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Constellation Design for Non-Coherent Fast-Forward

Relays to Mitigate Full-Duplex Jamming Attacks

Vivek Chaudhary and Harshan Jagadeesh

Abstract

With potential applications to short-packet communication, we address communication of low-latency

messages in fast-fading channels under the presence of a reactive jammer. Unlike a traditional jammer,

we assume a full-duplex (FD) jammer capable of detecting pre-existing countermeasures and subsequently

changing the target frequency band. To facilitate reliable communication amidst a strong adversary, we

propose non-coherent fast-forward full-duplex relaying scheme wherein the victim uses a helper in its vicinity

to fast-forward its messages to the base station, in addition to ensuring that the countermeasures are

undetected by the FD adversary. Towards designing the constellations for the proposed scheme, we identify

that existing non-coherent constellation for fast-fading channels are not applicable owing to the cooperative

nature of the fast-forward scheme. As a result, we formulate an optimization problem of designing the

non-coherent constellations at the victim and the helper such that the symbol-error-probability at the base

station is minimized. We theoretically analyze the optimization problem and propose several strategies to

compute near-optimal constellations based on the helper’s data-rate and fast-forwarding abilities. We show

that the proposed constellations provide near-optimal error performance and help the victim evade jamming.

Finally, we also prove the scheme’s efficacy in deceiving the countermeasure detectors at the jammer.

Index Terms

Jamming, non-coherent communication, fast-forward relays, full-duplex.

I. Introduction

The next generation of wireless networks are pitched to enable new services by providing ultra-

reliable and low-latency communication links, such as control of critical infrastructure, autonomous

vehicles, and medical procedures. These applications often have mission-critical updates and use short-

packet communication with low-rate signalling, e.g. control channel messages (PUCCH) in 5G [2,

Sec.6.3.2], and status updates in IoT [3]. Since these packets have strict latency constraints, it makes
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them susceptible to security threats. One popular attack model is the jamming attack, because of

which the receiver is unable to decode the packet resulting in deadline violations. Although traditional

countermeasures, such as Frequency Hopping (FH) were designed to mitigate jamming attacks, they

might not be effective against advanced jamming attacks executed by sophisticated radio devices.

Therefore, there is a need to envision new threat models by sophisticated radios and propose strong

countermeasures against them to facilitate low-latency communication for the victim.

Among several radio-technologies that have risen in the recent past, the two prominent ones are

(i) Full-Duplex (FD) radios with advanced Self-Interference Cancellation (SIC) methods [4]–[10], and

(ii) Cognitive radios with advanced radio-frequency chains that scan across a wide range of frequency

bands. Using these developments, in-band Full-Duplex Cognitive Radio (FDCR) [11]–[14] have been

introduced to scan and transmit in the vacant frequency bands simultaneously, thus improving the

network throughput. In line with the motivation of our work, FDCRs have also been studied from an

adversarial viewpoint. In particular, [15] and [16] introduce an attack model, wherein the adversary,

with the help of a jam-and-measure FDCR, injects jamming energy on the victim’s frequency band

and also monitors its energy level after the jamming attack. Owing to the use of jam-and-measure

FDCRs, [15] and [16] also point out that the state-of-art countermeasures, like FH are ineffective, since

the attacker can detect that the victim has vacated the jammed frequency band. As a consequence,

they also propose several countermeasures wherein the victim node seeks assistance from a Fast-

Forward FD (FFFD) [17] relay to instantaneously forward its messages to the base station without

getting detected by the FDCR. With the use of fast-forward relays, the countermeasures capture the

best-case benefits in terms of facilitating low-latency communication for the victim node.

Inspired by [15] and [16], we identify that FDCRs can also scan multiple frequencies while executing

a jam-and-measure attack on the victim’s frequency. Subsequently, this can allow the adversary to

compute a correlation measure between the symbols on the victim’s frequency and other frequencies

thereby detecting repetition coding across frequencies, such as the FFFD based countermeasures

in [15] and [16]. Thus, new countermeasures must be designed to mitigate adversaries which can

scan multiple frequencies, in addition to monitoring the energy level on the jammed frequency

band. We also point out that the modulation techniques designed as part of the countermeasures

depend on the wireless environment. For instance, in slow-fading channels, coherent modulation based

countermeasures must be designed by allowing the receiver to learn the Channel State Information

(CSI) through pilots. However, acquiring CSI using pilots is difficult when channel conditions vary

rapidly over time. As a result, non-coherent modulation based countermeasures must be designed

when jam-and-measure attacks are executed in fast-fading channels, thereby allowing the receiver to

decode the information symbols without instantaneous CSI. From the above discussion, we identify
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that the countermeasures proposed in [15] and [16] are not applicable for fast-fading channels, thereby

opening up new problem statements in designing non-coherent modulation based countermeasures.

A. Contribution

In this work, we design non-coherent modulation based countermeasures to mitigate jamming

attacks by FDCRs. Amongst various non-coherent modulation techniques, we use energy detection

based Amplitude Shift Keying (ASK) due to its higher spectral efficiency. Towards this end, we

summarize the contribution of this work as follows:

1) We envisage an attack model wherein the adversary uses an FDCR to jam a victim that has

low-latency symbols to communicate with the base station. The salient feature of the adversary

is that it can scan multiple frequencies in the network while executing a jamming attack on the

victim’s frequency. In particular, the adversary uses an Energy Detector (ED) and a Correlation

Detector (CD) to detect the state-of-art countermeasures. (See Sec. II)

2) As a countermeasure against the proposed threat, we propose a Non-Coherent FFFD (NC-

FFFD) relaying scheme, wherein an FFFD helper assists the victim by instantaneously fast-

forwarding victim’s message along with its message to the base station. The proposed NC-FFFD

scheme also uses a Gold-sequence based scrambler to cooperatively pour energy on the victim’s

frequency in order to evade detection by ED and CD. With On-Off Keying (OOK) at the

victim and M−ary ASK at the helper, we propose an approximate joint maximum a posteriori

decoder to compute the closed-form expression of symbol error probability for the NC-FFFD

scheme. We then formulate an optimization problem of minimizing the SEP over the victim’s

and the helper’s energy levels, subject to a modified average energy constraint at the helper.

Subsequently, we solve the optimization problem for M = 2 and then generalise it for M > 2.

(See Sec. III, IV)

3) We also consider the case when fast-forwarding at the helper is not instantaneous, i.e., imperfect

fast-forwarding. Here, we propose Delay Tolerant NC-FFFD (DT NC-FFFD) scheme, where we

solve the optimization problem similar to M ≥ 2 by upper bounding the energy contributed by

the victim by a small number. We show that the error performance of DT NC-FFFD scheme

is independent of the delays introduced due to imperfect fast-forwarding. For all the cases, we

provide strong analytical results and based on these results, we provide a family of algorithms

to obtain near-optimal solutions to the optimization problem. (See Sec. V)

4) Finally, through various analytical and simulation results, we show that despite having robust

detectors, the adversary cannot detect the proposed mitigating scheme with high probability.

(See Sec. VI)
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Fig. 1: Novelty of our work w.r.t. existing contributions.

B. Related Work and Novelty

FD radios have found their applications in aiding [15]–[17], [18]–[20] as well as degrading [15], [16],

[21]–[23] a network’s performance. Along the lines of [15] and [16], this work also uses FD radios

at both the adversary and the helper node. However, in contrast, the threat model of this work is

stronger than the one in [15] and [16] as it can scan multiple frequencies to measure correlation

between symbols on different frequencies. Furthermore, the FD radio at the helper in this work

implements non-coherent modulation as against coherent modulation in [15] and [16]. Our work

can be viewed as a constellation design problem for a NC-FFFD strategy. In literature, [24]–[29]

address the problem of constellation design for point-to-point Single-Input Multiple-Output (SIMO)

non-coherent systems. Further, [30], [31] study the constellation design for non-coherent Multiple

Access Channel (MAC). However, due to distributed setting, our work cannot be viewed as a direct

extension of [24]–[31], as pointed in Fig. 1. Some preliminary results on the NC-FFFD scheme have

been presented by us in [1], where we compute the optimal energy levels at the victim and the helper

for M = 2. In addition, the results of this work are generalisable for M ≥ 2. Further, we provide

solutions for imperfect fast-forwarding at the helper and also present an extensive analysis on the

covertness of the proposed schemes.

II. System Model

We consider a crowded network wherein multiple nodes communicate with a base station on

orthogonal frequencies. In the context of this work, crowded network implies that all the nodes use

orthogonal frequency bands to communicate with the base station such that the number of frequency

bands is equal to the number of nodes in the network. Fig. 2a captures one simple instantiation of the

network where two nearby nodes, Alice and Charlie communicate with a multi-antenna base station,

Bob. The uplink frequencies of Alice and Charlie are centred around fAB and fCB, respectively. Alice

is a single-antenna transmitter that has low-rate and low-latency messages to communicate with Bob.
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Fig. 2: (a) A network model consisting legitimate nodes Alice and Charlie communicating with Bob, on fAB, and fCB,
respectively. Dave is the FD adversary, jamming fAB. He also measures the energy level on fAB and computes the
correlation between the symbols on fAB and fCB. (b) System model of NC-FFFD relaying scheme.

In contrast, Charlie, which is a Fast-Forward Full-Duplex (FFFD) node with NC receive-antennas

and a single transmit-antenna, has arbitrary data-rate messages to communicate with no latency

constraints. Here, fast-forwarding [17] refers to Charlie’s capability to instantaneously manipulate the

received symbols on its uplink frequency and then multiplex them along with its information symbols

to the base station. The mobility conditions of the network are such that the wireless channels from

Alice to Bob, and from Charlie to Bob experience fast-fading with a coherence-interval of one symbol

duration. Therefore, both Alice and Charlie use non-coherent Amplitude Shift Keying (ASK) for

uplink communication. In particular, since Alice has low data-rate messages, she uses the On-Off

Keying (OOK) scheme. On the other hand, since Charlie transmits at arbitrary data-rates, he uses

an M-ary ASK scheme, for some M = 2m, with m ≥ 1.

