = Hkv?k,

can be converted to
a?k = Ukb?k, (41)

where b?k is defined as b?k = ΣkVkv?k.
Directly obtaining the weighted vector b?k is difficult. Thus,

we compute b?k through a simple numerical algorithm. Specif-
ically, substituting (41) into (34), b?k can be computed by
solving the following problem.

Ssub
k

(
τ ,d(s)

k

)
: min

bk,qk

∑
l∈Ik

∑
j∈Ck∩Dl

ql,j,k +
σ2
n

Pt
‖Ukbk‖2

s.t. g(s)j (bk) ≥ 1,∀j ∈ Ek
g
(s)
j (bk) ≥ τk,j ,∀j ∈ Dk/Ek[

ql,j,k bHk UHk hl,j,k
hHl,j,kUkbk τl,j

]
< 0,∀l ∈ Ik,∀j ∈ Ck ∩ Dl,

(42)
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where g
(s)
j (bk) = 2<

{
bHk UHk hk,j,khHk,j,kUkd(s)

k

}
−∥∥∥hHk,j,kUkd(s)

k

∥∥∥2 with d(s)
k being the solution at the (s− 1)-th

iterative optimization.
Compared with directly optimizing each receiver in (34),

solving the weighted vectors bk in (42) does not depend on the
number of antennas but only on the rank of Hk, which leads to
lower computational complexity when FCs are equipped with
large antenna arrays.

To gain more insights of {ak}, we consider a special case
where each FC has a very large number of antennas and use
the following lemma.

Lemma 7 (Convergence of hHk,i,khk′ ,i′ ,k/Nr): When Nr →
∞, we have

lim
Nr→∞

hHk,i,khk′ ,i′ ,k
Nr

a.s.
=

{
0, if

(
k, i
)
6=
(
k

′
, i

′)
κk,i,k, else

(43)

where a.s.
= denotes the almost sure convergence.

Proof: According to [37, Equation (4)], we can derive
(43) by applying the law of large numbers and using the
fact that hk,i,k ∼ CN (0, κk,i,kINr ) and is independent of
hk′ ,i′ ,k,∀

(
k, i
)
6=
(
k

′
, i

′)
, i.e.,

lim
Nr→∞

hHk,i,khk′ ,i′ ,k
Nr

= lim
Nr→∞

∑Nr
j=1

∣∣p∗jqj∣∣
Nr

a.s.
= E

{∣∣p∗jqj∣∣}
=

{
0, if

(
k, i
)
6=
(
k

′
, i

′)
κk,i,k, else

where pj and qj denote the j-th element of hk,i,k and hk′ ,i′ ,k,
respectively.

Based on Lemma 7, a closed-form asymptotically optimal
receive beamformer can be derived in the following proposi-
tion.

Proposition 6 (The Asymptotically Optimal Beamformer of
P1): When Nr is sufficiently large, the asymptotically optimal
receiver at each FC is approximated as a linear combination
of the channels between it and its served nodes, i.e.,

ak ≈
∑
j∈Dk

1

κk,j,kNr
hk,j,k,∀k. (44)

Proof: First, inspired by Lemma 6, we assume that
the asymptotically optimal receivers can be given by ak =∑
i∈Dk vk,i,khk,i,k/Nr,∀k, which will lead to gradually van-

ishing inter-cluster interference and noise as Nr →∞:

lim
Nr→∞

x̂k

(a)
= lim

Nr→∞

( ∑
i∈Dk

xk,i +
∑
l∈Ik

∑
j∈Ck∩Dl

aHk hl,j,k
aHl hl,j,l

xl,j + aHk zk

)

= lim
Nr→∞

( ∑
i∈Dk

xk,i +
∑
l∈Ik

∑
j∈Ck∩Dl

∑
i∈Dk

v∗k,i,k
hHk,i,khl,j,k

Nr∑
i∈Dl

v∗l,i,l
hHl,i,lhl,j,l

Nr

xl,j

+
∑
i∈Dk

v∗k,i,k
hHk,i,kzk
Nr

)
a.s.
=
∑
i∈Dk

xk,i,

(45)

where the equation (a) comes from (10) and (12). By substi-
tuting the assumed receivers {ak} into P1, we have

lim
Nr→∞

MSE = lim
Nr→∞

σ2
n

Pt

K∑
k=1

∑
j∈Dk

|vk,j,k|2hHk,j,khk,j,k
N2
r

a.s.
= 0.

