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Abstract

Recently, semantic communication has been brought to the forefront because of its great success

in deep learning (DL), especially Transformer. Even if semantic communication has been successfully

applied in the sentence transmission to reduce semantic errors, existing architecture is usually fixed in the

codeword length and is inefficient and inflexible for the varying sentence length. In this paper, we exploit

hybrid automatic repeat request (HARQ) to reduce semantic transmission error further. We first combine

semantic coding (SC) with Reed Solomon (RS) channel coding and HARQ, called SC-RS-HARQ, which

exploits the superiority of the SC and the reliability of the conventional methods successfully. Although

the SC-RS-HARQ is easily applied in the existing HARQ systems, we also develop an end-to-end

architecture, called SCHARQ, to pursue the performance further. Numerical results demonstrate that

SCHARQ significantly reduces the required number of bits for sentence semantic transmission and

sentence error rate. Finally, we attempt to replace error detection from cyclic redundancy check to a

similarity detection network called Sim32 to allow the receiver to reserve the wrong sentences with

similar semantic information and to save transmission resources.
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I. INTRODUCTION

Deep learning (DL) has been utilized in the physical layer of communications [1]–[3]. DL-

based joint design [4]–[12] has become a potential directions to outperform the conventional

communication structure. In [4], a fully connected network is used to replace channel estimation

(CE) and signal detection at the receiver. In [5], the pilot is jointly designed with CE to reduce

its overhead. In addition, the receiver can also be jointly optimized with beamforming [6]

and precoding [7]. In [8], the entire network is combined with different modules, including

pilot design, CE, and channel information state feedback. Many modules in the conventional

communication systems can be jointly designed to improve their performance, such as DL-based

joint encoder-decoder [9]–[11]. However, their reliability still has room for improvement. In the

conventional communication system, reliable transmission is commonly guaranteed by hybrid

automatic repeat request (HARQ). Among different types of HARQ, incremental redundancy

HARQ (IR-HARQ) adjusts its code rate according to the acknowledgment (ACK) feedback and

is a channel adaptive method. In [13], the performance of IR-HARQ achieved ergodic channel

capacity for fading channels. The existing DL-based methods [14], [15] are proposed to enhance

the HARQ but are still designed independently.

Recently, semantic communications [16]–[18] have been brought to the forefront because

the great success of DL makes many semantic tasks possible [19]. Traditional communication

systems concentrate on the bit or symbol level performance. Semantic communication focuses

on transmitting the desired meaning, which is regarded as the second level communication in

[20]. Semantic communication usually goes beyond traditional Shannon’s paradigm because the

separated source and channel coding approach is not always optimal in practice. The semantic

counterparts of Shannon’s source and channel coding theorems have been investigated in [21],

where semantic communication is content-related. Thus, shared and local knowledge can help

the joint design of source and channel coding and improve transmission efficiency. Specifically,

joint source and channel coding for semantic transmission has been effective for image [22]–[27],

video [28], speech [29], and text [30], [31] transmissions.

Some architectures for DL-based semantic communications can outperform those based on tra-

ditional communications for certain semantic metrics, especially when communication resources

are limited and noise is high. At the outset, fully connected and convolutional neural networks
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have been initially exploited for some specific transmission tasks, such as image transmission

[26], [27]. DL-based joint source and channel coding in [26] improves the peak signal-to-noise

ratio while higher image classification accuracy is focused in [27]. The shared knowledge of the

transmission task is implicitly stored in the trained weights of the neural networks and makes

the DL-based semantic methods better than the conventional encoding methods, which exploit

no knowledge of semantics. A recurrent neural network (RNN) in [30] is exploited for sentence

transmission under the erasure channel, which demonstrates its superiority under a high bit drop

rate. The semantic transceiver in [31], which is called DeepSC, is based on Transformer [32]

and is proved to be better than RNN in understanding the meaning of text sentences. DeepSC is

extended to the Internet of Things in [33], where more practical issues, such as channel impact,

quantization, and network compression, are considered. Furthermore, the novel architecture based

on federated edge intelligence in [34] allows the user to offload semantic tasks. However, the

impact of semantic coding on HARQ still need further study.

In this paper, we concentrate on SC based on Transformer for semantic transmission of text

sentences. However, IR-HARQ is introduced for further performance improvement, which is

different from previous works. First, our semantic coding network for source coding, called SC,

is combined with the conventional Reed-Solomon (RS) channel coding and HARQ. Then, an

end-to-end autoencoder, called SCHARQ, is introduced to improve the transmission efficiency

and reduce the sentence-error rate (SER) under a high bit-error-rate (BER). Finally, we replace

the conventional error detection method with a Transformer-based network, called Sim32, to

detect the meaning error in the estimated sentences. The major contributions of this work are

summarized as follows:

1) To improve the reliability of sentence semantic transmission, we combine the semantic

source coding (SC) with conventional RS channel coding and HARQ, called parallel SC-RS-

HARQ. The code length of SC is changeable according to the length of the sentences, thereby

enabling SC to perform better than the methods with fixed code length when the required average

number of bits is the same. The proposed SC helps reduce SER under high BER but always

has minimal wrong words under low BER because DL has no mechanism to guarantee its

performance when testing. The proposed parallel SC-RS-HARQ exploits the advantages of the

semantic architecture and the conventional RS code and outperforms the competing semantic-
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based and conventional methods at word-error rate (WER), SER, and bit consumption.

2) Although the proposed SC is easily applied in the conventional HARQ systems because

only source coding is replaced, we also try to reduce the SER and the required bits when

transmitting a long sentence further in an end-to-end manner. A Transformer-based joint source

and channel coding, called SCHARQ, is proposed. SCHARQ is more flexible than the existing

RNN and Transformer-based sentence transmission methods because it can transmit incremental

bits according to HARQ. The code length of SCHARQ is controlled by the requirement of the

receiver, which is more efficient than the competing methods when transmitting sentences with

different lengths. Meanwhile, SCHARQ can cope with high BER better than the separate design.

3) To fully exploit the potential of the proposed semantic coding methods, we introduce

a network called Sim32 to detect the meaning error in the received sentences. This error

detection enables the received sentences to tolerate some error words as long as their meaning

is unchanged. Sim32 can save transmit resources because more lossy sentences can be received

without requiring retransmission. However, the proposed error detection still makes mistakes.

For example, the replacement of nouns may be ignored by Sim32.

The remainder of this paper is organized as follows. Section II introduces the system model,

including conventional RS encoder, IR-HARQ, and classic DL-based autoencoder architectures.

The proposed networks are shown and discussed in Section III. In Section IV, we demonstrate

the superiority of the proposed networks in terms of SER and the required number of bits.

Finally, Section V concludes this paper.