Within the same network, we also consider an adversary, named Dave, who is a cognitive jamming

adversary equipped with an FD radio that constantly jams fAB and also monitors it to detect any

countermeasures. We assume that Dave can learn Alice’s frequency band by listening to the radio

resource assignment information broadcast from the base station [32]. To monitor fAB for any possible

countermeasures, Dave uses an Energy Detector (ED), which measures the average energy level on

fAB. Furthermore, assuming that Dave does not have the knowledge of helper’s frequency band, he

uses a Correlation Detector (CD) that estimates the correlation between the symbols on fAB and all

other frequencies in the network. To envision a practical adversarial model, we assume that Dave’s FD

radio experiences residual SI. From the above threat model, we note that Alice cannot use frequency

hopping to evade the jamming attack due to two reasons: (i) the absence of vacant frequency bands

in the uplink, and moreover, (ii) an ED at Dave restricts Alice to completely switch her operating

frequency. This is because, if Alice switches her operating frequency, Dave measures a significant

dip in the energy level of fAB, thereby detecting a countermeasure. Other than frequency hopping,

if Alice implements repetition coding using frequency-diversity techniques, where she replicates her
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messages on fAB and another frequency (say fCB), simultaneously, then the CD at Dave detects a

high correlation between the symbols on both the frequencies. Subsequently, a detection by either

ED or CD compels Dave to jam fCB thereby degrading the network’s performance. Therefore, Alice

must use a countermeasure that helps her to communicate reliably with Bob while deceiving ED and

CD at Dave.

For ease of understanding, in Table I, we have provided the notations that appear in the rest of

the paper. In the next section, we present a communication setting wherein Alice seeks assistance

from Charlie to evade the jamming attack whilst deceiving the ED and the CD at Dave.

TABLE I: FREQUENTLY OCCURRING NOTATIONS

NC Receive antennas at Charlie
NB Receive antennas at Bob
M Charlie’s constellation size
EA Alice’s OOK symbol
EC Charlie’s multiplexed symbol
rC NC × 1 receive vector at Charlie

Ωi
Energy received at Charlie corresponding to
Alice’s ith symbol

rB NB × 1 receive vector at Bob
0NC

NC × 1 vector of zeros
INC

NC ×NC Identity matrix
Sℓ Sum energy received at Bob on fCB

ν Detection threshold at Charlie
ρℓℓ∗ Detection threshold between Sℓ and Sℓ∗

λ Residual self-interference
α Energy splitting factor
L Number of symbols received at Dave
EC,fAB

Avg. transmit energy of Charlie on fCB

ED,fAB
Avg. receive energy of Dave on fAB

rD(l) lth symbol received at Dave

PF A
Probability of false-alarm at Dave before
implementing the countermeasure.

PD
Probability of detection at Dave after imple-
menting the countermeasure.

III. Non-Coherent FastForward Full-Duplex Relaying Scheme (NC-FFFD)

In order to help Alice evade the jamming attack, we propose a Non-Coherent Fast-Forward Full-

Duplex (NC-FFFD) relaying scheme, described as follows: Bob directs Alice to broadcast her OOK

symbols on fCB with (1 − α) fraction of her energy, where α ∈ (0, 1) is a design parameter. Since

Charlie also has symbols to communicate to Bob, he uses his in-band FD radio to receive Alice’s

symbols on fCB, decodes them, multiplexes them to his symbols, and then fast-forwards them on fCB,

such that the average energy of the multiplexed symbols is (1 + α)/2 fraction of his original average

energy. As a result, Bob observes a MAC on fCB, and attempts to decode Alice’s and Charlie’s

symbols jointly. To deceive the ED at Dave, the average energy level on fAB needs to be the same

as before implementing the countermeasure. Therefore, Alice and Charlie use a Gold sequence-based

scrambler as a pre-shared key to cooperatively transmit dummy OOK symbols on fAB by using

residual α/2 and (1 − α)/2 fractions of their average energies, respectively. Note that the use of

dummy OOK symbols on fAB assists in deceiving the CD at Dave. In the next section, we discuss

the signal model of the NC-FFFD scheme on fCB so as to focus on reliable communication of Alice’s

symbols with the help of Charlie.



7

A. Signal Model

Before implementing the NC-FFFD relaying scheme, Alice transmits her OOK symbols with energy

EA ∈ {0, 1}, such that EA = 0 and EA = 1 correspond to symbols i = 0 and i = 1, respectively.

Similarly, Charlie transmits his symbols using an M−ary ASK scheme with average energy 1. When

implementing the NC-FFFD relaying scheme, as illustrated in Fig. 2b, Alice transmits her OOK

symbols with energy (1 − α)EA, for some α ∈ (0, 1) on fCB. With this modification, the average

transmit energy of Alice on fCB, denoted by EA,fCB
, is EA,fCB

= (1 − α)/2. Since Charlie is an

in-band FD radio, the received baseband vector at Charlie on fCB is,

rClrC = hAC

√

(1− α)EA + hCC + nC , (1)

where hAC ∼ CN (0NC
, σ2

ACINC
) is NC × 1 channel vector. Further, hCC ∼ CN (0NC

, λEC,fCB
INC

)

denotes the SI channel of the FD radio at Charlie [16]. Finally, nC ∼ CN (0NC
, NoINC

) is the NC × 1

Additive White Gaussian Noise (AWGN) vector.

As a salient feature of the NC-FFFD scheme, Charlie uses rC to instantaneously decode Alice’s

information symbol, and then transmits an energy level EC on fCB, which is a function of Alice’s

decoded symbol and its information symbol. If îC and j ∈ {1, · · · , M} denote Alice’s decoded symbol

and Charlie’s information symbol, respectively, then the energy level, EC is given by

EC =















ǫj if îC = 0,

ηj if îC = 1.
(2)

Here {ǫj, ηj | j = 1, · · · , M}, which represent the set of energy levels corresponding to different

combinations of îC and j, are the parameters under design consideration. Note that Charlie transmits

M energy levels corresponding to each value of îC . Towards designing {ǫj, ηj}, the energy levels are

such that, 0 ≤ ǫ1 < · · · < ǫM , 0 ≤ η1 < · · · < ηM , and ǫj < ηj, if j is odd and ǫj > ηj , if j is even.

Given that Alice contributes an average energy of (1 − α)/2 on fCB, Charlie is constrained to

transmit his multiplexed symbols with an average energy of (1 + α)/2 so that the average energy on

fCB continues to be unity. Thus, the average energy constraint on Charlie, denoted by EC,fCB
is,

rClEC,fCB
=

1

2M

M
∑

j=1

(ǫj + ηj) =
1 + α

2
. (3)

Finally, upon transmission of the energy level EC from Charlie, Bob observes a multiple access channel

on fCB from Alice and Charlie. Thus, the NB × 1 receive vector at Bob is,

rClrB = hAB

√

(1− α)EA + hCB

√

EC + nB, (4)
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where hAB ∼ CN (0NB
, σ2

ABINB
), hCB ∼ CN (0NB

, σ2
CBINB

), and nB ∼ CN (0NB
, NoINB

) are the

Alice-to-Bob link, Charlie-to-Bob link and the AWGN vector at Bob. We assume that all the channel

realizations and noise samples are statistically independent. We also assume that only the channel

statistics and not the instantaneous realizations of hAB and hCB are known to Bob. Similarly, only

the channel statistics and not the instantaneous realizations of hAC are known to Charlie. Further,

due to the proximity of Alice and Charlie, we assume σ2
AC > σ2

AB to capture higher Signal-to-Noise

Ratio (SNR) in the Alice-to-Charlie link compared to Charlie-to-Bob link. Henceforth, throughout

the paper, various noise variance at Charlie and Bob are given by SNR = N−1
o and σ2

AB = σ2
CB = 1.

Given that Alice-to-Bob and Charlie-to-Bob channels are non-coherent, Bob must use rB in (4)

to jointly decode the information symbols of both Alice and Charlie. Towards that direction, in the

next section, we study the distribution on rB conditioned on their information symbols.

B. The Complementary Energy Levels and Distribution of rB

Based on the MAC in (4), rB is sampled from an underlying multi-dimensional Gaussian distribu-

tion whose parameters depend on i, j, and îC . If e denotes the error event at Charlie, then, e = 0,

if i = îC and e = 1, if i 6= îC . Recall that for a given j, Charlie transmits ǫj or ηj corresponding to

îC = 0 and îC = 1, respectively. Therefore, Bob receives rB sampled from two different sets with 2M

multi-dimensional Gaussian distributions corresponding to e = 0 and e = 1. For example, assume

that Alice transmits symbol i = 1, and it gets decoded as îC = 0 at Charlie. According to (2), Charlie

transmits the energy level ǫj , and as a result, each component of rB is sampled from a circularly

symmetric complex Gaussian distribution with mean zero and variance 1−α + ǫj + No. On the other

hand, if Charlie had decoded the symbol correctly, each component of rB would be sampled from a

circularly symmetric complex Gaussian distribution with mean zero and variance 1−α + ηj + No. To

obtain these variance values, we have used the fact that hAB ∼ CN (0NB
, INB

), hCB ∼ CN (0NB
, INB

),

and nB ∼ CN (0NB
, NoINB

). Overall, using (4), the distribution of rB is given as,

rClrB ∼















































CN (0NB
, (ǫj + No)INB

) if i = 0, e = 0,

CN (0NB
, (ηj + No)INB

) if i = 0, e = 1,

CN (0NB
, (1− α + ηj + No)INB

) if i = 1, e = 0,

CN (0NB
, (1− α + ǫj + No)INB

) if i = 1, e = 1,

(5)

where we have substituted EA =0 and EA =1, for i = 0 and i = 1, respectively, and σ2
AB = σ2

CB = 1

in (4). From (5), it is clear that the sum of the energy levels transmitted by Alice and Charlie

characterizes all the possible distributions from which rB is sampled.



9

ǫ1 ǫ2 ǫ3 ǫ4η1 η2 η3 η4

(0, 1) (1, 1) (1, 2) (0, 2) (0, 3) (0, 4)(1, 3) (1, 4)

(b) M = 4

ǫ1 ǫ2η1 η2

(0, 1) (1, 1) (1, 2) (0, 2)

(a) M = 2

j = 1 j = 2
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Fig. 3: Illustration of multiplexing at Charlie and corresponding energy levels received at Bob.