(46)
Next, if the receiver is not a linear combination of channels,
it can be written as

ak =
∑
j∈Dk

vk,j,k
Nr

hk,j,k +

Nr−|Dk|∑
t=1

v̄k,t
Nr

uk,t, (47)

where {uk,t}Nr−|Dk|t=1 is an orthonormal basis for the orthog-
onal complement of the space spanned by {hk,j,k}j∈Dk . It
can be observed that the term

∑Nr−|Dk|
t=1 v̄k,tuk,t/Nr in (47)

will bring additional interference and noise as Nr → ∞,
causing degraded MSE performance. Therefore, the asymp-
totically optimal beamformer of P1 has the structure as ak =∑
i∈Dk vk,i,khk,i,k/Nr,∀k.
When Nr is sufficiently large, MSE is approximated to

MSE ≈ σ2
n

PtNr

K∑
k=1

∑
j∈Dk

|vk,j,k|2κk,j,k. (48)

And the constraints in P1 can be converted to∣∣v∗k,j,kκk,j,k∣∣ ≥ 1,∀j ∈ Dk,∀k. (49)

Apparently, when vk,j,k = 1/κk,j,k, (48) reaches minimum,
i.e.,

MSE ≈ σ2
n

PtNr

K∑
k=1

∑
j∈Dk

1

κk,j,k
. (50)

It can be seen that the inter-cluster interference vanishes as
Nr →∞. Similar conclusions have also appeared in massive
MIMO multicast networks [38]. In this case, each FC only
needs the CSI of the nodes it serves, which indicates that the
FCs do not need to cooperate with each other, information
exchange overhead is thus avoided. Considering a special
scenario of K = 1 and κk,j,k = κ,∀(k, j), we obtain
MSE ≈ σ2

n|D|/(κPtNr), which has the same form with that
in [39, Theorem 2].

Remark 3 (Convergence Analysis for the SCA Algorithm):
P3 is solved by alternately optimizing the receivers {ak} and
the vector τ . With fixed τ , {ak} can be obtained by SCA. At
each iteration optimization of the SCA method, several parallel
convex subproblems Psub

k

(
τ , c(s)k

)
or Ssub

k

(
τ ,d(s)

k

)
needs to

be solved,. Each FC solves its own subproblem in parallel
to ensure that the value of the objective function continues
to decrease. With fixed {ak}, τ is updated by solving the
master problem Pmas. It can be seen from Proposition 5
that the subgradient projection method can also guarantee a
continuously decreasing objective function value. Considering
the fact that the objective function is lower bounded by 0 and
its value can be reduced by alternately optimizing the vector
τ and receivers {ak}, the proposed SCA-based distributed
algorithm is guaranteed to converge to a finite value. Several
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numerical simulations will be provided later in Section V to
validate the convergence of the proposed algorithm.

Remark 4 (Signaling Overhead Analysis): We use the num-
ber of channel use to characterize the signaling overhead. The
main information exchange among all FCs in the above dis-
tributed algorithms is the real-valued subgradient vectors. Dur-
ing each iteration, for the k-th FC, it should broadcast its sub-
gradient vector gk, which only has |Dk/Ek|+

∑
l∈Ik |Ck ∩ Dl|

nonzero scalars and needs |Dk/Ek|+
∑
l∈Ik |Ck ∩ Dl| channel

uses to transmit these scalars. The sum signaling overhead
among the FCs in one iteration is thus (p+p

′
) (K − 1). Note

that the centralized BB-based algorithm requires each FC to
share its local CSI with other FCs. In this case, the k-th FC
has to send 2 |Ck|Nr real values per link, which yields a total
overhead of 2Nr (K − 1)

(
M + p

′
)

.
Remark 5 (Computational Complexity for the SCA Al-

gorithm): The complexity of IPM for solving each sub-
problem (42) is on the order of

√
βk ·

(
Ckform + Ckfact

)
·

ln (1/υ), where
√
βk ln (1/υ) denotes the number of itera-

tions required in IPM to reach an υ-optimal solution and
Ckform + Ckfact denotes per-iteration computation cost [40].
Specifically, βk = 2 ·

