
1

Context-Tree-Based Lossy Compression and
Its Application to CSI Representation

Henrique K. Miyamoto, Graduate Student Member, IEEE, and Sheng Yang, Member, IEEE

Abstract—We propose novel compression algorithms for time-
varying channel state information (CSI) in wireless communica-
tions. The proposed scheme combines (lossy) vector quantisation
and (lossless) compression. First, the new vector quantisation
technique is based on a class of parametrised companders
applied on each component of the normalised CSI vector. Our
algorithm chooses a suitable compander in an intuitively simple
way whenever empirical data are available. Then, the sequences
of quantisation indices are compressed using a context-tree-based
approach. Essentially, we update the estimate of the conditional
distribution of the source at each instant and encode the current
symbol with the estimated distribution. The algorithms have low
complexity, are linear-time in both the spatial dimension and
time duration, and can be implemented in an online fashion. We
run simulations to demonstrate the effectiveness of the proposed
algorithms in such scenarios.

Index Terms—Data compression, MIMO systems, vector quan-
tisation.

I. INTRODUCTION

W IRELESS communication systems feature an ever
growing dimension due to larger antenna arrays, denser

network deployments, and an increasing number of terminals
and devices. To maintain connectivity in such systems, a
colossal amount of channel measurements, often referred to
as channel state information (CSI), are necessary. Efficiently
representing the CSI is crucial for storage and dissemination.
A typical example is the downlink transmission from a base
station (BS) with multiple antennas (potentially a large num-
ber, i.e., massive MIMO) to multiple users simultaneously.
The BS should steer the signal for user j in such a way that
the interference with any other user k 6= j is low enough.
Such beamforming techniques rely on precise CSI at the
transmitter side, e.g., [2]. For the BS to acquire the CSI,
however, it usually requires that each user feeds back the
CSI measurements in a timely and accurate fashion. How to
reduce the bandwidth cost of such feedback traffic, which is
highly non-negligible, is becoming a crucial problem. This is
essentially a lossy data compression problem.

An earlier version of this paper was presented in part at the International
Zurich Seminar on Information and Communication (IZS 2022) [1].

H. K. Miyamoto was with with the Laboratory of Signals and Sys-
tems (L2S), CentraleSupélec, Paris-Saclay University, 91190 Gif-sur-Yvette,
France. He is now with the Institute of Mathematics, Statistics and Scientific
Computing (IMECC), University of Campinas (Unicamp), Campinas, 13083-
859, Brazil (email: hmiyamoto@ime.unicamp.br).

S. Yang is with the Laboratory of Signals and Systems (L2S), Cen-
traleSupélec, Paris-Saclay University, 91190 Gif-sur-Yvette, France (email:
sheng.yang@centralesupelec.fr).

© 2022 IEEE. Personal use of this material is permitted. However, permis-
sion to use this material for any other purposes must be obtained from the
IEEE by sending a request to pubs-permissions@ieee.org.

CSI measurements are typically correlated in space and time
according to the propagation environment, and the mobility of
users and obstacles. The spatial correlation for a single antenna
array is inherent to the antenna structure and can be used
to reduce CSI dimension so that only a few coefficients are
needed to describe the channel state. For large antenna arrays,
recent works apply deep learning and compressed sensing
techniques to further exploit the correlation and sparsity of
channel, e.g., [3]–[5] and references therein. Independent
channel coefficients (e.g., when correlation is ignored or after
decorrelation) are then quantised with a vector quantiser into
symbols from a finite set (codebook), e.g., [6], [7] and ref-
erences therein. Further spatial compression can be achieved
with entropic encoding (e.g., arithmetic coding) on the bit
representation of the quantisation indices [5].

The temporal correlation of CSI measurements, on the other
hand, is less exploited for feedback. Indeed, the sequence
of quantised symbols, considered as a random process, can
be losslessly compressed to a bit-stream. If the sequence is
stationary, then the bit rate can theoretically be as low as the
entropy rate of the underlying process. A possible approach
towards CSI compression is therefore to directly apply any
universal compression algorithm [8]–[10], such as Lempel-
Ziv [11], [12] (known as LZ77 and LZ78) to the quantisation
indices.

Another universal compressor is the context-tree weight-
ing (CTW) algorithm [13], which learns the distribution of a
given sequence in an efficient way. The learned distribution
can then be used as the coding distribution to compress
the sequence in combination with arithmetic coding. It has
been shown that, in this case, Rissanen lower bound [13] is
achieved, in the sense of having optimal rate of convergence
to the entropy for tree sources with unknown parameters.
Extensions of the algorithm can be found in [14]–[18]. A
modification of CTW based on the minimum-description prin-
ciple yields the context-tree maximising (CTM) algorithm [19],
which can produce maximum a posteriori (MAP) probability
tree models [20]. Connections between CTW/CTM algorithms
and Bayesian inference have been explored in [8], [21], [22].
In particular, in [22], the authors extended the CTM algorithm
to find the k a posteriori most likely models, under the name
of Bayesian context-tree, and generalised some results.

Directly applying these algorithms to compress quantisa-
tion indices presents, nonetheless, some difficulties. First, the
output bit-stream is of variable length, making the feedback
difficult to implement. Second, in Lempel-Ziv methods, the
input symbol block is also of variable length, since it depends
on parsing the original sequence. This means that the encoder

ar
X

iv
:2

11
0.

14
74

8v
2

 [
cs

.I
T

]
 5

 M
ay

 2
02

2

2

may need to wait for an indefinite number of time slots to
output an indefinite number of bits for feedback. Finally,
arithmetic coding assumes that computations are carried out
with infinite precision, while, in practice, it has to be carefully
implemented so as to deal with finite precision constraints,
e.g., [23], [24]. Trying to avoid such difficulties motivates us
to propose new compression algorithms adapted to communi-
cation scenarios.

In this work, we focus on the problem of online lossy com-
pression of a sequence of CSI vectors, for which we propose
a two-step solution. The first step is lossy: we normalise the
CSI vector and quantise the amplitude and phase components
separately using a data-adapted compander, followed by uni-
form quantiser. In particular, we consider the widely used µ-
compander and a new one called β-compander, inspired by the
beta distribution. The second step is lossless: we compress the
sequences of quantisation indices with the coding distribution
estimated via a context-tree method. Two solutions can be
considered: 1) to directly use CTW with arithmetic coding,
or 2) to apply CTM to estimate the conditional distribution
of the upcoming symbol at each time instant, and use this
probability to compress the symbol. In the second case, we
encode each symbol with a fixed number of levels to limit
the fluctuation of the encoded bits flow, which is a desirable
property in communication systems.

An important difference from previous works using deep
learning techniques [3]–[5] is that they consider almost static
channels, whereas our work investigates low, medium and high
mobility scenarios. In addition, our scheme requires much less
training samples: in fact, it can even be initialised without any
training data, and training can be done online, as the sequence
of coefficients is observed.

Our algorithms are linear-time in both the spatial dimension
and time duration, and can be implemented in an online
fashion. Although we propose the two steps as an ensemble,
they are actually modular. This means that the new quantiser
design and the new compression algorithms can be used
independently, and combined with other existing quantisation
or compression methods, if desired. Implementation codes are
available in [25].