II. SYSTEM MODEL AND RELATED WORKS

In this section, we first introduce a HARQ method for sentence transmission based on RS

code. Next, we describe some existing DL-based end-to-end transmission methods. Finally, we

discuss the challenges of combining the deep semantic networks with the HARQ system.

A. HARQ System for Sentence Transmission

To transmit a sentence, s, the conventional transmitter first converts it into bits by source and

channel coding, thereby yielding

b = Cβ(Sα(s)) (1)
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where Sα(·) and Cβ(·) denote the source encoder through α algorithm and channel encoder

through β algorithm, respectively. b̂ is denoted as the recovered bits at the receiver. Due to

channel distortion, the recovered bits at the receiver may be different from those at the transmitter.

The received sentence is decoded as

ŝ = S−1
α (C−1

β (b̂)) (2)

where S−1
α (·) and C−1

β (·) represent the source and channel decoders with the corresponding

algorithms, α and β, respectively.

Given the adaptive correction capability of IR-HARQ, it is commonly used in communications,

especially in wireless communication. Here, we consider an RS code, a maximum distance

separable (MDS) code. An n-symbol RS code with k symbols of information can correct n− k

erasure symbols or (n− k)/2 error symbols. The corresponding code rate can be calculated by

k
n

. RS codes can be easily used for IR-HARQ because a punctured MDS code is still an MDS

code [35], [36]. For example, n total symbols are punctured to n′ (< n). Correction capability

becomes n′−k erasure symbols or (n′−k)/2 error symbols. Thus, if transmitting n′ symbols is

not enough to correct the error symbols, we can transmit n−n′ incremental symbols to increase

its correction capability from (n′ − k)/2 to (n− k)/2 error symbols.

The HARQ transmission process for sentences is described in Algorithm 1. If the estimated

sentences at the receiver are detected to be correct by cyclic redundancy check (CRC) error

detection, the acknowledged (ACK) signal will be sent to the transmitter, and the reserved

incremental symbols are not required. In contrast, the sentence is unsuccessfully received when

all incremental symbols are transmitted, but the full-length codewords still cannot be decoded

correctly.

B. DL-based Autoencoder

The joint design has a great potential to improve transmission efficiency. For the DL-based

autoencoder, the conventional encoder and decoder, Cβ(Sα(·)) and S−1
α (C−1

β (·)), are replaced by

the DL-based encoder and decoder. To train the encoder-decoder architecture in an end-to-end

manner, they are connected by a channel layer, which usually consists of a dropout layer and

an AWGN layer if the quantization is not considered. The channel layer can be a bit-erasure

or bit-error layer for the quantized encoder and decoder. Also, the channel layer can learn the

fading channel through the generative adversarial network [10].
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Algorithm 1 HARQ transmission of sentences using RS channel coding.

Input: The transmitted sentence s

1) Choose a low rate RS code. The full length of the codewords is nR and the number of

information bits is k, yielding

bR ← CRSnR
(Sα(s)). (3)

2) Puncture the encoder matrix and obtain different length of codewords, b1,b2,b3, · · · ,
where k < n1 < n2 < n3 < · · · < nR.

3) Transmit b1 and 32 CRC parity bits.

4) ŝ1 ← S−1
α C−1

RSn1

(b̂1).

5) if CRC detects error, feedback NACK; else ŝ = ŝ1 and feedback ACK.

for i = 2; i 6 R; i++ do

if NACK

1) Transmit the incremental symbols, bi − bi−1.

2) ŝi ← S−1
α C−1

RSni
(b̂i).

3) if CRC detects error, feedback NACK; else ŝ = ŝi and feedback ACK.

end if

end for

if ACK

Output: ŝ.

else

Output: Sentence error.

The DL-based autoencoders perform better than the conventional methods, especially under

wired environments with nonlinear interference and limited transmission resources. The joint

source-channel coding [30] initiates the words with Glove pre-trained embeddings [37] and uses

RNN to learn the semantic information. In [31], the attention mechanism is used for the semantic

coder, which is called Transformer in [32]. The first step of the semantic encoder for a sentence

is to obtain the word embedding. The sentence with Ls words can be expressed by a positive

integer vector, s = [w1, w2, · · · , wLs
]. As the input of a DL-based encoder, all the sentences are

zero-padded to a length of L. The word embedding process needs a lookup table Ψ and LΨ

words in the dictionary. Denote M as the length of the word vectors after the word embedding

process. Thus, Ψ is an LΨ×M real matrix whose parameters are trainable. The word embedding
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process is denoted as fembed(·; ·), and a sentence after wording embedding can be written as

V = fembed(s;Ψ) =











Ψ[w1]
...

Ψ[wL]











+PE (4)

where V ∈ R
L×M , s is the input sentence, Ψ[w1] is the vector of the w1-th row in the trainable

Ψ, and the additive matrix PE is a constant matrix for position encoding defined in [32]. These

word vectors in Ψ contain the meaning of the words because the distance of any two similar-

word vectors is usually shorter than that of dissimilar-word vectors. Pre-trained lookup tables

are available for extracting semantic information, such as Word2Vec [38] and Glove [37]. The

detailed architecture of the Transformer can be referred to [32]. For convenience, we denote the

Transformer-based encoder and decoder as Ten(·) and Tde(·), respectively. Here, the trainable

parameters in these processes are not shown explicitly, and fembed(s;Ψ) is also simplified to

fembed(s). An FC layer converts the output of Transformers in the decoder from R
L×M to R

L×LΨ

via the SoftMax activation. Thus, the decoded sentence ŝ is obtained according to the index of

the maximum value at each row. The process is denoted as fargmax(·). For machine translation,

the translated sentence ŝ can be written as

ŝ = fargmax(Tde(Ten(fembed(s)))). (5)

For semantic communication, several FC layers [31] are used to compress Ten(fembed(s)) into

transmit symbols, and the received symbols are also decompressed by FC layers as

ŝ = fargmax(Tde(fde(h(fen(Ten(fembed(s))))))), (6)

where h(·) is the channel layer, and fen(·) and fde(·) are the processes of FC layers. Then, this

architecture is trained to cope with the effect of channels.

The semantic networks achieve better performance than conventional coders, especially when

the new semantic metrics, such as BLEU [39], are applied. However, the benefits of the semantic

methods for the throughout of a sentence transmission system are needed to be investigated

further.

C. Challenges on Semantic Coders

The most obvious issue for the semantic coders is the fixed network architecture for different

sentence lengths, which decreases coding efficiency. The fixed bit transmission in [30] performs
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better for short sentences than long ones. The fixed symbol transmission in [31] also faces a

similar issue if we add the quantization module.

