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Abstract—Faster-than-Nyquist signaling (FTNS) has already
been shown to increase the communication capacity on certain
channels such as additive white Gaussian noise and block
flat multiple-input multiple-output (MIMO) Rayleigh fading
channels. The following issues, however, remain unresolved: 1)
whether FTNS enables a capacity increase in generalized MIMO
Rayleigh fading channels that are selective in time, frequency,
and space; and 2) how channel selectivities affect the capacity
and if present, the FTN capacity gain. To address the issues,
this paper firstly investigates the ergodic capacity of MIMO-
FTN transmission over triply-selective fading channels. We derive
a low-complexity approximate capacity formula and also show
how it degenerates in other channel models, such as doubly-
selective single-input single-output fading channels, which can be
considered as the special cases of triply-selective fading channels.
The capacity evaluation results obtained under different chan-
nel conditions show that: 1) MIMO-FTN outperforms MIMO-
Nyquist in terms of capacity; 2) the FTN gains are nearly
consistent, while the FTN gains obtained in the frequency-
selective fading channels are slightly higher than those obtained
in the flat fading channels.

Index Terms—Faster-than-Nyquist signaling, MIMO-FTN,
triply-selective Rayleigh fading, ergodic capacity.

I. INTRODUCTION

As a representative physical-layer non-orthogonal signaling
technique, faster-than-Nyquist signaling (FTNS) is capable of
increasing the communication capacity in bandwidth-limited
channels [1]–[8]. Moreover, FTNS can be developed in con-
junction with techniques such as non-orthogonal multiple
access [9], [10], spatial multiplexing obtained by placing
multiple antennas at transmitter and receiver, antenna polariza-
tion multiplexing [11], and constructive interference precoding
[12], to further improve core technical indicators such as
system capacity and energy efficiency. However, it is unclear
how much information-theoretic capacity gain FTNS will
provide when it is combined with these techniques? This
paper deals with the multi-antenna FTN transmission and
investigates the ergodic capacity on multi-input multi-output
(MIMO) Rayleigh fading channels, followed by evaluating
the FTN capacity gain. The sub-channels of the MIMO
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channel are triply-selective, namely frequency-selective (due
to delay spread), time-selective (due to Doppler spread), and
space-selective (due to angle spread at the transmitter and/or
receiver).

Although studies on the capacity of FTN systems have
received some attention in the past decade, the majority of
them focus on single-input single-output (SISO) scenarios
with additive white Gaussian channels [13]–[18] or quasi-static
multi-path channels [15], [16], [19]–[21]. Specifically, in the
seminal paper [13] by Rusek and Anderson, an independent
and identically distributed (i.i.d.) input was assumed. Therein,
it was shown that FTNS increases the capacity by utilizing
the excess bandwidth of practical Nyquist pulses, e.g. raised
cosine pulses. [14] formulated the capacity using the eigen-
values of FTN-induced inter-symbol interference (ISI) matrix,
and the capacity expression coincides with that of [13]. By
allowing correlations among input symbols, [15]–[17] studied
capacity-achieving input power spectral density (PSD) under
certain constraints imposed on the FTN signal’s PSD. Wang
[19], [20] examined the achievable information rate of block-
wise FTN transmission over the multi-path channel. Moreover,
time-based receive transformation was proposed such that the
information rate benefits from both the increased signaling rate
and the increased channel length1. In [18] and [21], Sugiura et
al. derived the capacities for the eigendecomposition-precoded
FTN signaling in the AWGN and frequency-selective channels,
respectively. Furthermore, power allocation is optimized to
maximize the capacity.

There are limited works reporting the capacity of MIMO-
FTN transmission. In [1, section 4.3] and [22], block flat
fading channels were considered. And the channel varies
randomly from one block to another. A MIMO-FTN scheme
is reported to have information rate superior to the MIMO-
Nyquist counterpart for all Nyquist pulses except the sinc
[1]. The conclusion suits both the cases of no channel state
information (CSI) and perfect CSI at the transmitter. In [23],
Wang extended the previous studies [19], [20] to the time-
space MIMO systems and proposed time-space receive trans-
formation based FTNS.

As have seen above, in the existing MIMO-FTN capacity
research, the sub-channels are assumed not to have Doppler
spread or spatial correlation. While these assumptions may

1It is known that channel length is determined by the ratio of the maximum
delay spread to the symbol duration. FTN transmission is realized by reducing
the symbol duration, leading to an increased channel length.
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make the computation tractable, there are two major caveats:
1) practical (especially large-scale) MIMO channels are spa-
tially correlated, as seen from measurement campaigns [24],
[25] and physical arguments [26]; 2) in the future, commu-
nication networks will offer coverage on the ground, in the
sky, and in space. Supporting mobility will lay the foundation
for this vision. In fact, Wu et al. [27]–[29] have proposed
several frequency-domain equalization algorithms to counter
the combined ISI due to the FTNS and time-varying ISI
channels in mobile environments.

Regarding the MIMO communications using the Nyquist
signaling on triply-selective Rayleigh fading channels, Xiao et
al. [30], [31] have developed a discrete-time channel model.
They discovered that in addition to the well-known correlation
in the temporal domain introduced by Doppler spread, the
discrete-time channel taps exhibit correlation in the delay
domain caused by the convolution of the transmit filter, the
physical fading channel, and the receive filter. Furthermore,
[32]–[34] demonstrated that the inter-tap correlation (ITC)
can reduce ergodic capacity. As a result, the discrete-time
inter-tap correlated frequency-selective fading channel has a
lower ergodic capacity than the frequency flat fading channel.
It should be noted that the capacity formulas in [32]–[34]
were developed in the presence of white noise, whereas FTNS
induces colored noise [1], [2], [6], [8].

In this paper, we firstly investigate the ergodic capacity
of FTN transmission in more realistic triply-selective MIMO
Rayleigh fading channels. Due to the time variations, we
presume that the CSI is available at the receiver yet not
at the transmitter, as in [22], [32]–[34]. We derive a low-
complexity approximate capacity formula that quantifies the
effects of the ITCs and colored noise on the ergodic capacity
into a signal-to-noise ratio (SNR) degradation factor. Because
other channel models, such as doubly-selective SISO chan-
nels, single-input and multi-output (SIMO) and multi-input
and single-output (MISO) Rayleigh fading channels, can be
regarded as the special cases of MIMO triply-selective fading
channels, approximate capacity formulas for these channels are
also presented. In all evaluated channel conditions, both the
capacity results obtained using the derived formulas and the
Monte-Carlo simulation (MCS) results based on the capacity
definition show that FTNS enhances the ergodic capacity. It is
also shown that the time and spatial selectivities have little
impact on the FTN capacity gain. On the other hand, the
frequency selectivity has a beneficial effect, that is, the gain
obtained in the frequency-selective fading channel is slightly
higher than that obtained in the flat fading channel. However,
the benefit of frequency selectivity does not scale with the
maximum delay spread.