The remainder of the paper is organised as follows. In
Section II we introduce the system model and review basic
concepts of vector quantisation and context-tree representa-
tion. Our quantiser design is described in Section III, while the
compression algorithm is presented in Section IV. Numerical
simulations of CSI acquisition are analysed in Section V.
Finally, we draw some conclusions in Section VI.

Notation: Throughout this paper, we use the following no-
tational conventions. Vectors are denoted by bold italic lower-
case (e.g., vvv), and their L2-norm is denoted by ‖vvv‖. Random
variables are denoted by non-italic upper case letters (e.g., X).
A binary string is denoted by bold non-italic lower case (e.g,
c). Logarithms are to the base 2. We denote [n] := {1, . . . , n}.
The indicator function 1{P} takes value 1 if the argument P
is a true statement, and 0 otherwise.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Main Problem

Let us consider a network composed of a transmitter (e.g.,
base station) and Nr receivers (e.g., mobile users). Assume that
the channel state information (CSI) between the transmitter
and receiver k at time t can be described by a complex vector
hhhk[t] ∈ CNt×1, for k ∈ [Nr]. The dimension Nt of the vector
can depend on the number of antennas and subcarriers used
by the transmitter. For different purposes, such as feedback
and storage, each receiver is required to represent its state
sequence in an ‘economical’ way, i.e., to use as few bits
as possible to describe the sequence, for a given distortion
constraint. This is known as the lossy source coding problem,
and the fundamental trade-off between the rate of the encoded
sequence and the distortion for a stationary process is known
for a given distribution [9].

In this work, we are interested in compression algorithms for
a source with unknown distribution that can be implemented
in an online fashion, i.e., each hhhk[t] can be successively
compressed, while exploiting the time correlation of the se-
quence. In most practical scenarios, the norm of the vectors
hhhk (i.e., the strength) is less important than the relative
strength of the components (i.e., the direction). Therefore,
our goal is to compress the normalised vector hhhk[t]/‖hhhk[t]‖.
Before presenting our scheme, we recall some basic notions
of vector quantisation, lossless compression and context-tree
representation.

B. Vector Quantisation

A vector quantiser [26] of dimension p and size M , is
a mapping q : Rp → C := {yyy0, yyy1, . . . , yyyM−1} ⊂ Rp that
assigns each vector xxx ∈ Rp to a codeword x̂xx := q(xxx) = yyyk, for
some k ∈ {0, 1, . . . ,M−1}. To a sequence of vector symbols
xxxn1 := xxx1xxx2 · · ·xxxn we can apply vector-by-vector quantisation.
In this case, the vector quantiser outputs a sequence of quan-
tised vectors x̂xxn1 := x̂xx1x̂xx2 · · · x̂xxn and a sequence of quantisation
indices kn1 := k1k2 · · · kn, where x̂xxi = yyyki , for each i ∈ [n].

Two important parameters to assess the performance of a
vector quantiser are the quantisation rate and the mean distor-
tion. The quantisation rate, defined as R := (log2M)/p, is
an indicator of the cost to describe the vector, while the mean
distortion measures the error induced by the quantisation.
A commonly used distortion measure is the mean squared
chordal distance (MSCD). Specifically, the MSCD between
the original vector xxx and the quantised vector x̂xx is defined as

MSCD(xxx, x̂xx) := 1− E

[
|〈xxx, x̂xx〉|2
‖xxx‖2‖x̂xx‖2

]
. (1)

Note that the MSCD is invariant to scalar rotations, what is
adapted to our application of CSI representation.

C. Lossless Compression and Universality

Consider a sequence of symbols (e.g., quantisation indices)
from an m-ary discrete alphabet A = {0, . . . ,m − 1}. It
is well known that, in the context of source coding, if the
distribution P of a source is known, Shannon’s code can be

3

used to generate a codeword with length d− logP (xn1)e for
any source sequence xn1 , where P (xn1) is the probability of the
realisation xn1 . The expected length of such a code is within
1 bit of the entropy lower bound H(Xn

1) := E[− logP (Xn
1)].

Therefore, the coding rate, as the number of encoded bits per
input symbol, can be arbitrarily close to 1

nH(Xn
1).

If, however, P is not known and another probability distri-
bution (also called coding distribution) Qn is used instead,
the codeword length becomes d− logQn(xn1)e, incurring a
redundancy

R(P,Qn) := EP [− logQn(Xn
1)]− EP [− logP (Xn

1)]

= D(P ‖Qn), (2)

which coincides with the Kullback-Leibler divergence
D(P ‖Qn) between P and Qn. Without the knowledge of P ,
it is desirable to have low redundancy for every distribution in
a given class of distributions. A coding distribution Qn (and
the corresponding code) is said to be (weakly) universal [10]
for a class P of processes if 1

nR(P,Qn) → 0, ∀P ∈ P . For
instance, both the Lempel-Ziv codes and the CTW algorithm
with arithmetic coding are universal for the class of stationary
ergodic sources [8], [9], [13].

D. Variable-Order Markov Chain and Context-Tree Represen-
tation

Let us denote xji := xixi+1 · · ·xj a scalar sequence over an
m-ary alphabet A = {0, 1, . . . ,m− 1}, generated by a source
with probability distribution P . We denote l(xji) := j − i+ 1
the length of sequence xji . A variable-order Markov chain
with order or memory D (also called bounded memory tree
source) is a random process for which the probability of a
new symbol, given the whole past, only depends on the last
D symbols, i.e., P (xi|xi−1

−∞) = P (xi|xi−1
i−D). The main reason

for our interest in Markov chains here is that any stationary
ergodic source can be approximated by a Markov chain with
sufficiently large order. Specifically, the entropy rate of a D-th
order Markov chain approximation of a stationary ergodic
process becomes arbitrarily close to that of the original process
when D →∞ [8], [9]. In many practical cases, a small D is
enough to describe a given process.

The statistical behaviour of a variable-order Markov chain
can be described by a context set S (also known as suffix set or
model), which is a subset of

⋃D
i=0Ai that is proper (no element

in S is a proper suffix of any other) and complete (each
xn−∞ has a suffix in S , which is unique by properness). The
context function c : AD → S maps each context xi−1

i−D with
length D to a suffix c(xi−1

−∞) = c(xi−1
i−D) = xi−1

i−j , j ≤ D.
Furthermore, each suffix s ∈ S is associated with a parameter
θθθs :=

(
θs(0), θs(1), . . . , θs(m− 1)

)
, where θs(j) := P (j|s).

The parameter vector Θ := ΘS := {θθθs : s ∈ S} groups all
parameters in context set S. Therefore, the Markov chain is
completely characterised by the couple (S,ΘS). We use CD
to denote the class of all context sets of order up to D, and
we define LD(S) := |{s ∈ S : l(s) = D}| the number of
contexts with length D.

