
ar
X

iv
:2

11
1.

02
59

3v
1 

 [
cs

.I
T

] 
 4

 N
ov

 2
02

1
1

Energy-Efficient Online Data Sensing and Processing in

Wireless Powered Edge Computing Systems

Xian Li, Suzhi Bi, Yuan Zheng, and Hui Wang

Abstract

Wireless powered mobile edge computing (MEC) has emerged as a promising paradigm to enable

high-performance computation of energy-constrained wireless devices (WDs) in Internet of things (IoT)

systems. However, to overcome the severe path loss of both energy transfer and data communications,

wireless powered MEC suffers from high operating power consumption. To achieve sustainable and

economic system operation, this paper focuses on developing energy-efficient online data processing

strategy of wireless powered MEC systems under stochastic fading channels. In particular, we consider

a hybrid access point (HAP) transmitting RF energy to and processing the sensing data offloaded from

multiple WDs. Under an average power constraint of the HAP, we aim to maximize the long-term

average data sensing rate of the WDs while maintaining task data queue stability. We formulate the

problem as a multi-stage stochastic optimization to control the energy transfer and task data processing in

sequential time slots. Without the knowledge of future channel fading, it is very challenging to determine

the sequential control actions that are tightly coupled by the battery and data buffer dynamics. To

solve the problem, we propose an online algorithm named LEESE that applies the perturbed Lyapunov

optimization technique to decompose the multi-stage stochastic problem into per-slot deterministic

optimization problems. We show that each per-slot problem can be equivalently transformed into a

convex optimization problem. To facilitate online implementation in large-scale MEC systems, instead of

solving the per-slot problem with off-the-shelf convex algorithms, we propose a block coordinate descent

(BCD)-based method that produces close-to-optimal solution in less than 0.04% of the computation

delay. Simulation results demonstrate that the proposed LEESE algorithm can provide 21.9% higher

data sensing rate than the representative benchmark methods considered, while incurring sub-millisecond

computation delay suitable for real-time control under fading channel.
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I. INTRODUCTION

A. Motivations and Contributions

As a seamless integration of wireless power transfer (WPT) [1]–[4] and mobile edge computing

(MEC) [5]–[8], wireless powered MEC is recognized as a promising technology to provide

sustainable and enhanced computation performance for delay-sensitive and data-intensive IoT

(internet of things) applications. With dedicated radio frequency (RF) energy transmitter and

MEC server integrated as a hybrid access point (HAP), wireless powered MEC system provides

on-demand energy transfer and computation service to remote low-power wireless devices (WDs)

(e.g., sensors and wearable devices). Powered by the received energy, WDs collect sensing data

and process the data either locally or remotely at the HAP via task offloading.

A major hurdle to the wide deployment of wireless powered MEC systems is the high power

consumption to overcome the double propagation loss during downlink WPT and uplink task

offloading. Because the energy consumption of WDs is replenished entirely by WPT in a wireless

powered MEC system, it calls for joint optimization of WPT and task execution at both the

HAP and WDs to improve the energy efficiency [9]–[11]. For example, by jointly optimizing

the WPT beamforming and computation resource allocation, [9] minimized the total energy

consumption of a multi-antenna HAP to complete the task computation of WDs. With the same

design objective, [10] proposed cooperative task offloading in a two-user wireless powered MEC

system, and optimized the time and transmit power of WPT and data offloading. Considering

both time division multiple access (TDMA) and non-orthogonal multiple access (NOMA), [11]

maximized the energy efficiency of a wireless powered MEC system to achieve the maximum

processed data bits per joule energy consumption.

Despite such research progress, these prior works [9]–[11] focused on independently optimiz-

ing the instantaneous system performance within each time slot given the wireless channel gains.

In practical wireless powered MEC systems under stochastic fading channels, we need to make

online decisions to optimize the long-term system performance under future channel uncertainty.

The corresponding optimal system design is very challenging. First, the online decisions of WPT

and task processing may not meet the long-term performance requirements such as the average

power constraint of the HAP. Second, the control decisions are tightly coupled over time due

to the temporal correlations of battery and data buffer dynamics. It can lead to extremely low

energy efficiency if we independently optimize the system performance within each time slot in
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a greedy manner. Moreover, the fast-varying channel requires a low-complexity solution method

to facilitate real-time implementation, which is often difficult for a complicated optimal control

problem.
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Fig. 1: The considered wireless powered MEC system: (a) the system model and (b) a time allocation example.

In this paper, we focus on designing an energy-efficient multi-user wireless powered MEC

system under fading channels. In particular, we consider in Fig.1 that multiple WDs harvesting

RF energy broadcast from an HAP, and using the harvested energy to sense and process the

task data assisted by the edge server. Under an average power constraint of the HAP, we aim

to maximize the long-term average data sensing rate of WDs, while maintaining data queue

stability at all the WDs and the HAP. The main contributions of this paper are:

1) Energy-efficient WPT and Task Processing Optimization: Under stochastic fading channels,

we jointly optimize the WPT and task processing strategies of the wireless powered edge

computing system subject to an average power constraint of the HAP. We formulate the target

problem as a multi-stage stochastic optimization. The major difficulty lies in seeking a real-time

online solution to satisfy all the long-term constraints under the randomness of fading channels

and strong couplings among solutions in different time slots.

2) Low-complexity Online Algorithm: We propose an online algorithm named LEESE without

any knowledge of future channel fading information. In particular, LEESE leverages the perturbed

Lyapunov optimization to equivalently transform the multi-stage stochastic optimization into per-

slot deterministic optimization problems, each decides the system control variables in the current

time slot. We show that each per-slot problem can be equivalently transformed into a convex

optimization problem. To reduce the computation overhead of online implementation, instead

of solving each per-slot problem with off-the-shelf convex optimization (CVX) algorithms,

we design an efficient block coordinate descent (BCD)-based method and derive closed-form

solutions of simple threshold-based structure.

3) Theoretical Performance Analysis: We show that under a moderate battery capacity of
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each WD, LEESE always produces a feasible, and in fact asymptotically optimal, solution

to the original multi-stage stochastic problem. Meanwhile, we prove that LEESE achieves an

[O(1/V ), O(V )] sensing rate-delay tradeoff by tuning a non-negative control parameter V .

Specifically, setting a larger V yields higher sensing rate at cost of longer data processing

delay, and vice versa.

4) Numerical Performance Evaluation: We verify the performance of LEESE via extensive

numerical simulations. The results show that LEESE can provide more than 21.9% higher sensing

rate over the considered benchmark methods. Besides, we find that the BCD-based LEESE

algorithm achieves almost identical data sensing performance to the CVX-based LEESE, while

incurring only 0.04% of the computation delay.

B. Related works

There have been extensive research interests in optimizing the long-term performance of

MEC systems with energy-harvesting WDs, where the WDs harvest energy either from ambient

renewable such as solar and wind [12]–[16], or dedicated RF energy transmitters [17]–[20].

For the former line of works, [12] considered an MEC network with an MEC server assisting

a single EH-WD, and minimized the long-term execution delay and task dropping cost by jointly

optimizing the task offloading decision, data transmission power and local CPU frequency at the

WD. [13] studied the optimal server selection and task allocation in a multi-server MEC network

with single EH WD. [14] extended the research into spectrum scarcity scenario and studied the

optimal cognitive online sensing and processing of the EH WD. Considering an EH-powered

base station co-located with multiple edge servers, [15] studied the optimal task offloading and

server autoscaling policy to minimize the energy cost and processing delay. [16] formulated

an offloading control problem of a single EH-WD as a Markov decision process (MDP), and

designed a reinforcement learning (RL) based method to optimize the long-term system utility

concerning computation rate and processing latency.

To tackle the random ambient energy arrivals, the second line of research applies WPT

technology to achieve controllable power supply to WDs for sustainable long-term computa-

tion performance. For example, [17] focused on the offline optimal energy allocation and task

offloading of a single-WD wireless powered MEC system. [18] introduced a stochastic modeling

of the edge computing process, and designed a Lyapunov optimization-based online algorithm to

maximize the long-term system computation rate. Aiming at optimizing system energy efficiency,
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[19] studied the dynamic control on WPT and resource allocation among device-to-device (D2D)-

assisted WDs. Nonetheless, these works either assume non-causal prior knowledge of the system

state [17], or sufficient energy supply at the HAP [18], [19]. When the HAPs rely on harvesting

ambient energy to perform edge computation, [20] considered multiple EH-assisted HAPs and

optimized the user association and resource allocation under stochastic energy and data arrivals.

However, [20] considered a simplified system setup where each HAP can accept tasks from only

a single WD. In our considered setup with causal system information and average HAP power

constraint, the optimal design is challenged by the unknown future channel information and the

real-time control of tightly-coupled decisions on WPT and task execution over different time

slots. This calls for delicate coordination of the HAP and WDs where the solutions in existing

works [17]–[20] are no longer applicable.

The remainder of this paper is organized as follows. In Section II, we present the system model

of the wireless powered MEC system and formulate the sensing rate maximization problem. In

Section III, we propose the LEESE method to solve the problem. We prove the feasibility and

asymptotic optimality of LEESE in Section IV and evaluate the performance of LEESE via

numerical simulations in Section V. Finally, we conclude the paper in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1(a), we consider a wireless powered MEC networks consisting of K WDs

and one HAP. The HAP is connected to a stable power grid, while each WD is equipped with an

energy harvesting module and a rechargeable battery. Integrated with an RF energy transmitter

and an MEC server, the HAP provides energy supply and task computation assistance for WDs

in sequential time slots of equal duration T . In particular, in time slot t, the HAP broadcasts RF

energy to the WDs, while each WD harvests energy and stores it into the battery. Meanwhile,

with the stored energy, each WD takes raw data samples from the monitored environment and

piles it into the local task data queue. To process the raw task data, each WD employs a partial

computation offloading rule which allows the raw task data to be arbitrarily partitioned into two

parts with one executed locally and the other offloaded to the HAP for edge computing [8].