We now define an index ℓ that is a one-to-one function of the transmit pair (i, j), such that

rClℓ =
1

2

[

(−1)ij
(

4j(1− i) + 4i(−1)j + (−1)j+i − 1
)]

. (6)

Since (i, j) ∈ {0, 1}×{1, · · · , M}, we have ℓ ∈ {1, · · · , 2M}. We also define two sets of energy levels,

denoted by S = {Sℓ | ℓ = 1, · · · , 2M} and S = {Sℓ | ℓ = 1, · · · , 2M} that correspond to the sum of

energy levels jointly contributed by Alice and Charlie, and the AWGN at Bob when e = 0 and e = 1,

respectively. In particular, the ℓth element of S and S are given by

rClSℓ , (1− α + ηj) i + ǫj(1− i) + No and Sℓ , (1− α + ǫj) i + ηj(1− i) + No. (7)

Since S, corresponds to the sum of energy levels when e = 1, we refer to S as the set of complementary

energy levels. Note that there is one-to-one correspondence between the elements of S and S, and

the distributions in (5) corresponding to e = 0 and e = 1, respectively. Also, note that S is such that

S1 < S2 < · · · < S2M−1 < S2M . To exemplify the sum of energy levels that characterises rB at Bob,

in Fig. 3, we present the elements of S and S for M = 2, 4.

C. Joint Maximum A Posteriori (JMAP) decoder for NC-FFFD Relaying Scheme

Due to the decode-multiplex-and-forward nature of the NC-FFFD scheme, we first compute the

error-rates introduced by Charlie while decoding Alice’s symbols, and then compute the joint error-

rates at Bob. Since Alice-to-Charlie link is non-coherent, Charlie uses energy detection to decode

Alice’s symbols. If f (rC |i) is the PDF of rC conditioned on the Alice’s symbol, i, then the Maximum

Likelihood (ML) decision rule for detection is

rCl̂iC = arg max
i∈{0,1}

ln {f (rC |i)} = arg min
i∈{0,1}

NC ln(πΩi) +
rH

C rC

Ωi
, (8)
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where (rC |i) ∼ CN (0NC
, ΩiINC

), such that Ω0 =
(

λ (1+α)
2

+ No

)

and Ω1 =
(

σ2
AC(1− α) + λ (1+α)

2
+ No

)

are the variance of the received symbol, when i = 0 and i = 1, respectively. Here, (·)H denotes the

Hermitian operator. Using the first principles, the energy detection threshold at Charlie, denoted by

ν, is given as, NC
Ω0Ω1

Ω0−Ω1
ln
(

Ω0

Ω1

)

. Using ν, it is straightforward to prove the next theorem that presents

the probability of error at Charlie in decoding Alice’s symbols.

Theorem 1. If Pik denotes the probability of decoding symbol i as symbol k, for i, k = 0, 1, then

P01 =
Γ

(

NC , ν
Ω0

)

Γ(NC)
and P10 =

γ

(

NC , ν
Ω1

)

Γ(NC )
, where γ(·, ·), Γ(·, ·), and Γ(·) are incomplete lower, incomplete

upper, and complete Gamma functions, respectively.

Lemma 1. The terms P01 and P10 are increasing functions of α for a given SNR, NC , and λ.

Proof. Consider the expression of P10 as given in Theorem 1. The ratio, ν/Ω1 can be rewritten as,

ν
Ω1

= NC
ln(1+θ)

θ
, where θ = (Ω1−Ω0)

Ω0
. Differentiating θ w.r.t. α, we get, − Noσ2

AC

(No+λ 1+α
2 )

2 . Since dθ
dα

< 0, as

α increases θ decreases. Further, when θ decreases, NC
ln(1+θ)

θ
increases. Therefore, ν

Ω1
is an increasing

function of α. Finally, since γ
(

NC , ν
Ω1

)

is an increasing function of ν
Ω1

, P10 is an increasing function

of α. Using similar argument, we can prove that P01 is also an increasing function of α.

Along the similar lines of Lemma 1, the following lemma is also straightforward to prove.

Lemma 2. The terms P01 and P10 are decreasing functions of NC for a fixed SNR, α, and λ.

Using P01 and P10 at Charlie, we study the performance of non-coherent decoder at Bob. With

i ∈ {0, 1} and j ∈ {1, 2, . . . , M} denoting Alice’s and Charlie’s information symbols, respectively, we

define a transmit pair as the two-tuple (i, j). Based on rB in (4), the JMAP decoder at Bob is

rCl̂i, ĵ = arg max
i∈{0,1},j∈{1,··· ,M}

g (rB|(i, j)) , (9)

where g (rB|(i, j)) is the PDF of rB, conditioned on i and j. However, note that due to errors

introduced by Charlie in decoding Alice’s symbols, g(·) is a Gaussian mixture for each realization of

i. The conditional PDF of g (rB|(i, j)) for i = 0, 1 is,

rClg (rB|(i, j)) = Piig (rB|(i, j), e = 0) + Piig (rB|(i, j), e = 1) , (10)

where g (rB|(i, j), e = 0) and g (rB|(i, j), e = 1) are the PDFs given in (5) and i is the complement

of i. Since solving the error performance of the JMAP decoder using the Gaussian mixtures in (10)

is non-trivial, we approximate the JMAP decoder by only considering the dominant terms in the
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summation of (10) [16] to obtain

rCl̂i, ĵ = arg max
i∈{0,1},j∈{1,··· ,M}

g̃ (rB|(i, j), e = 0) , (11)

where g̃ (rB|(i, j), e = 0) is the first term on the RHS of (10). Henceforth, we refer to the above

decoder as the Joint Dominant (JD) decoder. To showcase the accuracy of the approximation in (11),

we tabulate the error-rates for arbitrary energy levels and α for JMAP and JD decoders in Table II.

We compute the relative-error between error-rates of JMAP and JD decoder as,
∣

∣

∣

P JMAP−P JD
P JMAP

∣

∣

∣ and

show that the maximum relative error is within 5.55%. Therefore, in the next section, we discuss the

error analysis using JD decoder.

TABLE II: ERROR-RATES AT BOB WHEN USING JMAP DECODER AND JD DECODER FOR M = 2

NC = 1, NB = 8
SNR {ǫ1, ǫ2, η1, η2, α} PJMAP PJD rel. error
5 dB {0, 1e−6, 0.3052, 2.6421, 0.4736} 3.06× 10−1 3.23× 10−1 5.55× 10−2

14 dB {0, 1e−6, 0.5554, 3.0750, 0.8152} 8.32× 10−2 8.42× 10−2 1.20× 10−2

25 dB {0, 1e−6, 0.4382, 3.4008, 0.9195} 1.88× 10−2 1.90× 10−2 1.06× 10−2

NC = 2, NB = 4
SNR {ǫ1, ǫ2, η1, η2, α} PJMAP PJD rel. error
5 dB {0, 1e−6, 0.4334, 2.7135, 0.5734} 3.735× 10−1 3.782× 10−1 1.25× 10−2

14 dB {0, 1e−6, 0.5353, 3.1645, 0.8499} 1.32× 10−1 1.33× 10−1 7.57× 10−4

25 dB {0, 1e−6, 0.3228, 3.6082, 0.9655} 2.43× 10−2 2.47× 10−2 1.64× 10−2

D. Joint Dominant (JD) Decoder for NC-FFFD Relaying Scheme

From (6), we observe that there exist a one-to-one correspondence between (i, j) and ℓ. Thus, the

JD decoder in (11) can be rewritten as, ℓ̂ = arg max
ℓ∈{1,...,2M}

g̃ (rB|ℓ, e = 0). Henceforth, a transmit pair

jointly chosen by Alice and Charlie will be denoted by the index ℓ ∈ {1, 2, . . . , 2M}. As a consequence,

the JD decoder only considers the likelihood functions corresponding to the 2M dominant energy

levels in S with the assumption that no decoding error is introduced by Charlie. Let △ℓ→ℓ∗

ℓ 6=ℓ∗
denotes

the event when Bob incorrectly decodes an index ℓ to ℓ∗ such that ℓ 6= ℓ∗. Then, Pr
(

△ℓ→ℓ∗

ℓ 6=ℓ∗

)

=

Pr (g̃ (rB|ℓ, e = 0) ≤ g̃ (rB|ℓ∗, e = 0)). To characterize Pr
(

△ℓ→ℓ∗

ℓ 6=ℓ∗

)

, one should determine the energy

detection threshold between the energy levels corresponding to ℓ and ℓ∗. Towards this direction, we

use the following lemma that computes the energy detection threshold between Sℓ and Sℓ∗ .

Lemma 3. If Sℓ denotes the energy level jointly contributed by Alice and Charlie corresponding to

the transmitted index ℓ and Sℓ∗ denotes the energy level corresponding to the decoded index ℓ∗ such

that ℓ 6= ℓ∗, then the probability of the event △ℓ→ℓ∗

ℓ 6=ℓ∗
is given by Pr

(

△ℓ→ℓ∗

ℓ 6=ℓ∗

)

= Pr(rH
B rB ≥ ρℓ,ℓ∗), where

the threshold ρℓ,ℓ∗ is given by, ρℓ,ℓ∗ ≈ NB
SℓSℓ∗

Sℓ∗−Sℓ
ln
(

Sℓ∗

Sℓ

)

.
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Proof. Bob uses JD decoder and compares the conditional PDF of rB conditioned on ℓ and ℓ∗ as,

rCl Pr
(

△ℓ→ℓ∗

ℓ 6=ℓ∗

)

= Pr

(

g̃ (rB|ℓ∗, e = 0)

g̃ (rB|ℓ, e = 0)
≤ 1

)

= Pr













Pi∗i∗

(πSℓ∗)NB
exp

(

−r
H
B rB

Sℓ∗

)

Pii

(πSℓ)
NB

exp
(

−r
H
B

rB

Sℓ

) ≤ 1













= Pr
(

rH
B rB ≥ ρℓ,ℓ∗

)

,

where ρℓ,ℓ∗ = SℓSℓ∗

Sℓ∗ −Sℓ

(

NB ln
(

Sℓ∗

Sℓ

)

+ ln
(

Pii

Pi∗i∗

))

and Pii and Pi∗i∗ are a priori probabilities of index ℓ

and ℓ∗, respectively. It is straightforward that when i = i∗, ln
(

Pii

Pi∗i∗

)

= 0. Further, since ln
(

P00

P11

)

≈ 0

for N ≥ 1, when i 6= i∗, we have ln
(

Pii

Pi∗i∗

)

= ln
(

P00

P11

)

≈ 0 and ln
(

Pii

Pi∗i∗

)

= ln
(

P11

P00

)

≈ 0, for i = 0 and

i = 1, respectively. Thus, ρℓ,ℓ∗ ≈ NB
SℓSℓ∗

Sℓ∗ −Sℓ
ln
(

Sℓ∗

Sℓ

)

.