The rest of this paper is organized as follows. Sec. II
presents a discrete-time model for MIMO-FTN systems in
triply-selective Rayleigh fading channels. In Sec. III, the
ergodic capacity formulas are derived. MCS and numerical
results are shown in Sec. IV to verify the derived formulas
and also demonstrate the effectiveness of the FTNS. Finally,
conclusions are given in Sec. V.

Notation: We use the upper-case and lower-case boldface
letters to denote matrices and vectors, respectively. The trans-

pose, Hermitian transpose and determinant of matrix X are
denoted as XT , XH, and det (X), respectively. E {·}, H (·),
(·)∗ and ⊗ indicate the expectation, differential entropy, con-
jugate and Kronecker product operators, respectively. Finally,
IN and 0N denote an identity matrix and all-zero matrix with
size N ×N , respectively.

II. DISCRETE-TIME CHANNEL MODEL FOR MIMO-FTN
TRANSMISSION

A. Discrete-Time Channel Model

Consider a baseband single-carrier MIMO-FTN transmis-
sion system with N transmit antennas and M receive antennas,
as shown in Fig. 1. sn [k] represents the kth symbol to be
transmitted from the nth transmit antenna in a signal interval
of duration τTs seconds, where Ts is the time duration of
the Nyquist signaling interval and the parameter τ is called
the FTN time compression factor. We assume that the same
modulation pulse pT (t) is used for all transmit branches. The
physical channel between the nth transmit antenna and the
mth receive antenna is denoted by cm,n (t, α), where α is
the delay variable and t is the time variable. At the receiver,
the analog signal at each receive branch passes through the
receive filter pR (t) and the symbol-rate sampling. Let the kth
sample at the mth receive antenna be denoted by ym [k], and
the composite impulse response of the serial concatenation of
pT (t), cm,n (t, α) and pR (t) be denoted by hm,n (t, α) and
presented by [30], [35]

hm,n (t, α) =

∫
α1

∫
α2

pR (α2) cm,n (t− α2, α1)

× pT (α− α1 − α2) dα1dα2.

(1)

An equivalent discrete-time model for the MIMO-FTN system
is described by the input-output relation [30], [31]

ym [k] =

N∑
n=1

∑
l

sn [k − l]hm,n [k, l] + zm [k] , k = 0, 1, . . .

(2)
where hm,n [k, l] = hm,n (kτTs, lτTs) is the τTs-sampled
version of hm,n (t, α), and zm [k] represents the noise sample
and is given by

zm [k] =

∫
α

pR (α) υm (kτTs − α) dα, (3)

where υm (t) is zero-mean additive white Gaussian noise
(AWGN) with variance σ2

υ . Also, υm (t) is independent
from antenna to antenna. That is, E

{
υm (t1) υ

∗
p (t2)

}
=

σ2
υδ (m− p) δ (t1 − t2), where δ (·) is the Dirac delta function.
In practice, the tails of pT (t) and pR (t) are designed

to decay rapidly, and cm,n (t, α) has finite support in the
α domain. Thus, the amplitudes of hm,n [k, l] will decrease
quickly with increasing |l|. In this paper, we assume that
hm,n [k, l] = 0 if l < −L1 or l > L2, where L1 and L2

are nonnegative integers. L = L1 + L2 + 1 is the channel
length.
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Fig. 1. Block diagram of a baseband MIMO-FTN system model.

With the channel memory truncation, a vector presentation
of the received signal ym [k] of (2), representing the result of
space-domain sampling, is given by

y [k] = [y1 [k] , . . . , yM [k]]
T

=
∑L2

l=−L1

Hl [k] s [k − l] + z [k] ,
(4)

where s [k] = [s1 [k] , . . . , sN [k]]
T, z [k] =

[z1 [k] , . . . , zM [k]]
T, and

Hl [k] =

 h1,1 [k, l] · · · h1,N [k, l]
...

. . .
...

hM,1 [k, l] · · · hM,N [k, l]


is an M×N channel matrix, comprised of the lth-tap delayed
channel impulse responses at the time instant t = kτTs.

B. Statistical Properties of the Discrete-Time Channel Model

Given that τ = 1, study [31] analyzes the properties of
model (4) based on the following assumptions:

1) Assumption 1: Each sub-channel cm,n (t, α) is a wide-
sense stationary uncorrelated scattering Rayleigh fading chan-
nel with zero-mean and autocorrelation given by [35]

E
{
cm,n (t, α) c

∗
m,n (t− ε, α′)

}
= J0 (2πfdε) · C (α) · δ (α− α′) ,∀m,n

(5)

where J0 (·) is the zero-order Bessel function of the first
kind, fd is the maximum Doppler frequency, and C (α)
represents the normalized channel power delay profile (PDP)
with

∫
α
C (α) dα = 1. For some channels that contain discrete

multipath components, such as Extended Pedestrian A (EPA),
Extended Vehicular A (EVA), and Extended Typical Urban
(ETU) [36], an appropriate definition of C (α) is

C (α) =
∑P

p=1
σ2
pδ (α− αp) , (6)

where P is the number of resolvable multipath components,
σ2
p and αp are the power and propagation delay for the pth

path, respectively.

