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Abstract

This article introduces a novel communication paradigm for the unsourced, uncoordinated Gaussian

multiple access problem. The major components of the envisioned framework are as follows. The encoded

bits of every message are partitioned into two groups. The first portion is transmitted using a compressive

sensing scheme, whereas the second set of bits is conveyed using a multi-user coding scheme. The

compressive sensing portion is key in sidestepping some of the challenges posed by the unsourced

aspect of the problem. The information afforded by the compressive sensing is employed to create a

sparse random multi-access graph conducive to joint decoding. This construction leverages the lessons

learned from traditional IDMA into creating low-complexity schemes for the unsourced setting and its

inherent randomness. Under joint message-passing decoding, the proposed scheme offers comparable

performance to existing low-complexity alternatives. Findings are supported by numerical simulations.

Index Terms

Communication, unsourced multiple access, joint-Tanner graph, belief propagation, compressive

sensing.

I. INTRODUCTION

Recently, there has been a lot of interest in the design of novel access paradigms for uplink data

transfers in IoT scenarios [1], [2], [3], [4]. These contributions propose a network with a very large

number of devices, among which only a small subset, whose typical size is on the order of hundreds, are

active at any given point in time. In [1], Polyanskiy poses the unsourced multiple access channel (MAC)
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problem where each active device wishes to transmit a B-bit message to a central base station and the

base station is tasked with recovering the collection of B-bit messages communicated by the active users,

without regard to the identity of the senders. Therein, key finite block length (FBL) achievable bounds are

derived for this setting. Since the publication of [1], there has been substantial interest in designing coding

and decoding schemes with low complexity (polynomial in the number of message bits and the number

of users) that perform close to the FBL bounds. In [5], Ordentlich and Polyanskiy report that traditional

MAC coding schemes like ALOHA and treating interference as noise (TIN) exhibit performance far away

from these FBL bounds. They then introduce the first low-complexity algorithm tailored to the unsourced

MAC setting. In their scheme, the transmission period is divided into several slots, and each active user

picks a random slot to transmit their message. Within each slot, a combination of compute-and-forward

and forward error correction is employed for the T -user Gaussian MAC. While their scheme provides

insights into the design of practical coding schemes for unsourced MAC, there remains a significant gap

between the performance of this scheme and the FBL benchmarks. Subsequently, several practical coding

schemes have been proposed for the unsourced and uncoordinated MAC [6], [7], [8], [9]. Other related

contributions, such as [10], present coding schemes for the uncoordinated random access channel which

is closely related to the unsourced MAC.

In [6], Vem et al. devise a concatenated coding scheme with a slotted framework similar to [5] for the

same problem. This latter approach is, in essence, a per-user repetition scheme whereby codewords are

sent over several slots. The message corresponding to each active device is divided into two parts. The

first part is used to pick an interleaver for a low-density parity-check (LDPC) code, which is employed

to encode the second part of the message. The first part of the message is conveyed to the base station

using compressive sensing (CS). The second part is decoded using a per-slot message-passing decoder

designed to recover data in the presence of up to T − 1 users (T ∈ {2, 4}). The repetition pattern is

a deterministic function of the user’s message sequence. A peeling decoder, which employs successive

interference cancellation (SIC), works across slots to cancel the interference of successfully decoded

messages. This scheme is shown to perform significantly better than the scheme in [5] and is only

around 6 dB away from the FBL bounds. In [11], Marshakov et al. propose using polar codes instead

of LDPC codes to encode the second part of the message, which is decoded using a joint polar decoder.

This further improves the error performance of the scheme in [6].

While the scheme in [11] uses time-division to sparsify active user’s collisions, in [12], Pradhan et al.

use random spreading to alleviate multi-user interference. The payload corresponding to each active user

is split into two parts. The first part acts as a preamble to choose a signature sequence from a codebook of

sequences with good correlation properties. The second part is encoded using a polar code whose frozen
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bits are dictated by the preamble. The polar codeword is spread using the signature sequence picked by

the first part of the message. The decoder first employs an energy detector that uses correlation properties

of the signature sequences to detect the list of spreading sequences used. The preambles corresponding to

active users are implicitly decoded in this step. This information is passed to an minimum mean square

error (MMSE) estimator that produces log-likelihood ratios (LLRs) for the latter part of messages based

on the spreading sequences. Finally, these LLRs are input to a single user polar list decoder that attempts

to decode the latter part of messages treating interference as noise. The performance of the scheme is

state-of-the-art when Ka < 175; however, it does not scale well with the number of active users. Another

drawback of this scheme is that the decoding complexity is O(K3
a ).