Since S1 < S2 · · · < S2M−1 < S2M , the set of relevant thresholds for the JD decoder are {ρℓ,ℓ+1, ℓ =

1, 2, . . . , 2M−1}. Therefore, based on the received energy rH
B rB, the JD decoder for detecting ℓ̂ can be

realized using an energy detector as, ℓ̂ = ℓ, if ρℓ−1,ℓ < rH
B rB ≤ ρℓ,ℓ+1, where ρ0,1 = 0 and ρ2M,∞ =∞.

Using ℓ̂, the average Symbol Error Probability (SEP), denoted by Pe, is given by, Pe = 1
2M

∑2M
ℓ=1 Pe,ℓ,

where Pe,ℓ = Pr (ℓ 6= ℓ∗) is the probability that Bob decodes a transmitted index ℓ as ℓ∗, where

ℓ 6= ℓ∗. Since, the decision of the energy detector is based on the received energies at Bob, we notice

that sum energy levels can be from S, when e = 0 or S, when e = 1. Therefore, Pe,ℓ = Pr(e =

0) Pr (ℓ 6= ℓ∗|e = 0) + Pr(e = 1) Pr (ℓ 6= ℓ∗|e = 1). Thus, we have

Pe,ℓ =















P00Pe,Sℓ
+ P01Pe,Sℓ

if ℓ(mod4) ≤ 1,

P11Pe,Sℓ
+ P10Pe,Sℓ

if otherwise,
(12)

where Pe,Sℓ
and Pe,Sℓ

are the terms associated with erroneous decision in decoding ℓ, when e = 0 and

e = 1, respectively. Since rH
B rB is gamma distributed, we get Pe,Sℓ

as given in (13).

Pe,Sℓ
=











































1− Pr
(

r
H
B rB ≤ ρ1,2|e = 0

)

=
Γ
(

NB,
ρ1,2

S1

)

Γ (NB)
for ℓ = 1,

1− Pr
(

ρℓ−1,ℓ ≤ r
H
B rB ≤ ρℓ,ℓ+1|e = 0

)

=
γ
(

NB,
ρℓ−1,ℓ

Sℓ

)

Γ (NB)
+

Γ
(

NB,
ρℓ,ℓ+1

Sℓ

)

Γ (NB)
for 2 ≤ ℓ ≤ 2M − 1,

1− Pr
(

r
H
B rB > ρ2M−1,2M |e = 0

)

=
γ
(

NB,
ρ2M−1,2M

S2M

)

Γ (NB)
for ℓ = 2M.

(13)

Since Bob uses the same thresholds to compute Pe,Sℓ
, we obtain the expression of Pe,Sℓ

, by replacing

Sℓ by Sℓ in (13). Finally, substituting (12), (13), and corresponding Pe,Sℓ
in Pe, we get,

Pe =
1

2M





M
∑

ℓ1=1

(

P00Pe,S 1
2(4ℓ1+(−1)ℓ1 −1)

+ P01Pe,S 1
2(4ℓ1+(−1)ℓ1 −1)

)

+
M
∑

ℓ2=1

(

P11Pe,S 1
2((−1)ℓ2(4(−1)ℓ2 ℓ2+(−1)ℓ2+1

−1))
+ P10Pe,S 1

2((−1)ℓ2(4(−1)ℓ2 ℓ2+(−1)ℓ2+1
−1))

)



 . (14)
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IV. Optimization of Energy Levels

In this section, we formulate an optimization problem in order to compute the optimal energy

levels at Alice and Charlie. In particular, as given in (15), we fix NC and NB and then optimise the

energy levels, {ǫj , ηj}, and α so as to minimise the SEP subject to the energy constraint in (3).

rCl min
ǫ1,··· ,ǫM ,η1,··· ,ηM ,α

Pe (15)

subject to:
M
∑

j=1

(ǫj + ηj) = M(1 + α), ǫ1 < · · · < ǫM , η1 < · · · < ηM , 0 < α < 1,

ǫj < ηj for j ∈ {1, 3, · · · , 2M − 1}, ǫj > ηj for j ∈ {2, 4, · · · , 2M}.

One can solve the above optimization problem by first formulating the Lagrangian and then solving

the system of 2M + 2 non-linear equations. Since solving a system of non-linear equations is complex

in general, we use an alternate approach for minimising Pe using its analytical structure, as discussed

in the next section. We first discuss the optimization of energy levels for M = 2 and then propose a

generalised approach of M = 2m such that m > 1.

A. Optimization of Energy Levels for M = 2

The expression of SEP in (14) when M = 2 is given as,

rClPe =
1

4

(

P00 (Pe,S1 +Pe,S4)+P11 (Pe,S2 +Pe,S3)+P01

(

Pe,S1
+Pe,S4

)

+P10

(

Pe,S2
+Pe,S3

))

. (16)

Instead of using Pe for optimization problem, we use an upper-bound on Pe, where we upper-bound

Pe,S1
≤Pe,S4

≤Pe,S2
≤Pe,S3

≤1, such that,

rClPe ≤ P ′
e ,

1

4
(P00 (Pe,S1 +Pe,S4)+P11 (Pe,S2 +Pe,S3)+2 (P01 + P10)) . (17)

Henceforth, we optimise the energy levels, ǫ1, ǫ2, η1, and η2 and α so as to minimise P ′
e.

1 Thus, the

modified optimization problem when M = 2 is,

rCl min
ǫ1,ǫ2,η1,η2,α

P ′
e (18)

subject to: ǫ1 + ǫ2 + η1 + η2 = 2(1 + α), ǫ1 < ǫ2, η1 < η2, 0 < α < 1, ǫ1 < η1 < η2 < ǫ2.

In order to minimise P ′
e, it is clear that we must minimise each Pe,Sℓ

, for ℓ = 1, · · · , 4 in (18). Towards

this direction, in the next lemma, we show that when ǫ1 = 0, Pe,S1 is minimum.

Lemma 4. The expression Pe,S1 =
Γ
(

NB, ρ1,2

S1

)

Γ (NB)
is minimum when ǫ1 = 0.

1Later through simulation results, we show that, optimizing (17) gives us near-optimal results.
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Proof. The expression of Pe,S1 is an upper incomplete Gamma function. Since upper incomplete

Gamma function is a decreasing function of the second parameter, Γ
(

NB, ρ1,2

S1

)

is a decreasing function

of ρ1,2

S1
. Therefore, Pe,S1 is minimum when ρ1,2

S1
is maximum and ρ1,2

S1
is maximum when S1 is minimum.

Since S1 = ǫ1 + No, S1 is minimum when ǫ1 = 0. This completes the proof.

Lemma 5. At high SNR, Pe,S1 ≪ 1 and Pe,S2 ≈
Γ
(

NB, ρ2,3

S2

)

Γ (NB)
.

Proof. We first prove that Pe,S1 ≪ 1. We have Pe,S1 =
Γ

(

NB ,
ρ1,2
S1

)

Γ(NB)
. The ratio ρ1,2

S1
is expressed as,

NB
ln(1+κ1)

κ1
, where κ1 = (S1 − S2)/S2. Further. since S1 < S2, −1 < κ1 < 0. Also, the ratio ln(1+κ1)

κ1

follows the inequalities, 2
2+κ1

≤ ln(1+κ1)
κ1

≤ 2+κ1

2+2κ1
, for κ > −1. Therefore,

Γ

(

NB ,
2NB
2+κ1

)

Γ(NB)
≥

Γ

(

NB ,
ρ1,2
S1

)

Γ(NB)
≥

Γ

(

NB,NB
2+κ1

2+2κ1

)

Γ(NB)
, where the second inequality is because Γ

(

NB, ρ1,2

S1

)

is a decreasing function of ρ1,2

S1
.

Thus,
Γ

(

NB ,
ρ1,2
S1

)

Γ(NB)
≤

Γ

(

NB ,
2NB
2+κ1

)

Γ(NB)
= Γ(NB,2NB)

Γ(NB)
≪ 1. Since S1 ≈ 0 at high SNR, 2/(2 + κ1) = 2S2/(S1 +

S2) ≈ 2 and therefore, we have the second inequality. This proves the first part of Lemma. On similar

lines, we can prove that at high SNR, the term
γ

(

NB ,
ρ1,2
S2

)

Γ(NB)
≤

γ

(

NB ,
NB

2

)

Γ(NB)
, thus,

γ

(

NB,
NB

2

)

Γ(NB)
≪ 1 and

therefore, we have Pe,S2 ≈
Γ

(

NB ,
ρ2,3
S2

)

Γ(NB)
.

Using the results of Lemma 5, the expression of P ′
e is approximated as,

rClP ′
e ≈

1

4
(P00Pe,S4 +P11 (Pe,S2 +Pe,S3)+2 (P01 + P10)) . (19)

From (18) we have 5 variables, resulting in a 5-dimensional search space to find the optimal set

{ǫ1, ǫ2, η1, η2, α}. Using the result of Lemma 4, we have ǫ1 = 0. Further, rearranging the sum energy

constraint, we express ǫ2 as a function of η1, η2, and α, therefore, ǫ2 = 2(1 + α) − (η1 + η2). Thus,

the search space is reduced to 3 dimensions. Through simulations we observe that, when we fix η1

and α, P ′
e exhibits unimodal nature w.r.t. η2. Similarly, P ′

e is unimodal w.r.t. α, when we fix η1 and

η2. The variation of P ′
e, the increasing terms of P ′

e, and the decreasing terms of P ′
e, w.r.t. η2 and α

are shown in Fig. 4 and Fig. 5, respectively. Further, we also observe that the unique mode in both

the cases is very close to the intersection of increasing and decreasing terms of P ′
e. Therefore, in the

next two theorems, we prove that the increasing and decreasing terms of P ′
e w.r.t. η2 and α, have a

unique intersection that is close to the local minima of P ′
e.

Theorem 2. For a given η1 and α, the increasing and decreasing terms in P ′
e intersect only once for

η2 ∈ (η1, 1 + α− 0.5η1).

Proof. We first determine the increasing and decreasing terms of P ′
e. Towards this direction, we first
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Fig. 4: Variation of P ′
e, its increasing and decreasing

terms as a function of η2, when η1 and α are fixed.