2) Assumption 2: fd is much smaller than the bandwidth
of pR (t). Then hm,n (t, α) can be approximated as [30]

hm,n (t, α) ≈
∫
α′

cm,n (t, α
′) gTR (α− α′) dα′, (7)

where gTR (t) =
∫
α
pR (α) pT (t− α) dα is the convolution

of pT (t) and pR (t).
3) Assumption 3: The spatial correlations at the transmit

and receive sides are separable, and

E
{
cm,n (t, α) c

∗
p,q (t− ε, α′)

}
= [ΨTx

]n,q · [ΨRx
]m,p · J0 (2πfdε) · C (α) · δ (α− α′) ,

(8)

where ΨTx
is an N×N transmit correlation coefficient matrix,

and its (n, q)-entry, [ΨTx
]n,q , denotes the correlation between

transmit antennas n and q with 0 ≤
∣∣∣[ΨTx

]n,q

∣∣∣ ≤ [ΨTx
]n,n =

1; ΨRx
is an M×M receive correlation coefficient matrix, and

its (m, p)-entry, [ΨRx ]m,p, denotes the correlation between re-

ceive antennas m and p with 0 ≤
∣∣∣[ΨRx ]m,p

∣∣∣ ≤ [ΨRx ]m,m =

1.
Note that these assumptions are quite accurate and com-

monly used in the literature (e.g., [37], [38] and references
therein) on MIMO Rayleigh fading channels. With such as-
sumptions, we give two propositions to illustrate the properties
of the noise vector z [k] and channel coefficients hm,n [k, l] for
a general τ .

Proposition 1. The noise vector z (k) is zero-mean Gaussian
distributed with auto-correlation matrix Rzz (k1 − k2) given
by

Rzz (k1 − k2) = σ2
υgτ [k1 − k2] IM , (9)

where

gτ [k] =

∫
pR (t) p∗R (t− kτTs) dt. (10)

Proposition 2. The correlation function between the channel
coefficients hm,n [k1, l1] and hp,q [k2, l2] is given by

E
{
hm,n [k1, l1]h

∗
p,q [k2, l2]

}
= [ΨTx

]n,q[ΨRx
]m,pJ0 (2πfd (k1 − k2) τTs) c [l1, l2] ,

(11)
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where c [l1, l2], denoting the ITC coefficient, is given by

c [l1, l2] =



∫
α

gTR (l1τTs − α) g∗TR (l2τTs − α)C (α) dα,

if C (α) is continuous∑P

p=1
σ2
pgTR (l1τTs − αp) g

∗
TR (l2τTs − αp) ,

if C (α) is given by (6)
(12)

(11) shows that the ITC renders the channel coefficients
from different sub-channels with different delays statistically
correlated. We are interested in which cases the ITCs vanish,
i.e., c [l1, l2] = δ [l1] · δ [l2]. For the Nyquist signaling, where
gTR (lTs) = 1 for l = 0 and gTR (lTs) = 0 for l ̸= 0,
according to (12), there exist two cases. One is that the fading
channel is frequency non-selective, with C (α) = δ (α). In
the second case, C (α) is given by (6), and αp is an integer
multiple of Ts for all p. In other circumstances, the frequency-
selective channels lead to the ITC for the Nyquist signaling.
Since gTR (lτTs) ̸= 0 for l ̸= 0, the ITC always exists for the
FTNS, regardless of channel frequency selectivity.

C. Generation of Coefficients hm,n [k, l]

This section introduces an approach outlined in [31] for
generating the channel coefficients {hm,n [k, l]}. Note that (4)
involves MNL channel coefficients at time k. It is convenient
to arrange these coefficients in an MNL-element vector as
follows

hvec [k] = [h1,1 [k] , . . .h1,N [k] ,h2,1 [k] , . . . ,

hM,1 [k] , . . . ,hM,N [k]]
T
,

(13)

where hm,n [k] ≜ [hm,n [k,−L1] , . . . hm,n [k, L2]] ∈ C1×L.
The theorem 2 in [31] states that hvec [k] can be generated by

hvec [k] =
(
Ψ

1/2
Rx

⊗Ψ
1/2
Tx

⊗C
1/2
ITC

)
Φ [k] , (14)

where CITC ∈ CL×L is the covariance matrix of hm,n [k]
with elements c [l1, l2] ,−L1 ⩽ l1, l2 ⩽ L2; Φ [k] ∈ CMNL×1

consists of elements that are uncorrelated Rayleigh fading, and
E
{
Φ [k1]Φ

H [k2]
}
= J0 (2πfd (k1 − k2) τTs) IMNL.

III. ERGODIC CAPACITY COMPUTATION

In this section, we first define the ergodic capacity for
a MIMO-FTN system experiencing triply-selective fading.
Afterward, the simplified formula is derived to facilitate the
calculation. Capacity formulas are also derived for the SISO,
SIMO, and MISO cases.

A. Definition of Ergodic Capacity

Due to the ISI, the calculation of ergodic capacity entails ob-
servations YK =

[
yT [k] , . . . , yT [k +K − 1]

]T ∈ CKM×1,
where K ≫ L. By defining a KM × (K + L− 1)N space-
time channel matrix

H =


HL2

[k] · · · H−L1
[k] 0

...
. . .

. . .
...

0 HL2
[k + K − 1] · · · H−L1

[k + K − 1]

,

it is possible to express YK as

YK = HSK+L−1 + ZK , (15)

where the vectors SK+L−1 =
[
sT [k − L2] , . . . ,

sT [k +K − 1 + L1]
]T ∈ C(K+L−1)N×1, ZK =[

zT [k] , . . . , zT [k +K − 1]
]T ∈ CKM×1 comprise all

the transmitted symbols and noise samples related to YK .
With proposition 1, it can be easily shown that the noise vec-

tor ZK is zero-mean Gaussian distributed with auto-correlation
matrix RZZ given by

RZZ = σ2
υGτ ⊗ IM = σ2

υR̃ZZ, (16)

where Gτ is a K ×K toeplitz matrix

Gτ =


gτ [0] gτ [−1] · · · gτ [1−K]

gτ [1] gτ [0]
. . .

...
...

. . . . . . gτ [−1]
gτ [K − 1] · · · gτ [1] gτ [0]

.

Note that for a finite K, Gτ is positive definite, irrespective of
τ [8], [14], [21]. However, as K goes to infinity, the positive-
definiteness of Gτ depends on τ for a given fixed receive filter
pR (t) [21]. For example, when a root raised cosine (RRC)
filter with roll-off factor β is used, τ ⩾ 1/ (1 + β) should be
satisfied [8], [11], [14], [21].

