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Multi-channel Resource Allocation for Smooth

Streaming: Non-convexity and Bandits

Akhil Bhimaraju, Atul A. Zacharias and Avhishek Chatterjee

Abstract

User dissatisfaction due to buffering pauses during streaming is a significant cost to the system,

which we model as a non-decreasing function of the frequency of buffering pause. Minimization of

total user dissatisfaction in a multi-channel cellular network leads to a non-convex problem. Utilizing a

combinatorial structure in this problem, we first propose a polynomial time joint admission control and

channel allocation algorithm which is provably (almost) optimal. This scheme assumes that the base

station (BS) knows the multimedia frame statistics of the streams. In a more practical setting, where

these statistics are not available a priori at the BS, a learning based scheme with provable guarantees

is developed. This learning based scheme has relation to regret minimization in multi-armed bandits

with non-i.i.d. and delayed reward (cost). All these algorithms require none to minimal feedback from

the user equipment to the base station regarding the states of the media player buffer at the application

layer, and hence, are of practical interest.

Index Terms

Resource allocation; Streaming; Multi-channel downlink; Performance analysis

I. INTRODUCTION

Frequent buffering pauses (a.k.a. playout stalls) during multimedia streaming is a source of

great dissatisfaction for cellular users. As multimedia is the most significant part of internet

traffic today, operators must strive to provide a smooth streaming experience. During video
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or multimedia streaming, data transmitted by the base station (BS) are first cached in the

media player buffer at the application layer. From this, the media player consumes (plays) one

multimedia frame at a time at a rate dictated by the quality, encoding scheme and dynamics of

the content. Whenever the buffer does not have enough data to play the current frame, there is

a pause.

In this work, we address user dissatisfaction due to buffering pause in a multi-channel cellular

network. Our formulation captures buffering pause using queuing models for the media player

buffers and user dissatisfaction as a function of the frequency of pause. Unlike the traditional

stochastic network optimization setting [1], this formulation leads to cost-minimization problems

with non-convex structures. Exploiting combinatorial structure inside the apparently continuous

non-convex problem, we develop near optimal resource allocation algorithms. We consider both

the scenarios, where the BS knows and where the BS does not know the statistics of the streams

a priori. The latter case has connections to multi-armed bandits with non-i.i.d. and delayed cost.

Our proposed algorithms require little to no feedback from the user equipment regarding the

buffer states and are compatible with the current cellular implementations.

A. Related literature

There is a rich body of work on real time scheduling [2]–[7]. Recently there have been

many works on age of information which develop scheduling policies to ensure freshness of the

received information in applications like real-time sensing and internet of things [8]–[14].

Dutta et al. [15] and Bhatia et al. [16] studied resource allocation to mitigate pause by

utilizing the media player buffers. Dutta et al. greedily maximized a surrogate, the minimum

expected ‘playout lead’ at each scheduling epoch. Hou et al. [17] showed that in a single channel,

underloaded network, it is possible to take the frequencies of pause to zero and also characterized

their diffusion limits. Xu et al. [18] analyzed buffer starvation statistics under different service and

frame consumption statistics. Singh et al. [19] formulated the problem of minimizing frequency

of pause as a Markov decision process and derived a threshold policy. This was further extended

to obtain a decentralized policy for a distributed network [20].

In spirit, our work shares most similarity with [17], [19], [20], which aim to directly address

the issue of buffering pause in a single-channel network using a queuing model for the media

player buffer. However, there are many differences between those and the current work, some

of which are discussed next.
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• The modern cellular networks use OFDMA and are often overloaded either due to high user

density and shadowing in urban areas or low BS density and high pathloss in rural areas.

So, in contrast to [17], [19], [20], our model captures a (possibly) overloaded multi-channel

system.

• As it is impossible to take the frequency of pause for each user to zero in an overloaded

network, we aim to minimize the total user dissatisfaction. Each user’s dissatisfaction is

modeled as a non-decreasing function of their respective frequency of pause and captures

user expectations, which may depend on their data plan, the type of content, and personal

factors.

• The buffers at the application layer can easily store a few minutes of future content. However,

reporting the buffer states from the application layer of the user to the the MAC layer of

the BS at regular intervals is resource consuming, and is not provisioned in the current

cellular implementations. So, in contrast to [17], [19], [20], we assume the media buffer

to be sufficiently large and design allocation schemes which are either agnostic of buffer

states or access buffer states infrequently (with asymptotically vanishing rate).

• From the buffer, the player consumes content as multimedia frames (I, P or B) and the

number of frames per second (fps) depends on the content. For current multimedia encoding

(40–60 fps), on average one multimedia frame is consumed per 1.5–3 OFDMA frames, and

the multimedia and OFDMA frames are not in alignment. Moreover, the amount of data

in a frame, more specifically, in P and B frames, varies with scene dynamics. Thus, in

practice, the amount of data consumed per OFDMA frame by the player from the buffer

is stochastic. In [17], [19], [20], periodic frame consumption by the player was assumed.

In this work, we move closer to practice by assuming stationary and ergodic consumption

processes.

It is known that servers can adjust (degrade) stream resolutions to suit network conditions

(congestion, etc.) [21]–[26]. We first study the scenario where all contents are streamed at their

lowest resolutions acceptable to the respective users, which are possibly different for different

contents and users. (This captures the case where a user refuses to watch a content below a

certain resolution.) Later we show how our algorithms can be adapted to optimally address

users’ dissatisfaction due to streaming at degraded resolutions. Thus, this work addresses both

buffering pause and quality degradation, arguably, the two most pressing issues in streaming.

This paper is organized as follows. The system model and the objective are discussed in
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Sec. II. Resource allocation schemes, their performance guarantees and proof sketches of the

main results are presented in Sec. III and IV, when stream parameters (statistics) are known and

unknown, respectively. Further, in Sec. IV-B, we also discuss the case where the base station

does not have access to (even infrequent) feedback on the consumption process, but knows a

prior on the parameters of the consumption’s distribution statistics. Simulations strengthening the

analytical results are reported in Sec. V. Quality degradation is addressed in Sec. VI followed

by conclusion in Sec. VII. For detailed proofs, please see the appendices at the end of this

manuscript.

II. SYSTEM MODEL AND OBJECTIVE

We consider the time-slotted OFDMA downlink of a cellular base station (BS) with m

channels. The BS is streaming multimedia content to n users over these m wireless fading

channels. In time-slot s ∈ {1, 2, . . .}, user i ∈ [n] can receive hi,j(s) bits on channel j ∈ [m].

We use [v] to denote the positive integers {1, 2, . . . , v}.
The BS decides the allocation of channels and time-slots to users in the beginning of an

OFDMA frame, which consists of E slots. To avoid confusion with media frames, in the rest

of this paper, we refer to OFDMA frames as epochs and media frames as frames. Epochs are

indexed by t, i.e., epoch t is composed of time-slots (t− 1)E + 1 ≤ s ≤ tE .

We define H(t) to be an Rn × Rm × RE-valued process with elements {hi,j(s) : i ∈ [n], j ∈
[m], (t − 1)E + 1 ≤ s ≤ tE}. Here hi,j(s) is the amount of data that the BS sends to user i

on channel j in time-slot s. This depends on the fading state of the channel and the adaptive

modulation and coding (AMC) techniques employed at the physical layer. As there are only

finite number of modulation schemes available at the BS, hi,j(s) takes values in a finite set.