In [7], Amalladinne et al. cast the unsourced MAC as a large compressive sensing problem. They

then construct a divide-and-conquer approach to obtain a pragmatic, low-complexity solution. In their

scheme, each active user’s message is divided into several fragments, and these fragments are enhanced

with redundancy. The coded sub-blocks are then encoded using a sensing matrix designed to recover

the sub-blocks in the presence of noise using the non-negative least squares decoding algorithm. The

recovered sub-blocks are then stitched together using the redundancy introduced during the encoding

process. In [8], Fengler et al. propose using approximate message passing (AMP) algorithm as the inner

code in combination with the outer tree code in [7]. This scheme performs better than alternate schemes

that preceded it. In [13], Amalladinne et al. further improved the error performance by passing information

between AMP and the outer code. In addition, the work in [9] provides a very low complexity solution

based on a chirp reconstruction algorithm. This complexity reduction, however, comes at the expense of

error performance.

A. Motivation and Contributions

In this paper, we describe a novel low-complexity solution inspired from the scheme in [6] based

on SIC. The proposed coding scheme is based on decoding a joint Tanner graph for the unsourced

MAC setting. Each active user’s message is divided into two parts. The first part is used to schedule the

transmission policy and pick a repetition factor for the latter part of the message. Similar to the scheme

in [6], this part of the message is conveyed to the decoder using a CS framework. The other part of the

message is encoded using an LDPC code. Each bit of the LDPC codeword is then repeated a certain

number of times, which is determined by the first part of the message.

We list below key features that distinguish our framework from prior art (details can be found in

Section II).
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i. In [6], messages are decoded on a per-slot basis, and copies are then peeled from other slots in the

spirit of successive interference cancellation. In contrast, the approach we develop herein avoids the

strategy of slotting-and-peeling altogether. A key contribution of this paper is to show that, when

carefully designed, a single sparse joint Tanner graph that spans across all transmissions can provide

substantial improvement in performance over the schemes in [6], [7], [8].

ii. The scheme in [6] relies on the existence of codes that achieve FBL capacity at the slot level.

As the number of active users increases, the scheme in [6] warrants that the slot length decrease.

Designing FBL capacity achieving multi-user LDPC codes for such short block lengths becomes

very challenging.

iii. Our proposed scheme can be interpreted as a sparse version of IDMA [14] adapted to the uncoordi-

nated and unsourced MAC by using an additional compressed sensing part. Unlike traditional IDMA,

we carefully control the multi-user interference by keeping the transmissions sparse. Such sparsity

is important in ensuring two key advantages: (a) the computational complexity of optimal soft-input

soft-output demodulation is kept low, (b) the message passing decoding can perform efficiently for

the large number of users and small message block lengths that are of interest in IoT. We derive

the corresponding density evolution equations and optimize protograph based LDPC codes. In the

simulation results section, we show that the proposed approach significantly outperforms traditional

IDMA for a large number of users.

iv. The performance of the proposed scheme is comparable to that of the scheme in [13] although the

two schemes are entirely different. In some parameter regimes, the proposed scheme is less complex

than the scheme in [13]. Our scheme is also substantially less complex than the polar coding based

scheme in [12] while the performance of the polar coding scheme is better.

Throughout, we employ the following notation: [a : b] denotes the set of integers from a to b, including

end points; vectors are denoted by underlined symbols.

II. SYSTEM MODEL

Let Ktot and Ka be the total number of users in the network and the number of active users, respectively.

Every active user has B bits of information (or, equivalently, one of M = 2B indices) to be encoded

and transmitted within a block of Nt uses of the channel. Let Wi ∈ [0 : M − 1] be a random variable

that represents the message index of the ith user and let wi be a realization of this random variable. We

assume that Wi is uniformly distributed over [0 : M−1] and messages are independent from one another.