∑
l∈Ik |Ck ∩ Dl| + |Dk|, Ckform =

nk ·
(
8 ·
∑
l∈Ik |Ck ∩ Dl|+ |Dk|

)
+n2k ·

(
4 ·
∑
l∈Ik |Ck ∩ Dl|+

|Dk|
)

and Ckfact = n3k, where nk = rk +
∑
l∈Ik |Ck ∩ Dl|

for (42). Assume that the number of subproblems solved
by each FC is Na during the iteration. Then the to-
tal computational complexity for the distributed algorithms
is
∑K
k=1Na

√
βk ·

(
Ckform + Ckfact

)
· ln (1/υ). Specially, if

rk = Nr, we obtain the computational complexity for
solving each subproblem (34). Due to the fact that rk ≤
min (Nr, |Ck|), the complexity for solving the weighted vector
bk is less than directly optimizing the receiver ak, especially
in the case of large-scale antenna systems. Moreover, since
Tmax � KNa

√
βkln (1/υ), the computational complexity of

the SCA-based distributed algorithm is much less than that of
the BB algorithm.

V. SIMULATION RESULTS AND DISCUSSION

In this section, we provide simulation results to show
the convergence and the MSE performance of the proposed
algorithms. The channels are Rayleigh, i.e., the elements of
each channel vector are modeled as independent and iden-
tically distributed complex Gaussian random variables with
zero mean and unit variance. For interfering channels, we
introduce ς ∈ [0, 1] to represent the strength ratio between
the interfering and the desired signal. ς = 0 denotes that there
is no inter-cluster interference, which happens when undesired
nodes are farther away, thereby making the interference very
weak. And ς = 1 denotes that the interfering signals have the
same strength as the desired signals. Through adjusting the
strength ratio ς , we can characterize the distance between FC
and its undesired nodes. We also assume that each common
node only affects one FC and each cluster has the same
system configuration, denoted as (Nr, |D|), where each FC
is equipped with Nr antennas and serves |D| nodes. For the
BB-based algorithm, the relative error tolerance ε is set to 0.1.
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Fig. 3. Convergence of the BB algorithm. (a) Two-cluster case. (b) Three-
cluster case. (c) Four-cluster case.

For the SCA-based distributed algorithm, it terminates when
the successive difference of the MSE value is less than 10−4,
and its initial step size µ(1) is set to 2. We name Algorithm
2 and the optimal-beamforming-structure-based distributed
algorithm as Direct SCA and OptSCA, respectively. The plots
in Fig. 3a-5a are based on a random channel realization. In
Fig. 5b-8, 100 independent channel realizations are simulated.

A. Convergence Analysis of the Proposed Algorithms

In this subsection, we show the convergence behaviors of the
proposed BB-based and SCA-based algorithms. The transmit
SNR Pt/σ

2
n is set to 20dB and ς is set to 0.4. In Fig. 3,

we consider a multi-cluster network with (Nr, |D|) = (2, 3),
where |Di ∩ Cj | = 1,∀i 6= j. We observe that the upper bound
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Fig. 4. Convergence of the Direct SCA algorithm in the three-cluster case.

is non-increasing and the lower bound is non-decreasing.
During the first few iterations, the gap between the upper
bound and lower bound is reduced rapidly due to a large
number of infeasible subregions being discarded. The gap
becomes smaller as the number of iterations increases until the
convergence. As expected, the BB-based algorithm requires
many iterations to converge. We observe that the number of
iterations increases sharply as the number of clusters increases.
This is because that the maximum number of iterations of the
BB algorithm in (26) is an exponential function of the number
of nodes in the network. In contrast, the SCA algorithm
converges much faster and achieves a objective value very
close to the BB-based algorithm. Fig. 3 demonstrates the
effectiveness of the SCA algorithm. The BB-based algorithm
is not practical due to its high complexity, but it can be used
as a network performance benchmark.

In Fig. 4, we consider a three-cluster network with
(Nr, |D|) = (4, 8), where |Di ∩ Cj | = 3,∀i 6= j. We can
see that the MSE of each FC is monotonically non-increasing
over iteration, which demonstrates that the SCA algorithm can
reduce the overall MSE in a pairwise manner.