We consider block fading channels for both WPT and data communication, where channel

gains between the HAP and WDs are assumed static within each time slot, but may vary from one

slot to another. We assume that WPT and data communication are implemented over orthogonal

frequency bands, thus they can be performed simultaneously. To avoid co-channel communication
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interference among the WDs, we assume that WDs communicate with the HAP using a TDMA

scheme. In Fig. 1(b), we show an example time allocation of the considered system in time slot

t. Specifically, the HAP performs WPT and edge processing throughout the duration T , while

WDi performs task offloading within the allocated time frame τi(t), i = 1, · · · , K. Since circuits

of data sensing, communication and local processing are separated with each other, WDi can

simultaneously perform data collection , task offloading and local computing. In addition, we

neglect the time cost on result feedback from the HAP to WDs assuming that the computation

result is relatively short (e.g., several bits feedback for identifying the objects in a picture).

A. Wireless Power Transfer

In the t-th time slot, the HAP broadcasts wireless energy to WDs with transmit power p0(t) ≤

pmax
0 , where pmax

0 is the maximum WPT power at the HAP. The energy cost on WPT is

e0,P(t) = p0(t)T. (1)

Denote hp
i (t) as the WPT channel gain from the HAP to the ith WD. We apply a practical

non-linear energy harvesting model [21] to depict the energy conversion efficiency at WDs.

Specifically, the energy harvested by the ith WD is

ei,h(t) =
a1,ip0(t)h

p
i (t) + a2,i

p0(t)h
p
i (t) + a3,i

−
a2,i
a3,i

, (2)

where a1,i, a2,i, a3,i are constant parameters for i = 1, 2, · · · , K. ei,h(t) has the following property.

Lemma 1. The energy harvesting parameters a1,i, a2,i, and a3,i satisfy that a1,ia3,i−a2,i≥0 and

a3,i>0. The harvested energy ei,h(t) is a concave function of the wireless charging power p0.

Proof. Please refer to Appendix A for detail.

B. Task Data Sensing and Processing at WDs

1) Task Data Sensing: In time slot t, the WDi collects ri(t) bits of data samples from the

monitored environment. ri(t) ≤ rmax holds due to the constrained sampling resolution/frequency.

Denote ecolunit in Jolue/bit as the unit energy cost for data sensing. Then, the energy consumption

on collecting ri(t) bits of data is [22]

ei,col(t) = ecolunitri(t). (3)

The WDi stores the sensed data in a local buffer, and subsequently processes each task data bit

via either local computing or computation offloading.
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2) Local Computing: We denote the CPU frequency of WDi in time slot t as fi(t) in

cycles/second, where fi(t) ≤ fmax
i due to the local computation capability constraint. Then,

the task data processed locally and the corresponding energy consumption are [23]

Di,C(t) = fi(t)T/φi, ei,C(t) = κi (fi(t))
3
T, (4)

respectively, where φi denoted the required local CPU cycles to one bit of data and κi is the

energy efficiency parameter for local computing.

3) Computation Offloading: The WDs offload their computation tasks to the HAP in a TDMA

manner. Denote hI
i(t) as the computation offloading channel gain from the WDi to the HAP,

pi(t) as the transmit power constrained by its maximum value pi(t) ≤ pmax
i and τi(t) as the

allocated time for task offloading. The task data offloaded by the WDi is

Di,O(t) = Wτi(t) log2 (1 + pi(t)γi(t)) , (5)

where W is the task offloading bandwidth. γi(t) =
hI
i(t)

N0
and N0 denotes additive white Guassian

noise (AWGN) power at the HAP. Correspondingly, the energy cost on task offloading is

ei,O(t) = pi(t)τi(t), (6)

By summing up the energy cost on data sensing, local processing and computation offloading,

the total energy consumption of WDi in time slot t is

ei(t) = ei,col(t) + ei,C(t) + ei,O(t). (7)

C. Task Computation at the HAP

We denote f0(t) as the edge CPU frequency at the HAP in time slot t, where f0(t) is

upper bounded by f0(t) ≤ fmax
0 . The task data processed at edge and the corresponding energy

consumption on edge computing are

D0,C(t) = f0(t)T/φ0, e0,C(t) = κ0 (f0(t))
3 T, (8)

respectively, where φ0 denotes the required edge CPU cycles to process one bit of data and κ0

is the energy efficiency parameter for edge computing. By summing up the energy cost on WPT

and edge computing, the total energy cost of the HAP in time slot t is

e0(t) = e0,P(t) + e0,C(t). (9)

D. Task Data Queue Model

For the HAP and WDs, the data received or sensed in one time slot is ready for processing

at the beginning of the next time slot. Denote Qi(t) and Q0(t) as the data queue length of the

WDi and HAP at the start of time slot t, respectively. The data processed at the WDi and HAP

within the current time slot must satisfy the data causality constraints:

0 ≤ D0,C(t) ≤ Q0(t), 0 ≤ Di,C(t) +Di,O(t) ≤ Qi(t), ∀i, t. (10)
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We assume infinite task queue capacity and focus on the asymptotic stability of data queues.

Then, the dynamics of Qi(t) and Q0(t) over time are

Qi(t+ 1) = Qi(t)−Di,C(t)−Di,O(t) + ri(t), Q0(t+ 1) = Q0(t)−D0,C(t) +
∑K

i=1Di,O(t), ∀t, (11)

respectively. To ensure stable data queues at the HAP and all WDs, we consider following

stability constraints on Q0(t) and Qi(t) [24]:

Q̄0 = lim
N→+∞

1

N

∑N

t=1E [Q0(t)] < ∞, Q̄i = lim
N→+∞

1

N

∑N

t=1E [Qi(t)] < ∞, ∀i = 1, · · · ,K, (12)

where the expectation is taken over the time-varying channels.

E. Energy Queue Model

Denote Bi(t) as the battery level of the WDi at the start of time slot t. The WDi adopts an

energy-aware battery management policy to prevent permanent device failure due to full battery

depletion: when Bi(t) is below a threshold Bmin, it stops consuming energy on data sensing or

processing, while only receiving RF energy from the HAP to replenish the battery. Intuitively,

the energy consumed by the WDi within the current time slot must satisfy

0 ≤ λeei(t) ≤ Bt · 1Bi(t)≥Bmin
, ∀i, t, (13)

where λe ≥ 1 is a scaling factor (e.g., λe = 1000 when we use mJ as the unit) and 1{·} denotes

the indicator function. The battery queue of the WDi evolves as:

Bi(t+ 1) = min (Bi(t)− λeei(t) + λeei,h(t),Ωi) , (14)

where Ωi is the battery capacity of WDi.

F. Problem Formulation

Denote the system state at the beginning of time slot t as s(t) = {I(t), hP
i (t), h

I
i(t), ∀i} at the

HAP, where I(t) = {Q0(t), Qi(t), Bi(t)} denotes the queue backlog state. Our objective is to

maximize the long-term average data sensing rate of all WDs while satisfying system stability and

average power constraints of the HAP. Under time-varying system states, the wireless powered

MEC system requires judicious control of WPT, data sensing and task computation in sequential

time slots. We formulate the optimization problem as below:

(P1) max
ri(t),pi(t),fi(t),
p0(t),f0(t),∀i,t

R̄ = lim
N→+∞

1

N

∑N−1
t=0

∑K

i=1wiri(t) (15a)

s. t. (10), (12), (13), (15b)

∑K

i=1τi(t) ≤ T, ∀t, (15c)

lim
N→+∞

1

N

∑N

t=1E [e0(t)] ≤ eth0 , (15d)

0≤ ri(t)≤rmax, 0≤ pi(t)≤pmax
i ,0 ≤fi(t) ≤fmax

i ,0 ≤f0(t)≤fmax
0 , ∀i, t, (15e)

where wi is the weighting factor describing the importance of WDi. (10) depicts the data causality

at the HAP and WDs. (13) is the energy causality at WDs. (12) captures the data queue stability.
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(15c) constraints the time allocation on task offloading. (15d) represents that the average power

constraint at the HAP should be lower than the threshold eth0 . We aim at designing an online

algorithm which determines the actions in time slot t (i.e, {ri(t), pi(t), fi(t), p0(t), f0(t), ∀i})

based only on s(t), i.e., without the knowledge of future information. However, such an online

design faces two major challenges. On one hand, under the stochastic channels, it is difficult

to satisfy the long-term requirements for the decisions made in sequential time slots without

future channel information. On the other hand, the control decisions of the HAP and WDs

are inherently coupled in terms of energy consumption. This poses a great challenge to jointly

optimize the decisions over a long time span to achieve a good balance between the current and

future system performance. In the following, we propose a perturbed-Lyapunov-based Energy-

Efficient data Sensing and Edge computation (LEESE) algorithm to solve (P1), which achieves

an online control on wireless power transfer, data sensing and processing without requiring a

prior system knowledge.