In this paper, we assume that the channel matrix H is
known by the receiver precisely, but the transmitter cannot
acquire the knowledge of H. Moreover, the transmitter does
not have access to the spatial correlation matrices although we
treat ΨTx

and ΨRx
as deterministic. The resulting capacity-

achieving input vector is independent complex Gaussian with
equal power on each of the antennas. Denoting by P the
total power over the N antennas and keeping in mind that
the average transmit power of the FTN signal is σ2

s/ (τTs)
[1, eq. (3.8)] as E {sn [k] s∗n [k − k0]} = σ2

sδ [k0], then the
covariance matrix of the input vector is

RSS =
PτTs

N
I(K+L−1)N . (17)

For a deterministic H, the mutual information per input
symbol is computed as (18), shown at the top of next page. To
obtain (18c), we have assumed that the value of τ is selected
in such a way that Gτ is positive definite and then R̃ZZ is
invertible. In the last step we have applied the decomposition

R̃−1
ZZ = R̃

−1/2
ZZ

(
R̃

−1/2
ZZ

)H
and the identity det (I+AB) =

det (I+BA), and introduced three new variables: SNR =

PTs/σ
2
υ; the normalized SNR γ = SNR/N ; H̃ = R̃

−1/2
ZZ H.

By normalizing IK (H) with 1/τ and taking expectation over
the statistics of the random matrix H, the ergodic capacity of
MIMO-FTN system is found as follows

Cav
MIMO =

1

τ
EH {IK (H)} bits/Ts seconds. (19)

It should be noted that pioneering studies [32]–[34] consid-
ered a channel model (15) with white noise, i.e., R̃ZZ = IKM .
Here we modify the definition to handle the scenario with
colored noise caused by the FTNS.
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IK (H) = lim
K→∞

1

K
[H (YK)−H (ZK)] (18a)

= lim
K→∞

1

K

{
log2 det

[
PτTs

N
HHH + σ2

υR̃ZZ

]
− log2 det

[
σ2
υR̃ZZ

]}}
(18b)

= lim
K→∞

1

K

{
log2 det

[
PτTs

Nσ2
υ

R̃−1
ZZHHH + IKM

]}
(18c)

= lim
K→∞

1

K

{
log2 det

[
τγH̃H̃H + IKM

]}
bits/channel use. (18d)

Remark 1. Theoretically, the computation based on the capac-
ity definitions (18) and (19) is mathematically unmanageable
because of the infinite sized channel matrix H̃. In spite of this,
it is possible to obtain an approximate value of Cav

MIMO by
using MCS techniques. That is, set K with a large number,
e.g. 1000. Then, generate many realizations of the channel
matrix H, compute the channel capacity for each realization
and take their average. This is guaranteed to converge by the
law of large numbers. Nevertheless, the MCS techniques have
prohibitively high complexity. To illustrate, consider M = 4,
K = 1000, and 106 channel realizations. Then the complexity
of capacity computation is about O

(
6.4× 1016

)
, provided

that the computational complexity of det
[
τγH̃H̃H + IKM

]
is about O

(
K3M3

)
.

In the following subsections, we derive the simplified ca-
pacity formulas by exploiting the decomposition property (11)
and using mean-value theorem for integrals. We start with the
SISO case for better clarity.

B. Doubly-Selective SISO Rayleigh Fading Channels

Proposition 3. The ergodic capacity for SISO-FTN system
under a doubly-selective Rayleigh fading channel is given by

Cav
SISO =

1

τ

∞∫
0

 1

2π

2π∫
0

log2

(
1 + τγλ

f (ω)

g (ω)

)
dω

 e−λdλ,

(20)
where g (ω) =

∑
k gτ [k] e

−jωk and

f (ω) =

L2∑
l=−L1

c [l, l] + 2

L−1∑
k=1

(
L2−k∑
l=−L1

c [l, l + k]

)
cos (kω).

(21)
Furthermore, Cav

SISO can be accurately approximated2 by

Cav
SISO =

1

τ

∫ ∞

0

log2 (1 + γ · γSNR · λ) e−λdλ, (22)

where γSNR describes the SNR degradation due to the ITCs
and the FTNS, defined as

γSNR =
(
2Cγ − 1

)
/γ (23)

with

Cγ =
1

2π

∫ 2π

0

log2

(
1 + τγ

f (ω)

g (ω)

)
dω. (24)

2Due to the lack of a two-dimensional mean-value theorem for the double
integrals, despite the same numerical integration results of (20) and (22), we
follow [33], [34] and make a conservative statement.

By (23), (22) can also be expressed as

Cav
SISO =

1

τ

∫ ∞

0

log2
(
1 +

(
2Cγ − 1

)
λ
)
e−λdλ. (25)

Proof. Please see Appendix A.

The proof exploits the fact that for ergodic fading channels,
the time variation does not affect the ergodic capacity [33],
[34]. The MCS results obtained based on (19) presented in
Sec. IV of this paper, corresponding to three Doppler shifts,
support this claim. Recall that the ITC occurs because of
frequency selectivity and the FTNS. Also, correlation exists
between noise components. We introduce quantity γSNR or
Cγ to quantify the combined impacts of these two types of
correlation on ergodic capacity. Prior to a further discussion
about γSNR, we first determine the capacity of SISO-FTN
transmission over the AWGN channel.

Corollary 1. Consider the AWGN channel and pR (t) is
matched to pT (t), i.e. pR (t) = p∗T (−t). The capacity of
SISO-FTN transmission in bits/s is

CAWGN
SISO−FTN = 2

∫ 1/2τTs

0

log2

(
1 +

P

σ2
υ

P fo
R (f)

)
df, (26)

where P fo
R (f) =

∑
k

∣∣∣PR

(
f + k

τTs

)∣∣∣2, |f | ⩽ 1/2τTs, is

referred to the folded spectrum of |PR (f)|2, and PR (f) is
the frequency response of pR (t). Note that (26) is the exact
capacity expression that was first rigorously derived by Rusek
in [1, eq. (3.19)].

If pR (t) is also Ts-orthogonal,

γSNR ⩽ 1, (27)

where equality holds if and only τ = 1.

Proof. Please see Appendix B.

From the discussion following (12), we recall that the
ITC does not exist for the communications using Nyquist
signaling and experiencing frequency flat fading. In such a
case, corollary 1 shows that γSNR = 1, i.e., there is no
SNR loss. Because FTNS always results in the ITCs, even
when the fading channels are frequency flat, corollary 1 also
states that γSNR < 1 in the FTN case. In [33], [34], where
Nyquist signaling is considered and the ITCs are induced
by channel frequency selectivity, it is found that γSNR < 1.
Furthermore, γSNR usually decreases if the ITC increases. The
ITC is projected to become stronger when considering both
the FTNS and frequency-selective fading channel. Thus, the
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effect of frequency-selective fading on the FTN transmission
is to reduce γSNR further.