In addition, they lack combination with HARQ, which is vitally important for successful trans-

mission. The superiority of the semantic networks are exhibited not only in lossless compression

but also in lossy transmission. The sentences with wrong words estimated by the semantic

networks also contain useful semantic information under extreme hostile environments. To adapt

to this content-related encoder-decoder, the HARQ method should also be refined.

III. HARQ BASED ON SEMANTIC CODER

In this section, we propose different semantic architectures, that are combined with IR-HARQ

in different extents. In the beginning, the design of the semantic network is independent of the

HARQ framework. Then, all the source-channel coding and the incremental encoded bits are

generated by the neural networks. Finally, we replace the CRC with the similarity detection to

reserve the incorrect but similar sentences at the receiver.

A. Semantic Source Coding for Transmitter with RS Channel Coding

Joint semantic source and channel coding have been studied in [30], [31]. These existing

methods have shown their superiority under low SNR and the limited number of bits for each

sentence. However, the fixed architectures are not flexible and efficient because sentences usually

have different lengths. Meanwhile, these joint designs make the combination channel coding and

HARQ difficult because DL-based coding is inexplicable.

As shown in Fig. 1(a), we first designed SC separately without the combination of conventional

RS coding and IR-HARQ, and IR-HARQ (not shown in the figure) is directly based on the RS

coding. The two proposed methods are called series and parallel SC-RS-HARQ. These methods

exploit conventional RS coding in different stages. For series SC-RS-HARQ, the RS coding is

used to protect the coded bits of the SC. That is, the received sentences are directly decoded

by SC. Thus, this method may still commit mistakes under no transmission errors because the

performance of the DL-based SC is not guaranteed when testing. For parallel SC-RS-HARQ, the

sentence is encoded by SC and RS, and the parity bits of the RS coding are transmitted directly.

Therefore, the RS coding is used to protect the original sentence and the correct sentence decoded

by the SC. Thus, the received sentences are directly decoded by RS coding, and their performance

is guaranteed under low BER. Overall, these methods can achieve better performance under high

BER due to the introduction of SC.
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Fig. 1. (a) Two combination methods of SC- and RS- based IR-HARQ. (b) Architecture of the

Transformer-based SC. The encoded bits are masked according to the input sentence length.

In addition, we develop the SC to encode the sentence into different lengths of bits according

to the length of this sentence (Fig. 1(b)), which is beneficial for code efficiency. The encoder and

decoder are based on Transformer [32]. The sentence is mapped to a vector of positive integers

s = [w1, w2, · · · , wL] as an input. The SC encoder embeds s as (4), and then the embedded

word vectors are processed by six Transformers with M units. The output of the Transformers

is compressed by an FC layer, and the entire process is denoted as SCen(·) with output

sen = SCen(s;αen), (7)
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where sen ∈ R
L×M/4 and αen represent all the trainable parameters. The one-bit quantization

module first converts sen into R
L×B with an FC layer, where B is the number of bits for each

word. Different from the existing methods, the quantization module also masks part of the bits

in accordance to sentence length Ls. We denote the quantization process as Q(·), and its output

can be expressed as

b = Q(sen; θen), (8)

where b is an Ls × B bit vector if the sentence length is Ls. The other (L− Ls)× B bits are

not transmitted to save transmission resources.

The dequantization module pads input bits to an L × B binary matrix with zeros. Then, an

FC layer is used for reshaping, and its output is ŝen ∈ R
L×M/4, thereby yielding

ŝen = Q−1(b; θde). (9)

Then, ŝen is decompressed into R
L×M with an FC layer and then goes through six Transformers

with M units. At last, the argmax layer uses an FC layer with SoftMax activation and outputs

L × LΨ vectors of probabilities in the dictionary. The estimated sentence is composed of the

max possible words. Similar to the encoder process, the estimated sentence can be written as

ŝ = SCde(̂sen;αde). (10)

The number of bits for each word, B, is difficult to choose to balance the coding efficiency and

bit consumption; thus, an end-to-end training process costs too much time. The entire training

process is also divided into three steps.

1) The parameters in SCen(·) and SCde(·) are trained without quantization layers Q(·) and

Q−1(·), i.e., ŝen = sen. This training process can be expressed as

(α̂en, α̂de) = argmin
αen,αde

LCE (s, SCde(SCen(s;αen);αde)) , (11)

where LCE(·) denotes the cross-entropy (CE) loss function.

2) Try B repeatedly until transmit bits are enough to carry the information in sen = SCen(s; α̂en).

The loss function is the mean-squared error (MSE), and the training process can be expressed

as

(θ̂en, θ̂de) = argmin
θen,θde

LMSE

(

sen, Q
−1(Q(sen; θen); θde)

)

. (12)
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3) Finetune all trainable parameters in an end-to-end manner,

(α̂en, α̂de, θ̂en, θ̂de) = argmin
αen,αde,θen,θde

LCE (s, ŝ) . (13)

The two methods design SC and conventional IR-HARQ modules separately so that they

can be applied easily. The advantages of SC are exploited under high BER. Meanwhile, the

conventional method shows its superiority under the lossless transmission, and this combination

can cover the shortage of the AI method. However, joint optimization is also a potential strategy

for reducing transmission resources further, and thus joint source-channel coding and HARQ

architecture will be studied further.

B. Semantic-based End-to-End HARQ

The long sentences can also be dealt through transmitting incremental bits because of the

adjustable length of IR-HARQ. Thus, we propose an end-to-end semantic framework similar to

the IR-HARQ framework, and it is called SCHARQ, which transmits the incremental bits until the

receiver estimates sentence successfully or reach the maximum number of retransmissions. These

incremental bits can not only improve correction capability but can also carry extra information

for complex sentences. Overall, this framework is flexible under varying channels and different

lengths of sentences.

There are R SC-based encoders and decoders for R transmissions are shown in Fig. 2.

Here, the encoder and decoder architectures are different from those in Fig. 1. The quantization

process Qi(·; θen,i) in SCHARQ does not need to mask part of bits, but it converts the output of

SCen(·;αen,i) to R
1×(ni−ni−1) with a dense layer and then uses one-bit quantization. An n1-bit

vector b1 is transmitted first, and the following transmissions use the similar architecture. The

i-th transmission can be expressed as

bi = Qi(SCen(s;αen,i); θen,i), (14)

and the previous transmitted bits are connected with the incremental bits b̂i and decoded together,

yielding

ŝi = SCde(Q
−1
i ([b̂1, · · · , b̂i]; θde,i);αde,i), (15)

where Q−1
i (·) reshapes these bits with a dense layer and SCde(·) has the same architecture as

in Fig. 1.
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Fig. 2. Structure of SCHARQ, which can transmit R times in maximum.