B. Computation Performance of Multi-Cluster CoMAC

In this subsection, we analyze the performance of the SCA
algorithms for different numbers of nodes, numbers of receive
antennas and transmit SNRs in the three-cluster networks with
ς = 0.5. Since the complexity of BB algorithm is high in
large-scale networks, we only consider the effect of different
transmit SNRs on the MSE performance in a two-cluster
network with ς = 0.5. We also consider the following for
comparison:

a) Transceiver design without cooperative interference
management: Since the FCs don’t cooperate with each other,
each FC is unaware of the actual signal power of its undesired
nodes. When these nodes transmit interfering signals at full
power, P1 is converted to

P5 : min
{ak}

K∑
k=1

∑
l∈Ik

∑
j∈Ck∩Dl

∥∥aHk hl,j,k
∥∥2 +

K∑
k=1

σ2
n

Pt
‖ak‖2

s.t.
∥∥aHk hk,j,k

∥∥2 > 1,∀j ∈ Dk,∀k.
(51)
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Fig. 5. The effects of transmit SNR on the MSE of multi-cluster CoMAC.

When these nodes transmit signals at very low power, the inter-
cluster interference is approximately zero, then P1 is converted
to

P6 : min
{ak}

K∑
k=1

σ2
n

Pt
‖ak‖2

s.t.
∥∥aHk hk,j,k

∥∥2 > 1,∀j ∈ Dk,∀k.

(52)

P5 and P6 are quadratically constrained quadratic program-
ming problems, which can be solved by the BB algorithm in
[31] to get a optimal value with the relative error tolerance set
to 10−3. We name these two cases NoCoop with Full Power
and NoCoop with No Power, respectively.

b) Transceiver design based on alternating optimization
(AO for short): Introduce new optimizing variables ãk =
ak/
√
ηk,∀k. The MSE in (11) is convex over each of the

transmit scalars {wk,i} or receive vectors {ãk}, but not jointly
convex. Then we can adopt an alternating optimization method
in [41] to design transceivers for multi-cluster CoMAC, i.e.,
with fixed transmit scalars, the optimal receive vectors can be
expressed as

ãk = (Bk)
−1
( ∑
j∈Dk

hk,j,kwk,j
)

(53)

where Bk = σ2
nI +

∑
l∈Ik

∑
j∈Ck∩Dl |wl,j |

2hl,j,khHl.j.k +∑
j∈Dk |wk,j |

2hk,j,khHk,j,k. And with fixed receive vectors, the
optimal transmit scalars are given by

wk,j =
(∥∥hHk,j,kãk

∥∥2 + µk,j

)−1
hHk,j,kãk,∀j ∈ Ek,∀k, (54)
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wk,j =

(∥∥hHk,j,kãk
∥∥2 + µk,j +

∑
l∈I′k,j

∥∥hHk,j,lãl
∥∥2)−1hHk,j,kãk,

∀j ∈ Dk/Ek,∀k,
(55)

where µk,j ≥ 0 and satisfies µk,j
(
|wk,j |2−Pt

)
= 0, and I ′

k,j

denotes the set of clusters interfered by the (k,j)-th node. It
can be noticed that the global CSI acquisition of all nodes is
essential for the AO method. The iterative algorithm is set to
have the same termination conditions as the SCA algorithms.

Fig. 5a illustrates the effect of different transmit SNRs and
different ς on the MSE performance in (2, 2) networks, where
|Di ∩ Cj | = 1,∀i 6= j. Fig. 5b compares the MSE performance
of different transceiver design schemes under different transmit
SNRs in (4, 10) networks, where |Di ∩ Cj | = 2,∀i 6= j.
It can be observed that MSE is a decreasing function of
transmit SNR, and the four curves approach a lower min-
ima when transmit SNR is high, which means that further
increasing transmit SNR will not significantly suppress the
inter-cluster interference, and the MSE performance will only
be marginally improved. Besides, the performance of OptSCA
method is near-identical to its direct method (Direct SCA),
and is much better than the AO method in low transmit
SNR conditions. The performance of transceiver design based
on AO is even worse than that of cases of NoCoop with
Full Power at low transmit SNRs, which demonstrates the
effectiveness of the uniform-forcing transmitter design.