III. ONLINE DATA SENSING AND COMPUTATION OFFLOADING OPTIMIZATION

A. Perturbed Lyapunov-based Optimization

Lyapunov optimization is extensively applied in stochastic MEC systems to ensure long-term

stability [12], [18]–[20]. Under stable power supply, the vanilla Lyapunov optimization technique

in these works relies crucially on the assumption that the feasible control action set is irrelevant

to the energy state. However, this condition is violated in the considered wireless powered

MEC system where the available control actions critically depend on the battery level under

the temporally correlated energy constraint (13). As a result, the vanilla Lyapunov optimization

cannot be directly used to solve (P1). In the following, we introduce a perturbed Lyapunov

method to tackle this problem. First, we introduce a perturbed battery queue for each WD, i.e.,

B̃i(t) , Bi(t)− Ωi, ∀i. (16)

The purpose of perturbation is to push the target battery level at the WDi toward Ωi. Then, as

shown in Section IV, the battery energy constraint (13) becomes implicit when we employ a

sufficiently large Ωi. To ensure the average power requirement at the HAP, we define a virtual

energy deficit queue with dynamics

Z0(t+ 1) = max
(

Z0(t) + λce0(t)− λce
th
0 , 0

)

, ∀t, (17)

where λc is a positive scaling factor. Then, we can satisfy the average power constraint (15d) by

stabilizing Z0(t) [24]. Let Θ(t) ,
{

B̃i(t), Z0(t), Qi(t), Q0(t), ∀i
}

be the system queue backlog.



10

We define the perturbed Lyapunov function as

Φ(t) =
1

2

∑K

i=1

[

B̃i(t)
]2

+
1

2

∑K

i=1 [Qi(t)]
2 +

1

2
[Z0(t)]

2 +
1

2
[Q0(t)]

2 , (18)

and the Lyapunov drift-plus-penalty function as

∆t
V = E [Φ(t + 1)− Φ(t)|Θt]− V E

[

∑K

i=1ri(t)|Θ(t)
]

, (19)

where V is a positive weight factor. The expectation is taken over the random channel state

given the current queue backlog Θ(t). For convenience, we denote a constant

C =
1

2

{

∑K

i=1

[

(

Dmax
i,C +Dmax

i,O

)2
+ (rmax)

2
]

+
(

∑K

i=1D
max
i,O

)2

+
(

Dmax
0,C

)2
+

∑K

i=1

[

(λee
max
i )2 +

(

λee
max
i,h

)2
]

+ (λce
max
0 )2 +

(

λce
th
0

)2
}

,

(20)

where Dmax
i,C ,

fmax
i T

φi
and Dmax

0,C ,
fmax
0

T

φ0
are the maximum per-slot processing data via local

computing and edge execution, respectively. Dmax
i,O , E [WT log2 (1+pmax

i γt)] is the maximum

average offloading rate of the WDi. e
max
i ,ecolunitrmax+p

max
i T+κi (f

max
i )3 T denotes the maximum

per-slot energy drain at the WDi. e
max
0 , κ0 (f

max
0 )3 T + pmax

0 T is the maximum per-slot energy

cost at the HAP. Then, we have the following lemma regarding ∆t
V .

Algorithm 1 The online LEESE algorithm to solve (P1)

Initialization: The initial system state s(t) = {Θ(0), hP
i (0), h

I
i(0), ∀i}, where Θ(0) =

{Q0(0), Z0(0), Qi(0), B̃i(0), ∀i}.

1: for each time slot t do

2: Observe the system state s(t).

3: Solve problem (22) for {p∗0(t), f
∗
0 (t), r

∗
i (t), f

∗
i (t), pi(t)

∗, τ∗i (t), ∀i}. Specifically, obtain p∗0(t), f
∗
0 (t), r

∗
i (t),

∀i, using (25), (27) and (29), and f∗
i (t), pi(t)

∗, τ∗i (t), ∀i by solving (30), respectively.

4: Execute the control action {p∗0(t), f
∗
0 (t), r

∗
i (t), f

∗
i (t), pi(t)

∗, τ∗i (t)} and update Θ(t+1) = {Q0(t+1), Z0(t+

1), Qi(t+ 1), B̃i(t+ 1), ∀i} according to (11), (16) and (17), respectively.

5: end for

Lemma 2. Given any feasible control actions and any queue backlogs, the Lyapunov drift-plus-

penalty function ∆t
V is upper bounded by

∆t
V ≤ C −E {L(t) |Θt} , (21)

where L(t) = V
∑K

i=1
wiri(t)+

∑K
i=1

Qi(t) (Di,C(t)+Di,O(t)−ri(t))+Q0(t) (D0,C(t)−
∑k

i=1
Di,O(t))+

∑K
i=1

λe(Bi(t)− Ωi)(ei(t)− ei,h(t)) + Z0(t)λc

(

eth0 − e0(t)
)

.

Proof. Please refer to Appendix B for detail.

The key idea of our proposed LEESE algorithm is to greedily minimize the right-hand-side

(RHS) of (21) in each time slot. The intuition behind this operation is that by minimizing ∆t
V ,

we not only push all the queues in Θ(t) towards zero but also maximize the data sensing rate
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R̄. We illustrate the procedures of LEESE in Algorithm 1. In time slot t, LEESE observes the

current system states s(t) and determines the actions of the HAP and WDs by solving per-slot

optimization problem

max
p0,f0,ri,pi,fi,∀i,

V
∑K

i=1wiri+
∑K

i=1Qi (Di,C+Di,O−ri) +Q0

(

D0,C −
∑k

i=1Di,O

)

+
∑K

i=1λe(Bi − Ωi)(ei − ei,h) + Z0λc

(

eth0 − e0
)

(22a)

s. t. Di,C+Di,O ≤ Qi, ∀i, (22b)

∑K

i=1τi ≤ T, (22c)

0 ≤ f0T/φ0 ≤ Q0, (22d)

0≤ri≤rmax, 0≤pi≤pmax
i ,0 ≤fi≤fmax

i , 0≤f0≤fmax
0 , 0≤p0≤pmax

0 , ∀i, (22e)

where we drop the time index “(t)” for brevity. Comparing with (15), we remove the energy

causality constraint (13) in the per-slot problem (22). In Section IV, we show that LEESE can

always respect (13) given that the battery capacity of each WD satisfies a mild condition. In

the following, we obtain the optimal solution to (22) by solving four independent subproblems,

which correspond to wireless charging power control at the HAP, CPU frequency allocation at

the HAP, data sensing control at WDs, and task execution control at WDs, respectively.

B. Optimal Wireless Charging Power

A close observation of (22) shows that wireless charging power at the HAP can be separately

optimized by solving the following problem

max
p0

G1(p0) = −
∑K

i=1λe (Bi − Ωi) ei,h − Z0λcp0T (23a)

s. t. 0 ≤ p0 ≤ pmax
0 . (23b)

Because Ωi ≥ Bi, Lemma 1 shows that (23a) is a concave function in p0. When Z0=0, G1(p0)

monotonically increases with p0 and thus p0=pmax
0 . When Z0>0, the first derivative of G1(p0) is

G′
1(p0) =

∂G1(p0)

∂p0
=
∑K

i=1λe (Ωi − Bi)
(a1,ia3,i − a2,i)hi

(p0hi + a3,i)
2 − Z0λcT = 0. (24)

Since a1,ia3,i ≥ a2,i, G′(p0) monotonically decreases with the increasing of p0 ∈ [0,∞). As

p0 → ∞, G′(p0) = −Z0λcT ≤ 0. In the following, we discuss the solution of (23) in two cases: 1)

When G′
1(0) > 0, (24) has a unique solution p̂0 ∈ [0,∞), where p̂0 can be efficiently obtained via

bi-section search method. In this case, the optimal wireless charging power p∗0 = min(p̂0, p
max
0 ).

2) When G′
1(0) ≤ 0, G′

1(p0) ≤ Z0λcT for all p0 ≥ 0. In this case, (23a) is a monotonically

decreasing function of p0 and thus p∗0 = 0. In summarize, the optimal solution to (23) is

p∗0 =



















min(p̂0, p
max
0 ), if G′

1(0) > 0 and Z0 > 0, (25a)

0, if G′
1(0) ≤ 0 and Z0 > 0, (25b)

pmax
0 , if Z0 = 0. (25c)
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(25) reveals that the optimal wireless charging follows a threshold structure: the HAP broadcasts

power to WDs when G′
1(0) > 0, and shuts down the wireless power charging circuit when

G′
1(0) ≤ 0. The threshold G′

1(0) decreases with the growth of battery level Bi and power deficit

Z0. In the special case of Z0 = 0 (i.e., the power budget of HAP is sufficient), the HAP broadcasts

energy to WDs at the maximum transmit power pmax
0 .

C. Optimal Edge CPU Frequency

Similarly, we can independently optimize the CPU frequency of the HAP by solving the

following convex optimization:

max
f0

− Z0λcκ0 (f0)
3 T +Q0f0T/φ0 (26a)

s. t. 0 ≤ f0T/φ0 ≤ Q0, 0 ≤ f0 ≤ fmax
0 , (26b)

where the optimal solution is

f ∗
0 = min

(

√

Q0/(3Z0λcφ0κ0), f̄
max
0

)

. (27)

Here, f̄max
0 = min(Q0φ0/T, f

max
0 ). As shown in (27), the edge CPU frequency increases with

data queue length Q0 and decreases with the power deficit queue Z0. Together with the optimal

charging power control, such an edge CPU frequency scheduling tends to stabilize the data queue

Q0 and satisfy the average power constraint at the HAP.