The training process uses α̂en and α̂de trained in Section III A as the initiation of αen,i and

αde,i, respectively. For the first transmission, the training process is similar to Steps 2 and 3 in

Section II A, but the channel condition should be considered here, and 5% bits are in error. For

the i-th transmission (i > 1), the trainable parameters of the previous transmissions are fixed

and the training process can be expressed as

(α̂en,i, α̂de,i, θ̂en,i, θ̂de,i) = argmin
αen,i,αde,i,θen,i,θde,i

LCE (s, ŝi) , i > 1. (16)

The application of this framework is naturally the same as the conventional IR-HARQ shown

in Alg. 1. After the i-th transmission, we check ŝi with CRC and then transmit bi+1 if this
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transmission cannot obtain the correct sentence. If the i-th transmission passes the CRC error

detection, then ŝ = ŝi, and the subsequent transmission is not required.

C. Similarity Detection

The above joint design with HARQ makes the network more flexible under varying channels

and sentences, but the system still aims at minimizing word error rather than the semantic error

in transmission. To fully exploit the potential of semantic architecture, we attempt to change the

CRC to a similarity detection in this section.

Conventional transmission systems usually rely on the CRC error detection to repeat requests

automatically to receive the correct sentences and feedback ACK. However, the traditional CRC

error detection will regard a sentence with an error if it contains error words but with the same or

similar meaning as the original one. Similar sentences are also useful for semantic transmission,

especially in hostile environments.

Although some methods for the similarity measurement of sentences, such as Levenshtein

distance and BLEU, have been proposed. They only calculate the change of words between

two sentences and have no insight into the meaning of different words. Recently, BERT [40],

a pre-trained model under billions of words and sentences, achieved great success in extracting

semantic information. This architecture has been applied in measuring the similarity of sentences,

such as [31]. BERT (s) converts the input sentences, s, into real vectors, and the cosine similarity

is used to measure the similarity in their semantic information, which is defined as

Sim(s, ŝ) =
BERT (s)BERT (ŝ)T

|BERT (s)||BERT (ŝ)|
. (17)

However, the true sentence s in HARQ systems is unavailable at the receiver. Thus, a new

method that is similar to CRC is proposed, and it is called Sim32. In Fig. 3, 32 bits are transmitted

to the receiver for similarity detection. At the transmitter, the 32 bits is encoded as

bsim = Qsim(SCen(s;αsim,1); θsim,1), (18)

where Qsim(·; θsim,1) converts the output of SCen(·;αsim,1) into 32 bits, and αsim,1 and θsim,1

are the trainable parameters in these processes. At the receiver, similarity detection is based on

two inputs, namely, b̂sim and ŝ, which can be expressed as

Sim32(ŝ, b̂sim) = fsim(b̂sim, SCen(ŝ;αsim,2);Wsim), (19)



14

E
m

b
e
d

d
in

g

T
ra

n
s
fo

rm
e
rs

F
C

F
C

Sim32 Encoder

R
e

s
h

a
p

e

F
C

Sim32 Decoder

E
m

b
e
d

d
in

g

T
ra

n
s
fo

rm
e
rs

F
C

C
o

n
c

a
te

n
a
te

F
C

F
C ACK(0 or 1)

 TransmissionSource&

Channel 

Encoder

CRC32

Encoder

Source&

Channel 

Decoder

CRC32

Decoder

32-bit 

header

32-bit 

header
ACK(0 or 1)

32-bit 

header

Replace
Replace

Fig. 3. Structure of similarity detection method. The estimated sentence ŝ is received by the

proposed methods, such as SC-RS-HARQ and SCHARQ.

where fsim has two FC layers and the trainable parameters, αsim,2 and Wsim are introduced.

Its hidden layer has four times the size of the input and ReLU activation function, and it only

outputs one value using the sigmoid activation function.

The training process of this architecture will collect the estimated sentences from the afore-

mentioned frameworks under different channel conditions and retransmission stages. The label

is based on (19), and it satisfies

label(s, ŝ) =







1, Sim(s, ŝ) > 0.98,

0, Sim(s, ŝ) ≤ 0.98,
(20)

where Sim(s, ŝ) > 0.98 indicates that the estimated sentences are similar enough to express the

semantic information and their labels are 1. The training process can be written as

(α̂sim,1, α̂sim,2, θ̂sim,1,Ŵsim)

= argmin
αsim,1,αsim,2,θsim,1,Wsim

LCE

(

label(s, ŝ), Sim32(ŝ, b̂sim)
)

.
(21)
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After training, 32 bit CRC can be replaced with Sim32. Similar to CRC, Sim32 needs to judge

the similarity from the estimated sentence and only 32 encoded bits from the true sentence. The

transmission is considered successful when Sim32(ŝ, b̂sim) > 0.5.

IV. NUMERICAL RESULTS

In this section, we will present the numerical results of different frameworks and discuss the

pros and cons of the semantic-based HARQ. We will also compare their bit consumption with

competing ones.

A. Configurations of the simulation system

The English version of the proceedings of the European Parliament [41] is chosen as the

dataset, which has 2.2 million sentences and 53 million words. We set up the dictionary using

30,000 most common words. Thus, these words can be denoted by 2-byte integers. The length of

the sentences is restricted between 4 and 30. After this pre-processing, these sentences are split

into a training set of 500,000 sentences and a test set of 50,000 sentences. The input sentences s

are padded to their max length L = 30 with zeros, and the number of units in the hidden layers

M is 128. The detailed settings of the proposed networks are shown in Table I.

Huffman coding is used as the conventional source coding, and the average length of coded

bits are compared with the SC in Table II. Due to different lengths of sentences, the SC is

still not efficient compared with the Huffman code. Meanwhile, the SC has no mechanism to

guarantee no error, and it costs numerous bits to reduce WER further when WER is already

very small. For example, SC with B = 40 needs 1/3 more bits than that with B = 30, but WER

only decreases by nearly 1%. In the following simulations, B = 30 is chosen to balance bit

consumption and WER. The semantic encoder with fixed bit length, called fixed SC, encodes

the sentence into 500 bits. The WER of the fixed SC is much higher than the SC with an average

of 490 bits per sentence because it is weak in dealing with long sentences.

Binary symmetric channel, where transmit bits are randomly inversed, is used. The WER

and SER are analyzed along with the change in BER. The transmission using Huffman source

coding, RS channel coding, and HARQ is called Huffman-RS-HARQ, where the number of the

SC coders is R = 4, and the code rates of each transmission are k
n1

= 5
7
, k

n2
= 5

11
, k

n3
= 5

15
and

k
n4

= 5
19

. Thus, nR = 1508. The series and parallel SC-RS-HARQ methods only transmit three

times at most and the corresponding nR = 490 × n3

k
= 1470, which is lightly fewer than the

conventional one. For SCHARQ, R = 3 and the code lengths are set as n1 = 300, n2 = 500,

and n3 = 1000, respectively.
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TABLE I. Settings of the proposed Networks.