In Fig. 6, we study the MSE performance of different
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Fig. 8. The computation MSE performance of (50) versus Nr .

transceiver designs for different numbers of antennas, where
transmit SNR = 20dB, |D| = 10 and |Di ∩ Cj | = 2,∀i 6= j.
It is observed that the MSEs monotonically decrease with the
receive antenna number. This is because that more receive
antennas enable FCs to obtain higher diversity gain. When
the receive antenna number is small, the proposed transceiver
design can achieve significantly better MSE performance than
the AO method, which demonstrates the effectiveness of our
proposed scheme.

The MSE versus different numbers of nodes is shown in
Fig. 7, where transmit SNR = 20dB, |Nr| = 9. The number
of non-common nodes served by each FC is set to 6, and that
of common nodes increases from 2 to 10. Fig. 7 shows that
the MSE is an increasing function of the node number. This
is because more nodes make it harder to design one common
receiver to equalize the channels of different nodes. We can
also observe that the proposed transceiver design is better than
that in the case of NoCoop with Full Power, and the MSE gap
between these two cases will increase with the node number.
This is because that the cooperative interference management
among FCs can significantly reduce the MSE for multi-cluster
CoMAC networks, especially when there are a large number of
common nodes in each cluster, making inter-cell interference
the main reason that affects the MSE performance.

In Fig. 8, we analyze the accuracy of the asymptotic MSE in
(50) by comparing with the one obtained from OptSCA, where
we set transmit SNR = 20dB, |D| = 10 and |Di ∩ Cj | =
2,∀i 6= j. It can be observed from Fig. 8 that the gap between
the asymptotic MSE and the one computed by SCA decreases
as Nr increases. When the number of antennas is not large
enough, the asymptotic MSE performance in (50) is slightly
worse than that obtained from the SCA method, which makes
sense because (50) holds in the case of massive antennas.
When Nr ≥ 320, the gap becomes negligible, which verifies
our conclusion in Proposition 6.

VI. CONCLUSION

In this work, we have studied the transceiver design of
CoMAC in multi-cluster wireless networks for combating
inter-cluster interference and non-uniform fading. We have
formulated a QSRP to minimize the sum-MSE of signals
aggregated at different FCs subject to the peak power con-
straints of nodes. The formulated nonconvex problem has
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been optimally solved by the proposed BB-based scheme.
We have also developed a distributed algorithm, in which the
master problem and subproblems have been solved iteratively
to obtain a high-performance solution with lower complexity.
Through asymptotic analysis, we have provided simple closed-
form asymptotically optimal receivers for the formulated prob-
lem. According to numerical results, our proposed distributed
algorithm can significantly reduce the sum-MSE of multi-
cluster CoMAC networks in a cooperative way.

APPENDIX A
PROOF OF PROPOSITION 1

Substituting (12) and (13) into (11), MSE can be computed
as

MSE =

K∑
k=1

∑
l∈Ik

∑
j∈Ck∩Dl

(
min
i∈Dl

∥∥aHl hl,i,l
∥∥2)∥∥aHk hl,j,k

∥∥2(
min
i∈Dk

∥∥aHk hk,i,k
∥∥2)∥∥aHl hl,j,l

∥∥2
+

K∑
k=1

σ2
n‖ak‖

2

Ptmin
i∈Dk

∥∥aHk hk,i,k
∥∥2 .

(56)
By introducing auxiliary variables γk = min

i∈Dk

∥∥aHk hk,i,k
∥∥2

for each k, the minimum problem of MSE in (56) can be
transformed into

min
{ak},{γk}

K∑
k=1

∑
l∈Ik

∑
j∈Ck∩Dl

γl
∥∥aHk hl,j,k

∥∥2
γk
∥∥aHl hl,j,l

∥∥2 +

K∑
k=1

σ2
n‖ak‖

2

Ptγk

s.t.
∥∥aHk hk,j,k

∥∥2 > γk,∀j ∈ Dk,∀k.
(57)

Then introducing new optimizing variables ãk = ak/
√
γk for

each k, the above problem can be converted to

min
{ãk}

K∑
k=1

∑
l∈Ik

∑
j∈Ck∩Dl

∥∥∥ãHk hl,j,k
∥∥∥2∥∥∥ãHl hl,j,l
∥∥∥2 +

K∑
k=1

σ2
n

Pt
‖ãk‖2

s.t.
∥∥∥ãHk hk,j,k

∥∥∥2 > 1,∀j ∈ Dk,∀k,

(58)

which completes the proof.