The BS is infinitely backlogged, i.e., all of the content to be served to the users is waiting at

the BS. Once the content has been served by the BS to a user, it is stored in the user’s media

player buffer, from which every epoch the media player either reads one frame or none. For each

user i, the time of consumption of a frame is denoted by the stochastic process Fi(t) ∈ {0, 1}.
Here Fi(t) = 1 means that the media player at user i consumes one frame during epoch t. This

process is stationary and ergodic with E[Fi(t)] = pi ∈ [0, 1]. Let Df
i denote the amount of data

(in bits) in frame f ∈ {1, 2, . . .} of the content streamed to user i. For each i, {Df
i : f ≥ 1} is

a stationary and ergodic process. So, the amount of data required by the media player of user i

at epoch t is Fi(t)D
∑t
τ=1 Fi(τ)

i , where D
∑t
τ=1 Fi(τ)

i := Df
i for f =

∑t
τ=1 Fi(τ).
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Let Qi(t) be the occupancy (in bits) of the media player buffer of user i at the end of epoch

t− 1 and the amount of content (in bits) delivered to user i by the BS in epoch t be Si(t). As

the media player consumes either one frame or none at each epoch, the evolution of the buffer

at user i is given by

Qi(t+ 1) = Qi(t) + Si(t)− Fi(t)D
∑t
τ=1 Fi(τ)

i · 1(Fi(t)D
∑t
τ=1 Fi(τ)

i ≤ Qi(t) + Si(t)).

We say that the media player at user i has paused at time t if

1(Fi(t)D
∑t
τ=1 Fi(τ)

i > Qi(t) + Si(t)),

i.e., the media player attempted to play the
∑t

τ=1 Fi(τ)th frame, but there was not enough data

in the buffer.

We define a resource allocation policy a to be a sequence of maps {a(t)} such that at each t,

{Si(t) : i ∈ [n]} = a(t) ({Qi(τ) : i ∈ [n]}, H(τ) : 1 ≤ τ ≤ t). Let A be the class of all ergodic

policies under which the time average of the system vector {Qi(t), Si(t) : i ∈ [n]} has an almost

sure limit in R+ ∪ {∞}. For any a ∈ A we define the asymptotic frequency of pause for user i

as

κai = lim
T→∞

1

T

T∑
t=1

1(Fi(t)D
∑t
τ=1 Fi(τ)

i > Qa
i (t) + Sai (t)) a.s.,

where Sai (t) and Qa
i (t) are the service and the buffer processes under policy a ∈ A.

For each user i there is a cost function Vi : [0, 1]→ R+ which captures the user’s dissatisfaction

as a function of its frequency of pause. The asymptotic cost for user i under policy a ∈ A is

given by Vi(κai ). Thus, the total asymptotic cost of the n-user and m-channel system under policy

a is V n,m(a) =
∑

i Vi(κ
a
i ), where κai may possibly depend on the channel statistics.

As our primary objective is to minimize the total user dissatisfaction due to pause, we find

an allocation a ∈ A which minimizes the total asymptotic average cost:

arg min
a∈A

V n,m(a).

In this paper, we use the notations O(·), o(·) and Θ(·) with their standard meaning [27].

A. Practically relevant cost function

Standard resource allocation problems in wireless networks involve either a minimization of a

convex function or a maximization of a concave function. A traditional choice of cost function

along this line would turn the above problem into a convex problem and thus, would offer more
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tractability. Unfortunately, in this case, such a choice would be impractical. For choosing the

right cost functions, let us relate to our own experience during multimedia streaming.

By definition, 0 ≤ κi ≤ pi, because frequency of pause cannot be more than the frame

rate. To understand the nature of the functions, it is better to first look at the two extremes:

κi = 0 and κi = pi. Naturally, we must have Vi(0) = 0 and Vi(pi) > 0 for all i. It is also

obvious that the cost functions {Vi} must be non-decreasing to capture increased dissatisfaction

at an increased frequency of pause. Near κi = pi, where almost every frame is paused, a slight

decrease in κi would have almost no impact on user’s dissatisfaction, which is at saturation. On

the other hand, near κi = 0, where the streaming experience is smooth, a slight increase in the

frequency of pause would annoy the user significantly. This implies that a natural choice for

{Vi} are monotone increasing functions whose derivatives are non-increasing. Thus, the class of

monotone increasing concave functions is the right choice for cost.

B. Assumptions

So far, in describing the system model and the objective, we have made some generic as-

sumptions on the dynamics of the media player buffer and the fading process. For analytical

tractability and simplicity of exposition, we introduce some structural assumptions.

The following assumption is motivated by the observations made in Sec. II-A and by analytical

tractability.

A1: For each i, Vi is a non-decreasing differentiable concave function with Vi(0) = 0, the

derivative at 0 bounded by G, and Vi(pi) = V · pi for some positive constant V .

Following the existing literature on resource allocation [17], [19], [28]–[30], we assume that

for any i ∈ [n], j ∈ [m] and t, hi,j(s) are the same for all s ∈ {(t − 1)E + 1, . . . tE} and are

known to the BS at the beginning of epoch t. Also, as hi,j(s) take finite values, without loss of

generality, we normalize all data quantities, including frame size and hi,j(s), by the maximum

possible value that hi,j(s) can take.

A2: For i ∈ [n] and j ∈ [m], hi,j(s) are the same for all s ∈ [(t− 1)E + 1, tE ] and is denoted

by hi,j(t). For each i and j, {hi,j(t) : t ∈ Z+} are i.i.d. and h̄i,j := P(hi,j(t) = 1) ≥ h̄ for some

h̄ > 0. Also, for each t and i, {hi,j(t) : 1 ≤ j ≤ m} are i.i.d.

This assumption is well justified for low mobility scenarios where an epoch (i.e., an OFDMA

frame) is comparable to the channel coherence time. At higher mobility, the assumption is well

justified if scheduling epoch is chosen to be an OFDMA sub-frame or a few OFDMA slots.
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When H(t) is not known at the transmitter, the performance upper bound in Theorem 1 has

a natural extension. It can be shown that CONCMIN followed by a random scheduler achieves

that benchmark if fading statistics are the same across all channels. We omit this result, whose

analysis is very similar to that of the results presented here, in the interest of space.

All other analytical works so far assume that the frames are consumed periodically and are of

the same size. As we discuss in Sec. I, this is not the case in practice. We take a step closer to

practice by presenting analytical guarantees for the following more general stochastic multimedia

frame dynamics.

A3: For each i, Fi(t) ∈ {0, 1} is stationary and ergodic with P(Fi(t) = 1) = pi, where pi is

of the form zi
Z

for all i. Here Z is an integer independent of the system size and zi ∈ [Z] for all

i. For some b ∈ Z+, Df
i = bE for all i and f .

The GoP structure and the frame rates are encoded in the header of the stream at the application

layer. The MAC scheduler at the BS does not have access to these end-to-end application layer

parameters. These parameters are generally used by the media player for decoding and playing

the stream. But based on certain metadata shared by the higher network layers or the user

equipment, the BS may be able to estimate the frame rate and the GoP structure. In terms of

the mathematical model in Sec. II and the above assumptions, these parameters (statistics) are

equivalent to {pi}. We study resource allocation in both scenarios: the BS knows and does not

know {pi} a priori.

It is apparent that the cost-minimization problem posed here is quite different from traditional

utility optimization problems in communication networks, which are generally solved via novel

adaptations of convex algorithms, e.g., dual gradient descent (a.k.a. drift plus penalty method) [1],

heavy ball method [31], alternating direction method of multipliers [31]. Our cost-minimization

problem involves minimization of a differentiable concave cost, and hence is a non-convex

problem. Moreover, the input variables of the cost functions are not data rates, rather frequencies

of pause. It is not clear how to write the resource constraints directly in terms of frequencies

of pause so that we can obtain a suitable static problem [1]. Hence, the widely used network

optimization techniques cannot be applied here.

C. A benchmark

To analytically compare the performance of our proposed resource allocation policies, a

benchmark is needed. The following theorem provides a universal benchmark for all ergodic
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allocation schemes.