Networks Modules Layer Output Activation

dimensions function

SC

INPUT s 30 /

SCen

Embedding (30,128) None

6 × Transformer (30,128) None

FC (30,32) ReLU

Q
FC (30,30) ReLU

1-bit quantization (30,30) /

Mask (Ls,30) /

Q−1 Padding (30,30)

FC (30,32) ReLU

SCde

FC (30,128) ReLU

6 × Transformer (30,128) None

FC (30,30000) SoftMax

OUTPUT ŝ 30 Argmax

SCHARQ

INPUT s 30 /

Encoder i

SCen (30,32)

Reshape 960 /

FC bi ReLU

1-bit quantization bi /

bit error channel

Decoder i
FC 960 ReLU

Reshape (30,32) ReLU

SCde (30,30000) SoftMax

OUTPUT ŝi 30 Argmax

* For convenience, SCen is directly used in the layer column to

represent the same layers shown in the SCen module of the SC.

Sim32 only consists of the proposed modules and some FC layers;

thus, its detailed architecture is omitted here.

TABLE II. SC source coding with different B.

B Bits/Sentence WER

SC
40 654 0.01%

30 490 1.03%

Fixed SC / 500 9.81%

Huffman / 397 /

B. Performance of SC Combined with Conventional Methods

In Fig. 4(a), Huffman-RS represents the first transmission of Huffman-RS-HARQ with code

rate 5
7

and code length of approximately 555 bits. The Huffman-RS has the worst capability to
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Fig. 4. (a) WER performance of the different semantic competing conventional methods. (b)

SER performance of the different semantic competing conventional methods.

cope with the change in BER. SC requires fewer bits (approximately 490 bits) but has better

performance than the Huffman-RS, especially when BER is high. This phenomenon demonstrates

the SC can handle bit errors even if it does not learn to do it. The series and parallel SC-RS-

HARQ both perform better than Huffman-RS-HARQ when BER > 0.04. However, the Huffman-
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RS-HARQ and parallel SC-RS-HARQ can guarantee almost zero WER when BER < 0.04

because the estimated sentences are directly decoded by the conventional method, whereas the

series SC-RS-HARQ always has tiny errors when testing. Due to the SC source coding, the

series and parallel SC-RS-HARQ is better than the Huffman-RS-HARQ when BER ≥ 0.06, and

its performance is the same as the SC when BER ≥ 0.08. Therefore, the semantic-based SC is

still effective when the conventional method cannot work.

In Fig. 4(b), the SC has a higher SER than the Huffman-RS when BER < 0.03 because

nearly 1% of the error words randomly spread out the estimated sentences and causes about

10% of estimated sentences with one or two error words even when the conventional Huffman-

RS-HARQ has no errors. The series SC-RS-HARQ also has the same phenomenon, and its

SER can only reach 0.1 while its WER is around 0.01. In contrast, the conventional methods

can estimate sentences perfectly if the number of wrong bits is below their error correction

capability. The parallel SC-RS-HARQ can correct the error words after the SC decoder; thus,

it can achieve perfect transmission when BER< 0.04. Meanwhile, the SER of the parallel SC-

RS-HARQ always decreases earlier with BER than the competing methods, which shows its

superiority when facing high BER conditions.
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Fig. 5. BLEU performance of the proposed SC-RS-HARQ methods and conventional Huffman-

RS-HARQ method.

We also compare the BLEU performance of these methods in Fig. 5. Similar to their SER

performance, the parallel SC-RS-HARQ always has the best BLEU performance while that of
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the series SC-RS-HARQ is worse than that of the conventional Huffman-RS-HARQ when BER

≤ 0.06. However, the performance gap between the series SC-RS-HARQ and the Huffman-RS-

HARQ is smaller than that in Fig. 4(b) because the wrong sentences still reserve some correct

semantic information. The three SC-based methods have the same performance when BER >

0.1 because the SC network plays a major role in high BER. Overall, the series SC-RS-HARQ

is not too bad under the BLEU measurement because the reserved tiny error words when BER

< 0.03 have little impact on its semantic information.

In the above simulation, the semantic methods have better WER performance than the con-

ventional methods if they are combined with conventional RS coding and HARQ properly. The

SER performance of parallel SC-RS-HARQ is guaranteed to surpass the conventional Huffman-

RS-HARQ while that of the series one has worse SER. Overall, the proposed methods are easily

applied in the conventional HARQ systems, and the performance is improved for high BER.

C. Performance of SCHARQ

In Fig. 6(a), SCHARQ methods show their superiority when BER is between 0.04 and 0.2, and

increasing the transmit bit limit is helpful to improve the WER of SCHARQ. Because avoiding

the tiny error is difficult when BER ≤ 0.04, we also transmit extra parity bits coded by the RS

encoder to correct the estimated sentences similar to the parallel SC-RS-HARQ. The SCHARQ

with the RS code is called SCHARQ-RS, which has 5
7

code rate for RS coding. Similarly, the

SCHARQ methods always have better capability to cope with high BER, as shown in Fig. 6(b).

nR = 1000 is adequate for SCHARQ to approach almost zero WER when BER ≤ 0.04, but its

SER can only reach 0.05 at most due to tiny WER. The conventional RS code helps improve

the performance and guarantees the perfect transmission when the error in the SCHARQ does

not surpass the capability of the RS code. Thus, SCHARQ-RS can reach 0 WER and 0 SER

when BER=0 and surpass SCHARQ when BER ≤ 0.1. However, the error that appears in the

redundancy bits of the RS code may also misapprehend the correct estimated sentences, which

makes SCHARQ-RS become a little worse than SCHARQ when BER is between 0.1 and 0.2.

The parallel SC-RS-HARQ is the best method to use when BER ≤ 0.04, where the SER is

guaranteed to be zero, but it performs worse than the SCHARQ methods when BER > 0.06.

In Fig. 7, the average required number of bits for a sentence transmission are compared. The

conventional Huffman-RS-HARQ and series SC-RS-HARQ reach the upper limit of transmission

times at BER=0.06, and thus its SER is close to 1 when BER≥0.08. In contrast, the parallel SC-

RS-HARQ performs better when BER is low and reaches bit consumption limit at BER=0.08.
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Fig. 6. (a) WER of the proposed SCHARQ and the competing methods. (b) SER of the proposed

SCHARQ and the competing methods.