DRAFT November 23, 2020



5

The observed signal vector at the receiver corresponding to the Nt channel uses can be written as

y =

Ktot∑

i=1

sihixi(wi) + z, (1)

where xi(wi) ∈ CNt is the signal transmitted by user i, the additive noise is characterized by z ∼
CN (0, INt

), and hi ∈ C are the fading coefficients which are independent of xi and z. The Boolean

indicator si is defined as si = 1 if user i is active and si = 0 otherwise. We impose an average power

constraint on the transmitted vectors when taken over all possible message indices, i.e., 1
M

∑

w ‖x(w)‖2 ≤
NtP . The energy-per-bit of the system is defined as Eb

N0
:= NtP

2B . The receiver produces an estimate L(y)
of the list of messages. As in [1], the probability of error is defined by

Pe = max
|(s1,...,sKtot )|=Ka

1

Ka

Ktot∑

i=1

siPr
(
wi /∈ L(y)|si = 1

)
(2)

where | · | denotes the Hamming weight. The objective is to design a low-complexity encoding and

decoding scheme with the least possible Eb

N0
such that Pe ≤ ε, where ε is the target error probability.

III. DESCRIPTION OF PROPOSED SCHEME

The overall schematic of the proposed scheme is illustrated in Fig. 1. The parameters of the encoding

process in our unsourced setting are independent of the user identity. So, our description of the encoding

process is solely based on the message index; the encoding process is identical for every active user.

A. Encoder

The encoder contains two components: a sensing matrix for a Ka-sparse robust compressed sensing

(CS) problem, and a multi-user channel code for the binary-input real-adder multiple-access channel. The

Nt channel uses available for communication are split between these two components: Np channel uses

for the compressed sensing part (p denotes preamble) and Nc := Nt −Np channel uses for the channel

coding part. The B bits to be transmitted are also split into two groups of Bp and Bc := B − Bp bits,

respectively (Bp ≪ Bc). For convenience, we define Mp := 2Bp and Mc := 2Bc . Also, we denote the

preamble and channel coding parts of the message index by wp and wc.

For the CS portion of the encoding process, we consider a sensing matrix of the form A =
[
a1 a2 · · · aMp

]
∈

RNp×Mp normalized to meet the power constraint, i.e. ‖aj‖22 ≤ NpP1 ∀ 1 ≤ j ≤ Mp. An active user

encodes its preamble message wp into the column awp
of A.

The channel coding part of the message index wc is first encoded into an N -bit codeword v of an

(N,Bc) LDPC code CLDPC and modulated using binary phase shift keying (BPSK). The active user

subsequently employs the many-to-one function l : [1 : Mp] → {1, 2, . . . , L} to generate an integer l(wp)

November 23, 2020 DRAFT
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Ch. Encoder Repeat Zero Padding Permute

w = (wp, wc) A
wp

wc

wp 7→ l(wp) wp 7→ πwp

aTwp

v v′ v′′ πwp
(v′′)

πwp
(v′′)

aTwp

Fig. 1: This figure illustrates encoding process of the proposed scheme.

based on wp, and the LDPC codeword is repeated l(wp) times. The vector thus constructed takes the

form

v′ =
[
v, v, . . . , v

]

︸ ︷︷ ︸

l(wp) copies

.

Vector v′ is then padded with Nc−Nl(wp) zeros to generate the Nc-length vector v′′ = [v′, 0, . . . , 0] and

normalized to satisfy the power constraint ‖v′′‖22 ≤ NtP − NpP1. At this stage, the preamble message

wp is again used to pick an interleaver πwp
for the zero padded codeword v′′.

Let ṽw be the codeword corresponding to message index w = (wp, wc). Then, ṽw is obtained by first

permuting the zero-padded codeword v′′ employing the permutation πwp
and then inserting the wpth

column of the sensing matrix A at the beginning of the permuted codeword, i.e.,

ṽw = [aTwp
, πwp

(v′′)]. (3)

The key idea of the proposed construction is that zero-padding followed by interleaving the codeword

v′ ‘sparsifies’ the transmissions and reduces the interference in each use of the channel significantly,

especially when N ≪ Nc. Specifically, the average channel as seen at each time index is (approximately)

a 1
Nc

∑L
l=1 νlNl-user Gaussian MAC rather than a Ka-user Gaussian MAC, where νl denotes the fraction

of users that employ repetition factor l. This approach results in a superior performance, and it enables

us to design a computationally efficient decoding algorithm.

B. Decoder

The overall decoder has two components. The compressed sensing decoder recovers the preamble

fragments, and concomitantly acquires the set of interleavers and repetition patterns picked by the active

users. A low-complexity message passing decoder then recovers the codewords sent over the Ka-user

Gaussian multiple access channel.