APPENDIX B
PROOF OF PROPOSITION 3

For each j ∈ Ek, since âk ∈ Conv(S
[ϕ
k,j
,ϕk,j ]

k,j ), we can
easily conclude that min

∥∥âHk hk,j,k
∥∥ = cos

((
ϕk,j − ϕk,j

)
/2
)
,

which implies that∥∥∥âHk hk,j,k
∥∥∥2 ≥ cos2

(ϕk,j − ϕk,j
2

)
≥ cos2 (δ) . (59)

And for each j ∈ Dk/Ek, since âk ∈ Conv
(
Y

[ϕ
k,j
,ϕk,j ]

k,j

)
,

we can also conclude that min
∥∥âHk hk,j,k

∥∥ =
1√
uk,j,k

·cos
((
ϕk,j − ϕk,j

)
/2
)
, which implies that∥∥∥âHk hk,j,k

∥∥∥2 ≥ 1

uk,j,k
cos2

(ϕk,j − ϕk,j
2

)
≥ 1

uk,j,k
cos2 (δ) .

(60)

Combined with (23), we obtain

‖ak‖2 ≤
‖âk‖2

cos2 (δ)
,∀k. (61)

Since {âk} is the optimal solution to P2, the upper bound
ub (V t) is given in (24) and the lower bound is given as

lb
(
V t
)

=

K∑
k=1

∑
l∈Ik

∑
j∈Ck∩Dl

ll,j,l

∥∥∥âHk hl,j,k
∥∥∥2 +

K∑
k=1

σ2
n

Pt
‖âk‖2.

(62)
Finally, the gap between the upper bound ub (V t) and
the lower bound lb (V t) is given by (63), as shown at
top of the next page. The fourth inequality in (63) uses
the fact that ll,j,l > 0 holds for all common nodes
and we can always find a positive number satisfying∑K
k=1

∑
l∈Ik

∑
j∈Ck∩Dl 2/ll,j,l ≤ Tm.

Since the function f (δ) = p
′
/cos2 (δ)+Tmδ/cos2 (δ)−p′

+
Ktan2 (δ) is monotonically increasing for all δ ∈ (0, π/2) and
f (0) = 0, we can always find a δ satisfying f (δ) ≤ ε for any
given ε by bisection search.

APPENDIX C
PROOF OF LEMMA 3

Define

f0 ({ak}) =

K∑
k=1

∑
l∈Ik

∑
j∈Ck∩Dl

∥∥aHk hl,j,k
∥∥2∥∥aHl hl,j,l
∥∥2 +

K∑
k=1

σ2
n

Pt
‖ak‖2

(64)
and

f1 ({ak} , τ ) =

K∑
k=1

∑
l∈Ik

∑
j∈Ck∩Dl

∥∥aHk hl,j,k
∥∥2

τl,j
+

K∑
k=1

σ2
n

Pt
‖ak‖2.

(65)
Let ({a?k} , τ ?) be a global optimal solution to P3. From

(27) we can get∥∥aHk hl,j,k
∥∥2

τl,j
≥
∥∥aHk hl,j,k

∥∥2∥∥aHl hl,j,l
∥∥2 ,∀k, ∀l ∈ Ik,∀j ∈ Ck∩Dl, (66)

so f0 ({a?k}) ≤ f1 ({a?k} , τ ?) holds. Let τ̂l,j =∥∥(a?l )Hhl,j,l
∥∥2,∀l,∀j ∈ Dl/El, then ({a?k} , τ̂ ) is a feasible

solution to P3. Since ({a?k} , τ ?) is globally optimal, this
implies that f0 ({a?k}) = f1 ({a?k} , τ̂ ) ≥ f1 ({a?k} , τ ?) holds.
Therefore, f0 ({a?k}) = f1 ({a?k} , τ ?) holds. Combined with
(27) and (66), it follows that∥∥∥(a?l )

Hhl,j,l
∥∥∥2 = τ?l,j ,∀l,∀j ∈ Dl/El. (67)

Let τl,j =
∥∥aHl hl,j,l

∥∥2,∀l,∀j ∈ Dl/El, then ({ak} , τ ) is
a feasible solution to P3. Combined with (67), f0 ({a?k}) ≤
f0 ({ak}) holds, which implies {a?k} is a global optimal
solution to P1.