D. Optimal Data Sensing Rate

We obtain the optimal task data size collected in time slot t by solving the following linear

programming (LP) problem:

max
0≤ri≤rmax,∀i

∑K
i=1

(

V wi + λe(Bi−Ωi)e
col
unit −Qi

)

ri. (28)

The optimal solution of (28) exhibits a simple ON-OFF structure:

r∗i = rmax · 1Csen
i ≤0, ∀i, (29)

where Csen
i , Qi−V wi−λe(Bi−Ωi)e

col
unit. In particular, the WDi operates at the maximum data

sensing rate (i.e., ri = rmax) when Csen
i ≤ 0, and stops data sampling otherwise. Because Csen

i

grows with Qi and falls with Bi, the WDi reduces sensing activity when Qi is large or Bi is

small, thus avoiding continuous local data backlog and energy draining.

E. Optimal Task Execution

The task execution at WDs includes local computing and task offloading. By removing the

terms that are only related to p0, f0 and ri in (22), we solve the following optimization problem
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to optimize task execution of all the WDs

max
pi,fi,τi,∀i

∑K

i=1Di,O (Qi −Q0) +
∑K

i=1QiDi,C +
∑K

i=1λeB̃i (ei,O + ei,C) (30a)

s. t. Di,C +Di,O ≤ Qi, ∀i (30b)

∑K

i=1τi ≤ T, (30c)

0≤pi≤pmax
i , 0 ≤fi≤fmax

i , 0 ≤ τi ≤ T, ∀i. (30d)

Generally, (30) is a non-convex problem due to the time-varying coefficient (Qi −Q0) and non-

convex constraint (30b). Nonetheless, we show that (30) can be equivalently transformed into a

convex optimization as follows. For convenience, we denote the set of WDs as W . We introduce

auxiliary variables ri,O’s and rewrite (30) as

max
fi,τi,ri,O,ei,O,∀i

∑

i∈Wri,O (Qi −Q0) +
∑

i∈WQiDi,C +
∑

i∈WλeB̃i (ei,O + ei,C) (31a)

s. t. ri,O ≤ Di,O, ∀i, (31b)

Di,C + ri,O ≤ Qi, ∀i, (31c)

∑

i∈Wτi ≤ T, (31d)

0≤ei,O≤pmax
i τi, 0 ≤fi≤fmax

i , 0 ≤ τi ≤ T, ∀i, (31e)

where Di,O = Wτi log2

(

1 +
ei,Oγi
τi

)

. Define a subset of WDs V = {i|Qi − Q0 < 0, ∀i ∈ W},

we have the following interesting result for the optimal solution to (31).

Lemma 3. To achieve the optimum of (31), we always have ri,O = pi = τi = 0 for a WD i ∈ V ,

and ri,O = Di,O for a WD i ∈ W \ V .

Proof. For a WD i ∈ V , we have Qi − Q0 < 0. In this case, (31a) is a monotonic decreasing

function of ri,O and ei,O, and thus (31a) achieves maximum when ri,O = pi = τi = 0. In contrast,

for a WD i ∈ W \V where Qi −Q0 ≥ 0, (31a) monotonically increases with ri,O, and we have

ri,O = Di,O when (31) achieves optimum.

By substituting ri,O = pi = τi = 0, ∀i ∈ V , into (31a), we remove the terms with negative

(Qi −Q0) and equivalently transform (31) into a convex optimization problem. As a result,

we can use well-established CVX tools such as interior point method to optimally solve (31).

However, as the number of WDs increases, the interior point method exhibits cubic growth of

computational complexity in the worst case [25]. As a result, the CVX-based method may lead

to unacceptable computation overhead for online implementation in large-scale MEC systems.

As shown in Section V, the CVX-based method incurs almost 6% computation overhead to

produce an action when the time duration T = 5 seconds and the number of WDs K = 16.
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To resolve this issue, in the following, we propose a BCD-based method that obtains a closed-

form solution to (30). We show in simulations that the proposed BCD-based method achieves

almost identical performance as the optimal CVX-based methods, but incurs only 0.04% of the

computation delay.

The BCD-based method (as shown in Algorithm 2) solves (30) by alternately optimizing a)

the transmit power pi and local CPU frequencyfi and b) the time allocation τi, detailed as below.

a) Transmit Power and CPU Frequency Control: By fixing τi, ∀i, (30) can be decomposed

into K parallel subproblems, each of which is in the form of

max
fi,pi

F (fi) +G(pi) (32a)

s. t. Di,C +Di,O ≤ Qi, (32b)

0≤pi≤pmax
i , 0 ≤fi≤fmax

i , 0 ≤ τi ≤ T. (32c)

where F (fi) = λeB̃iκi (fi)
3 T +Qi

fiT

φi
and G(pi) = λeB̃ipiτi+(Qi −Q0) τi log2 (1 + piγi). In

(32), we maximize a weighted summation of energy cost and data processing rate at WDi.

Algorithm 2 Block coordinate descent based method to solve problem (30)

Initialization: The iteration index n = 0 and initial time allocation τ0i , ∀i.

1: repeat

2: Solve (32) for given τni , ∀i, and obtain the optimal solution {pn+1
i , fn+1

i }, ∀i, using (33).

3: Solve (34) for given {pn+1
i , fn+1

i }, ∀i, and obtain the optimal solution τn+1
i , ∀i, using (35).

4: Update n = n+ 1.

5: until The increase of the objective value (30a) is below a threshold ǫ > 0.

To solve (32), we introduce two auxiliary functions Fpi(x) ,
1
γi
2

1

Wτi

(

Qi−
xT
φi

)

− 1
γi

and Ffi(x) ,

[Qi−Wτi log2(1+xγi)]φi

T
. Intuitively, the feasible CPU frequency fi and transmit power pi must satisfy

that fi ∈ [0,f̄ th
i ] and pi ∈ [0, p̄thi ], where f̄ th

i = min (fmax
i ,Ffi(0)) and p̄thi =min (pmax

i ,Fpi(0)),

respectively. Due to the nonconvex constraint (32b) and time-varying coefficient (Qi − Q0) in

G(pi), (32) is generally a non-convex optimization problem. Nevertheless, we derive the closed-

form expression of optimal solution to (32) in the following proposition.

Proposition 1. The optimal solution of (32) {f ∗
i , p

∗
i } =







































{

f̂i, p̂i

}

, if Qi −Q0 ≥ 0 and D̂max
i,O + D̂max

i,C ≤ Qi and τi > 0, (33a)

{

f̂i,Fpi

(

f̂i

)}

, if Qi −Q0 ≥ 0 and D̂max
i,O + D̂max

i,C > Qi and B̃t = 0 and τi > 0, (33b)

{

f̆i,Fpi

(

f̆i

)}

, if Qi −Q0 ≥ 0 and D̂max
i,O + D̂max

i,C > Qi and B̃t < 0 and τi > 0, (33c)

{

f̂i, 0
}

, if Qi −Q0 < 0 or τi = 0. (33d)
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Here, f̂i = min
(√

−Qi

3λeB̃iκiφi
, f̄ th

i

)

and p̂i =
[

(Q0−Qi)W

λeB̃i ln 2
− 1

γi

]p̄thi

0
, with [·]yx = min(max(·, x), y).

D̂max
i,C = f̂iT

φi
and D̂max

i,O = Wτi log2 (1 + p̂iγi). f̆i =
[

f̄i
]fub

i

f lb
i

, with fub
i = f̂i, f

lb
i = max (0,Ffi (p̂i)),

and f̄i ∈ [0,+∞) is the unique solution of U ′(fi) = 3λeκiTB̃i (fi)
2 − λeB̃iT ln 2

Wφiγi
2

Qi
Wτi

−
fiT

Wτiφi +

T
φi
Q0 = 0. In particular, U ′(fi) monotonically decreases with fi, and thus f̄i can be efficiently

obtained via bisection search.

Proof. Please refer to Appendix C for detail.

The result in (33) shows that the optimal task execution control is closely related to the current

available energy Bi (absorbed in B̃i) and data queue length {Qi, Q0}, detailed as following: 1)

The local CPU frequency f̂i and transmit power p̂i increase with the battery level Bi. 2) A

larger data queue length Qi yields both higher f̂i and p̂i. 3) The optimal offloading solution

exhibits a threshold-based structure: the WDi performs task offloading only when the local data

queue backlog surpasses that at the edge (i.e., Qi −Q0 ≥ 0). Otherwise, it only conducts local

computation. Besides, the bigger the backlog gap Qi −Q0, the higher the transmit power p̂i.

b) Time Allocation for Task Offloading: Given the fi and pi in (33), ∀i, we obtain the optimal

time allocation by solving the following LP problem:

max
τi

∑K

i=1Ciτi, s. t.
∑K

i=1τi ≤ T, 0 ≤ τi ≤ τubi , (34a)

where Ci = (Qi −Q0)W log2

(

1 + pihi

N0

)

+ λeB̃ipi. τ
ub
i = min

(

T,
Qi−Di,C

W log2(1+piγi)

)

is obtained

by absorbing (32b) into the box constraint 0 ≤ τi ≤ T . In a special case of pi = 0, we have

τubi = T . We sort the WDs in an decreasing manner according to Ci, i.e., j ≤ i if Cj ≥ Ci.