Since the context set S is proper, its elements can be repre-
sented as leaf nodes of a tree TD ⊇ S, called context-tree. For

λ

0

00

10

20

1

01

11

21

2

02

12

22

Fig. 1: Example of model S = {0, 1, 02, 12, 22} ⊆ TD
with m = 3 and D = 2. In this case, we have LD(S) =
|{02, 12, 22}| = 3. The suffix of the sequence x0

−∞ = · · · 01
is c(x0

−∞) = c(01) = 1. The (conditional) probability of
the string x5

1 = 02212 given the past symbols x0
−1 = 01

is P (x5
1|x0
−1) = θ1(0) · θ0(2) · θ02(2) · θ22(1) · θ1(2). After

processing this sequence, the counter for context s = 1 is
aaa1(x5

1) = (a1(0), a1(1), a1(2)) = (1, 0, 1).

a given sequence xn1 , each leaf node s ∈ S is associated with
a counter aaas := aaas(x

n
1) :=

(
as(0), as(1), . . . , as(m− 1)

)
,

where as(j) stores the number of times that symbol j ∈ A
follows context s in xn1 . The counter of each inner node of
the tree is recursively defined as the sum of the counters of its
children nodes, i.e., aaas :=

∑
j∈A aaajs, ∀ s ∈ TD\S . We use the

empty string λ to denote the root of the tree. An illustrative
example of these concepts is given in Fig. 1.

With the above definitions and the Markov property for a
D-th order Markov chain, if both S and ΘS are known, the
probability of a sequence can be written, as in [22],

P (xn1 |x0
D−1,S,ΘS) =

n∏
i=1

P (xi|xi−1
i−D,S,ΘS)

=

n∏
i=1

P (xi|c(xi−1
i−D),S,ΘS)

=

n∏
i=1

θc(xi−1
i−D)(xi) =

∏
s∈S

∏
j∈A

θs(j)
as(j),

as a simple function of the parameters S, ΘS , as well as the
counters of the leaf nodes.

If only the model S is known, but not its parameters ΘS , the
marginal distribution of a sequence xn1 , given its past x0

1−D
and model S, is

P (xn1 |x0
1−D,S) =

∫
P (xn1 |x0

1−D,S,Θ)π(Θ|S) dΘ, (3)

assuming the distribution of the parameters π(Θ|S) is known.
While this distribution is unknown in general, using the so-
called Jeffrey’s prior is asymptotically optimal in the minimax
sense [8]. This choice corresponds to setting π(Θ|S) to be
the Dirichlet distribution with parameters

(
1
2 , · · · , 1

2

)
. It turns

out that, under this assumption, the marginal distribution (3)

4

can be simplified to the so-called Krichevsky–Trofimov (KT)
distribution, which can be easily computed as

P (xn1 |x0
1−D,S) =

∏
s∈S

Pe(aaas), (4)

where

Pe(aaas) =

∏
j∈A

(
1
2

) (
3
2

)
· · ·
(
aaas(j)− 1

2

)(
m
2

) (
m
2 + 1

)
· · ·
(
m
2 +Ms − 1

) , s ∈ TD, (5)

with Ms :=
∑m−1
j=0 aaas(j). We note that other prior distribu-

tions π(Θ|S) have been considered in the literature and lead
to different marginal distributions [27], [28].

Finally, if the model S is also unknown, then we shall
marginalise over S with a given prior distribution πD on all
models S of maximal depth D. Fixing γ ∈]0, 1[and

πD(S) := (1− γ)
|S|−1
m−1 γ|S|−LD(S), (6)

we obtain a mixture of different distributions (4), correspond-
ing to the coding distribution of CTW [8], [22]:

Qn(xn1 |x0
1−D) :=

∑
S∈CD

πD(S)
∏
s∈S

Pe(aaas). (7)

Not only is this coding distribution universal for the class
of stationary ergodic sources, but also it can be recursively
computed so that complexity is linear in n. The essence of
the context-tree weighting (CTW) algorithm is based on the
following definitions and results.

Definition 1. For γ ∈]0, 1[, to each node s ∈ TD, with
l(s) = d, we assign a weighted probability P sw, defined as

P sw :=

{
γPe(aaas) + (1− γ)

∏m−1
j=0 P jsw , 0 ≤ d < D,

Pe(aaas), l(s) = D.
(9)

The context-tree together with the weighted probabilities of
the nodes is called weighted context-tree.

Lemma 1 (See [13], [22]). The weighted probability Pλw of
the root node λ ∈ TD satisfies

Pλw =
∑
S∈CD

πD(S)
∏
s∈S

Pe(aaas). (10)

This lemma shows that the CTW probability Qn(xn1 |x0
1−D)

is indeed the weighted probability Pλw of the root node λ.
Therefore, to compute the CTW probability of xn1 , the CTW
algorithm updates P sw sequentially on x1, . . . , x

i
1, . . . , x

n
1 . De-

tails are omitted and can be found in [13].
A modification of the CTW algorithm yields the context-

tree maximising (CTM) algorithm [19], which computes the
maximum a posteriori model for a given sequence.

Definition 2. For γ ∈]0, 1[, to each node s ∈ TD, with
l(s) = d, we assign a maximised probability P sm, defined as

P sm :=

{
max{γPe(aaas), (1− γ)

∏m−1
j=0 P jsm }, 0 ≤ l(s) < D

Pe(aaas), l(s) = D.
(11)

The maximising set Ssm is computed as shown in (12). The
context-tree, together with the maximised probability distribu-
tion and the maximising sets, is called maximised context-tree.

Lemma 2 (See [19], [22]). The maximised coding distribution
P sm of the root node λ ∈ TD satisfies

Pλm = πD(Sλm)
∏
s∈Sλm

Pe(aaas) = max
S∈CD

πD(S)
∏
s∈S

Pe(aaas).

(13)

It follows that the maximising set Sλm, which is associated to
the maximising probability Pλm, corresponds to the maximum
a posteriori model:

Sλm = arg max
S∈CD

P (S|x) = arg max
S∈CD

πD(S)P (x|S)

P (x)

= arg max
S∈CD

πD(S)
∏
s∈S

Pe(aaas).

Proof of Lemmas 1 and 2 were given, for the special case
m = 2, γ = 1/2, in [13] and [19], respectively, while the
general case is addressed in [22].

III. QUANTISER DESIGN

The proposed vector quantisation consists in vector normal-
isation, decomposition into real components, and individual
scalar quantisation based on parametric companders, as indi-
cated in Fig. 2. In the following, we elaborate each step.

A. Vector Normalisation

In this step, the input vector xxx := (x(1), . . . , x(Nt)) is
normalised by the component with the largest absolute value,
i.e., x̄xx = xxx/x(i∗) where i∗ := arg maxi∈[Nt] |x(i)|. Note
that x̄(i∗) = 1, while the other normalised components are
complex in general with absolute value in [0, 1]. The i∗-th
component can skip the following steps and be directly as-
signed a special index indicating it as the strongest component.
Because of this special symbol, our compression alphabet sizes
m have one more element than the number of quantisation
levels M , i.e., m = M + 1.

B. Decomposition

Before scalar quantisation, each complex component has to
be decomposed into real values. Two straightforward options
are: 1) Cartesian decomposition into real real and imaginary

Ssm :=


⋃m−1
j=0 Sjsm × {j}, if (1− γ)

∏m−1
j=0 P jsm > Pe(aaas) and 0 ≤ d < D,

{λ}, if (1− γ)
∏m−1
j=0 P jsm ≤ Pe(aaas) and 0 ≤ d < D,

{λ}, if d = D.