As an example, plots of γSNR versus τ for different values
of SNR and different channel PDPs are shown in Fig. 2.
The RRC pulse with roll-off factor β = 0.22 is used as
the transmit and receive filters. The signaling rate in Nyquist
signaling is 3.84 MHz with a symbol period Ts = 260.42
ns3. The channel coefficients hm,n [k, l] are generated using
the approach presented in Sec. II-C. To guarantee that Gτ

is positive definite, only the values of τ in the interval
[1/ (1 + β) , 1] are assessed. Fig. 2 illustrates that
• The FTN transmission has a smaller γSNR in contrast to

the Nyquist counterpart for both the frequency-selective
and -flat fading channels, as expected.

• When the ITC arises, i.e., γSNR < 1, γSNR decreases as
SNR increases.

• In the FTN case, γSNR decreases as τ decreases.
• For low to moderate FTN-ISI levels that correspond to

relatively large values of τ (e.g., 0.95), γSNR varies,
depending on the channel PDP. When the FTN-ISI is
serious or τ approaches 1/ (1 + β), γSNR nearly keeps
constant, regardless of the channel PDP. This is due to
the fact that the FTN-ISI is now considerably greater
than the channel-induced ISI, and the ITCs are primarily
attributable to the FTNS.

Fig. 2. The SNR degradation due to the ITC and FTNS.

Based on the relationship between γSNR and τ , we
argue that there is a tradeoff between mutual informa-
tion and signaling rate for the FTN transmission. By
comparing (22) and (19), we observe that the integral∫∞
0

log2 (1 + γ · γSNR · λ) e−λdλ approximately equals the
ergodic mutual information EH {IK (H)}. Since γSNR de-
creases monotonically as τ decreases, the FTN system with
a smaller τ (or a higher signaling rate) suffers from a higher
mutual information loss. Nevertheless, looking at the term
1/τ that appears in the expression for Cav

SISO, thanks to
the increased signaling rate, the capacity loss caused by a

3The RRC filter settings are adopted in the universal mobile telecommuni-
cations systems [39].

degradation in mutual information can be compensated to
some extent. The philosophy of FTNS is to achieve a favorable
tradeoff between mutual information and signaling rate.

C. Triply-Selective Rayleigh Fading Channels

Now, we establish a simplified formula for the MIMO-FTN,
analogous to proposition 3.

Proposition 4. For triply-selective MIMO Rayleigh fading
channel, the ergodic capacity is given by

Cav
MIMO =

1

τ
EHW

{
1

2π

∫ 2π

0

log2 det (IM+

τγ
f (ω)ΨRx

HWΨTx
HH

W

g (ω)

)
dω

} (28)

and can be accurately approximated by

Cav
MIMO =

1

τ
EHW

{log2 det (IM+(
2Cγ − 1

)
ΨRxHWΨTxH

H
W

)}
,

(29)

where HW is an M ×N matrix with all elements being i.i.d.
zero-mean circularly symmetric complex Gaussian (ZMCSCG)
random variables, and Cγ is defined as (24)4.

Proof. Please see Appendix C.

Remark 2. In proposition 4, a significant step towards simpli-
fying the capacity calculation is made by reducing the infinite-
sized random matrix H̃ to a finite and much smaller M ×N
matrix HW . When using MCS techniques to calculate (29)
and (19), with the complexity analysis in Remark 1, we can
conclude that the former has a computational complexity 109

times (if K = 1000) smaller than the latter.
Remark 3. Equations (12), (21) and (24) show that Cγ is
independent of the spatial correlations. Since Cγ includes
the effect of frequency selectivity on the capacity, from
(29), we conclude that the effects of frequency selectiv-
ity and spatial selectivity on the capacity are separable.
In [38], Chuah et al. analyzed the asymptotic behavior of
mutual information of multi-antenna systems under equal-
power allocation. The mutual information is given by I◦ =
log2 det

(
IM + γΨRx

HWΨTx
HH

W

)
for each realization of

HW . Chuah et al. pointed out that 1) at low SNR, I◦ depends
only on γ and spatial correlation has no effect on I◦; 2) at
high SNR, the spatial correlation reduces I◦ and the stronger
the correlation, the greater the loss. By comparing I◦ with
Cav
MIMO, we see similar conclusions can be drawn for Cav

MIMO.
From (29), we obtain three corollaries describing the ca-

pacity formulas for SIMO and MISO channels and spatial
uncorrelated MIMO channels.

Corollary 2. For triply-selective SIMO and MISO Rayleigh
fading channels, the ergodic capacities Cav

SIMO and Cav
MISO

can be accurately approximated with a unified form

1

τ

∫ ∞

0

log2
(
1 +

(
2Cγ − 1

)
λ
)
pλ (λ) dλ, (30)

4We remind that for a given SNR, the SISO and MIMO systems have
different values of γ and Cγ .
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where in the SIMO case, pλ (λ) =
∑M

k=1 ϑkς
−1
k e−λ/ςk with

ϑk =
∏M

i=1,i̸=k
ςk

ςk−ςi
and ςk being the kth eigenvalue of ΨRx

;
in the MISO case, pλ (λ) =

∑N
k=1 ϑkς

−1
k e−λ/ςk with ϑk =∏N

i=1,i̸=k
ςk

ςk−ςi
being the kth eigenvalue of ΨTx

.

The readers are referred to [34] for the proof.

Corollary 3. For a time-varying, frequency-selective, and
spatially uncorrelated (i.e. ΨTx = IN and ΨRx = IM ) MIMO
Rayleigh fading channel, the ergodic capacity of the MIMO-
FTN system can be accurately approximated by

Cav
MIMO =

1

τ

∫ ∞

0

log2
(
1 +

(
2Cγ − 1

)
λ
)
V (λ) dλ, (31)

where

V (λ) =

m0−1∑
k=0

k!

(k + n0 −m0)!

[
Ln0−m0

k (λ)
]2
λn0−m0e−λ

(32)
with m0 = min (M,N), n0 = max (M,N), and Ll

k (·) being
the associated Laguerre polynomial of order k [40].