Then, the optimal solution of (34) is

τ ∗i =



















0, if Ci ≤ 0, (35a)

min
(

τub1 , T
)

, if i = 1 and Ci > 0, (35b)

max
(

min
(

τubi , T −
∑i−1

j=1τ
ub
j

)

, 0
)

, if 1 ≤ i ≤ K and Ci > 0. (35c)

The result in (35) shows that the optimal time allocation has a threshold-based structure: the

WDi has non-zero offloading time only when Ci > 0 and shuts down the offloading circuits

otherwise. Since Ci increases with the battery level Bi and the difference of Qi −Q0, the WDi

is allocated with a large τi when Bi and Qi are large. Notice that Ci ≤ 0 when Qi − Q0 < 0.

The optimal time allocation is align with the optimal control of transmit power in (33). Overall,

the BCD-based LEESE algorithm creates a close-loop control to stabilize both Qi and Q0.
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IV. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the proposed LEESE algorithm. Recall that

LEESE removes the energy causality constraint (13) when solving (P1). Here, we first show that

LEESE can always satisfy (13) as long as the battery capacity Ωi satisfies a mild condition. Then,

we prove that LEESE also meets all the long-term performance requirements, thus producing a

feasible solution to (P1). In addition, it achieves a tradeoff between data sensing performance

and computation delay by tuning the Lyapunov parameter V .

We first show in the following Lemma 4 that the data queue length Qi(t) is bounded above.

Lemma 4. Given an initial data queue satisfying Qi(0) ∈ [0, Qmax], the data queue length at the

WDi satisfies that 0 ≤ Qi(t) ≤ Qmax, for t = 0, 1, 2, · · · , where Qmax = V + rmax.

Proof. We prove this lemma by induction. In particular, the base case is that 0 ≤ Qi(t) ≤ Qmax

holds initially at t = 0. For the induction step, we suppose that 0 ≤ Qi(t) ≤ Qmax holds

for time slot t. In the following, we prove that 0 ≤ Qi(t + 1) ≤ Qmax is true by considering

two cases: a) When the WDi collects zero-bit data in time slot t, it is straightforward that

Qi(t+ 1) ≤ Qi(t) ≤ V + rmax. b) When the WDi collects ri(t)-bit data in time slot t, we have

ri(t) = rmax and V +λe(Bi(t)−Ωi)e
col
unit−Qi(t) ≥ 0 according to (29). Since Bi(t)−Ωi ≤ 0 holds

for all t, we have Qi(t) ≤ V and thus Qi(t+ 1) ≤ Qi(t) + rmax ≤ V + rmax. By the induction

principle, it follows that 0≤Qi(t)≤Qmax is true for all t, which completes the proof.

Lemma 4 shows that although we assume in this paper infinite data buffer capacity for

simplicity of analysis, the data queue length is in fact bounded when implementing LEESE.

In the following Proposition 2, we derive a sufficient condition on Ωi to safely remove the

energy causality constraint (13) when implementing LEESE to solve (P1).

Proposition 2. The proposed LEESE algorithm respects the energy causality constraint (13) in

every time slot if

Ωi≥max

(

V

λee
col
unit

+ λee
max
i , Ω̄i

)

+ λep
max
0 T, ∀i, (36)

where Ω̄i is the unique solution of equation H(Ωi) = 0 and can be efficiently found via bisection

search, where H(Ωi) = λeκi

(

√

V+rmax

3λe(Ωi−λee
max
i )κiφi

)3

T+ (V+rmax)W

λe(Ωi−λee
max
i ) ln 2

T−Bmin.

Proof. Please refer to Appendix D for detail.
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Proposition 2 shows that the energy causality constraint becomes implicit when implementing

the LEESE algorithm to solve (P1) given sufficient battery capacity for each WD. In practice, the

threshold is Ωi ≥ 15.3 Joules using the parameters in Section IV, which is satisfied for a common

commercial battery with tens of thousand Joules capacity [26]. As shown in Proposition 2, larger

V leads to larger battery capacity. Since the data sensing rate increases with V (as shown later

in Proposition 3), LEESE provides a tradeoff between the battery capacity and achievable data

sensing performance. That is, by increasing the control parameter V , we achieves higher data

sensing rate at cost of more expensive battery hardware with larger capacity.

In the following, we show that the online solution produced by LEESE algorithm satisfies all

the long-term constraints in (12) and (15d) and achieves a [O(1/V ), O(V )] sensing rate-delay

performance tradeoff. To start with, we introduce the following auxiliary problem:

(P2) max
ri(t),pi(t),fi(t),
p0(t),f0(t),∀i,t

lim
N→+∞

1

N

∑N−1
t=0

∑K
i=1wiri(t) (37a)

s. t. (10), (12), (15c), (15d), (15e), (37b)

lim
N→+∞

1

N

∑N−1
t=0 E [ei(t)− ei,h(t)] ≤ 0, ∀i. (37c)

Compared to (P1), (P2) uses the long-term energy constraint (37c) in substitution for the energy

causality constraint (13) in (P1). Denote the optimal value of (P1) and (P2) as R̄∗
P1 and R̄∗

P2,

respectively. We prove in the following lemma that R̄∗
P1 ≤ R̄∗

P2.

Lemma 5. (P2) is a relaxation of (P1), i.e., R̄∗
P1 ≤ R̄∗

P2.

Proof. For any feasible solution of (P1), the battery dynamics of WDi, ∀i, must satisfy

Bi(t+ 1) ≤ Bi(t)− λeei(t) + λeei,h(t), t = 0, · · · , N − 1. (38)

By summing up both sides over t = 0, · · · , N − 1, taking the expectation, diving both sides by

λeN and letting N go to infinity, we have

lim
N→+∞

1

λeN
E [Bi(N)]≤ lim

N→+∞

1

λeN
E [Bi(0)]− lim

N→+∞

1

N

N−1
∑

t=0

E [ei(t)− ei,h(t)] . (39)

Since Bi(t) ≤ Ωi < +∞, we have limN→+∞
1

λeN
E [Bi(N)] = limλeN→+∞

1
N
E [Bi(0)] = 0, i.e.,

the feasible solution of (P1) satisfies the constraint (37c) in (P2). Hence, (P2) is a relaxation of

(P1), and thus R̄∗
P1 ≤ R̄∗

P2.

The considered fading channels are i.i.d. across different time slots. We define a class of

stationary and randomized policy called ω-only policy [24], which makes control decisions only

based on the current channel state (and independent to the queue backlog state Θ). We assume
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(P2) is feasible and satisfies the following Slater condition.

Assumption 1. There exists a constant ǫ>0 and ϕ(ǫ)≤R̄∗
P2 and an ω-only policy Γ satisfying

that

E

[

∑K

i=1r
Γ
i (t)

]

= ϕ(ǫ), E
[

eΓ0 (t)
]

≤ eth0 − ǫ, E

[

∑K

i=1D
Γ
i,O(t)

]

≤ E
[

DΓ
0,C(t)

]

− ǫ, (40a)

E
[

eΓi (t)− eΓi,h(t)
]

≤ −ǫ, E
[

rΓi (t)
]

≤ E
[

DΓ
i,O(t) +DΓ

i,C(t)
]

− ǫ, ∀i. (40b)

In the following Proposition 3, we prove that when using convex optimization based method

or BCD-based method to solve subproblem (30), LEESE keeps stability of system data queues

and achieves an asymptotically optimal solution to the primary problem (P1).

Proposition 3. Suppose that for any s(t) in time slot t, LEESE produces a solution to subproblem

(30) with limited optimality gap υ ≥ 0, and (36) is satisfied. Then, when implementing the

proposed LEESE algorithm to solve (P1), we have that:

a) The achievable long-term average data sensing rate, denoted as R̄Ψ, has a lower bound

R̄Ψ ≥ R̄∗
P1 −

C + υ

V
, (41)

where C is a constant defined in (20).

b) The virtual power deficit queue Z(t) is strongly stable, and the long-term average power

constraint (15d) is satisfied.

c) The data queue stability (12) is guaranteed. The average data queue length at the HAP and

WDi, ∀i, satisfy that

lim
N→+∞

1

N

∑N
t=0E [Q0(t)] ≤

C + υ + V
(

R̄∗
P1 − ϕ(ǫ)

)

ǫ
< +∞, (42a)

lim
N→+∞

1

N

∑N

t=0E [Qi(t)] ≤
C + υ + V

(

R̄∗
P1 − ϕ(ǫ)

)

ǫ
< +∞. (42b)

Proof. Please refer to Appendix E for detail.

As shown in Proposition 2 and 3, LEESE can produce a feasible solution to problem (P1) and

achieves an [O(1/V ), O(V )] sensing rate-delay tradeoff given a limited optimality gap υ and

a large enough battery capacity Ωi. Specifically, as V increases, LEESE can improve the data

sensing rate at rate of O(1/V ), but at the price of longer data queue length (processing delay)

increasing at rate of O(V ). In Section V, we will investigate the impact of V on the long-term

sensing performance and show that LEESE achieves a negligibly small υ for the subproblem

(30).
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TABLE I: Simulation Parameters

W = 30 KHz ecolunit = 10
−9 Joules/bit T = 5 second

k0 = 10
−26 fmax

0 = 2 GHz φ0 = 1000 cycles/bit

N0 = 10
−10 Watt Bmin = 10

−3 Joules V = 32× 10
5

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed LEESE algorithm via simulations.