1) Compressed Sensing Decoder: The first Np received symbols can be written in vector form as

y
p
:= y[1 : Np] = Ab+ z[1 : Np] (4)

where b ∈ CMp is a Ka-sparse vector whose support indicates the set of transmitted preamble messages

and entries indicate the fading coefficients of the corresponding users. We first run a generic CS decoder
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, which yields estimate b̂ of b. Yet, we emphasize that this does not guarantee an output signal of the

required sparsity (as we know a priori from the structure of the problem). To address this issue, we sort

the candidates and choose the list of the top Kb indices (Kb ≥ Ka) as the effective output from the CS

decoder.

2) Message Passing for Gaussian MAC: The compressed sensing decoder outputs a set of Kb inter-

leavers and corresponding fading coefficient estimates, which are used as input by the message passing

decoder. The channel coding part of the received signal can be expressed as

y
c
:= y[Np + 1 : Nt] =

Kb∑

k=1

ĥkπwk
p
(v′′k) + z[Np + 1 : Nt]

=

Ka∑

k=1

ĥkπwk
p
(v′′k) +

Kb∑

k=Ka+1

ĥkπwk
p
(0) + z[Np + 1 : Nt].

Note that the received signal includes contributions from interleavers that were not employed by any

of the Ka active users. The Kb − Ka additional interleavers can be viewed as the ones employed by

fictitious users, each of them transmitting a zero signal.

For ease of exposition, we describe the message passing rules for Kb = Ka = 2 and ĥ1 = ĥ2 = 1.

It can be generalized to larger values of Kb, Ka in a straightforward manner. Given the received signal

y
c

the joint BP decoder proceeds iteratively passing messages along the edges of a Tanner graph that

represents the coding scheme. Such a Tanner graph and the associated messages that are passed during

the decoding are shown in Fig. 2. The nodes marked v, c and + represent variable nodes, check nodes

and MAC nodes, respectively. Throughout this section, we use superscript to distinguish between users

1 and 2. The following messages are passed at every iteration along the edges of the Tanner graph.

• m1
v→c(e): Messages passed from bit node to check node along edge e of user 1.

• m1
c→v(e): Messages passed from variable node to check node along edge e of user 1.

• m1
v→+(e): Message passed from variable node of user 1 to MAC node along edge e.

• m1
+→v(e): Message passed from MAC node to variable node of user 1 along edge e.

The messages for user 2 are defined similarly. The rules for message passing are somewhat standard.

Given an edge e between a variable node and a check node, let ve and ce denote the variable node and

check node connected to e, respectively. Similarly, given an edge e between a variable node and a MAC

node, let ve and +e denote the variable node and MAC node connected to e, respectively. Let N (ce) be

the set of edges connected to check node ce, and Nc(ve) represent the set of edges that connect variable

node ve to check nodes. Let N+(ve) denote the set of edges that connect the variable node ve to MAC

nodes. Let N (+e) be the set of edges connected to MAC node +e.
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v1 v2 v3

c1

m1
c→v

m1
v→c

c2
User 1

v1 v2 v3

c1

m2
c→v

m2
v→c

c2
User 2

Variable nodes

Check nodes

+ + + + + +MAC nodes

m1
+→v

m1
v→+

m2
+→vm2

v→+

Fig. 2: Tanner graph representation of the coding scheme

At the bit node, we have

m1
v→c(e) =

∑

f∈N+(ve)

m1
+→v(f) +

∑

ei∈Nc(ve)\e

m1
c→v(ei)

m1
v→+(e) =

∑

ei∈Nc(ve)

m1
c→v(ei) +

∑

f∈N+(ve)

m1
+→v(f).

The LDPC check nodes implement

m1
c→v(e) = 2 tanh−1




∏

ei∈N (ce)\e

tanh

(
m1

v→c(ei)

2

)


 .

As discussed earlier, the receiver sees a 1
Nc

∑L
l=1 νlNl-user Gaussian MAC because of the sparse nature

of transmissions, which enables the receiver to do optimal demodulation at MAC nodes. The message at

the MAC node corresponding to the jth use of the channel is updated by

m1
+→v(e) = h(m2

v→+(f), yc(j)),
(5)

where f ∈ N (+e) \ e is the neighboring edge of e at a MAC node and h(ℓ, y;P ) = log 1+ele2(y−
√

P )

el+e−2(y+
√

P )
.