Theorem 1. Under assumptions A1-A3, the cost of any ergodic policy is lower bounded by

V̄ (n,m) = min
{0≤αi≤1}

n∑
i=1

Vi(max(pi − αi, 0)) s.t.
∑
i

αi ≤
m

b
. (1)

This bound is applicable for any h̄ > 0 in assumption A2, and thus is independent of the

fading statistics. Later, we show comparison of the cost under our proposed policy with this

lower bound. The above theorem follows from the following lemma.

Lemma 1. Under assumptions A1-A3, for any ergodic policy a ∈ A, if the ergodic service rate

to user i is s̄ai := limτ→∞
1
τ

∑τ
t=1 S

a
i (t), then κai = max(pi − s̄ai

bE , 0).

This expression for κai is obtained by establishing a simple relation between the probability of

buffering pause and the expected change in the buffer state at epoch t. We can see that setting
s̄ai
bE = α∗i achieves the lower bound in Thm. 1, where {α∗i } are the optimal solutions of (1).

This bound might be achievable in the absence of fading or when the system is underloaded.

However, for an overloaded system, i.e., when
∑

i pi >
m
b , especially in the presence of fading,

it is not possible to achieve s̄ai
bE = α∗i for all i simultaneously, since this would otherwise require

that
∑

i
s̄ai
bE = m

b , i.e., the total ergodic service rate should not be impacted by fading at all.

Hence, for fading channels, a gap with the benchmark is expected.

III. KNOWN {pi}: NON-CONVEXITY AND JOINT ADMISSION-ALLOCATION

We start with the case when {pi} are known at the BS a priori, since it is the simpler case

which helps to separate the complexity in cost minimization from the additional challenges due

to the lack of knowledge of {pi}.
As discussed in Sec. II, the lack of a convex structure does not allow us to use the traditional

network optimization techniques [1]. We take an indirect approach which harnesses a combina-

torial structure inside the continuous non-convex problem and gives an optimal joint admission

control and channel allocation scheme.

Our approach is motivated by the following simple observation based on Thm. 1 and Lem. 1.

If we can find {α∗i } that solves the optimization problem (1) and can obtain an allocation scheme

ā such that sāi
bE = α∗i , then ā is an optimum resource allocation scheme. Towards this, we develop

a polynomial time algorithm CONCMIN which solves (1) (Sec. III-A) and design a polynomial
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time channel allocation algorithm ALLOCATECHANNELS under which α∗i − sāi
bE ≤ θ−m for θ > 1

(Sec. III-B).

A. CONCMIN for solving (1)

CONCMIN (Alg. 1) is proposed to solve the optimization problem in Thm. 1. In the case of an

under-loaded (resource rich) network, i.e.,
∑

i∈[n] pi ≤ m
b , αi = pi for all i is the obvious optimal

solution (Step 1). The main challenge lies in the overloaded or resource constrained network,

i.e.,
∑

i∈[n] pi >
m
b . In this case, CONCMIN searches over a collection of extreme points of the

constraint set and picks one with the minimum cost. Here the extreme points are the set of tuples

{αi : i ∈ [n]} such that for some S ⊂ [n] and |S| = n − 1, αi ∈ {0, pi} for all i ∈ S. This

search is carried out in Steps 4-24.

To find the best extreme point, for each k ∈ [n], CONCMIN searches for the subset S∗k ⊂ [n]\k
and the best αk ∈ (0, pk) so that if αi = pi for i ∈ S∗k and αi = 0 for i 6∈ S∗k ∪ {k}, then the

cost is minimized (for loop in Step 4). Finally, it picks the best k and the corresponding S∗k by

comparing cost of {S∗k : k ∈ [n]} (Steps 23-24).

The search for S∗k is a combinatorial subset selection problem. CONCMIN finds Lk which

maximizes
∑

i∈S\k pi and Rk which minimizes
∑

i∈S\k pi subject to
∑

i∈S\k pi > 1 − pk. The

one with lower cost among them is picked as S∗k . Finding Lk is related to the well known subset

sum problem (Step 5) [32]. It turns out that the problem of finding Rk can be written in an

alternate form, which is also a subset sum problem with different parameters (Step 8).

We use the SUBSETSUM routine to solve the subset sum problem. SUBSETSUM(W, c), for

some W ⊆ [n], returns the set S ⊆ W so that
∑

i∈S pi is maximized subject to
∑

i∈S pi ≤ c. For

SUBSETSUM the standard dynamic programming based algorithm [32] can be used. Though that

algorithm does not solve any general subset sum problem in polynomial time, in our case it does.

This is because, for our problem, across all instances the sack sizes are at most Z ·max(m,n).

Further, as subset sum is a special case of the knapsack problem and the weights {pi} ⊂ { zZ :

z ∈ [Z]} for Z = O(1), there exists an accurate algorithm with O(n) complexity [32].

We have the following guarantee on the computational complexity and the correctness of

CONCMIN.

Theorem 2. In O(n2) steps CONCMIN obtains an optimal solution for the optimization problem

in Thm. 1, i.e., ᾱi = α∗i for all i ∈ [n].
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Algorithm 1 CONCMIN

Input: {Vi}, {pi}, c = m
b

Output: {ᾱi}

1: if
∑

i∈[n] pi ≤ c then

2: ᾱi ← pi for all i ∈ [n]

3: else

4: for all k ∈ [n] do

5: Lk ← SUBSETSUM([n] \ k, c)

6: L← V ·
( ∑
i∈[n]\k

pi −
∑
i∈Lk

pi

)
+ Vk(pk +

∑
i∈Lk

pi − c)

7: {L is cost if αi = pi for i ∈ Lk}
8: Rk ← SUBSETSUM([n] \ k, ∑

i∈[n]

pi − c)

9: R← V ·
( ∑
i∈Rk

pi

)
+ Vk(

∑
i∈[n]

pi −
∑
i∈Rk

pi − c)

10: {R is cost if αi = 0 for i ∈ Rk}
11: if L ≤ R then

12: αki ← pi for all i ∈ Lk
13: αkk ← c−∑i∈Lk pi

14: αki ← 0 for all i /∈ Lk ∪ {k}
15: Jk ← L

16: else

17: αki ← 0 for all i ∈ Rk

18: αkk ← c−∑i∈[n]\k pi +
∑

i∈Rk pi

19: αki ← pi for all i /∈ Rk ∪ {k}
20: Jk ← R

21: end if

22: end for

23: k∗ ← arg mink Jk

24: ᾱi ← αk
∗
i for all i ∈ [n]

25: end if



11

Interestingly, the optimization problem in Thm. 1 involves continuous variables with no

apparent integer or combinatorial constraints. However, the particular non-convex structure of

the problem leads to an optimal combinatorial algorithm.

For simplicity of presentation we restrict to b = 1 in the following, though all the results

directly extend to b ≥ 1.

B. Near-optimal channel allocation

Our near-optimal channel allocation scheme ALLOCATECHANNELS is preceded by a sub-

routine SELECTUSERS which generates a list of m random users. It is ensured that the list

does not have a user repeated more than twice. Otherwise, the system would fail to harness the

diversity in the fading processes experienced by different users. It is also ensured that each user

i is picked with probability α∗i . SELECTUSERS proceeds as follows.

We maintain a unit length interval for each of the m “slots” we are going to fill with users.

Fill in all the unit length intervals in sequence, starting with α1 for user 1, all the way up to αn

for user n. If any αi overflows the interval of a particular slot, fill in the remainder of that αi

in the next slot. This procedure is pictorially represented in Fig. 1. In an overloaded network,

we have
∑

i α
∗
i = m, which allows us to fill in all the slots perfectly. On the other hand, in an

underloaded network, we have α∗i = pi for all i with
∑

i α
∗
i ≤ m, and we can leave the last

few slots of SELECTUSERS vacant. For each slot, we pick user i with probability equal to the

amount filled in by α∗i for that slot. It is easy to see that the expected number of slots allotted

by SELECTUSERS to user i is α∗i , and the maximum number of slots allotted to any user is 2.