(12)

5

normalisation decomposition

compander

compander

xxxi x̄xxi

xabs
i

xang
i

kabs
i

kang
i

Fig. 2: Block diagram for vector quantisation.

parts, and 2) polar decomposition into amplitude and phase.
We consider the polar decomposition, since the amplitude
and phase are usually less correlated in wireless applications,
therefore providing a less ‘redundant’ representation of the
bounded complex number. Indeed, the real and imaginary parts
of the normalised complex components tend to be correlated,
e.g., strong real part implies weak imaginary part since the
amplitude is bounded by 1.

C. Quantisation with Parametric Companders

The amplitude and phase are separately quantised with
different scalar quantisers of Mabs and Mang quantisation
levels, respectively.

If the input symbols of the quantiser are uniformly dis-
tributed, then a uniform quantiser is optimal. In general,
however, uniform quantisation can be far from optimal in
the rate-distortion sense [9]. Let X be a random variable
representing the input, following some distribution P with
support [0, 1]. The idea of using a compander [29] is to apply
a non-linear and non-decreasing mapping g : [0, 1] → [0, 1]
to the signal (compression) before quantising it, so that the
signal is more ‘uniform’ in the image space. To recover the
signal, the inverse mapping g−1 : [0, 1] → [0, 1] is used
(expansion); hence the name compander. It is practical to use
parametric companders, i.e., differentiable mappings g that can
be described by a few number of parameters, such as the µ-
law compander, characterised by a single parameter µ > 0.
Note that, as compared to the Lloyd quantiser [9], compander-
based quantisers have much lower complexity of quantisation
and representation.

We propose a data-driven design for companders
parametrised by some ξ (which can contain multiple
scalar parameters). Assume that we have a set of
training data {x1, . . . , xn}. Our design follows a two-step
procedure: 1) uniformisation of the data, and 2) adjustment
of the compander parameters, as follows.

1) Uniformisation of the Data: We assume that the training
data are independent samples from some distribution P . If we
knew the cumulative distribution function (cdf) FP of P , we
could apply the mapping FP such that {FP (x1), . . . , FP (xn)}
are samples from a uniform distribution. If, however, we
are restricted to a class of companders {gξ : ξ ∈ Ξ}, for
some set Ξ, then we have to approximate FP by gξ. Since
a compander, as defined above, is non-decreasing from 0 to 1,
it is equivalent to a cdf. Thus, a sensible criterion for the

0 11
M

2
M

3
M

· · · M−1
M

g−1
µ (1

M
) g−1

µ (2
M

) · · · g−1
µ (M−1

M
)

∆1 ∆M

gµ

Fig. 3: µ-law compander quantiser of size M .

approximation is through the Kullback-Leibler divergence:

ξ∗ = arg min
ξ∈Ξ

D(P ‖ gξ)

= arg min
ξ∈Ξ

{
−H(X)− EP [log(g′ξ(X))]

}
= arg max

ξ∈Ξ
EP [log(g′ξ(X))]. (14)

Interestingly, this is equivalent to maximising the differential
entropy of gξ(X). As the uniform distribution maximises dif-
ferential entropy among all bounded support distributions [9],
the criterion (14) indeed returns the best ‘uniformiser’. Note
that since gξ is a cdf, g′ξ is the corresponding probability
density function (pdf).

The true distribution of the data is, however, unknown in
most practical scenarios. But we can adapt the probabilistic
criterion (14) into a data-driven one by replacing the expecta-
tion with the sample mean:

arg max
ξ∈Ξ

1

n

n∑
i=1

log(g′ξ(xi)). (15)

In this paper, we consider the µ-law compander and another
one that we call β-law compander, as shown in Table I. The
β-law compander is equivalent to the beta cdf, parametrised
by α > 0 and β > 0. An attractive feature of the β-law
compander is that the corresponding pdf is log-concave in
(α, β) [30, Theorem 6], so that the maximisation (15) is
concave and can thus be easily solved.

2) Adjustment of the Compander Parameters: Note that
uniformising the input is not enough in the sense of rate-
distortion. If we perform uniform quantisation right after
this step, then the uniformisation only makes the number of
samples in each quantisation interval as uniform as possible.
If the number of samples are exactly the same in each interval,
the average distortion is dominated by the one generated in the
largest interval—we illustrate this argument in Fig. 3 with a
µ-law compander. Therefore, we need to adjust the parameter
to balance the distortion generated in different intervals, which
is the role of the second step. While the exact solution is hard
to find, we provide a heuristic, yet efficient way to make the
adjustment.

Consider a quantiser with M levels. If we assume that
the distortion generated in the i-th interval is proportional
to the squared length ∆2

i of that interval, then the average
distortion is proportional to

∑M−1
i=0 Ni∆

2
i , where Ni is the

number of samples inside the i-th interval. Here, each interval i
contributes with Ni∆

2
i . Starting with the solution given by

6

TABLE I: Some Compander Functions.

Compander type Parameters ξ cdf gξ(x) pdf g′ξ(x)

µ-law µ > 0
ln(1 + µx)

ln(1 + µ)

µ

(1 + µx) ln(1 + µ)

β-law α > 0, β > 0
Γ(α+ β)

Γ(α)Γ(β)

∫ x

0
tα−1(1 − t)β−1 dt

Γ(α+ β)

Γ(α)Γ(β)
xα−1(1 − x)β−1

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7

8 µ-law pdf

β-law pdf

original

µ-compander

β-compander

(a) Amplitude.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

µ-law pdf

β-law pdf

original

µ-compander

β-compander

(b) Phase.

Fig. 4: Normalised histograms from CSI vector sequences
(EVA70, high correlation, cf. Section V) before and after
applying µ-law and β-law companders.

step 1, all Ni’s are similar, and the largest interval contributes
the most in the average distortion; similarly, the smallest
interval contributes the least. The idea is therefore to reduce
the largest interval until NS∆2

S ≥ NL∆2
L, where ‘S’ and ‘L’

stand for the ‘smallest’ and ‘largest’ intervals, respectively.
For instance, with the µ-law compander, the smallest interval
is always the first one and the largest, the last one. Reducing µ
towards 0 would reduce the gap between the extreme interval
sizes. With the β-law compander, the smallest and largest
intervals depend on the parameters (α, β), but letting (α, β)
go towards (1, 1) also reduces the gap between the extreme
interval sizes. In Fig. 4, we plot the histogram of some data
from CSI vectors and the output of the two companders. We
see that the histogram is indeed flattened after applying the
companders.

Although the presented compander design is based on
training data, we could also start with a uniform compander
and update it regularly when more data is available. A great
advantage of the parametric compander design is the negligible
communication overhead of the (few) quantisation parameters.

D. Quantisation Resolutions for Amplitude and Phase

Since we quantise the amplitude and phase of a complex
symbol separately, we would like to find out the ‘optimal’
resolutions for both quantisers. Let Mabs and Mang be the
respective number of quantisation levels, then M = MabsMang
is the total number of quantisation levels for a complex

number. The question is thus to find out the optimal values,
M∗abs and M∗ang, for a given M . While the exact solution would
depend on the distribution of the complex number, we are
interested here in finding a rule of thumb based on sensible as-
sumptions. We can show that the optimal solution is such that
the respective quantisation errors satisfy εabs ≈ E

[
|X|2

]
εang,

where X is the complex input.
The problem is formulated as an optimisation of the MSE

of the complex variable X = AejΦ, i.e., to minimise ε :=
E
[
|AejΦ − ÂejΦ̂|2

]
, where A ∈ [0,∞[and Φ ∈ [0, 2π[.