The function h(ℓ, y;P ) can be viewed as the log-likelihood of variable x2 when y = x1 + x2 + z,

x1, x2 ∈ {±
√
P}, the log-likelihood ratio of variable x1 is known to be ℓ, and z ∼ N (0, 1).

IV. DENSITY EVOLUTION AND CODE CONSTRUCTION

A protograph G = (V ∪C, E) is a bipartite graph with the bipartition V and C called the set of variable

and check nodes, respectively. The set E of undirected edges specifies the connections between variable

nodes in V and check nodes in C . The ith variable node, check node and edge in the protograph are

denoted, respectively, by vi, ci and ei. An example of a protograph appears in Fig. 3. An LDPC code

can be obtained from the protograph by copy-and-permute operation. Since the codes obtained form a
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v1 v2 v3 v4

c1

e1

e3

e7
e8

c2

e2

e9

e5 e6
e4

Fig. 3: Example of a protograph

multi-edge-type ensemble with |E| edge types, density evolution proceeds with |E| types of messages,

one for each edge in the protograph [15].

Let ν(x) :=
∑L

l=1 νlx
l denote the repetition degree distribution (d.d.), where νl represents the fraction

of active users who repeat their codewords l times. This structure induces a degree distribution on the

MAC nodes given by G(x) :=
∑L

i=1 Gix
i, where Gi is the fraction of time instants where i users transmit.

When the interleavers in (3) are chosen uniformly at random from the set of all possible interleavers of

length Nc, it can be seen that Gi =
(
Nc

i

)
qi(1− q)Nc−i with q = 1

Nc

∑L
l=1 νlNl. In the limit as Nc grows

large, G(x) converges to
∑∞

i=0
e−q(qx)i

i! . The edge perspective MAC node degree distribution, denoted

by γ(x), is given by G′(x)/G′(1).

Next, we introduce notations required to describe the density evolution (DE). Without loss of generality,

we consider a coded bit whose value is +1. Under the assumption that messages (log-likelihood ratios)

along edges are Gaussian with mean σ2/2 and variance σ2, the mutual information (MI) between the

message along an edge and the codeword bit associated with it is given by J(σ) [16]

J(σ) = 1−
∫ +∞

−∞

1√
2πσ2

e−
(y−σ2/2)2

2σ2 · log2(1 + e−y)dy.

Note that (J−1(I))2 is the variance of the LLRs when the MI between the message and the corresponding

variable is I .

Consider the messages passed along the edges during the tth iteration for a user who repeats its bits

l times. Let Itv→c(ei, l) represent the MI between the message from variable node to check node along

the edge type ei and the associated codeword bit. Similarly, define Itc→v(ei, l) as the MI between the

message along the edge type ei from check node to variable node and the associated codeword bit.

Let Itv→+(vi, l) denotes the MI between the message from variable node vi to the MAC node and the

codeword bit associated with vi. Let It+→v denote the average MI between the message from MAC

node to variable node and the associated codeword bit. Let Itv→+ denote the average MI between the
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message from variable nodes to MAC nodes and the codeword bits. Finally, let ItAPP(v, l) denote the

mutual information between the posterior log-likelihood-ratio (LLR) evaluated at variable node v and the

associated codeword bit.

Consider a MAC node with two users and BPSK modulation without additive noise. Let σ2 be the

variance of a priori (incoming) LLRs at the MAC node. We assume that a MAC node performs soft

interference cancellation and that the remaining interference at the MAC node is Gaussian. Let φ(σ)

denote the minimum mean squared error in the estimate of a variable after soft interference cancellation.

Then, φ(σ) is given by [17]

φ (σ) = 1−
∫ ∞

−∞

e−
y2

2√
2π

tanh

(
σ2

4
− σ

2
y

)

dy.

For a user whose codeword is repeated l times, we start the density evolution recursion by initializing

I0v→+ to zero. Then,

It+→v =
∑

k

γkJ




2

√

σ2
n + (σt

I,k)
2



 ,

where (σt
I,k)

2 is given by [17],

(σt
I,k)

2 = (k − 1)φ
(
J−1(It−1

v→+)
)
.