Once we have a list of m users, we create a bipartite graph between these users and the

m channels, with an edge if and only if the channel rate hi,j(t) = 1 for user i and channel

j. ALLOCATECHANNELS constructs this bipartite graph, finds a maximum matching, and then

allocates the matched channels to the users. A maximum bipartite matching can be found using

existing algorithms [27], [33]. As no user is repeated more than twice in the list (s1, . . . , sm), a

perfect matching is found with very high probability due to the diversity in the fading processes

across different users.

ALLOCATECHANNELS allocates a channel to a user only if it is the best, i.e., it allocates

channels to users only if hi,j(t) = 1. Despite the conservative allocation, it is able to exploit the

diversity across channel-user pairs to allocate resources in an almost optimal fashion, as stated

formally in the following theorem.
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s1

s2

s3

sm

1 unit

α1 α2 α3...

...α3

For each slot sj, select a user

with probabilities obtained here.

Each user can appear for

at most 2 slots.

αnαn-1
In the resource constrained regime,

we have  Σ αi = m.
i=1

n

α4

Fig. 1. Selecting a set of m users.

Theorem 3. Under assumptions A1-A3, for sufficiently large m, ALLOCATECHANNELS has a

cost V n,m(ALLOCATECHANNELS) that satisfies

V n,m(ALLOCATECHANNELS)− V̄ n,m ≤ γ−m,

for some constant γ > 1, for any n. The per epoch computational complexity of running

ALLOCATECHANNELS is O(mn+m2.5).

The probability that a user does not receive the highest AMC rate on any of the m channels is

lower bounded by (1− h̄)m, for 0 < h̄ < 1. Hence, for 0 < h̄ < 1, an Ω
(
(1− h̄)m

)
loss in per-

user throughput compared to the no fading case is unavoidable. The benchmark in Theorem 1

is a universal lower bound, applicable even to the case h̄ = 1. Thus, for h̄ < 1, there will

be a gap between the benchmark and the cost incurred by any policy, including the optimal

policy. ALLOCATECHANNELS guarantees that this gap decays exponentially with the number of

channels, which is no slower than the decay of per-user throughput loss, and hence, seems to

be order optimal.

The main part of the proof of this theorem requires us to show that a user for which CONCMIN

allocates α∗i > 0 is served at any time t with probability at least α∗i − θ−m for some θ > 1. For

this, we extend [30, Lem. 1] to the case where a user’s channel states are correlated with other

O(1) users. Rest follows using Lem. 1 in Sec. II-C.
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Algorithm 2 SELECTUSERS

Input: {αi}ni=1

Output: List of m (possibly repeated) users (s1, . . . , sm)

1: u← 1

2: for j := 1 to m do

3: Q← ∅

4: while

( ∑
β:(ν,β)∈Q

β

)
< 1 do

5: if αu ≤ 1−
( ∑
β:(ν,β)∈Q

β

)
then

6: Q← Q ∪ {(u, αu)}
7: u← u+ 1

8: else

9: Q← Q ∪ {(u, 1−∑β:(ν,β)∈Q β)}
10: αu ← αu − (1−∑β:(ν,β)∈Q β)

11: end if

12: end while

13: // Now select ν with probability β

14: Pick Yν ∼ exp(β) for all (ν, β) ∈ Q independently

15: sj ← arg max
ν:(ν,β)∈Q

Yν

16: end for

Remark 1. The proposed algorithm and its performance guarantees are agnostic of the partic-

ular AMC technique. For any given AMC technique, the proposed (almost) minimizes the total

cost due to buffering pauses for that AMC technique.

IV. UNKNOWN {pi}

As discussed in Sec. II, {pi} are application layer parameters and hence, not always known

to the MAC scheduler of the BS a priori. Moreover, two videos with the same quality (i.e.,

HD, 4k) can have different {pi} depending on their dynamism, e.g., sports versus news. Hence,

even the application layer may not know accurate values of {pi} a priori. To the best of our

knowledge, none of the prior analytical works on streaming has addressed this issue.
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Algorithm 3 ALLOCATECHANNELS

Pre-computation at time 0: obtain {α∗i } from CONCMIN

1: For each epoch t:

2: Get channel state information {hi,j} for all i ∈ [n] and j ∈ [m]

3: (s1, . . . , sm)← SELECTUSERS({α∗i })
4: Construct a bipartite graph between the selected users {su}mu=1 and channels [m] as follows:

there is an edge between su and j iff hsu,j = 1

5: Find the subset of edges M which forms a maximum matching of the bipartite graph

6: For each (s, j) ∈M , allocate channel j to user s

In practice, all multimedia sessions are of finite duration. Hence, it is also important that

the allocation scheme performs well not only in terms of the asymptotic average cost, but also

in terms of average cost over any reasonable time window. Further, as discussed before, any

implementable allocation scheme at the BS can at best have an infrequent feedback regarding

users’ media player buffers.

Under a policy a ∈ A, let κai (T ) be the empirical frequency of pauses over T epochs. Ideally,

we should have a policy a with low
∑

i∈[n] Vi(κ
a
i ) and low

∑
i∈[n] Vi(κ

a
i (T )) for all T . More

precisely, if Ā is the class of ergodic policies which minimize asymptotic average cost, ideally,

we would like to have the policy a∗ ∈ Ā, if it exists, such that for all sufficiently large T and

any ā ∈ Ā, ∑
i∈[n]

E
[
Vi(κ

a∗

i (T ))
]
≤
∑
i∈[n]

E [Vi(κ
ā
i (T ))] . (2)

Note that for all sufficiently large T , V̄ n,m is still a benchmark for
∑

i∈[n] E [Vi(κ
a
i (T ))]. Hence,

(2) is equivalent to finding ā ∈ Ā for which

v(ā, T ) :=
∑
i∈[n]

E [Vi(κ
ā
i (T ))]− V̄ n,m

is minimum for all sufficiently large T . Clearly, for any ā ∈ Ā as T →∞, v(ā, T )→ 0. As the

above multi-objective problem is intractable, we look for a policy under which v(ā, T ) rapidly

goes to 0 as T →∞.
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A. Infrequent buffer feedback and bandits

Using Jensen’s inequality to move the expectation inside Vi and then using concavity of Vi

and assumption A1, it follows that

v(ā, T ) ≤ G
∑
i∈[n]

max(E[κāi (T )]− κāi , 0).

Thus, for upper bounding the rate of decay of v(ā, T ) it is sufficient to upper-bound the rate of

decay of E[κāi (T )] − κāi for each i. Let ψāi (T ) denote the number of pauses for user i over T

epochs under policy ā. Then, upper-bounding the rate of decay of E[κāi (T )]− κāi is equivalent

to upper-bounding the rate of growth of E[ψāi (T )].

It may be tempting to use the following simple approach. At the beginning, the user estimates

pi by observing the evolution of the media player buffer for some time and reports it to the BS,

then the BS uses ALLOCATECHANNELS. Though this is a possible approach, it is sub-optimal.

This is because for the above estimation steps, the buffers of the users need to have enough

frames, for which the BS needs to transmit sufficient contents to all the users. However, during

this estimation period, transmissions to the users who are not part of the optimal schedule in

CONCMIN are in a sense wasted, which could have been used to improve experience of the

other users. This implies that we need to strike a balance between exploration and exploitation.

This naturally brings us to the setting of multi-armed bandits [34] with non-i.i.d. cost (instead

of reward), where a cost of 1 is incurred for a user every time its stream is paused. The cost is

non-i.i.d. because the cost depends on the past states of the buffer, even when {Fi(t)} are i.i.d.

Moreover, for an action taken at time t, the cost may be incurred at a later time. Though there

is a similarity in terms of the non-i.i.d. nature of the system, the dynamics and the costs in this

problem are different from the queuing bandits studied in [35]–[37].