Proof. Please see Appendix C.

By taking either N or M equal to 1, we can deduce the
ergodic formulas for the spatial uncorrelated SIMO and MISO
scenarios.

Corollary 4. For doubly-selective SIMO and MISO Rayleigh
fading channels, if the sub-channels are spatially uncorrelated,
i.e. ΨRx

= IM in the SIMO case and ΨTx
= IN in the MISO

case, the ergodic capacities can be accurately approximated
by

Cav
SIMO =

1

τ (M − 1)!

∫ ∞

0

log2
(
1 +

(
2Cγ − 1

)
λ
)

× λM−1e−λdλ,

(33)

Cav
MISO =

1

τ (N − 1)!

∫ ∞

0

log2
(
1 +

(
2Cγ − 1

)
λ
)

× λN−1e−λdλ.

(34)

Note that the channels in the above propositions and corol-
laries are assumed to be frequency-selective. Actually, the
derived formulas suit for flat fading cases just by setting the
channel PDP C (α) = δ (α).

IV. CAPACITY EVALUATION

In this section, we evaluate the ergodic capacities of FTN
systems in a triply (doubly) selective Rayleigh fading envi-
ronment, as well as validate the capacity formulas derived
in Sec. III-B and Sec. III-C. We treat four types of antenna
configuration: SISO, 1 × 4 (SIMO), 4 × 1 (MISO), 4 × 4
(MIMO). The RRC filter is used as the transmit and receive
filters. The signaling rate in Nyquist signaling is 3.84 MHz
with a symbol period Ts = 260.42 ns. We consider β = 0.22
and the EVA channel profile, unless specified otherwise.

Fig. 3 illustrates the MCS results of Cav
SISO for τ = 1 and

5/6, with the Doppler shift fd as a parameter. It is clear that the
time variations have no effect on the ergodic capacity. Thus,

Fig. 3. Plots of Cav
SISO for τ = 1, 5/6 and different Doppler shifts.

Fig. 4. Ergodic capacity of SISO-FTN system.

in the following evaluation, a fixed Doppler shift fd of 70 Hz
is selected.

Plots of Cav
SISO as a function SNR for different values

of τ are given in Fig. 4. We note from Fig. 4 that: (i)
the results obtained through MCS with (19) are in good
agreement with those evaluated numerically from (25); (ii)
FTNS benefits for the ergodic capacity, and the capacity
gain is more noticeable at high SNR than at low SNR; (iii)
Cav
SISO reaches its maximum at around τ = 5/6 (in this

example). It is worth noting that the capacity of an FTN system
that transmits over the AWGN channel has a maximum at
τ = 1/ (1 + β) ≈ 0.8196 [1], [8], [13]. The higher value of the
capacity-optimal τ (denoted by τ◦) for the FTN transmission
over doubly-selective fading channels is owing to the fact that
γSNR decreases with decreasing τ , as illustrated in Fig. 2. A
smaller γSNR results in less mutual information. When τ is
less than 5/6, the degradation of mutual information cancels
out the increased signaling rate. The values of τ◦ as well as
1/ (1 + β) are given in Tab. I when β takes other values in
the range of (0, 1]. It is seen that τ◦ is slightly larger than
1/ (1 + β).

Let us use η to denote the spectral efficiency (SE) of FTN
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TABLE I
τ◦ VERSUS β . HERE THE EVA CHANNEL PROFILE IS CHOSEN.

β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
τ◦ 0.9167 0.84 0.7857 0.7255 0.68 0.64 0.6 0.58 0.54 0.5152

1/ (1 + β) 0.9091 0.8333 0.7692 0.7143 0.6667 0.625 0.5882 0.5556 0.5263 0.5

signaling with the RRC pulses. In line with previous works
[8], [13], η is defined as

η = Cav
SISO/ (1 + β) ,

bps
Hz

(35)

Obviously, the maximum value of η, denoted by ηmax, appears
at τ = τ◦. Plots of ηmax for β = 0.1, 0.4, 0.7 and 1 are
shown in Fig. 5. The SE performance of the Nyquist signaling
schemes employing the same RRC shaping filter and a sinc
filter is also provided for comparison purposes. We observe
that the FTN signaling scheme surpasses the Nyquist coun-
terpart given β > 0. Moreover, the performance advantage is
substantial especially for high SNRs and moderate to large β.
Fig. 5 also shows that with increasing β, the achievable SE
for both the FTN and Nyquist signaling schemes falls. Similar
observations have been found in the AWGN channel [8].

Fig. 5. Comparison of achievable SE for FTNS and Nyquist signaling in the
EVA channel.

We are now in a position to treat the multi-antenna cases.
For brevity, we shall limit our evaluation to τ = 5/6. Fig. 6
shows the capacity results of 4× 4 MIMO-FTN systems with
the transmit and the receive correlation matrices being

ΨTx = ΨRx =


1 ρ1/9 ρ4/9 ρ

ρ1/9 1 ρ1/9 ρ4/9

ρ4/9 ρ1/9 1 ρ1/9

ρ ρ4/9 ρ1/9 1


and the transmit correlation coefficient ρTx ∈ {0, 0.3, 0.9},
the receive correlation coefficient ρRx ∈ {0, 0.9}. Note that
the spatial-correlation matrices are defined in the LTE specifi-
cation [36] for a 4×4 antenna configuration. Moreover, 0, 0.3,
and 0.9 correspond to low (actually no correlation), medium,
and high correlation levels, respectively. The capacities of the
4×1 (MISO) and 1×4 (SIMO) channels are shown in Fig. 7

Fig. 6. Ergodic capacity of 4× 4 MIMO-FTN system.

and Fig. 8, respectively. When the spatial correlation exists,
we only concern the high correlation with ρTx = ρRx = 0.9.
From Figs. 6∼8, we observe that 1) the MCS results and
numerical results agree well; 2) the capacity increases as the
SNR increases. At low SNRs, the spatial correlation has little
impact on the capacity, as stated in Remark 3. For moderate
to high SNRs, the capacity growth rate depends on the spatial
correlation levels. The lower the spatial correlation is, the
larger the growth rate; 3) FTNS also boosts the ergodic capac-
ity in the multi-antenna scenarios; 4) in the MISO and SIMO
scenarios, the FTN system with strong spatial correlation has
a higher capacity than the Nyquist system without spatial
correlation.