We also have

Itv→c(e, l) =

J





√
∑

ei∈Nc(ve)\e

[J−1(Itc→v(ei, l))]
2 + l[J−1(It+→v)]

2





Itc→v(e, l) = 1− J





√
∑

ei∈N (ce)\e

[J−1(1− Itv→c(ei, l))]
2





Itv→+(vi, l) =

J





√

(l − 1)[J−1(It+→vi
)]2 +

∑

e∈Nv(vi)

[J−1(Itc→v(e, l))]
2



 .

Itv→+(l) =
1

|V |
∑

i

Itv→+(vi, l),

where |V | is the number the number of variable nodes in the protograph. Finally,

Itv→+ =
∑L

l=1 νlI
t
v→+(l)
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IAPP(vi, l)

= J





√
∑

e∈Nv(vi)

[J−1(Itc→v(e))]
2 + [J−1(Itv→+(vi, l))]

2



 .

The density evolution threshold is defined as the minimum Eb/N0 for which IAPP(vi, ul) → 1, as t → ∞,

for all vi and l ∈ {1, 2, . . . , L}.

We use differential evolution [18] to optimize the protographs and ν(x) by using the density evolution

threshold as the cost function. We lift optimized protographs to codes using the progressive edge growth

algorithm. Even though DE thresholds are meaningful benchmarks only for asymptotic lengths. Never-

theless, designing codes based on DE thresholds offers a principled way to optimize the performance of

our system. Simulation results show that this approach is efficient even for short block lengths.

V. NUMERICAL RESULTS

The parameters we select for our numerical study are: (i) Number of bits each user intends to transmit

B = 100, (ii) Total number of channel uses Nt = 30000, (iii) Total number of active users Ka ∈ [25 :

300], (iv) Maximum per user error probability Pe ≤ ε = 0.05. These value are chosen to match the

parameters employed in [5] for ease of comparison.

We fix Bp = 15 and Np = 2000. The sensing matrix for the CS encoder is constructed as follows. We

pick Np/2 rows uniformly at random from the discrete Fourier transform (DFT) matrix of dimension

Mp. The real and imaginary parts of each row are then stacked to form a Np ×Mp real sensing matrix

A; entries are normalized to meet the power constraint. Matrices constructed this way satisfy restricted

isometry property (RIP) with high probability and are a good choice for the sensing matrix in noisy

compressed sensing [19]. This then yields the parameters for the channel coding part, with Bc = 85 and

Nc = 28000.

For a fixed value of Ka, computing the required SNR involves solving the optimization problem

Eb

N0
= min

P1,P2,Kb

NpP1 +NcP2

2B
(6)

such that Pr(E|P1, P2,Kb) ≤ ε.

Number of Users 25− 125 150− 200 225− 300

Rate 0.125 0.25 0.4

TABLE I: Code rates corresponding to number of active users
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25 50 100 150 200 250 300
1

2

3

4

5

Number of active users Ka

R
eq

u
ir

ed
E

b
/N

0
(d

B
)

Rate=0.125, ν(x) = x2

Rate=0.4, ν(x) = x2

Fig. 4: Minimum Eb/N0 required as a function of number of users and codes used by each user.

The proposed scheme is evaluated as follows. For each Ka ∈ {25, 50, . . . , 300}, we use the optimization

procedure described in Section IV to optimize the protograph for the LDPC code and the repetition d.d.

ν(x). The function g(wp) is then chosen to induce this degree distribution. Although one needs to solve

the optimization problem in (6) to achieve the optimal SNR, this task is computationally complex due to

the parameter space being huge. Alternatively, using simulations, we found Kb = 110 to be a suitable

choice when Ka = 100, and thus we fix Kb = ⌈1.1Ka⌉. With Kb fixed, we sweep over all possible

combinations of P1, P2 in a two-dimensional grid of SNR values, with a resolution of 0.5 dB in each

dimension, for the compressed sensing and the channel coding components. We emphasize that this only

results in an approximate solution to the above optimization problem.

We perform full-blown simulations of the proposed scheme to account for preamble collision and

missed detection of the CS decoder. The former event forces colliding users to pick the same parameters

(interleaver and code rate) for the channel code; while the latter fails to provide information regarding

the parameters of the channel code chosen by the active users whose preambles are not detected by the

CS decoder. By choosing P1 and P2 as the approximate solutions to optimization problem (6), we ensure

that these events occur with a low probability.