Drawing intuition from the bandit literature [34]–[37] and the analysis of CONCMIN and

ALLOCATECHANNELS, we develop an algorithm called infrequent Feedback, ESTimate, solVe,

and ALlocate (iFESTIVAL), which takes infrequent one bit feedback about the buffer states,

estimates {pi} based on that, and allocates using CONCMIN and ALLOCATECHANNELS.

iFESTIVAL, described in Alg. 4, divides time into phases of length (w+1)dnb
m
e epochs, where

w ∈ Z+. For r ∈ Z+ and r ≥ 2, at phases r, r2, r3, . . ., iFESTIVAL serves each user in turn over

b channels of an entire epoch and the users record the change (increase or same) of their buffer

states at the end of that epoch. In each phase this is done w times in a round-robin fashion

over the first wdnb
m
e epochs of this phase. From the (wdnb

m
e + 1)th epoch to (w + 1)dnb

m
eth
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Algorithm 4 iFESTIVAL

Input: {Vi} and r, w ∈ {2, 3, . . .}
Output: Allocation at each epoch

Initial computation: Define phases τ = 1, 2, . . . where τ th phase consists of epochs (τ−1)(w+

1)dnb
m
e+ 1 to τ(w + 1)dnb

m
e

1: while System is ON do

2: if for some q ∈ Z+ ∪ {0}, current phase τ = rq then

3: Between epochs (τ−1)(w+1)dnb
m
e+1 to (τ−1)(w+1)dnb

m
e+wdnb

m
e: allocate users b

ON (for that user) channels each in a work conserving round-robin manner (each user

is chosen for w epochs and allocated b-channels in each one of them)

4: Between epochs (τ − 1)(w + 1)dnb
m
e + wdnb

m
e + 1 to τ(w + 1)dnb

m
e: each user sends

{1, 0}w feedback about increment of {Qi(t)} or not, respectively, in the w epochs they

are allocated in Step 3

5: For each i ∈ [n], based on feedback in Step 4 update p̂i by the total number of 0s

received from user i (since t = 1) divided by w · q
6: Run CONCMIN with {p̂i} to obtain {α̂i}
7: else

8: Run ALLOCATECHANNELS with the latest {α̂i}
9: end if

10: end while

epoch of this phase, the BS collects all the w one bit feedback regarding change of buffer states.

Based on this feedback, it estimates {pi} and runs CONCMIN with these estimates. For any

q ∈ Z+ between phases rq and rq+1, iFESTIVAL runs ALLOCATECHANNELS with {ᾱi} returned

by CONCMIN run during phase rq.

As iFESTIVAL collects only infrequent feedback (w log T
T log r

bits per epoch) from the user equip-

ment, it can be implemented in practice for multimedia streaming in cellular networks. Also,

feedback from each user is scheduled a priori (at particular epochs in phases 1, r, r2, . . .) and

hence, the uplink traffic due to the feedback is well regulated.

For iFESTIVAL, we have the following guarantee on the growth of the expected number of

pauses with the horizon T .
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Theorem 4. Under assumptions A1-A3 and i.i.d. {Fi(t)}, if T ≥ r2(w + 1)dnb
m
e, and w >

2 ln r
mini,j |pi−pj | , then in the absence of fading, i.e., H(t) = 1,

E[ψiFESTIVAL
i (T )] ≤ max(pi − α∗i , 0)T + C̄T 2/3 log T,

for all i ∈ [n], where C̄ is independent of T . For any H(t) satisfying A2, if n = Θ(m) then for

θ = 2

1+
√

1−h̄
and C ′ > 0, a constant independent of T ,

E[ψiFESTIVAL
i (T )] ≤ max(pi − α∗i + θ−m, 0)T + C ′ θ−2m log T.

Proof of this theorem has two main steps. First, we show that after t epochs, the estimations

of {pi}, which take values in { z
Z

: z ∈ [Z]}, are exact with probability at least 1 − 1
t1+β for

some β > 0. Second, we bound the expected number of pauses between rqth and rq+1th phases

assuming the estimate at the end of the rqth phase is accurate. Combining these two along

with some standard probability computations gives the result. Proving the first part is a standard

application of Azuma-Hoeffding inequality. The second part requires bounding the expected

number of returns to state 0 by the Markov chain Qi(t) over a finite time window. Towards that

we study a stochastically dominating Markov chain using techniques from [38].

The following result is a consequence of Thm. 4 and the discussions on v(ā, T ) in the

beginning of Sec. IV-A.

Proposition 1. Under assumptions A1-A3, i.i.d. {Fi(t)} and H(t) = 1, if T ≥ r2(w + 1)dnb
m
e,

and w > 2 ln r
mini,j |pi−pj |

v(iFESTIVAL, T ) = O

(
log T

T 1/3

)
.

For any H(t) satisfying A2, if n = Θ(m) then for θ = 2

1+
√

1−h̄
,

v(iFESTIVAL, T ) ≤ O
(
θ−m

)
+O

(
log T

T

)
.

Arguably, the O (θ−m) bound on v(iFESTIVAL, T ) is the best that can be achieved in the

presence of fading. This is because, as discussed after Theorem 3, even when {pi} are known

there exists an exponentially decaying (with m) gap between the benchmark and the optimal

policy. On the other hand, in the no fading case, v(iFESTIVAL, T ) tends to 0 since the lower-

bound in Theorem 1 is achievable in this case.

Note that unlike Theorem 3, in Theorem 4 and Proposition 1, we assume {Fi(t)} to be

i.i.d., which is required for the analysis. The results can be extended to Markovian {Fi(t)}
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under which {Qi(t)} are geometrically ergodic. However, our present analytical techniques for

proving Theorem 4 does not seem to extend to general {Fi(t)} processes.

B. Without buffer feedback

As mentioned before, current protocols do not generally implement a procedure to feedback

the buffer states of the media player at the application layer to the BS. Though we show that

iFESTIVAL requires infrequent and simple feedback, one may still ask: what is the extra cost (user

dissatisfaction) if we do not use any feedback? Clearly, as there is no feedback, there is no scope

to employ adaptive schemes which learn and improve. It also turns out that in the absence of any

buffer feedback, the asymptotic cost is bounded away from V̄ n,m, i.e., limT→∞ v(a, T ) ≥ δ > 0.

So, in this setting, our goal is to find a stationary policy with the minimum asymptotic average

cost.

In Sec. III-B, we observed that for any feasible ergodic rate, ALLOCATECHANNELS (almost)

achieves the lower bound on the frequency of pause. Hence, in the absence of feedback, the

optimal approach would be to find the best ergodic rates and then employ ALLOCATECHANNELS.

For each user i, let the available information regarding pi be its cumulative distribution Gi(·).

Then the best service rate allocation can be obtained by solving

min
{0≤αi≤1}

n∑
i=1

EpiVi(max(pi − αi, 0)) s.t.
∑
i

αi ≤
m

b
. (3)

In its full generality, the optimization problem in (3) is quite challenging, whose numerical

solution is sometimes unobtainable. Under some mild conditions on {Gi}, (3) turns out to be

a minimization of sum of n functions, where each function is concave on a part of its domain

and convex on the rest. We leave this unique non-convex problem of independent mathematical

interest as future work. Here, we restrict ourselves to the special case of linear cost: for each i,

Vi(x) = wix and pi ∈ [ai, bi] ( [0, 1] for distinct {wi}.
Without loss of generality, let us assume w1 < w2 < . . . < wn and define w0 = 0. NOBACK,

which stands for uNknown cOnsumption from the Buffer without feedbACK (Alg. 5), solves (3)

for linear {Vi}.
The main intuition behind this algorithm is the fact that Vi(αi) := Epi∼GiVi(max(pi − αi, 0))

is convex for linear {Vi}. So, we build on the KKT optimality conditions [39] of (3) to design

NOBACK for computing the optimal allocation. The following lemma asserts the correctness of

NOBACK.
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Algorithm 5 NOBACK

Input: {wi}, {(ai, bi)}, {Gi}, c = m
b

Output: {α∗i }

1: if
∑n

i=1 bi ≤ c then

2: α∗i ← bi for all i ∈ [n]

3: else

4: l← 0

5: repeat

6: l← l + 1

7: until
∑n

i=lG
−1
i (1− wl/wi) ≤ c

8: λ∗←solve
{∑n

i=lG
−1
i (1− λ/wi) = c

}
for λ∈(0, wl]

9: if λ∗ > wl−1 then

10: α∗i ← G−1
i (1− λ∗/wi) for i ≥ l

11: α∗i ← 0 for i < l

12: else

13: α∗i ← G−1
i (1− wl−1/wi) for i ≥ l

14: α∗l−1 ← c−∑n
i=l α

∗
i

15: α∗i ← 0 for i < l − 1

16: end if

17: end if

Lemma 2. NOBACK outputs {α∗i } which solves (3) for any strictly increasing {Gi}, if the

solution at Step 8 is obtained accurately.