Letting Ã := A − Â and Φ̃ := Φ − Φ̂, we have ε =
E
[
Ã2
]

+ 2E
[
AÂ(1 − cos(Φ̂))

]
. Let us reasonably assume

that 1) E
[
Ã
]

= 0; 2) Â and Ã are uncorrelated; and
3) AÂ and 1 − cos(Φ̃) are uncorrelated. Then, using the
approximation 1− cos(x) ≈ x2/2, we have

ε ≈ E
[
Ã2
]

+ E
[
Â2
]
E
[
Φ̃2
]

= εabs + (Eabs − εabs)εang, (16)

where Eabs := E
[
A2
]

= E
[
|X|2

]
, εabs := E

[
Ã2
]
, and

εang := E
[
Φ̃2
]
. Since the regime of interest is such that

εang ≤ 1, the approximation (16) is an increasing function of
εabs and of εang. Intuitively, the overall quantisation error is
increasing with the individual quantisation errors.

To finally find the optimal M∗abs and M∗ang that minimise
(16), we make the following ‘mild’ assumption: both εabs and
εang decrease with Mabs and Mang as

εabs/Eabs ≈ cabsM
−2
abs , εang/Eang ≈ cangM

−2
ang , (17)

where Eang := E
[
Φ2
]
, and cabs, cang are constants depending

on the respective marginal law of the normalised amplitude
and phase. This assumption is supported by the rate-distortion
theorem [9] and is in general observed for medium to high
rate quantisers. Plugging in the constraint MabsMang = M ,
relaxed from integers to all positive numbers, we obtain the
constraint on εabs and εang

εabsεang ≈ cabscangM
−2, (18)

i.e., the product of εabs and εang is a constant. Under this
constraint, minimising (16) is equivalent to minimising εabs +
Eabsεang subject to εabsεang = const. It can be readily shown
that the optimal solution is such that ε∗abs = Eabsε

∗
ang for any

constant. From (17), we see that

M∗ang ≈M∗abs

√
Eangcang/cabs. (19)

For example, if the normalised amplitude A/
√
Eabs and

phase Φ/
√
Eang have the same distribution (with bounded

support), i.e., cabs = cang, then M∗ang ≈ M∗abs

√
Eang. If, in

addition, they are both uniformly distributed, then Eang = 4
3π

2,

7

quantisation model estimation encoding

x̂xxi

xxxi ki Ŝ ci

Fig. 5: Block diagram for vector processing.

and
√
Eang ≈ 3.6. Therefore, a rule of thumb for the number

of quantisation bits is to use two more bits for the phase than
for the amplitude.

Remark 1. It is well known that, followed by entropic
encoding, a uniform quantiser is asymptotically optimal in
the high-rate regime. We emphasise, however, that we do
not operate here in the high-rate regime, unlike many other
applications. More importantly, a large alphabet size would
make the following context-tree-based compression highly
inefficient. Hence, a carefully designed quantiser is crucial for
the overall performance.

IV. COMPRESSION ALGORITHM

In order to compress the sequence of quantisation indices,
one option is to directly apply CTW algorithm with arithmetic
coding. In this section, we describe an alternative context-
tree-based solution that limits the fluctuation of the output
bit-stream. It consists in first estimating a tree model Ŝ, and
then using the probabilities derived from that model to encode
each symbol, as depicted in Fig. 5.

A. Tree Model Estimation

Given a scalar sequence kn1 of quantisation indices from
an alphabet A = {0, 1, . . . ,m − 1}, we use the CTM
algorithm (cf. Section II-D) to find the maximum a posteriori
tree model Ŝ that describes that sequence. This algorithm
consists in building the same tree TD as in CTW algorithm,
followed by a pruning procedure, as described by (12). Both
the computational and storage complexity of CTM algorithm
are known to be O(nmD), i.e., linear with sequence length
n, alphabet size m and maximum tree depth D, cf. [22].

When training data are available, we can apply the CTM
algorithm on the training data to estimate the MAP model
Ŝ, and use it to estimate symbol probabilities and encode
the incoming sequence. This, however, is not mandatory: we
can also initialise the full tree TD with empty counts, keep
updating them with incoming data, and regularly prune a copy
of this tree to have an updated estimate of the MAP model Ŝ .
Similarly, if the sequence is not stationary, we can also make
the model forget symbols it has seen in a distant past by
decreasing the counts of the tree model TD. With this, at each
instant, the model is built upon the observation of a sequence
of only the most recent symbols. This can be done without
increasing the complexity of the algorithm.

B. Prediction and Encoding

Once a tree model Ŝ is estimated, we can encode a sequence
kn1 according to the probabilities issued from that model. Note

that, given a model Ŝ and past symbols k0
1−D, the estimated

probability of kn1 can be computed via the KT estimator, using
(4) and (5). In particular, denoting s := c(ki−1

i−D), we can
compute the probabilities P̂ (·) := P (·|Ŝ) that the next symbol
is ki = j, for all j ∈ A, as

P̂ (j|ki−1
i−D) =

P̂ (kii−D)

P̂ (ki−1
i−D)

=

∏
s′∈Ŝ Pe(aaas′(k

i
1))∏

s′∈Ŝ Pe(aaas′(k
i−1
1))

=
Pe(aaas(k

i
1))

Pe(aaas(k
i−1
1))

=
as(j) + 1

2
m
2 +

∑
j′∈A as(j

′)
. (20)

With P̂ , one could apply arithmetic coding to encode ki. But
the encoded bit-stream would have a variable length depending
on both P̂ and ki, and reducing the fluctuation of the coded
bit length is important in practical communication systems.
On the other extreme, a fixed length coding does not exploit
the knowledge of the coding distribution P̂ and does not
compress at all. Here, we propose an encoding scheme with
three possible codeword lengths.

We assume that both encoder and decoder keep a synchro-
nised version of the tree. In addition, we use an auxiliary lower
resolution quantiser to apply on least probable symbols. Fix
two integers q1, q2 ≤ logm such that m1 := 2q1 , m2 := 2q2 ,
and m1 +m2 ≤ m. Each incoming symbol ki ∈ A at instant
i is encoded as follows.
• If ki is among the m1 most probable symbols (tie could

be broken with a fixed rule) according to P̂ , then the
encoded bit string is ci = 0 followed by q1 bits indicating
the position of ki in the list of the m1 most probable
symbols.

• Otherwise, if ki is among the next m2 most probable
symbols, the encoded bit string ci is 10 followed by q2

bits indicating the position of ki in the second list.
• Finally, if ki is not among the m1 + m2 most probable

symbols, the encoded bit string is ci is 11 followed by
dlogm3e bits corresponding to the index k̃i from a lower
resolution quantiser of m3 − 1 levels.

Note that, with this scheme, the codeword length is either
1 + q1, 2 + q2, or 2 + dlogm3e. The proposed scheme can be
extended to more levels if desired. In the following, we fix
q1 = 0 so that m1 = 1.