All simulations are conducted by Python 3.8 and on a computer with 16 GB RAM and Inter Core

i7-6700 3.4 GHz CPU. In all simulations, we adopt the parameters of the Powercast TX91501-

3W transmitter with maximum transmit power pmax
0 = 3 Watt and carrier frequency fp

c = 915

MHz as the wireless power transmitter at the HAP. Unless otherwise stated, we consider K = 8

WDs with identical maximum transmit power pmax
i = 5 dBm, ∀i, and communication carrier

frequency f I
c = 2.4 GHz. We set the distance between the HAP and WDi as di = 2+ 8

K−1
(i−1)

in meters, for i = 1, · · · , K. We set energy harvesting parameters a1,i = 2.463, a2,i = 1.635

and a3,i = 0.826, ∀i [21]. For both WPT and data communication, we model the channels as

Rayleigh fading channels, where the corresponding channel gain is hx
i (t) = ςx(t)GA

(

3×108

4πfx
c di

)σ

,

where x ∈ {p, I} indicates the channel for WPT and data communication, respectively. ςx(t) is

an independent exponential random variable of unit mean. GA = 4.11 captures the total antenna

gain. σ ≥ 2 denotes the path-loss exponent. Unless otherwise stated, we set σ = 2.4. Likewise,

we set equal wi = 1, ki = 10−26, φi = 1000, and fmax
i = 16 MHz, for all i = 1, · · · , K. In this

case, all the WDs have the same battery capacity (denoted as Ω) according to Proposition 2. We

initialize all the data queue length to 0, i.e., Q0(0) = Qi(0) = 0, ∀i, and initialize full battery

level at all WDs, i.e., Bi = Ω, ∀i. Besides, we set the time-average energy budget at the HAP

eth0 = 8 Joules, and the maximum sensing data size rmax = 512 Kbits. The simulation length is

set to N = 5× 104 time slots. The other parameters used in simulation are listed in Table I.

A. Asymptotic Optimality of LEESE

We first investigate the performance of the proposed BCD-based method in solving the sub-

problem (30). For comparison, we consider the CVX-based method as the optimal benchmark.

In particular, we apply the Python-embedded CVXPY solver [27] and the BCD-based method

to solve (30), respectively, and record the obtained results over 500 time slots in Fig. 2. The

result shows that the BCD-based method achieves almost identical performance as the optimal

solution when solving (30), and thus achieves a negligibly small optimality gap υ. This result

confirms the asymptotic optimality of LEESE in Proposition 3.
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Fig. 2: Performance of the BCD-based method in solving per-slot subproblem (30).
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Fig. 4: Feasibility of PLySE and Benchmark methods.

Then, we investigate in Fig. 3 the impact of parameter V on the performance of LEESE. For

convenience, we denote E[Q̄i] as the mean value of the long-term average data queue length Q̄i

over K WDs. It displays that the data sensing rate R̄ and data queue length at the HAP Q̄0 grow

with V and gradually saturate when V is large (i.e., V ≥ 32×105). However, E[Q̄i] and Ω grow

rapidly with V especially when V > 32× 105. These results agree with the theoretical analysis

in section IV, where a larger V produces a higher R̄ and longer data queues. In the following

simulations, we set V = 32×105, whereby LEESE achieves near-optimal data sensing rate with

small data queue length and requires small battery capacity.

B. Feasibility of LEESE

We investigates the feasibility of the proposed LEESE algorithm to the problem (P1). For

convenience, we denote E[Qi] and E[Bi] as the per-slot average data queue length and per-slot

average battery level over K WDs. In Fig. 4(a)-(c), we plot the moving average of the data queue
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length Q0 and E[Qi] as well as the edge energy consumption e0 over the last 400 time slots.

The results show that LEESE stabilizes the data queues Q0 and Qi, and satisfies the long-term

average energy consumption constraint at the HAP. We also plot in Fig. 4(d) the average battery

level E[Bi] as time proceeds (the red line), and the maximum and minimum Bi in each time

slot (the light red shadow). We observe that the battery levels of all WDs are all in the range of

[0,Ω] over time, which means that LEESE satisfies the energy causality constraints even when it

is removed when solving for the online control solutions. All these results verify the feasibility

of the proposed LEESE algorithm.

C. Performance Comparison Under Various System Parameters

To verify the effectiveness of the proposed LEESE algorithm, we consider the following four

representative benchmark methods for comparison:

1) CVX-based LEESE (CVX-LEESE): It minimizes the upper bound of drift-plus-penalty

function in (21) and obtains the optimal solution to the per-slot problem (22) using convex

optimization algorithms, e.g., the Python-embedded CVXPY solver.

2) Local computing only (LCO): All WDs compute all tasks locally rather than task offloading.

Specifically, LCO computes p∗0, f
∗
0 and r∗i similar to LEESE (i.e., using (25), (27) and (29),

respectively), while obtains f ∗
i by solving (30) with p∗i = τ ∗i = 0.

3) Equal offloading time (EqOT): EqOT computes p∗0, f
∗
0 and r∗i similar to LEESE, while

obtains f ∗
i and p∗i by solving (30) with τ ∗i = T

K
, ∀i.

4) Myopic edge processing (MyopicEdge): The MyopicEdge method replaces the long-term

average power constraint (15d) by N per-slot energy cost constraints, i.e., k0f0(t)
3T +p0(t)T ≤

teth0 −
∑t−1

n=1 e0(n), for t = 1, · · · , N . In time slot t, it computes r∗i , f ∗
i , p∗i and τ ∗i similar to

LEESE, while obtains p∗0 and f ∗
0 by solving the following problem:

max
p0,f0

Q0f0T/Φ0 +
∑K

i=1λe (Ωi − Bi) ei,h (43a)

s. t. (23b), (26b), (43b)

k0f
3
0T + p0T ≤ teth0 −

∑t−1
n=1e0(n), (43c)

where we drop the time index “t” for concision. By doing so, the MyopicEdge method tends

to exhaust all the battery energy available for optimal per-slot performance. (43) is a convex

optimization problem and can be solved by off-the-shelf convex optimization tools like interior

point method. It is worth noting that EqOT and MyopicEdge optimize the decisions on either
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Fig. 5: Long-term average data sensing rate R̄ versus: (a) path-loss exponent between the HAP and WDs σ; (b) energy budget

eth0 at the HAP; (c) maximum sensing data size rmax; and (d) number of WDs K.

wireless power transfer or data processing, while the proposed LEESE algorithm achieves a joint

optimization on both of them. To distinguish from the CVX-LEESE, we denote the proposed

LEESE algorithm based on BCD as BCD-LEESE in the following results.

We first compare in Fig. 5(a) the performance of BCD-LEESE and benchmark methods under

different path-loss exponent σ. As σ increases, all the methods observes a rapid performance

degradation. This is because that a larger σ leads to a more severe signal attenuation during

computation offloading and less received energy at WDs. Since a WD prefers to local computing

when experiencing deep fading channel, all the methods eventually achieves a similar R̄ as σ

grows. We also observe that CVX- and BCD-based LEESE achieve the same data sensing rate for

all considered σ’s, and show a significant superiority over the other three benchmark methods. In

particular, BCD-LEESE offers 76.9%, 36.2%, 21.9% higher data sensing performance in average

than LCO, EqOT, and MyopicEdge, respectively.

In Fig. 5(b), we plot the long-term average data sensing rate when the edge energy budget

eth0 varies. As shown in the figure, BCD-LEESE achieves similar performance as CVX-LEESE,

and greatly outperform the other three benchmarks for all considered eth0 ’s. The average data

sensing rate of all the methods increases with eth0 and finally saturate due to the limited system
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TABLE II: Average computation time per slot (second)

Number of WDs K 1 2 4 8 16 32

BCD-LEESE 2.0 × 10
−4

3.1 × 10
−4

5.2× 10
−4

9.8× 10
−4

1.8× 10
−3

3.6× 10
−3

CVX-LEESE 7.8 × 10
−2

8.9 × 10
−2

0.12 0.18 0.32 0.59

resources (e.g., transmit power and local CPU frequency). As eth0 increases, BCD-based LEESE

enlarges its performance gaps to LCO and EqOT. On the contrary, the data sensing performance

of MyopicEdge is comparable to BCD-based LEESE when eth0 ≥ 16 Joules, but dramatically

deteriorates when eth0 decreases. This is because that a sufficiently large eth0 covers the energy

waste during WPT under MyopicEdge.

We also show in Fig. 5(c) the impact of task data size rmax on the average data sensing

performance. As rmax grows, all the methods observe increasing data sensing rate and finally

achieve a saturated R̄ due to limited energy budget. Compared to the other four methods,

MyopicEdge is more sensitive to sensing data size. Specifically, MyopicEdge yields the worst

data sensing performance when rmax ≤ 64 Kbits, while outperforms LCO and EqOT when

rmax ≥ 256 Kbits. This is because that MyopicEdge performs a channel-oblivious WPT process.

For a small rmax, it wastes more energy during WPT especially with the non-linear energy

harvesting efficiency. For all considered rmax’s, BCD- and CVX-based LEESE methods are on

top of each their and offer substantial performance gain over the other three benchmark methods.

In Fig. 5(d), we further evaluate the data sensing performance under different number of

WDs K. For each K, we generate di (i = 1 · · · , K) independently from a truncated Gaussian

distribution, i.e., di = min (max (X, 2) , 10), where X ∼ N (d̄, δd) is a Gaussian random variable

with average WD-HAP distance d̄ = 5 m and standard deviation of placement spread δd = 3 m.

Each point in Fig. 5(d) is an average performance over 20 independent placements of the WDs.