The series SC-RS-HARQ requires more bits than the parallel one when BER ≤ 0.06 because

the series one cannot reach zero SER, and some error sentences need to be retransmitted. The

SCHARQ methods show the superiority of the joint design of semantic source-channel coding

and HARQ in reducing transmit bit consumption, especially when BER is high. Especially,

SCHARQ-RS needs fewer bits than SCHARQ when BER ≤ 0.05 even though it transmits extra

redundancy bits. This phenomenon is owed to the reduced times of retransmission with the help

of RS code when BER is low. However, the redundancy bits of the RS code cannot bring benefit



21

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

BER

400

600

800

1000

1200

1400

1600

A
v
e
ra

g
e
 B

it
s

SCHARQ-RS

SCHARQ

Series SC-RS-HARQ

Parallel SC-RS-HARQ

Huffman-RS-HARQ

Fig. 7. Average bit consumption per sentence of different methods.

for high BER but introduces more errors (Fig. 6(b)); thus, the SCHARQ-RS needs more bits

than the SCHARQ when BER=0.05 - 0.2.

From the above discussion, we find the joint design of source-channel coding and HARQ

has a significant advantage in reducing bit consumption and improving the SER performance

under high BER. The proposed methods show their superiority at different BER scales. However,

these designs cannot make full use of the semantic coder because the retransmission decision is

still CRC that needs the estimated sentences to error-free. Although the semantic method cannot

surpass the conventional methods if the BER is low and no error transmission is needed, it brings

the possibility to protect the sentence meaning when some words are incorrect. In the following,

CRC is replaced with similarity detection to study the pros and cons of semantic transmission.

D. Pros and Cons of Similarity Detection

We first show the decision error rate of Sim32 in Fig. 8. We calculate the similarity according

to (17) of 50,000 estimated sentences under two different BER settings. The decision error means

the estimated sentences with similarity larger than 0.98 have Sim32 decision of 0, and those

with similarity less than 0.98 have Sim32 decision of 1. As shown in Fig. 8, the error rate is

high in the adjacent area of 0.98, which demonstrates that Sim32 cannot obtain an accurate

similarity because the semantic information of the true sentence is compassed into 32 bits in the

transmission. In general, this similarity detection efficiently refuses the estimated sentences with
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a similarity less than 0.9 and is robust to the change in BER. However, approximately 2% of

the correct sentences are mistaken as dissimilar sentences by Sim32 under BER=0.05. To solve

this issue, we only use Sim32 to find similar sentences after CRC detection, and it ensures that

the correct sentences are directly received at the CRC process, and is called CRC-Sim32.
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Fig. 8. Decision error rate of the Sim32 error detection method.

In Fig. 9, the first two transmissions of SCHARQ still use CRC error detection, and that

of the last transmission is changed into Sim32, and CRC-Sim32. Thus, the change in error

detection has no influence on reducing retransmission times. The CRC-Sim32 uses CRC first

and then uses Sim32 to decide the sentences that fail in CRC. The CRC-Sim32 needs extra

32 bits but can ensure that the correct sentences are not considered dissimilar sentences. The

detected error sentences means that these estimated sentences cannot pass the decision after the

last transmission, and this error rate is shown in Fig. 9. The performance of CRC can represent

the SER performance of SCHARQ in Fig. 6(b). The Sim32 detection at the last transmission

allows that some estimated sentences with error words are received as similar sentences. This

method increases the number of the received sentences, especially when BER is high. However,

some correct sentences are mistakenly decided as dissimilar sentences. Thus, Sim32 receives

fewer sentences than CRC when BER ≤ 0.04. CRC-Sim32 performs best when BER is low and
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approaches Sim32 when BER=0.2 because only few correct sentences are mistakenly rejected

by Sim32 when BER=0.2.
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Fig. 9. Received sentences from 10000 transmit sentences with different error detection methods.

Only the error detection method at the last transmission is replaced.

Replacing CRC with CRC-Sim32 at all transmission can reduce the bit consumption further

by reducing the times of retransmission. For example, the received sentences can be increased

by 18%, and the average bit consumption is reduced by nearly 40 bits when replacing CRC with

CRC-Sim32 at all transmission when BER=0.2.

Finally, the BLEU performances of SCHARQ-based methods are compared in Fig. 10. The

SCHARQ-RS, SCHARQ, and Huffman-RS-HARQ use CRC error detection while CRC-Sim32 is

the SCHARQ that uses CRC-Sim32 for all the transmission times. Although SCHARQ-RS has an

obvious SER performance gap with SCHARQ in Fig. 6(b), they have similar BLEU performance

because the few error words that can be corrected by RS code have little influence on the semantic

information. Thus, CRC-Sim32 only needs the received sentences to be understood rather than

a high BLEU score, thereby causing some sentences to need fewer bits than the SCHARQ with

CRC error detection. The performance gap between SCHARQ with CRC and CRC-Sim32 under

low BER is larger than that under high BER because more received sentences have a chance to

reach a higher BLEU score under low BER.

The proposed similarity detection aims at adopting an estimated sentence with error words as

long as its semantic meaning is unchanged. However, similarity detection is such a difficult task
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Fig. 10. BLEU performance of the proposed joint source-channel coding and HARQ methods.

CRC-Sim32 means that BLEU performance of SCHARQ, whose the error detection methods of

all transmissions are replaced with CRC-Sim32.

because the true sentences are unknown to the receiver. A lot of work must still be done before

the similarity detection becomes reliable in the sentence transmission.

E. Similar Sentences Received by Similarity Detection

Here, we will analyze some common mistakes that appear in the "similar sentences" decided

by the proposed methods. As shown in Table III, some similar sentences of SCHARQ are

collected under four settings. Here, CRC in the bracket means the first two transmissions are

decided by CRC, and the last transmission is detected by CRC-Sim32. CRC-Sim32 means that

all the transmissions are detected by CRC-Sim32. TX is the transmitted sentence, and RX is

the received sentence after SCHARQ. Three pairs of TX and RX sentences are shown under

different settings.

Most of the similar sentences under BER=0 (CRC) contain only one or two error words.

Meanwhile, these mistakes only happen in long sentences because the 1000-bit limitation of

the semantic network may not be enough for these sentences. These three received sentences

demonstrate that the wrong nouns are difficult to judge for similarity detection because replacing

a noun usually has no influence on the grammar. For Sentence 1, “acquis" is replaced with

“aviation", which may associate with “travel freely without barrier". For Sentence 2, the noun
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TABLE III. The sentences pass the Sim32 but contain error words.