It is worth pointing out that the decoder does not have access
to the original high-resolution index ki when the third case
happens at time i. This prevents the decoder from normally
updating its tree. But encoder and decoder must update the tree
in the same way so that the codebooks remain synchronised
at both sides. A workaround is to let both the encoder and the
decoder update the tree with a projection of the low-resolution
index k̃i back to the high-resolution codebook. Specifically,
we reconstruct the vector using the low-resolution quantiser,
re-quantise it with the high-resolution quantiser, and use the
corresponding index. Another way could be to simply ignore
this symbol for tree update.

We have two main reasons to consider this strategy. First,
encoding a symbol and decoding a binary string can be
immediately done. Furthermore, the length of the encoded
bit-stream is within a fixed number of levels. This aspect is

8

a difference from arithmetic encoding, in which the output
is of variable length, which may lead to difficulties when
implementing CSI feedback in real systems. In exchange, we
cannot expect the asymptotically optimal two-bits redundancy
enjoyed by that method.

C. Multiple Trees

In practice, we may want to compress many processes
simultaneously, as in the application to CSI representation.
Multiple trees come both from the decomposition of complex
components into amplitude and phase, and from the fact that
the BS has multiple antennas. While each tree provides the
marginal distribution of the given sequence, all the marginal
distributions can be jointly used to encode the parallel streams
together, in order to improve the coding rate. The intuitive idea
is that if the indices of all the processes at a given time instant
agree with the prediction of the respective models, they need
not be individually encoded. If, however, this is not the case,
only information about the indices that differ from the model
prediction need be transmitted.

Consider that, at each time instant, we have Nt (complex)
processes, thus 2Nt scalar symbols to compress (amplitude and
phase indices). For the sake of explanation, let us introduce
an auxiliary variable (flag) ∆l, defined as follows. For each
symbol kl to be compressed, where, here, the index l ∈ [2Nt]
denotes the process (and not time):
• if kl is the most probable symbol (tie could be broken

with a fixed rule) according to P̂ , then ∆l = 0;
• otherwise, if kl is among the next 2ql most probable

symbols, ∆l = 1;
• finally, if kl is not among the 1 + 2ql most probable

symbols, then it is encoded with a lower resolution
codebook of size mL,l, and ∆l = 2.

Note that, with this notation, the individual compression
rate, described in the previous subsection, is given by (21).

Rindividual =

2Nt∑
l=1

(
1{∆l=0} + 1{∆l=1}(2 + ql)

+ 1{∆l=2}(2 + dlogmL,le)
)
. (21)

Now, the joint description is composed of two parts: the
state indicator that contains information about which of the
Nt processes have ‘varied’, i.e., did not follow the correspon-
dent model prediction, and the change, which represents the
symbols that varied. Therefore the joint rate is written as the
sum of the rates of the state indicator and the change parts:

Rjoint = Rindicator +Rchange.

Two joint strategies are described in the following.
1) Simple Strategy: A simple way to encode the state

indicator is as follows: if all sequences follow the model,
encode that with a 0. Otherwise, use Nt bits to indicate which
processes (antennas) had some sequence (either amplitude or
phase) that varied with respect to the model prediction. This
requires

Rindicator =
(
1 +Nt1{∆1+∆2+···+∆2Nt>0}

)
/Nt (22)

bits per process.
To describe the variation with respect to the model predic-

tion, we need

Rchange = Cabs + Cang,

with Cabs and Cang given by

Ci =

Nt∑
l=1

(
1{∆̃l=0}(1 + qi) + 1{∆̃l=1}(1 + qi)

+ 1{∆̃l=2}(1 + dlogmL,ie)
)
, (23)

where i is either ‘abs’ or ‘ang’, each sum is over the Nt
processes of the respective type (amplitude or phase), and ∆̃l

is the ∆l of the corresponding type (amplitude or phase). In
addition, qi is the number of bits needed to describe the list of
most probable symbols of an amplitude or phase component,
and mL,i is the lower resolution alphabet sizes for amplitude
or phase.

Note that we have to encode both the variation of amplitude
and phase, as soon as at least one of them varied, for a given
antenna, since the indicator part only informs that a sequence
has varied, but does not indicate which of them (amplitude or
phase). Moreover, in addition to the number of bits needed to
describe the symbol—either as the index in the list of most
probable symbols or in the lower resolution alphabet—, an
additional bit is needed to inform which of these cases has
happened.

2) Context-Tree Compression of State Indicator: Alterna-
tively, a more sophisticated strategy is to consider the sequence
of state indicators. We consider the state indicator, an array of
Nt bits, as an integer number between 0 and 2Nt − 1. Then,
the sequence of state indicators can be itself compressed using
the proposed context-tree-based method (without the lower
resolution codebook). In this case, the indicator is described
with

Rindicator = Rencoded/Nt (24)

bits per process, where Rencoded is the length of the binary
output generated by the compression scheme.

The change part is as before, i.e.,

Rchange = Cabs + Cang, (25)

with Cabs and Cang given by (23).

V. SIMULATION RESULTS

A. Simulation Setup

We use the MATLAB LTE Toolbox [31] to simulate LTE
MIMO downlink channels. The model is configured according
to the parameters in Table II. In particular, we consider
low (EPA5, Doppler 5 Hz), moderate (EVA30, Doppler 30 Hz)
and high mobility (EVA70, Doppler 70 Hz) scenarios, with low
or high correlation between antennas at the base station. Other
relevant parameters used for quantisation and compression are
presented in Table III.

9

TABLE II: Simulation Parameters for MATLAB LTE Toolbox.

Field Parameter Value

Cell-wide settings
RC R.12

DuplexMode FDD
TotSubframes 10

Propagation channel
configurations

NRxAnts 1
MIMOCorrelation High, Low
NormalizeTxAnts On

DelayProfile EPA, EVA
DopplerFreq 5, 30, 70

InitTime 0 to 9.99
NTerms 16

ModelType GMEDS
NormalizePathGains On

InitPhase Random
Timing and

frequency offset
toffset 7
foffset 0

TABLE III: Simulation Parameters for Quantisation and Com-
pression.

Parameter Symbol Value

Total sequence length n 104

Channel signal-to-noise ratio SNR 30 dB
Tree maximum depth D 2

Context-tree weighting coefficient γ 0.5

Training sequence size (% of total length) – 20%
Interval between tree updates (in symbols) – 100

B. Quantiser Design

First, we are interested in evaluating the performance of
the quantiser design. We consider three quantisation schemes:
the µ-law compander, the β-law compander, and the cube-
split quantiser [6]. Interestingly, the cube-split quantiser can be
regarded as a complex compander adapted to the distribution
of normalised complex Gaussian vectors.

In Fig. 6 we plot the MSCD versus the feedback bit rate per
antenna for the three quantisers, with no compression, for low
and high antenna correlation, in the EPA5 scenario, with Nt =
Nr = 4. The plotted points correspond to the envelope formed
by the best quantisation parameters (different codebook sizes)
among those that were tested.

We see that, for low antenna correlation, the cube-split and
the proposed quantisers achieve almost the same results. On
the other hand, when antenna correlation is high, both pro-
posed quantisers have similar performances and are noticeably
better than the cube-split, which assumes uniformity of the
distribution by design. The behaviour for EVA30 and EVA70
is similar and has been omitted.