Conversely, let {a?k} be a global optimal solution to P1, and
let τ?l,j =

∥∥(a?l )Hhl,j,l
∥∥2,∀l,∀j ∈ Dl/El , then ({a?k} , τ ?) is

a feasible solution to P3. For some feasible solution ({ak} , τ )
to P3, due to (66), we have f0 ({ak}) ≤ f1 ({ak} , τ ). Since
{a?k} is a global optimal solution to P1, it follows that
f0 ({a?k}) ≤ f0 ({ak}). Combined with the fact f0 ({ak}) ≤
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ub (V t)− lb (V t)

lb (V t)
≤

K∑
k=1

∑
l∈Ik

∑
j∈Ck∩Dl

∥∥aHk hl,j,k
∥∥2∥∥aHl hl,j,l
∥∥2 − ll,j,l

∥∥∥âHk hl,j,k
∥∥∥2

ll,j,l

∥∥∥âHk hl,j,k
∥∥∥2 +

K∑
k=1

‖ak‖2 − ‖âk‖2

‖âk‖2

≤
K∑
k=1

∑
l∈Ik

∑
j∈Ck∩Dl

ul,j,l

∥∥∥âHk hl,j,k
∥∥∥2

cos2 (δ)
− ll,j,l

∥∥∥âHk hl,j,k
∥∥∥2

ll,j,l

∥∥∥âHk hl,j,k
∥∥∥2 +

K∑
k=1

‖âk‖2

cos2 (δ)
− ‖âk‖2

‖âk‖2

≤
K∑
k=1

∑
l∈Ik

∑
j∈Ck∩Dl

(
1

cos2 (δ)
+

2δ

ll,j,lcos2 (δ)
− 1

)
+

K∑
k=1

tan2 (δ)

≤ p
′

cos2 (δ)
+

Tmδ

cos2 (δ)
− p

′
+Ktan2 (δ)

= ε

(63)

f1 ({ak} , τ ), we can get f0 ({a?k}) ≤ f1 ({ak} , τ ). Since
τ?l,j =

∥∥(a?l )Hhl,j,l
∥∥2,∀l,∀j ∈ Dl/El, it follows that

f1 ({a?k} , τ ?) ≤ f1 ({ak} , τ ), which implies that ({a?k} , τ ?)
is a global optimal solution to P3 and the proof is completed.

APPENDIX D
PROOF OF PROPOSITION 5

Define f j2 (ak) = 2<
{

aHk hk,j,khHk,j,kc(s)k
}
−
∥∥hHk,j,kc(s)k

∥∥2.

The Lagrangian of Psub
k

(
τ , c(s)k

)
is given by

Lk (ak,qk,λk, {Tl,j,k}) =
∑
l∈Ik

∑
j∈Ck∩Dl

ql,j,k +
σ2
n

Pt
‖ak‖2

+
∑
j∈Ek

λk,j

[
1− f j2 (ak)

]
+

∑
j∈Dk/Ek

λk,j

[
τk,j − f j2 (ak)

]
−
∑
l∈Ik

∑
j∈Ck∩Dl

tr

(
Tl,j,k

[
ql,j,k aHk hl,j,k(

aHk hl,j,k
)H

τl,j

])
,

(68)
where λk and {Tl,j,k} denote the lagrange multipliers, λk is
composed of λk,j ,∀j ∈ Dk, and

Tl,j,k =

[
t
(1)
l,j,k t

(2)
l,j,k

t
(3)
l,j,k t

(4)
l,j,k

]
< 0. (69)

The dual function is given by

dk (λk, {Tl,j,k}) = min
ak,qk

Lk (ak,qk,λk, {Tl,j,k})

=

( ∑
j∈Dk/Ek

λk,jeTk,j −
∑
l∈Ik

∑
j∈Ck∩Dl

t
(4)
l,j,keTl,j

)
τ

+ hk (λk, {Tl,j,k}) ,

(70)

where τk,j = eTk,jτ ,∀j ∈ Dk/Ek, τl,j = eTl,jτ ,∀l ∈

Ik,∀j ∈ Ck ∩ Dl, and

hk (λk, {Tl,j,k}) = min
ak,qk

(∑
l∈Ik

∑
j∈Ck∩Dl

ql,j,k +
σ2
n

Pt
‖ak‖2+

∑
j∈Ek

λk,j

[
1− f j2 (ak)

]
−

∑
j∈Dk/Ek

λk,jf
j
2 (ak)−

∑
l∈Ik∑

j∈Ck∩Dl

(
t
(1)
l,j,kql,j,k + t

(2)
l,j,k

(
aHk hl,j,k

)H
+ t

(3)
l,j,kaHk hl,j,k

))
.