Fig. 7. Ergodic capacity of 4× 1 MISO-FTN system.

We now investigate how the FTN gain scales with the
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Fig. 8. Ergodic capacity of 1× 4 SIMO-FTN system.

Fig. 9. ξ (0.9, C (α) , 1, 1, SNR) and ξ (5/6, C (α) , 1, 1, SNR) as a function
of SNR for different channel profiles.

Fig. 10. ξ (τ, C (α) , 1, 1, 20 dB) and ξ (τ, C (α) , 1, 1, 30 dB) versus τ for
different channel profiles.

frequency and spatial selectivity after seeing the FTN gain and
noticing that the time variation has no effect on the ergodic
capacity. Let us denote by Cav

FTN and Cav
Nyq. the capacities

of FTN and Nyquist systems, respectively. Cav
FTN (or Cav

Nyq.)
= Cav

SISO, Cav
MIMO, Cav

SIMO, or Cav
SIMO, depending on the

values of M and N . Define ξ =
(
Cav

FTN/Cav
Nyq. − 1

)
× 100%,

the percentage gain yielded by using FTNS over Nyquist
signaling. It can be verified that ξ relates with τ , channel
PDP C (α), antenna correlations, and the operating SNR.
For clarity, we use ξ (τ, C (α) ,ΨTx ,ΨRx ,SNR) to explicitly
denote the dependence.

As mentioned in Remark 3, the effects of the fre-
quency selectivity and spatial selectivity on the er-
godic capacity are separable. Thus, when analyzing how
ξ (τ, C (α) ,ΨTx ,ΨRx ,SNR) varies with frequency selectiv-
ity, we consider only SISO channels under which ΨTx

=
ΨRx

= 1. Fig. 9 shows ξ (0.9, C (α) , 1, 1,SNR) and
ξ (5/6, C (α) , 1, 1,SNR) versus SNR for different channel
profiles, namely the frequency-flat fading, EPA, EVA, and
ETU. The maximum delay spreads for EPA, EVA, and ETU
are 410 ns, 2510 ns, and 5000 ns, corresponding to the low,
medium, and high delay spread environments [36], respec-
tively. For two fixed SNRs, Fig. 10 illustrates the graphs of
ξ (τ, C (α) , 1, 1, 20 dB) and ξ (τ, C (α) , 1, 1, 30 dB) versus
τ . Examining Figs. 9 and 10, we see that

• ξ increases with increasing SNR. For example, let us
consider τ = 5/6 and a frequency-flat fading channel.
Fig. 9 shows that increasing SNR from 0 dB to 30 dB, ξ
increases from 3% to 13%. As SNR approaches infinity,
ξ may approach (1/τ − 1) × 100%. When assuming an
SNR of 200 dB and a frequency-flat fading channel,
Cav

FTN = 72.6592 bits/Ts seconds and Cav
Nyq. = 65.6058

bits/Ts seconds if τ = 0.9, corresponding to ξ = 10.75%.
Moreover, Cav

FTN = 78.0650 bits/Ts and ξ = 18.99% if
τ = 5/6.

• The FTN gains obtained in the frequency-selective fading
channels are higher than those obtained in the frequency-
flat fading channels. This can be explained with the
plots in Fig. 2. For a given SNR, γSNR < 1 for the
Nyquist signaling in the frequency-selective fading chan-
nels. Thus, the values of Cav

Nyq. in the frequency-selective
fading channels are lower than those in the frequency-
flat fading channel. For the FTN case with τ = 0.9 or
5/6, γSNR almost remains the same under the frequency-
selective and flat fading channels. Therefore, the values
of Cav

FTN in four channels considered here are close.
• ξ does not scale with respect to the maximum delay

spread. The differences among the gains obtained in three
frequency-selective fading channels are within 1%.

Now we examine the effects of spatial correlation on ξ.
We take the 4 × 4 MIMO systems with flat fading and EVA
channel profiles as examples. Since the spatial correlation
has little effect on the ergodic capacity at low SNRs, as we
have seen in Figs. 6∼8, we focus on the high-SNR regime,
considering an SNR of 30 dB. ξ (τ,EVA,ΨTx ,ΨRx , 30 dB)
and ξ (τ,Flat Fading,ΨTx ,ΨRx , 30 dB) versus τ for dif-
ferent spatial correlation levels are shown in Fig. 11
and Fig. 12, respectively. Also shown for comparison are
ξ (τ,EVA, 1, 1, 30 dB) and ξ (τ,Flat Fading, 1, 1, 30 dB). It is
observed that 1) for MIMO case, the FTN gains are nearly the
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same under different correlation levels; 2) the gains obtained
in the SISO channel are slightly larger than those in the MIMO
channel, and the gain gap grows as τ decreases.

Fig. 11. ξ (τ,EVA,ΨTx ,ΨRx , 30 dB) versus τ for different spatial corre-
lation levels.

Fig. 12. ξ (τ, Flat Fading,ΨTx ,ΨRx , 30 dB) versus τ for different spatial
correlation levels.

V. CONCLUSION

In this paper, we derive ergodic capacity formulas for the
MIMO-FTN transmissions in triply-selective MIMO Rayleigh
fading channels and evaluate the capacity under different chan-
nel conditions. The ITC resulting from both the frequency-
selective channel and the FTNS is taken into account. Fur-
thermore, it is observed that when the FTN-ISI is severe and
significantly greater than the channel-induced ISI, the ITC is
primarily due to the FTNS. The capacity evaluation reveals
that 1) when the RRC filter with β > 0 is employed, the
MIMO-FTN system has a higher capacity than its MIMO-
Nyquist counterpart; 2) the channel’s time variation has no
effect on the ergodic capacity; 3) both the ITC and spatial
correlation reduce the ergodic capacity; 4) the FTN gains
under different channels are close to the same, while the
FTN gain obtained in the frequency-selective fading channel
is slightly higher than that obtained in the flat fading channel.

To highlight the value and significance of fundamental limits
established in this paper, our future work intends to implement
a practical MIMO-FTN system and measure its performance
how far away from the limits. Sophisticated algorithms will
be developed to close it if the performance gap is significant.

APPENDIX A
PROOF OF PROPOSITION 3

It has been shown in [32] that time variations have no
influence on ergodic capacity. Thus, as in [34], we prove this
proposition by considering slowly time-varying subchannels
c (t, α) that remain constant over K consecutive symbol
intervals. Hence, the channel matrix H becomes a Toeplitz
matrix

H =

 h [k, L2] · · · h [k,−L1] · · · 0
...