Remark 2. Although in this application we find that there is
not much difference in using µ-law or β-law compander, this
may not be the case in other applications. The latter, having
more adjustable parameters, could provide more flexibility in
fitting experimental distributions.

0 2 4 6 8 10 12
Feedback bits per transmitter antenna

−40

−35

−30

−25

−20

−15

−10

−5

0

M
S

C
D

(d
B

)

EPA5

µ-compander

β-compander

Cube-split

Low correlation

High correlation

Fig. 6: MSCD distortion for different quantisers.

C. Compression Algorithm

Now, we fix the β-law compander as quantiser, and evaluate
the performance of different compression schemes. In all
cases, we assess the MSCD versus the average number of
CSI bits per antenna, and plot the envelope formed by the
best quantisation parameters (different codebook sizes) over
those that have been tested.

We compare different variations of the proposed context-tree
two-level scheme—individual compression, joint compression
with the simple strategy, and joint compression with context-
tree (CT) compression of the indicator sequence, cf. Sec-
tion IV-C—with uncompressed and ideal CTW combined with
arithmetic coding. The ideal CTW case [13] is simply eval-
uated with 1

n

(⌈
− logQn(xn1 |x0

1−D)
⌉

+ 1
)
. The performance

of the different methods is studied for different mobilities and
antenna correlations.

Fig. 7 shows the case Nt = Nr = 4, for both low and high
antenna correlation. Regarding the different CTM variations,
we note that individual encoding of each sequence generally
uses more bits, which is expected, as it does not exploit the
spatial correlation between the antennas. Jointly encoding the
sequences with the simple strategy can reduce the CSI bit rate,
especially in low bit rate regime, and the CT compression of
the indicator sequence can further compress the sequence.

Now, comparing the CTM with CT compression of the
indicator sequence with uncompressed and CTW schemes,
we see that the compression gains are significant and can
reduce the CSI bit rate by up to a quarter in low correlation,
and a half in high correlation, both in low rate regime. For
EPA5, in the higher rate regime, the proposed CTM scheme
can reduce the feedback in at least 4.5 bits and is 1.5 bits
away from the CTW performance, approximately. For higher
mobilities, the gains are more modest, due to the lower time
correlation. Nevertheless, for EVA70, in the higher rate regime,
the proposed CTM can save approximately 2.5 bits, and
CTW, 4 bits, at least. Furthermore, for EVA30 and EVA70
in the extreme low rate regime, the proposed CTM slightly
outperforms CTW, thanks to the auxiliary lower resolution
quantiser.

Similarly, Fig. 8 shows the performances for the case Nt =
16, Nr = 8. In the lower rate regime, there is approximately a
gain of 1 bit when using the CTM scheme with simple joint

10

0 2 4 6 8 10 12
−35

−30

−25

−20

−15

−10

−5

M
S

C
D

(d
B

)

EPA5

0 2 4 6 8 10 12
Feedback bits per transmitter antenna

EVA30

0 2 4 6 8 10 12

EVA70

CTM individual

CTM joint simple

CTM joint CT

CTW

Uncompressed

(a) Low antenna correlation.

0 2 4 6 8 10 12
−40

−35

−30

−25

−20

−15

−10

M
S

C
D

(d
B

)

EPA5

0 2 4 6 8 10 12
Feedback bits per transmitter antenna

EVA30

0 2 4 6 8 10 12

EVA70

CTM individual

CTM joint simple

CTM joint CT

CTW

Uncompressed

(b) High antenna correlation.

Fig. 7: MSCD distortion using β-law compander, for Nt = 4, Nr = 4.

0 2 4 6 8 10 12
−35

−30

−25

−20

−15

−10

−5

0

M
S

C
D

(d
B

)

EPA5

0 2 4 6 8 10 12
Feedback bits per transmitter antenna

EVA30

0 2 4 6 8 10 12

EVA70

CTM individual

CTM joint simple

CTW

Uncompressed

(a) Low antenna correlation.

0 2 4 6 8 10 12
−35

−30

−25

−20

−15

−10

M
S

C
D

(d
B

)

EPA5

0 2 4 6 8 10 12
Feedback bits per transmitter antenna

EVA30

0 2 4 6 8 10 12

EVA70

CTM individual

CTM joint simple

CTW

Uncompressed

(b) High antenna correlation.

Fig. 8: MSCD distortion using β-law compander, for Nt = 16, Nr = 8.

11

0 2 4 6 8 10 12

20

40

60

80

100

%
of

p
er

fe
ct

C
S

I
co

m
m

u
n

.
ra

te

EPA5

0 2 4 6 8 10 12

Feedback bits per transmitter antenna

EVA30

0 2 4 6 8 10 12

EVA70

CTM joint CT

CTW

Uncompressed

Analogue CSI

(a) Nt = 4 and Nr = 4.

0 2 4 6 8 10 12

20

40

60

80

100

%
of

p
er

fe
ct

C
S

I
co

m
m

u
n

.
ra

te

EPA5

0 2 4 6 8 10 12

Feedback bits per transmitter antenna

EVA30

0 2 4 6 8 10 12

EVA70

CTM joint simple

CTW

Uncompressed

Analogue CSI

(b) Nt = 16 and Nr = 8.

Fig. 9: Communication sum rate, using β-law compander.

strategy, and an additional gain of up to 1 bit if CTW is used
instead. In the high rate regime, the gains are more pronounced
in the low mobility scenario. For instance, in EPA5, the CTM
schemes can provide a saving of approximately 5 bits, which
is less than 2 bits away from the CTW performance, in the
low correlation case.

D. Communication Rate

We also illustrate the gains in terms of the downlink com-
munication sum rate with zero-forcing beamforming, evaluated
approximately using the formula provided in [2, Eq. (20)], for
low antenna correlation. The results are normalised by the
achievable rate when perfect (i.e., noiseless) CSI is available
to the BS, and are presented in Fig. 9, for different mobilities
and number of antennas.

We emphasise that the communication rates converge much
faster to the rate achieved by analogue CSI (i.e., with no com-
pression) when some of the proposed compression schemes
is employed. For instance, for EPA5 and Nt = Nr = 4, it
takes the uncompressed scheme 11 feedback bits per antenna
to achieve a communication rate close to the analogue upper-
bound. Using the proposed CTM scheme, the same commu-
nication rate can be achieved with less than 6 bits, and, with
ideal CTW, with 4 bits. In higher mobility, the gap between
the two proposed scheme is smaller, while still presenting
an advantage over not compressing at all. Similar gains are
observed for Nt = 16, Nr = 8, even with the simple joint
strategy.

VI. CONCLUSION

We have proposed a novel method for compressing CSI,
combining lossy vector quantisation and lossless compression.
The proposed vector quantiser is based on applying a data-
adapted compander to the components of normalised vectors.
The compression algorithm uses the estimated probability
provided by the CTM model to encode a symbol, following
a simple rule within a fixed number of levels. Simulations
of LTE channels show the effectiveness of our approach in
different scenarios.

More importantly, the proposed schemes have low complex-
ity, can be implemented in an online fashion, and are modular.
The context-tree-based compression scheme can be applied on
any other quantisers, including those recently designed with
neural networks, e.g., [5]. Similarly, the proposed quantiser
can be combined with any other lossless compression schemes.