Intuitively, a larger number of WDs produces a higher energy efficiency. For all the methods,

we see that R̄ grows with K. In a special case of K = 1, the two LEESE algorithms and EqOT

yield the same time allocation decision (i.e., τ1 = T ), and thus achieving the equal data sensing

rate. Besides, as K increases, we observe a crossover between EqOT and MyopicEdge. This

result implies that an energy efficient WPT is more favorable than a deliberated time allocation

when K is small, whereas the reverse is the case when K is large. Nevertheless, BCD-LEESE

and CVX-LEESE dominate the three benchmark methods for all considered K’s in terms of

average data sensing rate.

As shown in Fig. 5, BCD-LEESE algorithm achieves almost identical performance to CVX-
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LEESE for all considered system parameters. These results confirm the effectiveness of BCD-

LEESE in the online design of the considered system. To further show the efficiency of BCD-

LEESE, we apply BCD-LEESE and CVX-LEESE to solve the per-slot problem (22) over 5000

time slots, and record in Table II the average computation time per slot under various number of

WDs K. The results show that BCD-LEESE takes at most 3.6×10−3 seconds to make an online

decision in all the considered K’s, while CVX-LEESE generates acceptable computation time

only when K is very small, e.g., K = 1 and 2. In general, the channel coherence time of an indoor

IoT system is no more than several seconds. The costly computation overhead makes CVX-

LEESE incompetent to achieve real-time control in a practical MEC system with large number of

WDs. In contrast, the proposed BCD-LEESE algorithm incurs almost neglected latency overhead,

e.g., only about 0.04% overhead when the time duration T =5 seconds for K=16, and thus is

particularly suitable for real-time implementation of large-scale MEC systems.

VI. CONCLUSION

In this paper, we proposed an energy-efficient online control policy for a wireless powered

MEC system. We formulated a multi-stage stochastic optimization problem that maximizes the

long-term average sensing rate of all WDs under system data queue stability and long-term

average power constraints at the HAP. The online design requires jointly control decisions on

wireless power transfer, data sensing and processing. To solve the problem, we developed an

online algorithm named LEESE based on the perturbed Lyapunov optimization technique. We

proved that the proposed LEESE algorithm produces a feasible solution to the target problem,

and achieves an [O(1/V ), O(V )] sensing rate-delay performance tradeoff. Compared to other

representative benchmark methods, numerical results demonstrated that the proposed LEESE

algorithm achieves more than 21.9% higher sensing rate and consumes only sub-millisecond

computation time.

APPENDIX A

PROOF OF LEMMA 1

By taking the first-order and second-order derivatives of ei,h(t) with respect to p0(t), we have
∂ei,h(t)

∂p0(t)
=

hi(t)(a1,ia3,i − a2,i)

(p0(t)hi(t) + a3,i)2
,
∂2ei,h(t)

∂p0(t)2
=

2(hi(t))
2(a2,i − a1,ia3,i)

(p0(t)hi(t) + a3,i)3
. (44)

Since the harvested energy monotonically increases with the input power, we have
∂ei,h(t)

∂p0(t)
≥ 0

and thus a1,ia3,i − a2,i ≥ 0. Besides, the harvested energy should be no less than 0 for all
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p0(t) ≥ 0. We have that limp0(t)→+∞ ei,h(t) = a1,i −
a2,i
a3,i

=
a1,ia3,i−a2,i

a3,i
≥ 0 and thus a3,i > 0. By

substituting a1,ia3,i − a2,i ≥ 0 and a3,i > 0 into
∂2ei,h(t)

∂p0(t)2
, we have that

∂2ei,h(t)

∂p0(t)2
≤ 0. Therefore,

ei,h(t) is a concave function of p0(t).

APPENDIX B

PROOF OF LEMMA 2

Based on the update rule of Qi(t), we have that
1

2
(Qi(t+ 1))

2−
1

2
(Qi(t))

2
=

1

2
(ri(t)−Di,C(t)−Di,O(t))

2
+Qi(t) (ri(t)−Di,C(t)−Di,O(t))

≤
1

2

[

(Di,C(t)+Di,O(t))
2
+(ri(t))

2
]

−Qi(t) (Di,C(t) +Di,O(t)−ri(t)) .

(45)

By summing over the i = 1, · · · , K, and taking conditional expectation of (45), we have

E

[

1

2

∑K

i=1

[

(Qi(t+ 1))
2−(Qi(t))

2
]

|Θt

]

≤
∑K

i=1C1,i−E

[

∑K

i=1Qi(t) (Di,C(t)+Di,O(t)−ri(t))|Θt

]

. (46)

Here, C1,i is a constant obtained as

E

[

1

2

[

(Di,C(t) +Di,O(t))
2 + (ri(t))

2
]

]

≤
1

2

[

(

Dmax
i,C +Dmax

i,O

)2
+ (rmax)

2
]

, C1,i, (47)

where Dmax
i,O =E [WT log2 (1+pmaxγi(t))] and Dmax

i,C =
fmax
i T

φi
. Following the similar steps, we have

E

[

1

2
(Q0(t+ 1))2 −

1

2
(Q0(t))

2 | Θt

]

≤ C2 − E

[

Q0(t)
(

D0,C(t)−
∑k

i=1Di,O(t)
)

| Θt

]

, (48)

E

[

1

2

∑K

i=1

(

B̃2
t+1 − B̃2

t

)

| Θt

]

≤
∑K

i=1C3,i−E

[

∑K

i=1λe(Bi(t)−Ωi)(ei(t)−ei,h(t)) | Θt

]

, (49)

where C2 =
1
2

[

(

∑k
i=1D

max
i,O

)2

+
(

Dmax
0,C

)2
]

with Dmax
0,C =

fmax
0

T

φ0
, and C3,i=

1
2

[

(λee
max
i )2+

(

λee
max
i,h

)2
]

with emax
i = ecolunitrmax + pmax

i T + κi (f
max
i )3 T and emax

i,h = pmax
0 T .

For the virtual queue Z0(t), we use the inequality [max(·, 0)]2 ≤ (·)2 and obtain that
1

2
(Z0(t+ 1))

2 −
1

2
(Z0(t))

2 ≤
1

2

(

λce0(t)− λce
th
0

)2
+ Z0(t)λc

(

e0(t)− eth0
)

≤
1

2
(λce0(t))

2
+

1

2

(

λce
th
0

)2
+ Z0(t)λc

(

e0(t)− eth0
)

.

(50)

Correspondingly, we have

E

[

1

2
(Z0(t+ 1))2 −

1

2
(Z0(t)) | Θt

]

≤ C4 − E
[

Z0(t)λc

(

eth0 − e0(t)
)

| Θt

]

, (51)

where C4 =
1
2

[

(λce
max
0 )2 +

(

λce
th
0

)2
]

and emax
0 = κ0 (f

max
0 )3 T + pmax

0 T .

By substituting (46), (48), (49) and (51) into (19), we obtain the upper bound in (21).

APPENDIX C

PROOF OF PROPOSITION 1

We solve (32) by considering following three cases in terms of the value of τi and Qi −Q0.

Case I: τi > 0 and Qi − Q0 ≥ 0. Notice that B̃i = Bi − Ωi ≤ 0 always holds. In this

case, F (fi) and G (pi) are concave functions and achieve maximum at f̃i =
√

−Qi

3λeB̃iκiφi
and

p̃i =
(Q0−Qi)W

λeB̃i ln 2
− 1

γi
, respectively. When B̃i = 0, we set f̃i = fmax

i and p̃i = pmax
i . Denote f̂i =
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min
(

f̃i, f̄
th
i

)

and p̂i = [p̃i]
p̄thi
0 . Then, the optimal solution must be in the region of f ∗

i ∈
[

0, f̂i

]

and p∗i ∈ [0, p̂i], where both F (fi) and G (pi) are monotonically increasing. Let D̂max
i,C = f̂iT

φi
and

D̂max
i,O = Wτi log2 (1 + p̂iγi) denote the maximum amount of data processed via local computing

and computation offloading in time slot t, respectively. We derive the optimal solution as below:

1) When D̂max
i,O + D̂max

i,C ≤ Qi, we can directly have that f ∗
i = f̂i and p∗i = p̂i.

2) When D̂max
i,O + D̂max

i,C > Qi, Di,O + Di,C = Qi must hold at optimum. By substituting

pi = Fpi(fi) into G(pi), we can equivalently express (32) as

max
fi

U (fi) , s. t. f lb
i ≤fi≤fub

i , (52)

where U (fi) = λeB̃i

[

Fpi (fi) τi + κi (fi)
3 T
]

+(Qi)
2 + Q0fiT

φi
− Q0Qi, fub

i = f̂i, and f lb
i =

max (0,Ffi (p̂i)). When B̃i = 0, U (fi) is a linear function of fi. The optimal solution of (52)

is f ∗
i = f̂i and thus p∗i = Fpi

(

f̂i

)

. When B̃i < 0, U (fi) is a concave function. Suppose

U (fi) reaches maximum when fi = f̄i. We obtain f̄i by solving equation U ′(fi) = ∂U
∂fi

=

3λeκiTB̃i (fi)
2−λeB̃iTA02

−
fiT

Wτiφi + T
φi
Q0 = 0, where A0 =

ln 2
Wφiγi

2
Qi
Wτi . By taking the derivative

of U ′ with respect to fi, we can easily find that ∂U ′

∂fi
< 0 for fi ∈ [0,+∞). That is, U ′(fi) is

a monotonically decreasing function of fi. Besides, we have U ′(fi) = −λeTA0B̃i +
T
φi
Q0 > 0

when fi = 0, and U ′(fi) → −∞ When fi → +∞. Therefore, U ′(fi) = 0 has a unique

solution f̄i ∈ [0,+∞). As a result, we can efficiently obtain f̄i via bi-section search. Then, for

the case of B̃t < 0, the optimal solution of (52) is f ∗
i = f̆i and thus p∗i = Fpi

(

f̆i

)

, where

f̆i = min
(

max
(

f lb
i , f̄i

)

, fub
i

)

.