0 0.2 0.4 0.6 0.8 1
10-4

10-2

100

Fig. 5: Variation of P ′
e, its increasing and decreasing terms

as a function of α, when η1 and η2 are fixed.

analyse the behaviour of each term in (19), i.e., Pe,S2, Pc,S3, and Pe,S4 as a function of η2, where

rClPe,B2 =
Γ
(

NB, ρ2,3

S2

)

Γ (NB)
, Pe,S3 =

Γ
(

NB, ρ3,4

S3

)

Γ (NB)
+

γ
(

NB, ρ2,3

S3

)

Γ (NB)
, Pc,S4 =

γ
(

NB, ρ3,4

S4

)

Γ (NB)
.

Consider the term Pe,S2, where the ratio ρ2,3

S2
is given by, NB

ln(1+κ3)
κ3

, where κ3 = (S2 − S3)/S3.

Since S2 < S3, κ3 < 0. Differentiating κ3 w.r.t. η2 we get −S1/S2
2 . Therefore, as η2 increases, κ3

decreases. Since ln(1+κ3)/κ3 is a decreasing function of κ3, as κ3 decreases, NBln(1 + κ3)/κ3 increases.

Finally, since
Γ

(

NB,
ρ2,3
S2

)

/
Γ (NB) is a decreasing function of ρ2,3/S2, Pe,B2 decreases with increasing

ln(1 + κ3)/κ3. Therefore, Pe,S4 is a decreasing function of η2.

On similar lines, we can prove that
γ

(

NB ,
ρ2,3
S3

)

Γ(NB)
is also a decreasing function of η2. In contrast, the

terms,
Γ

(

NB,
ρ3,4
S3

)

Γ(NB)
and

γ

(

NB ,
ρ3,4
S4

)

Γ(NB)
are increasing functions of η2.

To prove that the increasing and decreasing terms intersect only once, we can prove that the

order of increasing and decreasing terms reverses at extreme values of η2 ∈ (η1, (1 + α − 0.5η1)).

Thus, we evaluate the sum of decreasing terms at left extreme, i.e., η2 → η1 and right extreme, i.e.,

η2 → (1 + α− 0.5η1),

rCl lim
η2→η1

Γ
(

NB, ρ2,3

S2

)

Γ (NB)
+

Γ
(

NB, ρ2,3

S3

)

Γ (NB)
= 1 and lim

η2→(1+α−0.5η1)

Γ
(

NB, ρ2,3

S2

)

Γ (NB)
+

Γ
(

NB, ρ2,3

S3

)

Γ (NB)
≪ 1.

Similarly, we evaluate the sum of increasing terms at left extreme and right extremes of η1,

rCl lim
η2→η1

Γ
(

NB, ρ3,4

S3

)

Γ (NB)
+

γ
(

NB, ρ3,4

S4

)

Γ (NB)
≪ 1, and lim

η2→(1+α−0.5η1)

Γ
(

NB, ρ3,4

S3

)

Γ (NB)
+

γ
(

NB, ρ3,4

S4

)

Γ (NB)
= 1.
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The above discussion is summarised as,


























Γ
(

NB, ρ2,3

S2

)

Γ (NB)
+

Γ
(

NB, ρ2,3

S3

)

Γ (NB)
>

Γ
(

NB, ρ3,4

S3

)

Γ (NB)
+

γ
(

NB, ρ3,4

S4

)

Γ (NB)
, if η2 → η1,

Γ
(

NB, ρ2,3

S2

)

Γ (NB)
+

Γ
(

NB, ρ2,3

S3

)

Γ (NB)
<

Γ
(

NB, ρ3,4

S3

)

Γ (NB)
+

γ
(

NB, ρ3,4

S4

)

Γ (NB)
, if η2 → (1 + α− 0.5η1).

Theorem 3. For a given η1 and η2, the increasing and decreasing terms in P ′
e intersect only once for

α ∈ (0, 1).

Proof. Since α is variable, we recall Lemma 1 to show that P01 and P10 are decreasing function of α.

Further, since P01 and P10 are decreasing functions of α, P00 and P11 are decreasing functions of α.

In addition to these 4 probabilities, Pe,S2, Pe,S3, and Pe,S4 are also functions of α in (19). On similar

lines of Theorem 2, we prove that, Pe,S2, Pe,S3, and Pe,S4 are decreasing function of α. Therefore, we

observe that P00Pe,S4 + P11 (Pe,S2 + Pe,S3) is a decreasing function of α and since P00 = P11 ≈ 0, when

α→ 1, P00Pe,S4 + P11 (Pe,S2 + Pe,S3) ≈ 0, when α→ 1. Further, 2(P01 + P10) is an increasing function

of α such that, 2(P01 + P10) ≈ 0, when α → 0 and 2(P01 + P10) ≈ 2, when α → 1. Therefore, it

is straightforward to observe that the increasing and decreasing terms of P ′
e reverse their orders at

extreme values of α. Thus, they have a unique intersection point.

In the next section, we use Theorem 2 and Theorem 3 to present a low-complexity algorithm to

solve the optimization problem in (18). Using this algorithm, we obtain a local minima over the

variables η2 and α for a given η1.

1) Two-Layer Greedy Descent (TLGD) Algorithm: In this section, we present Two-Layer Greedy

Descent (TLGD) algorithm, as presented in Algorithm 1. It first fixes NC , NB, and SNR and then

initialise η1 = 0, and η2 and α with arbitrary values ηo
2 and αo, respectively. Using the initial

values, it computes P o
e using (19) and then obtains ηi

2 and αi using Theorem 2 and Theorem 3,

respectively. It then evaluates P η2
e , i.e., P ′

e at {η1, ηi
2, α} and P α

e , i.e., P ′
e at {η1, η2, αi}. If for a given

η1, |P α
e − P η2

e | < δP ′
e
, for some δP ′

e
> 0, then the algorithm exits the inner while-loop with P ι

e such

that P ι
e = min (P α

e , P η2
e ) else, the algorithm iteratively descents in the steepest direction with new

values of η2 and α. After traversing several values of η1, TLGD finally stops when for a given η1, the

obtained P ι
e is within δP ′

e
, resolution of the previously computed value. The points at which P ′

e is

minimum as computed by TLGD are given by η⋆
1 , η⋆

2 and α⋆. We rearrange the constraint in (18) to

obtain ǫ⋆
2 = 2(1 + α⋆)− (η⋆

1 + η⋆
2). Further, from Lemma 4, we have ǫ1 = 0, therefore, ǫ⋆

1 = 0. Thus,

TLGD computes all the 5 variables, i.e., ǫ⋆
1, ǫ⋆

2, η⋆
1, η⋆

2, and α⋆.

In Fig. 6, we plot the error performance of NC-FFFD scheme as a function of SNR and NB using
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Algorithm 1: Two-Layer Greedy Descent Algorithm

Input: P ′
e from (19), δP ′

e
> 0, δη1 > 0, ǫ1 = 0

Output: {η⋆
1, η⋆

2, α⋆}
1 Initialize: η1 ← 0, η2 ← ηo

2, α← αo

2 P o
e ← P ′

e (α, η1, η2)
3 while true do
4 while true do
5 Compute ηi

2 using Theorem 2 and obtain P η2
e ← P ′

e (η1, ηi
2, α)

6 Compute αi using Theorem 3 and obtain P α
e ← P ′

e (η1, η2, αi)
7 if P α

e − P η2
e ≥ δP ′

e
then

8 η2 ← ηi
2; continue

9 end
10 else if P α

e − P η2
e ≤ −δP ′

e
then

11 α← αi; continue
12 end
13 else if |P α

e − P η2
e | < δP ′

e
then

14 P ι
e = min (P α

e , P η2
e ); break

15 end
16 end
17 if (P ι

e − P o
e ) ≤ −δP ′

e
then

18 η1 ← η1 + δη1 , P o
e ← P ι

e ; α∗ ← α, η∗
2 ← η2

19 end
20 else if (P ι

e − P o
e ) ≥ δP ′

e
then

21 η⋆
1 ← η1 − δη1 , η⋆

2 ← η∗
2, α⋆ ← α∗; break

22 end
23 else if |P ι

e − P o
e | < δP ′

e
then

24 η⋆
1 ← η1, η⋆

2 ← ηi
2, α⋆ ← αi; break

25 end
26 end
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Fig. 6: Performance of NC-FFFD
using energy levels obtained using
TLGD and the exhaustive search.
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Fig. 7: Performance of NC-FFFD for
fixed NB = 8 and varying NC .
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Fig. 8: Alice’s performance when us-
ing NC-FFFD scheme for NC = 1 and
NB = 8.

Monte-Carlo simulations. We assume, σ2
AB = σ2

CB = 1, λ = −50 dB, and NC = 1. Further, due to

vicinity of Alice and Charlie, we assume σ2
AC = 4, thus, providing 6 dB improvement in SNR on

Alice-to-Charlie link as compared to Alice-to-Bob link. We compute the error-rates when the optimal

energy levels and α are obtained using exhaustive search on (16). We also compute the error-rates

using the proposed algorithm. For both the scenarios, we observe that the error curves approximately

overlap, indicating the efficacy of the proposed algorithm, as well as our approach of using (18) instead
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of (16). Further, in Fig 7, for same parameters and NB = 8, we plot the error performance of ND-

FFFD scheme as a function of SNR for various values of NC . We observe that, the error performance

of NC-FFFD scheme improves as a function of NC . Finally, for the same parameters and NB = 8, in

Fig. 8, we show the improvement in Alice’s performance when using NC-FFFD relaying scheme. In

terms of feasibility of implementation, the complexity analysis of TLGD algorithm has been discussed

in the conference proceedings of this work [1].

B. Optimization of Energy Levels for M ≥ 2

In this section, we provide a solution that computes the optimal energy levels, {ǫj , ηj}, and the

factor α, when M ≥ 2. Since the average transmit energy of Charlie is constrained to EC,fCB
,

increasing the data-rate at Charlie results in degraded joint error performance as compared to M = 2.

One way to improve the error performance is by using a large number of receive antennas at Bob.