Please see Appendix E for the proof of Lemma 2.

For {Gi} strictly increasing over {[ai, bi]}, λ∗ at Step 8 of NOBACK can be obtained using

binary search, whereas for special distributions, there exist closed forms. For uniform distribution,

i.e., pi ∼ Unif[ai, bi] for all i:

λ∗ =

∑n
i=l bi − c∑n
i=l

bi−ai
wi

. (4)

For uniform distribution we have the following unconditional correctness guarantee and a

bound on the computational complexity. This result follows from the above lemma and the fact
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that for uniform distributions, there exists a closed form solution to Step 8.

Theorem 5. When {pi ∼ Unif[ai, bi]}, NOBACK finds the optimum of (3) in O(n2).

Proof. For uniform distributions, the cumulative distribution functions Gi(·) are linear, whose

sum can be easily inverted. Computing the solution to Step 8, given by (4), has a time complexity

of O(n), and we need to compute this expression at most n times in Step 7. Once we have found

the correct λ, computing the values of {α∗i } just requires a single pass over all the n users in

Steps 9-16 of Algorithm 5. This ensures that the complexity of NOBACK is O(n2).

For {pi ∼ Unif[ai, bi]} it turns out that {Vi} are not strongly convex functions. So, among

the gradient based methods, the best convergence bound for obtaining an ε-accurate solution is

O
(

1√
ε

)
, which is due to the accelerated gradient descent algorithm [40]. On the other hand, using

a special structure of the problem (via KKT conditions), NOBACK gives the exact optimum in

O(n2) time. As the number of users per cell is in the range 101–102, NOBACK is computationally

inexpensive.

V. SIMULATION

For our simulations, we consider a system where the number of channels m scales as 0.4 × the

number of users n. The mean consumption rates {pi} are drawn uniformly at random from the set

{0.40, 0.45, 0.50, . . . 0.80}. The channels are assumed to be i.i.d. Bernoulli with ON probability

h. For this overloaded system, we use the following class of cost functions: Vi(x) = pθix
1−θ, for

some 0 < θ < 1.

In Fig. 2a, we show the performance of ALLOCATECHANNELS, which requires us to know the

mean consumption rates {pi}. Here, we plot the asymptotic cost V n,m of running ALLOCATE-

CHANNELS under different fading conditions and compare it with the lower bound. For h = 0.6

and 0.8, ALLOCATECHANNELS is close to the lower bound at n = 15, and the cost almost

matches the lower bound at n = 20. Even for poor channel conditions (h = 0.4), it matches the

lower bound at n = 30, i.e., m = 12 channels. We also observe almost the same performance

when we change the consumption process {Fi(t)} from i.i.d. to Markov (with the same {pi}).
This is expected since our theoretical guarantees extend to any stationary and ergodic process.

In Fig. 2b, we show the performance of iFESTIVAL which does not know the consumption

statistics a priori and adapts as it learns those on the fly. For different values of h, we observe its

performance to be close to ALLOCATECHANNELS as well as the lower bound. We also compared
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its performance against a round robin schedule run on a system that does not experience fading

(i.e., h = 1). Even under heavy fading (h = 0.4), for n ≥ 25, i.e., m ≥ 10, iFESTIVAL beats

round robin’s performance in the idealized scenario without fading. This demonstrates that there

is a significant benefit to learning the consumption statistics using iFESTIVAL and employing

an algorithm such as ALLOCATECHANNELS that optimally utilizes the diversity of channel

conditions.

VI. QUALITY DEGRADATION

So far, we have addressed minimizing the cost due to buffering pauses when the network is

overloaded, i.e., all users cannot be supported at their minimum acceptable resolution levels.

However, as discussed at the end of Sec. I, in an underloaded network, it is imperative to

address user dissatisfaction due to quality degradation as well. In any network, the main objective

then would be mitigating buffering pause using minimal resource and then using the remaining

resource to minimize user dissatisfaction due to quality degradation.

From the performance analysis in Thm. 3 and Sec. V, it follows that ALLOCATECHAN-

NELS achieves almost zero frequency of pause using minimum number of channels b
∑

i pi.

Thus in an underloaded network, the first step would be to run ALLOCATECHANNELS on b
∑

i pi

channels and use the rest of the channels to minimize cost due to quality degradation.

For user i, let qi ∈ [0, 1] be E[Fi(t)] when the content is at the highest available resolution.

For each user i, let Wi : R+ → R+ be a non-decreasing function. Then, in an underloaded

network, the dissatisfaction of user i due to quality degradation can be modeled as Wi(qi− s̄i
bE ),

where s̄i is the ergodic service rate received by user i. So the problem of minimizing cost due

to quality degradation using the remaining resource (after ensuring zero frequencies of pause) is

min
{s̄i≥pibE}

∑
i∈[n]

Wi(qi −
s̄i
bE ) s.t.

∑
i∈[n]

s̄i
bE ≤

m

b
.

One may interpret the cost Wi(qi − s̄i
bE ) as a positive constant minus a utility that increases

with the increased ergodic service rate. Following the intuition from traditional data networks

where the utility saturates with increasing data rate, one may model {Wi} as convex increasing

functions. In that case the above problem is a standard convex optimization problem. On the

other hand, if {Wi} are modeled as concave increasing functions, a simple change of variables

reduces it to (1), and hence, can be solved using CONCMIN. Thus, our work addresses both

buffering pause and quality degradation.
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VII. CONCLUSION

We study a resource allocation problem for minimizing user dissatisfaction due to buffering

pauses during streaming over a multi-channel cellular network. Our consideration of a few

previously overlooked practical aspects leads us to a novel continuous non-convex problem

with an interesting combinatorial structure. This problem is also related to learning in non-i.i.d.

multi-armed bandits with delayed cost. We propose computationally efficient algorithms that are

compatible with the current cellular implementations and provide theoretical guarantees for their

(near) optimality.
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APPENDIX A

PROOFS OF LEMMA 1 AND THEOREM 1

Let Xi(t) = Qi(t)
kE , where Qi(t) is the buffer evolution process defined in Sec. II. Using

assumption A3, we can write the buffer evolution compactly as

Xi(t+ 1) =

(
Xi(t) +

Si(t)

kE − Fi(t)
)+

, (5)

where (·)+ denotes max(·, 0). Since we schedule in units of kE , we have Si(t)
kE ∈ {0, 1, . . .}.

Following the discussion in Sec. II, using assumptions A1-A3, we can express the probability

of pause at time t as

E

[
1

(
Xi(t) +

Si(t)

kE − Fi(t) < 0

)]
.

Using the buffer evolution in Eq. (5), this can equivalently be written as

E

[
1

(
Xi(t+ 1)−

(
Xi(t) +

Si(t)

kE − Fi(t)
)
> 0

)]
. (6)

This is because whenever Xi(t) + Si(t)
kE −Fi(t) ≥ 0, Xi(t+ 1) would be equal to this expression

and the argument of the indicator in the above equation for κi would be 0. The only way for it

to be positive is when Xi(t) + Si(t)
kE − Fi(t) < 0.