BER=0 (CRC)

1
RX: this aviation means a lot to eastern and central european countries also for historical

reasons because it provides the opportunity to travel freely without barriers

TX: this acquis means a lot to eastern and central european countries also for historical

reasons because it provides the opportunity to travel freely without barriers

2
RX: today we must welcome an important result which is that we consider the citizens of

bulgaria and romania to be among those who can benefit from this fundamental that

TX: today we must welcome an important result which is that we consider the citizens of

bulgaria and romania to be among those who can benefit from this fundamental instrument

3
RX: the problem must be treated at its roots by providing better employment and education

opportunities for them this internal migration pressure will also reconciliation within the

european union

TX: the problem must be treated at its roots by providing better employment and education

opportunities for them this internal migration pressure will also decrease within the

european union

BER=0.2 (CRC)

1
RX: the disputes just do not back this idea up either

TX: the facts just do not back this idea up either

2
RX: romania has invested more vote eur 1 billion and the results have undertaken countries

positive in all this communities are

TX: romania has invested more than eur 1 billion and the results have definitely been

positive in all the evaluation reports

3
RX: no one are interested freely in a two track europe

TX: no one is interested nowadays in a two track Europe

BER=0 (CRC-Sim32)

1
RX: it was already established in 2007 that once the technical negotiations were fulfilled

bulgaria and romania would join the schengen area in 2008

TX: it was already established in 2007 that once the technical criteria were fulfilled bulgaria

and romania would join the schengen area in 2011

2
RX: fellow members bulgaria and romania have completed their development and we are

building on greater security systems in cooperation with our schengen partners

TX: fellow members bulgaria and romania have completed their job and they are building

on these security systems in cooperation with their schengen partners

3
RX: what is the situation when it comes to the judicial reform and anti corruption measures

that are still achieved

TX: what is the situation when it comes to the judicial reform and anti corruption measures

that are still needed

BER=0.2(CRC-Sim32)

1
RX: bulgaria and romania are absolutely not preparations for schengen

TX: bulgaria and romania are absolutely not ready for Schengen

2
RX: we are on double standards

TX: we cannot allow double standards

3
RX: what president is the commission giving that this rapporteur will be resolved

effectively

TX: what guarantees is the commission giving that this problem will be tackled effectively

“instrument" becomes pronoun “that" and its meaning is vague. For Sentence 3, its meaning has

no change but its grammar contains a mistake. Pressure “reconciliation" can also be considered
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pressure “decrease".

When BER=0.2 (CRC), more wrong words appear in similar sentences, and the similarity

detection may also make mistakes. For example, Sentence 2 is decided as a similar sentence,

but its meaning has been damaged by the error words. Sentence 1 also has wrong noun and its

meaning is changed to some extent. Meanwhile, Sentence 3 can be understood.

The use of CRC-Sim32 as a retransmission decision saves bit consumption further but intro-

duces more similar sentences with more wrong words than CRC. When BER=0, Sentences 1 and

2 face the change of words, and these words may lead a serious misunderstanding. For example,

the year “2011" is replaced with “2008" in Sentence 1, and this mistake directly affects the

behavior of the receiver. This phenomenon also exists when BER=0.2. Thus, similarity detection

is still not very reliable. Although similar sentences with error words replaced with synonyms

are received, some sentences with changing semantic information are also difficult to be found

and rejected.

In general, the proposed Sim32 is a good attempt to exploit the capability of semantic

architectures, which can protect the semantic information when facing mistakes and trying to

repair the sentences according to semantic relation. However, some similar sentences decided

by Sim32 may still lead to misunderstanding

V. CONCLUSIONS

In this paper, we have investigated semantic coding. We have combined it with conventional RS

channel coding and IR-HARQ and developed two different frameworks, namely, series SC-RS-

HARQ and parallel SC-RS-HARQ. By comparing the two proposed frameworks and conventional

methods, we find that the semantic encoder has better performance when facing high BER.

However, it cannot guarantee error-free transmission. The parallel SC-RS-HARQ exploits the

different advantages of the semantic architecture and the conventional method and outperforms

the conventional IR-HARQ method. We have also designed a joint source-channel coding and

HARQ framework called SCHARQ. This framework is more flexible and efficient because it can

transmit incremental bits to solve the issues of different sentence lengths and varying channel

conditions. Thus, it has the best performance among the other competing methods when BER is

high but a little weaker when BER is low. To exploit the full potential of the semantic coder, we

have proposed a similarity detection called Sim32 to detect the semantic error in the estimated

sentences and combined it with CRC called CRC-Sim32. The proposed error detection methods

allow similar sentences to be received so that more sentences can be transmitted, especially when
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BER is high. However, some sentences with changing semantic information are still mistakenly

received. In the future, more work is needed to improve its reliability.

REFERENCES

[1] T. J. O’ Shea and J. Hoydis, “An introduction to deep learning for the physical layer,” IEEE Trans. Cogn. Commun. Netw.,

vol. 3, no. 4, pp. 563–575, Dec. 2017.

[2] Z.-J. Qin, H. Ye, G. Y. Li, and B.-H. Juang, “Deep learning in physical layer communications,” IEEE Wireless Commun.,

vol. 26, no. 2, Apr. 2019.

[3] H. He, S. Jin, C. Wen, F. Gao, G. Y. Li, and Z. Xu, “Model-driven deep learning for physical layer communications,”

IEEE Wireless Commun., vol. 26, no. 5, pp. 77–83, Oct. 2019.

[4] H. Ye, G. Y. Li, and B. H. Juang, “Power of deep learning for channel estimation and signal detection in OFDM systems,”

IEEE Wireless Commun. Lett., vol. 7, no. 1, pp. 114–117, Feb. 2018.

[5] C.-J. Chun, J.-M. Kang, and I.-M. Kim, “Deep learning-based joint pilot design and channel estimation for multiuser

MIMO channels,” IEEE Commun. Lett., vol. 23, no. 11, pp. 1999–2003, Nov. 2019.

[6] A. M. Elbir and K. V. Mishra, “Online and offline deep learning strategies for channel estimation and hybrid beamforming

in multi-carrier mm-Wave massive MIMO systems,” arXiv preprint arXiv:1912.10036, 2019.

[7] W. Ma, C. Qi, Z. Zhang, and J. Cheng, “Sparse channel estimation and hybrid precoding using deep learning for millimeter

wave massive MIMO,” IEEE Trans. Commun., vol. 68, no. 5, pp. 2838–2849, May 2020.

[8] J. Guo, C.-K. Wen, and S. Jin, “CAnet: Uplink-aided downlink channel acquisition in FDD massive MIMO using deep

learning,” arXiv preprint arXiv:2101.04377, 2021.

[9] S. Dörner, S. Cammerer, J. Hoydis, and S. t. Brink, “Deep learning-based communication over the air,” IEEE J. Sel. Topics

Signal Process., vol. 12, no. 1, pp. 132–143, Dec. 2018.

[10] H. Ye, L. Liang, G. Y. Li, and B.-H. Juang, “Deep learning-based end-to-end wireless communication systems with

conditional GANs as unknown channels,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3133–3143, May 2020.

[11] H. Ye, G. Y. Li, and B.-H. F. Juang, “Deep learning based end-to-end wireless communication systems without pilots,”

IEEE Trans. Cognitive Commun. Network., Early access.