Despite this improvement, it is important to note that the joint error performance is also a function

of the SNR of Alice-to-Charlie link. Therefore, an improved Alice-to-Charlie link can help to improve

the overall performance of the scheme. This is also evident from Fig. 7, where we observe that the

error performance of the scheme improves as a function of NC . This motivates us to solve Pe in

(15) for optimal {ǫj, ηj}, and α under the assumption that Charlie has a sufficiently large number of

receive-antennas. In this section, we take a similar approach as that of Sec. IV-A, by upper bounding

the complementary error terms by 1 to obtain an upper bound on Pe given by,

rClPe ≤ P ′
e =

1

2M

[

M
∑

ℓ1=1

P00Pe,S 1
2 (4ℓ1+(−1)ℓ1 −1)

+

M
∑

ℓ2=1

P11Pe,S 1
2 ((−1)ℓ2 (4(−1)ℓ2 ℓ2+(−1)ℓ2+1

−1))
+ M (P01 + P10)

]

. (20)

Since P ′
e is a function of Sℓ and α, besides NC , NB, and SNR, in the next theorem, we compute the

optimal value of α ∈ (0, 1), that minimises P ′
e, when S1, · · · , S2M , NC , NB, and SNR are fixed.

Theorem 4. When S1, · · · , S2M are fixed, such that S2 < 1, the optimal value of α ∈ (0, 1) that

minimises P ′
e in (20) is given by, α† = 1− S2.

Proof. We will first show that P ′
e in (20) is an increasing function of α. Then, we compute a lower

bound on α considering the feasible energy levels jointly contributed by Alice and Charlie.

The expression of P ′
e in (20) is a convex combination of P00, P01, P10, and P11. Further, we notice

that P00 and P11 are decreasing functions of α (Lemma 1). However, since S1, · · · , S2M are fixed,

the coefficients of P00 and P11 are independent of α, such that,
∑M

ℓ1=1 Pe,S 1
2 (4ℓ1+(−1)ℓ1 −1)

≤ M and
∑M

ℓ2=1 Pe,S 1
2 ((−1)ℓ2(4(−1)ℓ2 ℓ2+(−1)ℓ2+1

−1))
≤M . Further, since P01 and P10 are increasing functions of α, it

is straightforward that, P ′
e is an increasing function of α. This completes the first part of the proof.
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Although, we upper bound the energy levels Sℓ by 1, in practice, Bob receives these energy levels

when e = 1 at Charlie. From (7), we have, S 1
2(4ℓ1+(−1)ℓ1 −1) = S 1

2 ((−1)ℓ1(4(−1)ℓ1 +(−1)ℓ1+1−1)) − (1− α).

It is important to note that, if S 1
2 ((−1)ℓ1(4(−1)ℓ1 +(−1)ℓ1+1−1)) < 1 − α , then S 1

2 (4ℓ1+(−1)ℓ1 −1) < 0.

However, since Sℓ ∈ S are energy levels, Sℓ ≥ 0. Therefore, to achieve S 1
2(4ℓ1+(−1)ℓ1 −1) ≥ 0, we

must have S 1
2((−1)ℓ1(4(−1)ℓ1 +(−1)ℓ1+1−1)) ≥ 1 − α or α ≥ 1 − S 1

2 ((−1)ℓ1(4(−1)ℓ1 +(−1)ℓ1+1−1)). Therefore,

α ≥ max
{

1− S 1
2((−1)ℓ1(4(−1)ℓ1 +(−1)ℓ1+1−1))

}

, where ℓ1 = 1, · · · , M . However, we know that, S1 <

· · · < S2M , thus, we have α ≥ 1− S2.

Finally, since P ′
e in (20) is an increasing function of α and α ≥ 1 − S2, P ′

e is minimised when

α = α† = 1− S2.

The result of Lemma 2 indicates that P01 and P10 are decreasing functions of NC . Further, Sℓ,

ℓ = 1, · · · , 2M are independent of NC , as a result, each convex combination in (20) decreases as NC

increases. Therefore, it is straightforward to prove that P ′
e is a decreasing function of NC .

Proposition 1. For a fixed α ∈ (0, 1), when NC → ∞, we have P01 = P10 ≈ 0 and P00 = P11 ≈ 1,

we have, P ′
e ≥ Pe,approx = 1

2M

[

∑M
ℓ1=1 Pe,S 1

2 (4ℓ1+(−1)ℓ1 −1)
+
∑M

ℓ2=1 Pe,S 1
2((−1)ℓ2(4(−1)ℓ2 ℓ2+(−1)ℓ2+1

−1))

]

.

Motivated by the result of Proposition 1, instead of solving (15) for a sufficiently large NC using the

first principles, we take an alternate approach, where we first compute S1, · · · , S2M that minimises

Pe,approx and then compute the respective {ǫj, ηj}, and α using the relation in (7).

Towards computing the optimal S1, · · · , S2M , we observe that since an energy level Sℓ corresponds

to the sum of energies contributed by Alice, Charlie, and the AWGN at Bob on fCB, the sum energies

contributed by Alice and Charlie will be Sℓ − No. Furthermore, since the average energy on fCB is

1, we have the following constraint of Sℓ:

rCl
1

2M

2M
∑

ℓ=1

(Sℓ −No) = 1. (21)

Finally, we formulate the following optimization problem of computing optimal S1, · · · , S2M so as to

minimise Pe,approx, subject to (21).

rClS⋆
1 , · · · , S⋆

2M = arg min
S1,··· ,S2M

Pe,approx (22)

subject to:
1

2M

2M
∑

ℓ=1

(Sℓ −No) = 1, S1 < · · · < S2M .

While (22) can be solved using the first principles, [24] provides a near-optimal solution for (22).

Therefore, we use the results of [24] to compute S⋆
1 , · · · , S⋆

2M . In the next lemma, we prove that,

when we use S1, · · · , S2M to obtain {ǫj , ηj}, such that S1, · · · , S2M follows (21), {ǫj, ηj} satisfies (3).
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Fig. 9: Error performance of NC-
FFFD when energy levels are com-
puted using EB algorithm for M = 2.
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Fig. 10: Error performance of NC-
FFFD when energy levels are com-
puted using EB algorithm for M = 4.
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Fig. 11: N
†
C as a function of SNR for

M = 2 and M = 4.

Lemma 6. If S1, · · · , S2M are fixed such that (21) is satisfied, then the average transmit energy of

Charlie is given by (3).

Proof. From (7), we have S 1
2 (4ℓ1+(−1)ℓ1 −1) = ǫℓ1 +No, and S 1

2((−1)ℓ1(4(−1)ℓ1 +(−1)ℓ1+1−1)) = 1−α+ηℓ1 +No

for i = 0, 1, respectively, where ℓ1 = 1, · · · , M . Rearranging and summing LHS and RHS of both

the equations, we get,
∑2M

ℓ=1(Sℓ − No) =
∑M

ℓ1=1 (ǫℓ1 + ηℓ1 + (1− α)). Dividing both sides by 2M and

rearranging, we get (3).

In the next section, we propose the energy backtracking algorithm, where we first solve (22) using

[24] to obtain S⋆
1 , · · · , S⋆

2M and then compute corresponding {ǫj, ηj |j = 1, · · · , M}, and α. It is

important to note that, since Charlie cannot have NC →∞, we must bound the number of receive-

antennas at Charlie. Thus, we use a parameter 0 < ∆RE ≪ 1 to bound NC . Therefore, we compute

the minimum number of receive-antennas at Charlie, such that the relative error between P ⋆
e,approx and

Pe,eval is within ∆RE , where P ⋆
e,approx is Pe,approx evaluated at S⋆

1 , · · · , S⋆
2M and Pe,eval is Pe evaluated

at optimal {ǫj, ηj |j = 1, · · · , M}, and α.

C. Energy Backtracking (EB) Algorithm

The Energy Backtracking (EB) Algorithm, first computes energy levels S⋆
1 , · · · , S⋆

2M using the semi-

analytical results of [24]. It then computes α†, and ǫ†
j and η†

j based on Theorem 4 and the relation

in (7), respectively. It then sets NC = 1 and computes Pe,eval, i.e., Pe at α†, ǫ†
j, η†

j for the given NB.

The algorithm increments NC until relative error between the P ⋆
e,approx and Pe,eval is within ∆RE . The

algorithm exits the while-loop when the relative error is less than or equal to ∆RE . The pseudo-code

for the proposed EB algorithm is given in Algorithm 2.

In Fig. 9 and Fig. 10, we plot the error performance of NC-FFFD relaying scheme when using

the EB Algorithm for M = 2 and M = 4 for various values of NB. In addition to the simulation
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Algorithm 2: Energy Backtracking Algorithm

Input: Pe (14), Pe,approx, ∆RE > 0, M , NB, No

Output: ǫ†
1, · · · , ǫ†

M , η†
1, · · · , η†

M , N †
C , α†

1 Compute S⋆
1 , · · · , S⋆

2M using [24] and evaluate P ⋆
e,approx.

2 α† = 1− S⋆
2

3 ; ǫ†
j = S⋆

1
2

(4j+(−1)j−1)
−No; η†

j = S⋆
1
2

((−1)j(4(−1)j +(−1)j+1−1))
− (1− α†)−No, j = 1, · · · , M

4 Set: NC = 1, Pe,eval = 1

5 while

∣

∣

∣

∣

∣

P ⋆
e,approx − Pe,eval

P ⋆
e,approx

∣

∣

∣

∣

∣

≥ ∆RE do

6 Substitute S⋆
1 , · · · , S⋆

2M , α†, NC , and NB in (14) and obtain Pe,eval

7 if

∣

∣

∣

∣

∣

P ⋆
e,approx − Pe,eval

P ⋆
e,approx

∣

∣

∣

∣

∣

> ∆RE then

8 NC = NC + 1; continue
9 end

10 else
11 N †

C = NC ; break
12 end
13 end

parameters assumed above, we assume ∆RE = 10−2 for both the cases. For both the cases, we observe

that the error performance improves as a function of SNR. In Fig. 9, we also plot the performance of

NC-FFFD scheme when Charlie uses optimal energy levels for point-to-point communication obtained

using [24] for NB = 2, 8. From the plot it is clear that, although Charlie is using optimal energy levels

for point-to-point communication, the corresponding error performance of NC-FFFD is poor. This

reinforces that to minimise Pe, energy levels at both the users must be jointly optimised as proposed

in Algorithm 2. Finally, in Fig. 11, we also plot N †
C as a function of SNR, for various combinations of

M and NB and observe that with only tens of antennas at the helper, we can achieve the performance

close to its large-antenna counterpart.