Further, observe that since Xi(t) ∈ {0, 1, 2, . . .}, Si(t)
kE ∈ {0, 1, 2, . . .}, and Fi(t) ∈ {0, 1}, we

have

Xi(t+ 1)−
(
Xi(t) +

Si(t)

kE − Fi(t)
)
∈ {0, 1}.
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This implies that the indicator in Eq. (6) is redundant as its argument is always 0 or 1. So we

get that the probability of pause at time t is

E

[
Xi(t+ 1)−

(
Xi(t) +

Si(t)

kE − Fi(t)
)]

.

When the buffer evolution is stationary and ergodic, i.e., E[Fi(t)] > E
[
Si(t)
kE

]
, the processes

are all stationary, and we have E[Xi(t+ 1)] = E[Xi(t)], and this gives us

E[Fi(t)]− E

[
Si(t)

kE

]
,

which, by ergodicity, implies that

κi = E[Fi(t)]− E

[
Si(t)

kE

]
.

Using the definition of s̄i in Lem. 1, and the definition of pi in assumption A3, we get

κi = pi −
s̄i
kE

which concludes our proof for the stationary and ergodic case.

When pi ≤ s̄i
kE , the result follows by observing the drift of {Xt} and the fact that if the

expectations of a sequence of non-negative random variables upper-bounded by 1 are 0, then

the sequence converges to 0 almost surely.

A. Proof of Theorem 1

Let S∗i (t) be the service under an optimal policy a∗, and let the buffer evolution under such a

policy be Q∗i (t) for each user i. At any epoch, we have a total of mE slots that can be scheduled,

and this means ∑
i∈[n]

S∗i (t) ≤ mE

for every epoch t.

Since this hold for every epoch, the time average must satisfy this inequality as well, giving

us ∑
i∈[n]

s̄∗i ≤ mE ,

where s̄∗i are the ergodic service rates under an optimal policy. This implies that∑
i∈[n]

s̄∗i
kE ≤

m

k
. (7)
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Using Lem. 1, we get

V n,m(a∗) =
∑
i∈[n]

Vi

(
max

(
pi −

s̄∗i
mE , 0

))
.

Since the optimal policy must satisfy Eq. (7), the solution of the program in Thm. 1 (Eq. (1)),

can only have a lower value. This gives us

V n,m(a∗) ≥ V̄ n,m.

APPENDIX B

PROOF OF THEOREM 2

First we shall prove that CONCMIN indeed finds the optimal service rates {α∗i }. The opti-

mization problem we are trying to solve can be written as:

minimize
{αi}

∑
i

Vi(pi − αi)

subject to
∑
i

αi ≤ c (8)

and 0 ≤ αi ≤ pi ∀ i ∈ [n]. (9)

Recall that c = m
k

. Since {Vi} are all concave functions, the optimal solution happens at a

corner point of the region defined by constraints (8) and (9). We have a total of 2n + 1 linear

inequations defining the feasible region (1 in constraint (8) and 2n in constraint (9)). Since there

are n optimization variables {αi}, at every corner point, n of the inequations will hold with

equality. However, αi can’t be equal to both 0 and pi, and so at most n of the inequalities in

constraint (9) can hold with equality. As we just have one other constraint in (8), we need at

least n − 1 of the constraints to hold with equality in constraint (9). Therefore, in the optimal

solution to the optimization problem, there is at most one user who gets a non-zero rate but is

not fully satisfied.

Let P =
∑

i pi. When P ≤ c, the optimal solution is trivial and we get α∗i = pi for all i.

This case is handled in line 1 of CONCMIN. Now consider the case P > c. Let k∗ be such that

for all i 6= k∗, either α∗i = 0 or α∗i = pi in the optimal solution {α∗i }. The preceding arguments

guarantee that there is at least one such k∗. We find this k∗ by looping over all of [n] in line 4

of CONCMIN. For each k ∈ [n], we find the optimal solution {αki } that satisfies, for all i 6= k,

αki = 0 or αki = pi. Then we take the best among these over all values of k.
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When P > c, given a fixed k, define Sk, Qk ⊆ [n] \ k so that the “optimal” solution {αki }
satisfies the following properties:

αki = 0 ∀ i ∈ Sk

αki = pi ∀ i ∈ Qk

Sk ∩Qk = φ and Sk ∪Qk ∪ {k} = [n]

Since Vi(pi) = V · pi, Sk (or equivalently Qk) can be found by solving

minimize
Sk

V ·
∑
i∈Sk

pi + Vk

(
P − c−

∑
i∈Sk

pi

)

subject to P − c− pk ≤
∑
i∈Sk

pi ≤ P − c.

The objective is a concave function of
∑

i∈Sk pi and so the minimum objective occurs at

the maximum or minimum feasible value of
∑

i∈Sk pi. We find maxSk
∑

i∈Sk pi by solving

SUBSETSUM([n]\k,P−c)(= Rk) on line 8 of CONCMIN. minSk
∑

i∈Sk pi subject to
∑

i∈Sk pi ≥
P − c − pk is the same as solving maxQk

∑
i∈Qk pi subject to

∑
i∈Qk pi ≤ c. This we do by

SUBSETSUM([n] \ k, c)(= Lk) on line 5 of CONCMIN. We then compare the costs of Lk and

Rk to get the solution {αki } and the corresponding cost Jk.

Observe that the optimal solution {α∗i } satisfies
∑

i α
∗
i = c when P > c. Also, we have

α∗i = αk
∗
i for some k∗ ∈ [n]. Since we are comparing amongst feasible solutions {αki } in line

23 of CONCMIN, we get the optimal k∗ and hence the optimal solution {α∗i }. This shows that

CONCMIN outputs the optimal solution.

See Sec. III-A for a discussion on the computational complexity of CONCMIN.

APPENDIX C

PROOF OF THEOREM 3

The proof of Theorem 3 follows from the following two observations: (i) the expected number

of slots given to user i by SELECTUSERS is α∗i , and (ii) there exists a perfect matching between

the selected users and channels (having the highest fading state or rate 1) with very high

probability. We state these as two lemmas.

Lemma 3. Let Ni(t) be the number of times user i appears in the list selected by SELECTUSERS

at epoch t. Then E[Ni(t)] = α∗i .



29

Proof. Since α∗i ≤ pi ≤ 1 for all i ∈ [n], and the each slot has an interval of size 1, a user

can appear for at most two slots (see Figure 1). If the user’s α∗i occupies only one slot, then

the lemma follows directly since the user gets selected for that slot with probability α∗i and

for no other slot. If the user occupies two slots, then user gets selected for some slot sj with

probability αa and for sj+1 with probability αb such that αa + αb = α∗i . Since expectation is a

linear operator, we get the lemma.

Lemma 4. For the bipartite graph G = (L∪R,E) described in Algorithm 3 (ALLOCATECHANNELS),

P(G has no perfect matching) ≤ θ−m,

for some constant θ > 1 and a large enough m. Here L is the set of nodes corresponding to

the list of selected users, and R is the set of channels. An edge (l, r) ∈ E iff the channel r is

ON for user l.

Proof. Proof of this lemma follows along the lines of the proof of [30, Lemma 1]. The key idea

is Hall’s theorem, which states that for any bipartite graph G = (L∪R,E) which does not have

a perfect matching, there exists a set A ⊆ L whose neighborhood is smaller than itself, i.e.,

|Γ(A)| < |A|, where

Γ(A) = {r | ∃ l ∈ L such that (l, r) ∈ E}

is the neighborhood of A (see [30] and the references therein).