[12] H. He, C.-K. Wen, S. Jin, and G. Y. Li, “Model-driven deep learning for MIMO detection,” IEEE Trans. Signal Process.,

vol. 68, pp. 1702–1715, Feb. 2020.

[13] G. Caire and D. Tuninetti, “The throughput of hybrid-ARQ protocols for the Gaussian collision channel,” IEEE Trans. on

Inf. Theory, vol. 47, no. 5, pp. 1971–1988, Jul. 2001.

[14] N. Strodthoff, B. Göktepe, T. Schierl, C. Hellge, and W. Samek, “Enhanced machine learning techniques for early HARQ

feedback prediction in 5G,” IEEE J. Sel. Areas Commun., vol. 37, no. 11, pp. 2573–2587, Aug. 2019.

[15] G. Qiu, M. M. Zhao, M. Lei, and M. J. Zhao, “Throughput maximization for polar coded IR-HARQ using deep

reinforcement learning,” in 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio

Communications, Oct. 2020, pp. 1–6.

[16] E. C. Strinati and S. Barbarossa, “6G networks: Beyond shannon towards semantic and goal-oriented communications,”

Computer Networks, p. 107930, 2021.

[17] B. Güler, A. Yener, and A. Swami, “The semantic communication game,” IEEE Trans. Cognitive Commun. Network.,

vol. 4, no. 4, pp. 787–802, Sep. 2018.

[18] G. Shi, D. Gao, X. Song, J. Chai, M. Yang, X. Xie, L. Li, and X. Li, “A new communication paradigm: from bit accuracy

to semantic fidelity,” arXiv preprint arXiv:2101.12649, 2021.



28

[19] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase

representations using rnn encoder-decoder for statistical machine translation,” arXiv preprint arXiv:1406.1078, 2014.

[20] C. E. Shannon, W. Weaver, and N. Wiener, “The mathematical theory of communication,” Physics Today, vol. 3, no. 9,

p. 31, 1950.

[21] J. Bao, P. Basu, M. Dean, C. Partridge, A. Swami, W. Leland, and J. A. Hendler, “Towards a theory of semantic

communication,” in 2011 IEEE Network Science Workshop. IEEE, 2011, pp. 110–117.

[22] G. M. Davis and J. M. Danskin, “Joint source and channel coding for image transmission over lossy packet networks,” in

Applications of Digital Image Processing XIX, vol. 2847, 1996, pp. 376–387.

[23] O. Y. Bursalioglu, G. Caire, and D. Divsalar, “Joint source-channel coding for deep-space image transmission using rateless

codes,” IEEE Trans. Commun., vol. 61, no. 8, pp. 3448–3461, Jun. 2013.

[24] D. B. Kurka and D. Gündüz, “DeepJSCC-f: Deep joint source-channel coding of images with feedback,” IEEE J. Sel.

Areas Inf. Theory, vol. 1, no. 1, pp. 178–193, Apr. 2020.

[25] M. Yang, C. Bian, and H.-S. Kim, “Deep joint source channel coding for wireless image transmission with OFDM,” arXiv

preprint arXiv:2101.03909, 2021.

[26] E. Bourtsoulatze, D. B. Kurka, and D. Gündüz, “Deep joint source-channel coding for wireless image transmission,” IEEE

Trans. Cogn. Commun. Netw., vol. 5, no. 3, pp. 567–579, Sep. 2019.

[27] C. Lee, J. Lin, P. Chen, and Y. Chang, “Deep learning-constructed joint transmission-recognition for internet of things,”

IEEE Access, vol. 7, pp. 76 547–76 561, Jun. 2019.

[28] F. Zhai, Y. Eisenberg, and A. K. Katsaggelos, “Joint source-channel coding for video communications,” Handbook of

Image and Video Processing, pp. 1065–1082, 2005.

[29] Z. Weng and Z. Qin, “Semantic communication systems for speech transmission,” IEEE J. Sel. Areas Commun., Jan. 2021.

[30] N. Farsad, M. Rao, and A. Goldsmith, “Deep learning for joint source-channel coding of text,” in Proc Int. Conf. Acoustics

Speech Signal Process. (ICASSP). IEEE, 2018, pp. 2326–2330.

[31] H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled semantic communication systems,” IEEE Trans. Signal

Process., vol. 69, pp. 2663–2675, Apr. 2021.

[32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all

you need,” in Proc. Int. Conf. Neural Inf. Syst., Dec 2017, pp. 5998–6008.

[33] H. Xie and Z. Qin, “A lite distributed semantic communication system for internet of things,” IEEE J. Sel. Areas Commun.,

vol. 39, no. 1, pp. 142–153, 2021.

[34] G. Shi, Y. Xiao, Y. Li, and X. Xie, “From semantic communication to semantic-aware networking: Model, architecture,

and open problems,” arXiv preprint arXiv:2012.15405, 2020.

[35] S. B. Wicker and M. J. Bartz, “Type-II hybrid-ARQ protocols using punctured MDS codes,” IEEE Trans. Commun.,

vol. 42, no. 234, pp. 1431–1440, Apr. 1994.

[36] M. L. B. Riediger and P. K. M. Ho, “Application of Reed-Solomon codes with erasure decoding to type-II hybrid ARQ

transmission,” in Proc. Global Commun. Conf., vol. 1, Dec. 2003, pp. 55–59 Vol.1.

[37] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word representation,” in Proc. Conf. on Empirical

Methods Natural Language Process. (EMNLP), Oct. 2014, pp. 1532–1543.

[38] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” arXiv preprint

arXiv:1301.3781, 2013.

[39] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: a method for automatic evaluation of machine translation,” in

Proc. Annual Meeting Assoc. Comput. Linguistics (ACL’02), Jul. 2002, pp. 311–318.



29

[40] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language

understanding,” arXiv preprint arXiv:1810.04805, 2018.

[41] P. Koehn, “Europarl: A parallel corpus for statistical machine translation,” MT Summit, vol. 5, pp. 79–86, Sep. 2005.


	I Introduction
	II System Model and Related Works
	II-A HARQ System for Sentence Transmission
	II-B DL-based Autoencoder
	II-C Challenges on Semantic Coders

	III HARQ based on Semantic Coder
	III-A Semantic Source Coding for Transmitter with RS Channel Coding
	III-B Semantic-based End-to-End HARQ
	III-C Similarity Detection

	IV Numerical Results
	IV-A Configurations of the simulation system
	IV-B Performance of SC Combined with Conventional Methods
	IV-C Performance of SCHARQ
	IV-D Pros and Cons of Similarity Detection
	IV-E Similar Sentences Received by Similarity Detection

	V Conclusions
	References