If NC-FFFD scheme provides performance close to P ⋆
e,approx, it assumes that fast-forwarding at

Charlie is perfect. Therefore, the symbols on the direct link, i.e., Alice-to-Bob link and relayed link,

i.e., Charlie-to-Bob link, arrive during the same time instant, thereby resulting in the signal model

in (4). In the next section, we discuss the case when fast-forwarding at Charlie is imperfect. In

particular, we discuss the consequences related to this problem and a possible solution.

V. Delay-Tolerant NC-FFFD (DT NC-FFFD) Relaying Scheme

If nT denotes the delay on the relayed link w.r.t. the direct link, such that n ≥ 0 and T is the

symbol duration, then nT = 0, when fast-forwarding is perfect. However, when fast-forwarding is

imperfect, nT 6= 0 and rB must be a function of nT . In particular, when nT 6= 0, the symbol received

at Bob is a function of Alice’s current symbol, Charlie’s current symbol, and Alice’s symbol delayed

by nT . Although, Charlie’s current symbol and Alice’s symbol delayed by nT are captured by EC ,
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the current symbol of Alice creates an interference in the symbol decoding, thereby degrading the

error performance. To illustrate this behaviour, we plot the error performance of NC-FFFD scheme

in Fig. 12, when the symbols on the relayed link arrive one symbol period after the symbols on the

direct link. The plot shows that, the error performance degrades as the energy on the direct link

interferes when Bob tries to decode symbols using the relayed link.

Towards computing the optimal energy levels at Alice and Charlie when nT 6= 0, one can formulate

a new signal model, where rB is a function of nT and then compute the optimal energy levels using

the first principles. However, we note that, Alice contributes zero and 1−α energies on the direct link,

when she transmits symbol 0 and symbol 1, respectively. Thus, in order to reduce the interference

from the direct link, we must reduce the term 1− α. Therefore, if we upper bound the contribution

1 − α by small value, then we can continue to use the same signal model on rB as given in (4),

thereby making NC-FFFD scheme Delay Tolerant. To this end, we propose an upper bound on 1−α

as, 1 − α ≤ ∆DTNo, where 0 < ∆DT ≪ 1 is the design parameter. Since 1 − α ≤ ∆DTNo, we

have the relation α ≥ 1 − ∆DTNo. Further, the result of Theorem 4 shows that P ′
e is an increasing

function of α, therefore, the optimal choice of α would be, α = 1−∆DTNo. However, since ∆DT ≪ 1,

1− S2 < 1−∆DTNo and therefore, using α = 1−∆DTNo will degrade the error performance. In the

following discussion, we show that we can achieve the same error performance at α = 1−∆DTNo as

achieved in Sec. IV-B at α = 1− S2, by increasing the receive-diversity at Charlie.
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Fig. 12: Error performance for nT = 0
and nT = T .
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Fig. 13: Variation of P01+P10

2
as a

function of NC and α.
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Fig. 14: Performance of DT NC-FFFD
when energy levels are computed us-
ing DT-EB algorithm for M = 2.

Since the terms P00, P01, P10, and P11 are functions of α and NC in P ′
e, we show that one can achieve

the same P00, P01, P10, and P11 at different combinations of α and NC . The results of Lemma 1 show

that for a fixed NC , P01 and P10 are increasing functions of α. Subsequently, from Lemma 2, for a

fixed α, P01 and P10 are decreasing functions of NC . In Fig. 13, we plot P01+P10

2
as a function of α for

various NC at 25 dB and observe that, for NC = 1 and α = 0.9003, the average probability of error
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of Alice-to-Charlie link is 9.79 × 10−3. However, to obtain the same error performance at larger α,

i.e., α = 0.9733, we must use NC = 4.

Based on the above discussion, in the next section, we propose a variant of EB algorithm, where

we bound the interference from the direct link by ∆DTNo and obtain {ǫj , ηj} and the minimum NC ,

such that the error performance is close to Pe,approx.

A. Delay Tolerant Energy Backtracking (DT-EB) Algorithm

In the Delay Tolerant Energy Backtracking (DT-EB) algorithm, we obtain the optimal energy

levels at Alice and Charlie, such that the energy level on the direct link is bounded by ∆DTNo. To

facilitate this, we use the EB algorithm with two variations, i) we set α = 1 − ∆DTNo, instead of

α = 1− S⋆
2 , ii) the effective SNR to compute S⋆

1 , · · · , S⋆
2M is (No + ∆DTNo)

−1.
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Fig. 15: Performance of DT NC-FFFD
when energy levels are computed us-
ing DT-EB algorithm for M = 4.
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Fig. 16: N
‡
C as a function of SNR for

M = 2 and M = 4.
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Fig. 17: DT NC-FFFD scheme, when
nT = 0 and nT = T for M = 2, NB =
8, ∆RE = 10−2, and ∆DT = 10−1.

We now demonstrate the performance of DT NC-FFFD scheme. For all simulation purposes, we

assume ∆RE = 10−2, and ∆DT = 10−1, in addition to simulation parameters considered in the

previous sections. Further, the effective SNR at Bob, denoted by SNReff, is given by SNReff (dB) =

SNR (dB)− log (1 + ∆DT). In Fig. 14 and Fig. 15, we plot the error performance of DT NC-FFFD

scheme as a function of SNReff for M = 2 and M = 4, respectively, when NB = 2, 4, 8, 16. From

these plots, we show that the error performance of DT NC-FFFD improves as a function of SNReff.

However, to achieve this performance Charlie must use more receive-antennas as compared to its

NC-FFFD counterpart. In Fig. 16, we plot the optimal receive-antennas at Charlie, denoted by N ‡
C ,

as a function of SNR for various combinations of M and NB, and observe that since α is a function

of No, the number of receive-antennas required by Charlie is an increasing function of SNR. Further,

it is clear from the plot that we need to mount more receive-antennas at Charlie for DT NC-FFFD

scheme as compared to NC-FFFD scheme. Furthermore, we also plot the error performances of NC-
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FFFD and DT NC-FFFD schemes in Fig 17, for the case when nT = 0 and nT = T , when M = 2

and NB = 8. From the plots, we find that, when nT = 0, the error performance of NC-FFFD and

DT NC-FFFD exactly overlaps. However, when nT = T , the error-rates of DT NC-FFFD are better

than the error-rates of NC-FFFD scheme. We also notice a marginal degradation in the performance

of DT NC-FFFD when nT = T compared to nT = 0 due to lower effective SINR in the former case.

VI. Covertness Analysis of NC-FFFD Relaying Scheme

When communicating in the presence of a reactive jamming adversary, it becomes imperative

that the communication is covert. In the context of this work, covertness is the ability of Alice and

Charlie to communicate without getting detected by Dave’s ED or CD. Henceforth, we discuss Dave’s

capability to detect the proposed countermeasures by focusing on the communication over fAB.

A. Energy Detector (ED)

After executing the jamming attack, Dave collects a frame of L symbols on fAB and computes their

average energy. A countermeasure is detected when the difference between the computed average

energy (after the jamming attack) and the average energy (before the jamming attack) is greater

than the tolerance limit τ , where τ ≥ 0 is a small number of Dave’s choice.

When no countermeasure is implemented, Dave receives symbols from Alice on fAB. Since Dave

has single receive-antenna, the lth symbol received by Dave on fAB is, rD(l) = hAD(l)x(l)+nD(l), l =

1, · · · , L, where, hAD(l) ∼ CN (0, 1) is the fading channel on the lth symbol on Alice-to-Dave link,

nD(l) ∼ CN
(

0, Ño

)

is the effective AWGN at Dave, such that Ño = No + σ2
DD, where σ2

DD is the

variance of the residual SI at Dave and No is the variance of the AWGN at Dave. Further, the

scalar x(l) ∈ {0, 1} is the lth symbol transmitted by Alice. Due to uncoded communication over

fast-fading channel, rD(l) is statistically independent over l. The average energy received by Dave

on fAB corresponding to rD(l), l ∈ {1, · · · , L} is given by, ED,fAB
, where ED,fAB

= 1
L

∑L
l=1 |rD(l)|2.

Since hAD(l) and the AWGN nD(l) are Random Variables (RV), ED,fAB
is also a RV. Using weak

law of large numbers, 1
L

∑L
l=1 |rD(l)|2 → EfAB

in probability, where, EfAB
= Ño + 0.5 denotes the

expected energy of rD(l) on fAB, before the jamming attack. Since low-latency messages typically

have short packet-length, Dave cannot collect a large number of observation samples. Therefore, L

is generally small, and with probability 1, ED,fAB
6= EfAB

. If H0 and H1 denote the hypothesis of no

countermeasure and countermeasure, respectively, then, given H0 is true, false-alarm is an event when

ED,fAB
deviates from EfAB

by an amount greater than τ . We now formally define the probability of

false-alarm.
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Definition 1. The probability of false-alarm denoted by, PF A is given as, Pr ( |ED,fAB
−EfAB

| > τ | H0),

for τ > 0.

If ul denotes the energy of lth symbol on fAB without any countermeasure, then the RV corresponding

to the average energy of L symbols is denoted by, UL = 1
L

∑L
l=1 ul. In order to compute PF A, first we

compute the distribution of UL in the next theorem.

Theorem 5. GivenH0 is true, if Ño << 1, then the PDF of UL, i.e., pUL
(ς) is

(

1
2

)L
∑L

l=0

(

L
l

)

Lle−Lς ςl−1

Γ(l)
,

ς > 0. [16, Theorem 5]

From Definition 1, PF A = Pr (ED,fAB
> EfAB

+ τ) + Pr (ED,fAB
≤ EfAB

− τ). Therefore, using the

PDF of UL from Theorem 5, the closed-form expression of PF A is given by,

rClPF A =
1

2L

(

L
∑

l=0

(

L

l

)

Γ (l, L(EfAB
+ τ))

Γ(l)
+

L
∑

l=0

(

L

l

)

γ (l, L(EfAB
− τ))

Γ(l)

)

. (23)

When using NC-FFFD relaying scheme, at the lth symbol instant, Alice and Charlie synchronously

transmit dummy OOK bit b(l) ∈ {0, 1} with energies α and 1 − α, respectively, on fAB, where b(l)

is the least significant bit of the pre-shared Gold sequence. The baseband symbol received at Dave

is, rD(l) = hAD(l)
√

αb(l) + hCD(l)
√

1− αb(l) + nD(l), where, for lth symbol, hAD(l) ∼ CN (0, 1) and

hCD(l) ∼ CN (0, (1 + ∂)) are Rayleigh fading channels for Alice-to-Dave and Charlie-to-Dave links,

respectively. Since the location of Dave can be arbitrary, the variances of Alice-to-Dave and Charlie-

to-Dave links are not identical. Thus, ∂ captures the relative difference in the variance. If EF F
D,fAB

denotes the average energy received at Dave, when Alice and Charlie use NC-FFFD scheme, then

due to change in the signal model, EF F
D,fAB

6= ED,fAB
. Along the similar lines of PF A, we now formally

define the probability of detection at Dave when NC-FFFD scheme is implemented.