Let a = |A|. For |Γ(A)| < a, we need at least m− a+ 1 channels to not be OFF for all the

elements in a. A contains at least
⌈
a
2

⌉
distinct users since no user can appear more than twice

in L. The probability that a particular subset of R of size m− a+ 1 has no ON connection to

any element of A is therefore upper bounded by (1− h̄)(m−a+1)da/2e. Taking union bound over

all sets of channels of size m− a+ 1, we get

P(|Γ(A)| < |A|) ≤
(

m

m− a+ 1

)
(1− h̄)(m−a+1)da/2e

≤
(

m

m− a+ 1

)(√
1− h̄

)(m−a+1)a

.

Further taking union bound over all non-empty subsets of L, we get

P(G has no perfect matching) ≤
m∑
a=1

(
m

a

)(
m

m− a+ 1

)
δ(m−a+1)a
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where δ =
√

1− h̄ < 1. This gives us

P(No perfect matching) ≤ 2

dm/2e∑
a=1

(
m

a

)(
m

m− a+ 1

)
δ(m−a+1)a

= 2

dm/2e∑
a=1

(
m

a

)(
m

a− 1

)
δ(m−a+1)a

≤ 2

dm/2e∑
a=1

m2aδma/2,

where the last inequality follows from
(
m
a

)
≤ ma,

(
m
a−1

)
≤ ma, and m − a + 1 ≥ m

2
for a in

1, . . . ,
⌈
m
2

⌉
.

For a large enough m,
(
m2δm/2

)
< 1, and so

(
m2aδma/2

)
, has its maximum at a = 1. This

gives us

P(G has no perfect matching) ≤ 2m×m2δm/2.

We can always find a θ > 1 such that for large enough m,
(
2m3δm/2

)
≤ θ−m. For example, set

θ = 2
1+δ

. Since δ < 1, this gives us θ > 1, and concludes our proof.

Now we are in a position to prove Thm. 3. Using the assumptions A1-A3, we get

E
[
SALLOCATECHANNELS
i (t)

]
≥

E
[
SALLOCATECHANNELS
i (t) | we find a perfect matching at t

]
×

P(we find a perfect matching at t)

= kEα∗i × P(we find a perfect matching at t),

where the last equality follows from Lem. 3. Using Lem. 4, we get

s̄ALLOCATECHANNELS
i ≥ kEα∗i × (1− θ−m).

Since the outputs of CONCMIN, {α∗i } satisfy 0 ≤ α∗i ≤ pi, this gives us

κALLOCATECHANNELS
i ≤ pi − α∗i + α∗i θ

−m.

Using assumption A1, we get

Vi(κ
ALLOCATECHANNELS
i ) ≤ Vi(pi − α∗i ) +Gα∗i θ

−m,
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or ∑
i∈[n]

Vi(κ
ALLOCATECHANNELS
i ) ≤

∑
i∈[n]

Vi(pi − α∗i ) +

Gθ−m∑
i∈[n]

α∗i


≤ V̄ n,m +Gmθ−m.

For a large m, we can always find a γ such that Gmθ−m ≤ γ−m for all n. For example, use

γ = 1+θ
2

. Since θ > 1, we get γ > 1, and thus for a large m,

V n,m(ALLOCATECHANNELS)− V̄ n,m ≤ γ−m.

APPENDIX D

PROOF OF THEOREM 4

Over a time horizon T the total regret can be divided into the following parts according to

phases: regret over phases rq to rq+1 for q = 0 to blogr T c−1 and the regret over the remaining

epochs till T .

By simple concentration inequality for an i.i.d. Bernoulli process and assumption A2, the prob-

ability that the estimates of all pi are correct after phase rq is upper-bounded by 2n exp(−mini 6=j |pi−pj |2
2

q).

Let us first bound the regret assuming that the pi estimates are correct.

Let us first consider the case without fading, i.e., H(t) = 1. In this case, consider for any i

with α∗i > 0 αi = α∗i − δ for some δ > 0. By coupling the arrival into the original queue with

that of this concocted dynamics one can directly argue that the expected number of pauses in

the original dynamics is upper bounded by that of this dynamics. So, it is enough to bound the

expected number of pauses in this concocted dynamics.

The expected number of pauses for user i till time t is upper bounded by the expected duration

for which its buffer stays empty between time 0 and t times pi(1−αi).. Note that the duration for

which the buffer stays empty can be divided into phases of the algorithm. Further, for obtaining

an upper bound one can assume that the buffer restarts from 0 at the beginning of every phase.

This again follows using an elementary coupling.

Using Proposition 4.1 of [38], for any i with α∗i > 0 the expected duration the buffer stays

empty during a phase, given pi estimates are correct, is upper bounded by

wrq(r − 1)πi(0) +O(1/δ2),
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where πi(0) is the stationary probability of the concocted Markov chain to be at 0. This follows

by considering the transitions of the concocted Markov chain and computing the right parameters

in [38, Prop. 4.1].

As the concocted chain is a lazy birth death chain, it follows that πi(0) is pi−αi
pi(1−αi) , for αi < pi.

Hence, the expected number of buffering pauses for user i over a time horizon T can be

upper-bounded by

Tπi(0)pi (1− αi) +O(1/δ2)(logr(T ) + 1).

As αi∗ ≤ pi, this, in turn, can be written as

T max(pi − α∗i , 0) + T (α∗i − αi) + (logr(T ) + 1) O(1/δ2).

Proof of the case with H(t) = 1 is completed by combining the above bound with the fact

that pi estimates can be wrong with probability no more than 2n exp(−mini 6=j |pi−pj |2
2

q). The final

bound follows by choosing the right constants mentioned in the theorem and δ = 1
T 1/3 .

For the i.i.d. fading case, note that the dynamics of {Qi(t)} is same as that of the concocted

Markov chain in the no fading case with δ = θ−m. This is because in the fading case we derived

(Appendix C, after Lemma 4) that under our proposed ALLOCATECHANNELS αi ≥ α∗i − θ−m.

The result follows by plugging in the parameter values mentioned in the theorem.

APPENDIX E

PROOF OF LEMMA 2

The problem we are trying to solve can be written as:

minimize
{αi}

E

[∑
i

wi (pi − αi)+

]
(UPI)

subject to αi ≥ 0 ∀ i ∈ [n], (10)

αi ≤ bi ∀ i ∈ [n], (11)∑
i

αi ≤ c. (12)

Let {α∗i } be the optimal solution to this program. Recall that gi(x) is non-zero iff x ∈ [ai, bi].

Further, partition the set [n] into the following:

P = {i | α∗i = 0}, Q = {i | 0 < α∗i < ai}, R = {i | ai ≤ α∗i < bi}, S = {i | α∗i = bi}.
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Let the KKT multipliers for constraints (10), (11), and (12) be θi, φi, and λ respectively. UPI

is clearly a convex program and writing down the KKT conditions and simplifying them gives

us:

λ = wi + θi ∀ i ∈ P, (13)

λ = wi ∀ i ∈ Q, (14)

λ = wi(1−Gi(α
∗
i )) ∀ i ∈ R, (15)

λ = −φi ∀ i ∈ S. (16)

We can see that if S is non-empty, we have λ = 0 since all the KKT multipliers have to be

non-negative, which implies that P , Q, and R are empty. This gives us the case when
∑

i bi ≤ c

and hence α∗i = bi for all i.

When S is empty, λ acts as a threshold for giving users a non-zero rate: if wi < λ, user i

gets a rate 0, and if wi > λ, user i gets a rate α∗i ≥ ai. Among the users where λ = wi, we can

divide the rate left over after allocating to users with a higher wi in any way. Using the fact that

w1 < w2 < . . . < wn, NOBACK first finds this λ consistent with Equations (13), (14), and (15)

in Steps 4-8 of Algorithm 5. Then NOBACK computes the optimal rates are computed using

Equations (13) and (15) in Steps 9-16. Any remaining rate is given to the user satisfying (14).

Since the rates {α∗i } we get this way satisfy the KKT conditions, they are an optimal solution

for the program UPI.
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