REFERENCES

[1] H. K. Miyamoto and S. Yang, “A CSI compression scheme using context
trees,” in Int. Zurich Seminar Inf. and Commun. (IZS 2022), 2022, pp.
24–28.

[2] G. Caire et al., “Multiuser MIMO achievable rates with downlink
training and channel state feedback,” IEEE Trans. Inf. Theory, vol. 56,
no. 6, pp. 2845–2866, 2010.

[3] C.-K. Wen, W.-T. Shih, and S. Jin, “Deep learning for massive MIMO
CSI feedback,” IEEE Wireless Commun. Lett., vol. 7, no. 5, pp. 748–751,
2018.

[4] J. Guo, C.-K. Wen, S. Jin, and G. Y. Li, “Convolutional neural network-
based multiple-rate compressive sensing for massive MIMO CSI feed-
back: Design, simulation, and analysis,” IEEE Trans. Wireless Commun.,
vol. 19, no. 4, pp. 2827–2840, 2020.

12

[5] M. B. Mashhadi, Q. Yang, and D. Gündüz, “Distributed deep convo-
lutional compression for massive MIMO CSI feedback,” IEEE Trans.
Wireless Commun., vol. 20, no. 4, pp. 2621–2633, 2021.

[6] A. Decurninge and M. Guillaud, “Cube-split: Structured quantizers on
the Grassmannian of lines,” in 2017 IEEE Wireless Commun. and Netw.
Conf. (WCNC), 2017, pp. 1–6.

[7] N. Shlezinger and Y. C. Eldar, “Deep task-based quantization,” Entropy,
vol. 23, no. 1, 2021.

[8] E. Gassiat, Universal Coding and Order Identification by Model Selec-
tion Methods. Cham, Switzerland: Springer, 2018.

[9] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
Hoboken, NJ, USA: Wiley, 2006.

[10] I. Csiszár and P. Shields, “Information theory and statistics: A tutorial,”
Found. and Trends in Commun. and Inf. Theory, vol. 1, no. 4, pp. 417–
528, 2004.

[11] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Trans. Inf. Theory, vol. 23, no. 3, pp. 337–343,
1977.

[12] ——, “Compression of individual sequences via variable-rate coding,”
IEEE Trans. Inf. Theory, vol. 24, no. 5, pp. 530–536, 1978.

[13] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “The context-tree
weighting method: basic properties,” IEEE Trans. Inf. Theory, vol. 41,
no. 3, pp. 653–664, 1995.

[14] T. J. Tjalkens, Y. M. Shtarkov, and F. M. J. Willems, “Context tree
weighting: Multi-alphabet sources,” in 14th Symp. Inf. Theory in the
Benelux, Veldhoven, The Netherlands, 1993, pp. 128–135.

[15] ——, “Sequential weighting algorithms for multi-alphabet sources,” in
6th Joint Swedish-Russian Int. Workshop Inf. Theory, Molle, Sweden,
1993, pp. 230–234.

[16] T. J. Tjalkens, F. Willems, and Y. Shtarkov, “Multi-alphabet universal
coding using a binary decomposition context tree weighting algorithm,”
in 15th Symp. Inf. Theory in the Benelux, Louvain-la-Neuve, Belgium,
1994, pp. 259–265.

[17] R. Begleiter, R. El-Yaniv, and G. Yona, “On prediction using variable
order Markov models,” J. Artif. Int. Res., vol. 22, no. 1, pp. 385–421,
2004.

[18] R. Begleiter and R. El-Yaniv, “Superior guarantees for sequential pre-
diction and lossless compression via alphabet decomposition,” J. Mach.
Learn. Res., vol. 7, no. 13, pp. 379–411, 2006.

[19] F. Willems, T. Tjalkens, and Y. Shtarkov, “Context-tree maximizing,” in
Proc. 34th Annu. Conf. Inf. Sciences and Syst., Princeton, New Jersey,
2000, pp. TP6–7–TP6–12.

[20] F. M. J. Willems, A. Nowbakht, and P. Volf, “Maximum a posteriori
probability tree models,” in 4th Int. ITG Conf. Source and Channel
Coding, Berlin, Germany, 2002, pp. 335–340.

[21] L. Mertzanis et al., “Deep tree models for ‘big’ biological data,” in
2018 IEEE 19th Int. Workshop Signal Process. Advances in Wireless
Commun. (SPAWC), 2018, pp. 1–5.

[22] I. Kontoyiannis et al., “Bayesian context trees: Modelling and exact
inference for discrete time series,” arXiv, 2020. [Online]. Available:
https://arxiv.org/pdf/2007.14900v1.pdf

[23] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data
compression,” Commun. ACM, vol. 30, no. 6, pp. 520–540, 1987.

[24] A. Moffat, R. M. Neal, and I. H. Witten, “Arithmetic coding revisited,”
ACM Trans. Inf. Syst., vol. 16, no. 3, p. 256–294, Jul. 1998.

[25] “Context-tree based CSI compression.” [Online]. Available: https:
//miyamotohk.github.io/context-tree-compression

[26] A. Gersho and R. M. Gray, Vector Quantization and Signal Compres-
sion. Boston, MA, USA: Kluwer, 1992.

[27] T. J. Tjalkens, P. A. J. Volf, and F. M. J. Willems, “A context-tree
weighting method for text generating sources,” in Proc. DCC ’97. Data
Compression Conf., 1997, p. 472.

[28] P. A. J. Volf, “Weighting techniques in data compression: Theory and
algorithms,” Ph.D. dissertation, Technische Universiteit Eindhoven, The
Netherlands, 2002.

[29] W. R. Bennett, “Spectra of quantized signals,” Bell Syst. Tech. J., vol. 27,
no. 3, pp. 446–472, 1948.

[30] S. S. Dragomir, R. P. Agarwal, and N. S. Barnett, “Inequalities for beta
and gamma functions via some classical and new integral inequalities,”
RGMIA Res. Rep. Coll., vol. 2, no. 3, 1999.

[31] MathWorks. MATLAB LTE toolbox (R2020b). [Online]. Available:
https://www.mathworks.com/help/lte/

https://arxiv.org/pdf/2007.14900v1.pdf
https://miyamotohk.github.io/context-tree-compression
https://miyamotohk.github.io/context-tree-compression
https://www.mathworks.com/help/lte/

	I Introduction
	II Problem Formulation and Preliminaries
	II-A Main Problem
	II-B Vector Quantisation
	II-C Lossless Compression and Universality
	II-D Variable-Order Markov Chain and Context-Tree Representation

	III Quantiser Design
	III-A Vector Normalisation
	III-B Decomposition
	III-C Quantisation with Parametric Companders
	III-C1 Uniformisation of the Data
	III-C2 Adjustment of the Compander Parameters

	III-D Quantisation Resolutions for Amplitude and Phase

	IV Compression Algorithm
	IV-A Tree Model Estimation
	IV-B Prediction and Encoding
	IV-C Multiple Trees
	IV-C1 Simple Strategy
	IV-C2 Context-Tree Compression of State Indicator

	V Simulation Results
	V-A Simulation Setup
	V-B Quantiser Design
	V-C Compression Algorithm
	V-D Communication Rate

	VI Conclusion
	References