Definition 2. If PD denotes the probability of detection at Dave when H1 true, then for any τ > 0,

PD = Pr
(∣

∣

∣EF F
D,fAB

−EfAB

∣

∣

∣ > τ
∣

∣

∣H1

)

.

Further, if vl denotes the energy of lth received symbol when using the countermeasure, then

VL denotes the average energy of L symbols, where, VL = 1
L

∑L
l=1 vl. We provide the closed-form

expression of PDF of vl and VL in the next theorem.

Theorem 6. When Ño << 1 and H1 is true, the PDF of VL, i.e., pVL
(ς), is given by,

rCl
(

1

2

)L L
∑

l=0

(

L

l

)

(

L
A

)l
e− L

A
ςς l−1

Γ(l)
, where, ς > 0 and A = α + (1− α)(1 + ∂). (24)

Proof. When H1 is true, the received symbol at Dave on fAB is given as, rD(l) = hAD(l)
√

αb(l) +

hCD(l)
√

1− αb(l) + nD(l). Thus, the PDF of vl is given as, pvl
(ς) = 1

2

(

1

Ño

e
− ς

Ño + 1
Ño+A

e
− ς

Ño+A

)

,
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where A = α + (1−α)(1 + ∂). Computing VM requires us to sum L independent vl random variables

each scaled by L, i.e., sum of L independent vm/M random variables. Therefore,

rClpvl/L(ς) =
1

2

(

1

Ño

e
− Lς

Ño +
L

Ño +Ae
− Lς

Ño+A

)

≈ 1

2

(

δ(ς) +
L

Ae− L
A

ς
)

,

where, the approximation is because Ño << 1. The pdf of VL is equivalent to computing L-fold

convolution (∗L) of pvl/L(ς). For simplification, we use the properties of Laplace transform (L [·])
and inverse Laplace transform (L −1[·]) to compute the pdf of VL as,

rClpVL
(ς) =

(

pvl/L(ς)
)∗L

= L
−1
[

(

L

[

pvl/L(ς)
])L

]

= L
−1





(

1

2

)L
[

1 +
L/A

(s + L/A)

]L


 .

Using binomial expansion we expand
[

1 + L/A
(s+L/A)

]L
and substitute in above to obtain (24).

Overall, from Definition 2 we have, PD = Pr
(

EF F
D,fAB

> EfAB
+ τ

)

+Pr
(

EF F
D,fAB

≤ EfAB
− τ

)

. Thus,

the probability of miss-detection, PMD is given by 1−PD. From the result of Theorem 6,

rClPMD = 1− 1

2L

L
∑

l=0

(

L

l

)

Γ
(

l, L
A

(EfAB
+ τ)

)

Γ(l)
− 1

2L

L
∑

l=0

(

L

l

)

γ
(

l, L
A

(EfAB
− τ)

)

Γ(l)
. (25)

Ideally, a low PF A and a high PD allows Dave to detect a countermeasure. However, the legitimate

nodes would like to drive the sum PF A + PMD close to 1 for any value of τ .

Remark 1. If ∂ = 0 in (25), then PF A + PMD = 1, for all α ∈ (0, 1) and arbitrary M and τ .
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Fig. 18: PF A + PMD as a function of L and ∂ at 25 dB (including the residual SI), NB = 8, and ∆DT = 0.1.

Although, the above result theoretically guarantees PF A + PMD = 1 for specific value of ∂, Fig. 18

shows the simulation results for ∂ = 0.1 and ∂ = 0.4. Since Alice and Charlie transmit b(l), with

energy α and 1− α, respectively, the communication on fAB is independent of {ǫj , ηj|j = 1, · · · , M}
and only depends on the value of α. In the previous sections, we have computed the values of α

using TLGD algorithm, EB algorithm, and DT-EB algorithm. Therefore, in Fig. 18, we plot the sum
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PF A + PMD at Dave as a function of L, when the optimal value of α is computed using TLGD,

EB, and DT-EB algorithm. For SNR = 25 dB, NB = 8, and ∆DT = 0.1, we observe that the sum

PF A + PMD ≈ 1, despite a large number of samples at Dave. These simulation results indicate that

the ED at Dave is oblivious to the countermeasures implemented by Alice and Charlie.

B. Correlation Detector (CD)

In order to prevent Alice and Charlie from using repetitive coding across the frequencies [15] and

[16], Dave deploys a CD to capture the correlation between the symbols on the jammed frequency

and other frequencies in the network. Amongst several methods to estimate the correlation, Dave

uses a CD that estimates the correlation in terms of Mutual Information (MI) to capture both, linear

as well as non-linear correlation between the samples. However, estimating MI requires estimating

the underlying marginal and joint PDFs, which is hard in general. Therefore, Dave needs a non-

parametric method of MI estimation that does not require him to know the underlying joint and

marginal PDFs. KSG estimators [33] based on k-nearest neighbours (k-NN) are well known for non-

parametric MI estimation for their ease of implementation. Thus, Dave uses a KSG estimator to

detect the proposed countermeasures. Since the information symbols on the frequency bands other

than fCB are implicitly independent of symbols on fAB, we only focus on estimating the correlation

between the symbols on fAB and fCB as fCB is the helper’s frequency band. In the context of this

work, Dave estimates the MI between the energies of the samples on fAB and fCB.

We will first show the effect of transmitting dummy OOK bit b ∈ {0, 1} on fAB, from the pre-

shared Gold sequence. When no countermeasure is used, and Alice and Charlie transmit independent

symbols on fAB and fCB, respectively, the energy scatter-plot is as shown in Fig. 19a. If Alice and

Charlie use repetitive coding across the frequencies, the energy samples are clustered only around

few centres as shown in Fig.19b. Further, when Alice and Charlie cooperatively use Gold-sequence

bits, the scatter-plot is as shown in Fig. 19c. It can be observed that the scatter-plot in Fig 19a and

Fig 19c are more randomised as compared to Fig. 19b. This suggests that, when Alice and Charlie

transmits bits from a Gold-sequence based scrambler on fAB, the observations at Dave are similar

to when they were transmitting independent symbols.

To formally measure the correlation, let U and V denote the RVs corresponding to the energy of

samples on fAB and fCB, respectively. Before the jamming attack, since Alice and Charlie transmit

independent symbols, the MI estimate denoted by, Ĩ(U, V ), should be zero. However, due to small

number of samples, i.e., L, Ĩ(U, V ) is a small non-zero value which approaches zero as the number

of samples increases. In Fig. 19d, for 25 dB, NB = 8, and k = 2, we plot the estimated MI at Dave,

before the jamming attack, and after implementing NC-FFFD scheme with repetitive coding and
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Fig. 19: Scatter-plots representing the energy pairs received at Dave for SNR = 25 dB, NB = 8, L = 50, when (a) Dave
is not jamming. (b)Alice and Charlie use repetitive coding across fAB and fCB. (c) Alice and Charlie cooperatively
use Gold-sequence. (d) MI before jamming and after using NC-FFFD with Gold-sequence and with Repetitive coding
as a function of L at SNR = 25 dB, k = 2, and NB = 8. (e) PD,CD when NC-FFFD is implemented with repetitive
coding and with Gold-sequence, for L = 150 at 25 dB, NB = 8, and k = 2.

Gold-sequence. We use 103 iterations for each value of L to compute Ĩ(U, V ) before the jamming

attack because Dave wants to have a good estimate of MI. However, after the jamming attack, Dave

cannot use multiple iterations for estimating Ĩ(U, V ) for a given L. From Fig. 19d, it is clear that the

estimated MI for NC-FFFD is high and an increasing function of L when repetitive coding is used.

In contrast, when Gold-sequence is used, the estimated MI oscillates near the MI estimate before the

jamming attack.

If τCD denotes the resolution of Dave’s CD, then probability of detection denoted by, PD,CD is

given as, PD,CD = Pr
(∣

∣

∣E

[

ĨJ(U, V )
]

− ĨCJ(U, V )
∣

∣

∣ ≥ τMID

∣

∣

∣H1

)

, where, E
[

ĨJ(U, V )
]

denotes the long

term estimate of MI before the jamming attack and ĨCJ(U, V ) denotes the estimate of MI after

implementing NC-FFFD with pre-shared Gold-sequence bits. In Fig. 19e, we plot PD,CD at SNR =

25 dB, NB = 8, and L = 150 samples, where the optimal value of α is computed using the EB

algorithm. Since τCD determines the accuracy of the CD, we assume 0 ≤ τCD ≤ 0.20, because a very

large resolution results in poor detection. When NC-FFFD is implemented and Alice uses repetitive

coding, PD,CD is close to 1 for the given range of τCD. However, when NC-FFFD is implemented

using Gold-sequence bits b, PD,CD reduces as a function of τCD. Thus, when Alice and Charlie use

Gold-sequence bits to transmit on fAB, the probability of detecting the countermeasure at Dave is

small, as the symbols on fAB and fCB are independent by design.
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VII. Conclusion

In this work, we have envisaged a strong FD adversary who injects jamming energy on the low-

latency messages of the victim in a fast-fading environment. Unlike the reactive adversaries in the

literature, the adversary in our model, uses an energy detector and a correlation detector to prevent

the use of any pre-existing countermeasures. Against this threat model, we have proposed NC-

FFFD relaying scheme, where the victim seeks help from a helper to fast-forward its symbols to

the base station. Based on the helper’s data-rate we have derived analytical results on the joint error

performance, and then have proposed a family of algorithms to compute the near-optimal energy

levels at the victim and the helper nodes. Further, we have also shown that, with high probability,

the proposed scheme successfully engages the reactive adversary to the jammed frequency. Overall,

this is the first work of its kind to address security threats from a reactive adversary in a fast-fading

environment.
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