(71)
Denote λ?k and

{
T?l,jk

}
as the optimal lagrange multipliers

for the dual problem. Since each subproblem is convex, we
have

P ?k (τ ) = max dk
λk,{Tl,j,k}

(λk, {Tl,j,k})

= dk
(
λ?k,

{
T?l,j,k

})
=

( ∑
j∈Dk/Ek

λ?k,je
T
k,j −

∑
l∈Ik

∑
j∈Ck∩Dl

t
(4)?
l,j,keTl,j

)
τ

+ hk
(
λ?k,

{
T?l,j,k

})
.

(72)
Denoting gk as

gk =
∑

j∈Dk/Ek

λ?k,jek,j −
∑
l∈Ik

∑
j∈Ck∩Dl

t
(4)?
l,j,kel,j , (73)

we have

P ?k (τ ) = gTk τ + hk
(
λ?k,

{
T?l,j,k

})
= gTk (τ − τ̃ ) + gTk τ̃ + hk

(
λ?k,

{
T?l,j,k

})
≤ gTk (τ − τ̃ ) + P ?k (τ̃ ) ,

(74)

which can be written as

P ?k (τ̃ ) ≥ P ?k (τ ) + gTk (τ̃ − τ ) . (75)

It follows that gk is the subgradient of P ?k (τ ) and can be
obtained from the k-th subproblem.
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In the same way, we can compute the global subgradient g
of Pmas as

g =

K∑
k=1

∑
j∈Dk/Ek

λ?k,jek,j −
K∑
k=1

∑
l∈Ik

∑
j∈Ck∩Dl

t
(4)?
l,j,kel,j

=

K∑
k=1

( ∑
j∈Dk/Ek

λ?k,jek,j −
∑
l∈Ik

∑
j∈Ck∩Dl

t
(4)?
l,j,kel,j

)

=

K∑
k=1

gk,

(76)

and the proof is completed.
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Efficient Computation in Clustered Gaussian Sensor Networks,” IEEE
Trans. Wireless Commun., vol. 14, no. 4, pp. 2093–2105, Apr. 2015.

[4] J. Kampeas, A. Cohen, and O. Gurewitz, “The Ergodic Capacity of
the Multiple Access Channel Under Distributed Scheduling - Order
Optimality of Linear Receivers,” IEEE Trans. Inf. Theory, vol. 64, no. 8,
pp. 5898–5919, Aug. 2018.

[5] O. Shmuel, A. Cohen, and O. Gurewitz, “Compute-and-Forward in
Large Relaying Systems: Limitations and Asymptotically Optimal
Scheduling,” IEEE Trans. Inf. Theory, vol. 67, no. 9, pp. 6243–6265,
Sep. 2021.

[6] A. B. Wagner, S. Tavildar, and P. Viswanath, “Rate Region of the
Quadratic Gaussian Two-Encoder Source-Coding Problem,” IEEE Trans.
Inf. Theory, vol. 54, no. 5, pp. 1938–1961, May 2008.

[7] R. Soundararajan and S. Vishwanath, “Communicating Linear Functions
of Correlated Gaussian Sources Over a MAC,” IEEE Trans. Inf. Theory,
vol. 58, no. 3, pp. 1853–1860, Mar. 2012.

[8] M. Gastpar, “Uncoded Transmission Is Exactly Optimal for a Simple
Gaussian “Sensor” Network,” IEEE Trans. Inf. Theory, vol. 54, no. 11,
pp. 5247–5251, Nov. 2008.

[9] M. Goldenbaum and S. Stanczak, “Robust Analog Function Computa-
tion via Wireless Multiple-Access Channels,” IEEE Trans. Commun.,
vol. 61, no. 9, pp. 3863–3877, Sep. 2013.

[10] M. Goldenbaum, H. Boche, and S. Stańczak, “Harnessing Interference
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