A. Selection of codes as a function of number of users

The rate of the protograph LDPC code has a significant effect on the required Eb/N0 for a fixed value

of Ka. For different rates, the minimum Eb/N0 required to achieve a probability error of 0.05 is plotted

in Fig. 4 as a function of the number of users. It can be seen that the optimal rate changes with the

number of active users Ka. For example, for Pe = 0.05 and Ka = 125, an Eb/N0 of 2.47 dB is required
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if a rate-0.125 LDPC code with ν(x) = x2 is utilized, whereas an Eb/N0 of 3.24 dB is required if a

rate-0.4 LDPC code with the same repetition pattern is employed. For a fixed number of users, we choose

the rate through simulations to minimize the Eb/N0 required to achieve a target probability of error.

B. Comparison with existing schemes

The performance of the scheme developed herein is compared to the existing schemes in Fig. 5. Rates

of LDPC codes used for each value of Ka are given in Table I. In the simulation of proposed scheme,

repetition pattern x2 is used for all values of Ka. The obtained simulation results show that the proposed

scheme performs better than the schemes in [6], [7], [8], [9]. For example, at Ka = 175, the proposed

scheme outperforms the scheme in [8] by 1.5 dB. It can also be seen that the scheme in [12] outperforms

the proposed scheme when Ka ≤ 225. However, the polar coding based approach in [12] does not scale

well with the number of active users. It is pertinent to note that performance of the proposed scheme

can be further improved by using irregular repetition patterns across users.

Number of Users Repetition pattern ν(x) Rate

225 0.12x + 0.88x2 0.4

275 0.18x + 0.82x2 0.4

300 0.18x + 0.82x2 0.4

TABLE II: Repetition patterns and code rates corresponding to number of active users.

In Fig. 5, the red circles indicate the Eb/N0 required when the optimized repetition d.d. given in

Table II is used. A small improvement of about 0.2 dB results from using an irregular repetition d.d.
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C. Rayleigh fading channel

The proposed scheme also performs well over Rayleigh fading channel. The performance of the scheme

is compared to the existing schemes in Fig. 6. The simulation results show that the proposed scheme’s

performance is comparable to the scheme in [20], which assumes the existence of codes that achieve

FBL capacity. The proposed scheme outperforms the scheme in [20] when it is simulated with LDPC

codes in the regime Ka > 175.

D. Comparison with IDMA

We now present a comparison of the proposed scheme with conventional IDMA. Prior work has shown

that IDMA is very effective when the number of users is small (less than 25-30) and block lengths are

reasonably large [14], [21]. Designing very low rate (approx 1/300) iteratively-decodable multi-user codes

with short block lengths for a large number of users is a significant challenge that renders conventional

IDMA inefficient for the unsourced MAC formulation in this paper. It is known that for the single

user channel, generalized LDPC codes with Hadamard codes as check nodes (GHLDPC codes) exhibit

close-to-capacity performance at very low rates [22]. Motivated by this result, we attempted to design

rate-1/300 GHLDPC protograph codes for a multi-user channel using differential evolution; however, the

optimization procedure did not iterate beyond initial population and the density evolution thresholds were

poor. A better rate-1/300 code for IDMA was obtained by repeating each coded bit of a rate-1/4 LDPC

code 75 times. The minimum Eb/N0 required to achieve a probability error of 0.05 for this code is

plotted in Fig. 7. It can be seen that there is a significant gap between FBL bound and the performance

of conventional IDMA, and that conventional IDMA scales very poorly with the number of users. Our
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proposed scheme circumvents this code design bottleneck by sparsifying the transmissions and controlling

the interference. It provides significant performance improvement at low complexity for a large number

of users. It is an interesting open problem to determine if there are other codes of rate-1/300 codes that

could work well with conventional IDMA and without sparse repetition, even for a large number of users.

VI. CONCLUSION

We proposed a CS and IDMA based scheme for the unsourced, uncoordinated Gaussian multiple access

channel. The difficulty of designing low-rate LDPC codes for IDMA is circumvented by introducing a

sparse version of IDMA. We developed the density evolution equations for sparse IDMA with Gaussian

approximation and designed protograph-based LDPC codes for sparse IDMA. When decoded with a

message passing algorithm, the proposed coding scheme performs comparably to the other existing

schemes in the large number of users regime.
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