. . . . . . . . .
...

0 · · · h [k, L2] · · · h [k,−L1]

.

By using the Szegö’s theorem [41] to the product of two
Toeplitz matrices R̃

−1/2
ZZ and H, (19) can be rewritten as

Cav
SISO =

1

τ
E

{
1

2π

∫ 2π

0

log2

(
1 + τγ

|h (ω)|2

g (ω)

)
dω

}
, (36)

where h (ω) =
∑L2

l=−L1
h [k, l] e−jωl and g (ω) =∑

k gτ [k] e
−jωk. With the three assumptions given in

Sec. II-B, it has been shown in Appendix of [33] that the
probability density function (PDF) of |h (ω)|2 is equivalent to
the PDF of (λ · f (ω)) with λ being a unit variance exponen-
tially distributed random variable, and with f (ω) being the
variance of h (ω). Then, we can immediately get (20).

For the inner integral in (20), it equals

1

2π

∫ 2π

0

log2

(
1 + τγλ

f (ω)

g (ω)

)
dω

= log2

(
1 + τγλ

f (θ)

g (θ)

)
, θ ∈ [0, 2π)

(37)

by using the mean-value theorem of integrals. Define
τf (θ) /g (θ) as the SNR degradation factor γSNR. According
to [33], one can approximate γSNR by fixing λ at its mean
value which is 1. Set λ = 1, (37) becomes

1

2π

∫ 2π

0

log2

(
1 + τγ

f (ω)

g (ω)

)
dω = log2 (1 + γ · γSNR)

= Cγ .
(38)

By (38), we can find (23) and (22).

APPENDIX B
PROOF OF COROLLARY 1

In the case of AWGN channel and pR (t) = p∗T (−t), we
have C (α) = δ (α) and gTR (kτTs) = gτ [k], where gτ [k] is
given by (10). Substituting these results into (12) yields

c [l1, l2] = gTR (l1τTs) g
∗
TR (l2τTs) = gτ [l1] g

∗
τ [l2] (39)



11

It follows that the summation
∑L2−k

l=−L1
c [l, l + k] in (21)

equals
∑

l gτ [l] g
∗
τ [l + k]. Then, f (ω) = |g (ω)|2 and Cγ

becomes

Cγ =
1

2π

∫ 2π

0

log2 (1 + τ · γ · g (ω)) dω (40)

When pR (t) is Ts-orthogonal, gτ=1 [k] = δ [k]. Accordingly,
g (ω) = 1, Cγ |τ=1 = log2 (1 + γ) and γSNR |τ=1 = 1.

It has been shown in [1, eq. (3.15)] that

g (ω) =
1

τTs

∑
k

∣∣∣∣PR

(
ω

2πτTs
+

k

τTs

)∣∣∣∣2
=

1

τTs
P fo
R

(
ω

2πτTs

)
.

(41)

Upon substituting for g (ω) from (41) and recalling that γ =
PTs/Nσ2

υ , we have

Cγ =
1

2π

∫ π

−π

log2

(
1 +

P

Nσ2
υ

P fo
R

(
ω

2πτTs

))
dω

= 2τTs

∫ 1/2τTs

0

log2

(
1 +

P

Nσ2
υ

P fo
R (f)

)
df.

(42)

By noting that the channel gain is deterministic and
|h (ω)|2 = |g (ω)|2 in the AWGN channel, we can drop the
expectation operation in (36) and obtain

Cav
SISO = Cγ/τ bits/Ts seconds. (43)

Dividing both sides by Ts gives (26).
We now prove inequality (27). As pR (t) is Ts-orthogonal,∑
k

∣∣∣PR

(
f + k

Ts

)∣∣∣2 = Ts, |f | ⩽ 1/2Ts and P fo
R (f) ⩽ Ts if

τ < 1, which result in

Cγ = 2τTs

∫ 1/2τTs

0

log2

(
1 +

P

Nσ2
υ

P fo
R (f)

)
df

⩽ log2

(
1 +

PTs

Nσ2
υ

)
= log2 (1 + γ) .

(44)

Using (23), (27) can be directly obtained.

APPENDIX C
PROOF OF PROPOSITION 4 AND COROLLARY 3

Again we consider the slowly time-varying channels. Now
the channel matrix H is a block Toeplitz matrix

H =

 HL2
[k] · · · H−L1

[k] · · · 0
...

. . . . . . . . .
...

0 · · · HL2 [k] · · · H−L1 [k]

.

Similar to (36), we can use the Szegö’s theorem and obtain

Cav
MIMO =

1

τ
EH

{
1

2π

∫ 2π

0

log2 det (IM+

τγ
H (ω)HH (ω)

g (ω)

)
dω

} (45)

where the M ×M matrix H (ω) is defined as

H (ω) =
∑L2

l=−L1

Hl [k] e
−jlω. (46)

With the three assumptions given in Sec. II-B, it has been
shown in [34, Appendix B] that the statistical properties of
H (ω)HH (ω) are identical to those of the product matrix
f (ω) ·ΨRx

HWΨTx
HH

W , where f (ω) is given by (21) and
HW is an M × N matrix with all elements being i.i.d.
ZMCSCG random variables. Moreover, using the mean-value
theorem of integrals to (45), we obtain

Cav
MIMO =

1

τ
EHW

{
1

2π

∫ 2π

0

log2 det (IM+

τγf (ω)
ΨRx

HWΨTx
HH

W

g (ω)

)}
=

1

τ
EHW

{log2 det (IM+(
2Cγ − 1

)
ΨRx

HWΨTx
HH

W

)}
.

(47)

This completes the proof of proposition 4.
When ΨTx and ΨRx both are identity matrices, the dis-

tribution of H (ω)HH (ω) is the same as the distribution of
f (ω) ·HW ·HH

W . As HWHH
W is a Wishart matrix, we obtain

(48) by invoking theorem 2 of [40].

Cav
MIMO =

1

τ
EHW

{
log2 det

(
IM +

(
2Cγ − 1

)
HWHH

W

)}
=

1

τ

∫ ∞

0

log2
(
1 +

(
2Cγ − 1

)
λ
)
V (λ) dλ.

(48)

This completes the proof of corollary 3.
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