Case II: τi > 0 and Qi − Q0 < 0. In this case, F is a concave function of fi, while G

monotonically decreases with pi. Then, the optimal solution of (32) is p∗i = 0 and f ∗
i = f̂i.

Case III: τi = 0. In this case, the objective of (32) becomes F (fi) which is a concave function

of fi. The optimal solution can be easily obtained as p∗i = 0 and f ∗
i = f̂i.

By summarizing the three cases above, we finally obtain the result in (33).

APPENDIX D

PROOF OF PROPOSITION 2

We initially set Ωi ≥ λee
max
i + λep

max
0 T , ∀i. In the following, we seek a threshold for Ωi

so that the constraint (13) is satisfied for all Bi(t) ∈ [0,Ωi], ∀i. In particular, we consider the

following three cases.

Case I: When Bi(t) ∈ [λee
max
i ,Ωi], we have Bi(t+ 1) ≤ min (Ωi + λep

max
0 T,Ωi) = Ωi based

on the update rule of Bi(t) in (14). Since Bi(t) ≥ λee
max
i ≥ λeei(t) for all feasible ri(t), τi(t),

fi(t) and pi(t), the energy causality constraint (13) is satisfied, and thus 0 ≤ Bi(t+ 1) ≤ Ωi.
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Case II: When Bi(t) ∈ [0, Bmin], we have Bi(t+1) ≤ Bi(t)+λeei,h(t) ≤ Bmin+λep
max
0 T < Ωi.

In this case, we have ei,col(t) = ei,O(t) = ei,C(t) = 0 under the energy-aware management policy.

The energy causality constraint (13) is obviously satisfied and thus 0 ≤ Bi(t + 1) < Ωi.

Case III: When Bi(t) ∈ [Bmin, λee
max
i ], we have Bi(t + 1) ≤ λee

max
i + λep

max
0 T ≤ Ωi. To

respect the energy causality λeei(t) ≤ Bi(t) for all Bi(t) ∈ [Bmin, λee
max
i ], one possible solution

is to spend zero-Joule energy on data sensing and Bmin-Joule energy at most on task offloading

and local computing. Accordingly, we determine the threshold of Ωi in this case as follows.

1) Based on (29), we have that ri(t) = 0 when
V−Qi(t)

λee
col
unit

+Bi(t) < Ωi. Since
V−Qi(t)

λee
col
unit

+Bi(t) <

V

λee
col

unit

+ λee
max
i for Bi(t) ∈ [Bmin, λee

max
i ], where the inequality holds by dropping the negative

terms
−Qi(t)

λee
col

unit

and setting Bi(t) = λee
max
i . Then, we can set Ωi ≥

V

λee
col

unit

+ λee
max
i such that the

energy cost on data sensing is zero.

2) Based on (33) and (35), the WDi consumes most energy on data transmission and local

computing when {f ∗
i (t), p

∗
i (t)} =

{

f̂i(t), p̂i(t)
}

and τi(t) = T . To ensure λe (ei,O(t) + ei,C(t)) ≤

Bmin, it is sufficient to satisfy λe (êi,O(t) + êi,C(t)) ≤ Bmin, where êi,O(t) = p̂i(t)T and êi,C(t) =

κe

(

f̂i(t)
)3

T . Recall that p̂i(t) = [p̃i(t)]
p̄thi (t)
0 and f̂i(t) = min

(

f̃i(t), f̄
th
i (t)

)

, where f̃i(t) =
√

−Qi(t)

3λeB̃i(t)κiφi
and p̃i(t) = (Q0(t)−Qi(t))W

λeB̃i(t) ln 2
− 1

γi(t)
, respectively. Obviously, f̂i(t) ≤ f̃i(t). In the

following, we determine the threshold of Ωi in two sub-cases:

a) When p̃i(t) > 0, we have p̂i(t) ≤ p̃i(t). Since Qi(t) ≤ V + rmax (see Lemma 4), we have

f̂i(t)≤

√

−Qi(t)

3λeB̃i(t)κiφi

≤

√

V +rmax

3λe (Ωi−λeemax
i )κiφi

, p̂i(t)≤
(Q0(t)−Qi(t))W

λeB̃i(t) ln 2
−

1

γi(t)
≤

(V +rmax)W

λe (Ωi−λeemax
i ) ln 2

. (53)

By submitting (53) into λe (êi,O(t) + êi,C(t)) ≤ Bmin, we obtain the threshold of Ωi by solving

H(Ωi) = λeκi

(
√

V + rmax

3λe (Ωi − λeemax
i )κiφi

)3

T+
(V + rmax)W

λe (Ωi − λeemax
i ) ln 2

T−Bmin ≤ 0. (54)

Notice that Ωi ≥ λee
max
i . Obviously, H(Ωi) monotonically decreases with Ωi ∈ (λee

max
i ,+∞).

Meanwhile, H(Ωi) → +∞ when Ωi → λee
max
i and H(Ωi) → −Bmin when Ωi → +∞.

Therefore, H(Ωi) = 0 has a unique solution Ω̄i, which can be easily obtained via bisection

method. Then, we can satisfy λe (êi,O(t) + êi,C(t)) ≤ Bmin by setting Ωi ≥ Ω̄i.

b) When p̃i(t) ≤ 0, we have p̂i(t) = 0. In this sub-case, we determine the threshold of Ωi

satisfying λeêi,C(t) ≤ Bmin by solving the following inequality:

λeκi

(
√

V + rmax

3λe (Ωi − λeemax
i )κiφi

)3

T ≤ Bmin. (55)

Obviously, Ωi ≥ Ω̄i also satisfies (55). In summarize, we can set Ωi≥max
(

V

λee
col
unit

+ λee
max
i , Ω̄i

)

+

λep
max
0 T , ∀i, to make the energy causality constraint (13) implicit for all Bi(t) ∈ [0,Ωi], ∀i,
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which completes the proof.

APPENDIX E

PROOF OF PROPOSITION 3

We start with two lemmas, which are useful to prove Proposition 3.

Lemma 6. The maximal utility R̄∗
P2 of problem (P2) can be achieved arbitrarily closely by an

ω-only policy. That is, for any δ > 0, there is an ω-only policy Π, achieving

E

[

∑K

i=1r
Π
i (t)

]

≥ R̄∗
P2 − δ, (56)

while respecting the constraints (10), (15c) and (15e) in (P2), and satisfying

E
[

eΠ0 (t)− eth0
]

≤ δ, E

[

∑K

i=1D
Π
i,O(t)

]

≤ E
[

DΠ
0,C(t)

]

+ δ, (57a)

E
[

eΠi (t)− eΠi,h(t)
]

≤ δ, E
[

rΠi (t)
]

≤ E
[

DΠ
i,O(t) +DΠ

i,C(t)
]

+ δ, ∀i. (57b)

Proof. The proof follows similar steps of Theorem 4.5 in [24] and is omitted here for brevity.

Lemma 7. If Z(t) is mean rate stable, i.e., limN→∞
E[Z(N)]

N
=0, then the HAP satisfies the average

constraint (15d).

Proof. This result is a derivation of Theorem 2.5 in [24] and can be proved following the similar

steps in Section 4.4 in [24]. The detail proof is omitted here for brevity.

Proof of Proposition 3: Denote the policy produced by LEESE as Ψ. Since LEESE minimizes

the upper bound (21) on the Lyapunov drift-plus-penalty function ∆t
V , we have that

∆t
V = E [Φ(t+ 1)− Φ(t)|Θt]− V E

[

∑K

i=1ri(t)|Θ(t)
]

≤ C + υ −E
{

LΨ(t) |Θt

}

≤ C + υ −E
{

LΠ(t) |Θt

}

(†)
= C+υ−E

[

V
∑K

i=1r
Π
i (t)

]

+E

[

∑K

i=1Qi(t)
(

rΠi (t)−DΠ
i,C(t)−DΠ

i,O(t)
)

]

+ E
[

Z0(t)λc

(

eΠ0 (t)− eth0
)]

+ E

[

Q0(t)
(

∑k

i=1D
Π
i,O(t)−DΠ

0,C(t)
)]

+ E

[

∑K

i=1λe(Ωi − Bi(t))(e
Π
i (t)− eΠi,h(t))

]

(‡)

≤ C + υ − V
(

R̄∗
P2 − δ

)

+
[

∑K

i=1Q
max +Q0(t) +

∑K

i=1λe(Ωi) + Z0(t)λc

]

δ,

(58)

where LΨ(t) and LΠ(t) are the value of L(t) in Lemma 5 under policy Ψ and Π, respectively.

(†) holds due to the independence of policy Π on Θt. (‡) is obtained by plugging (57) and using

the fact that Qi(t) ≤ Qmax and Bi(t) ≤ Ωi, ∀i. Let δ → 0, we have that

E [Φ(t+ 1)− Φ(t)|Θt]− V E

[

∑K

i=1r
Ψ
i (t)|Θ(t)

]

≤ C + υ − V R̄∗
P2. (59)

By summing up the both sides of (59) over t = 0, · · · , N − 1, taking iterated expectations, and

then dividing by V N , we have that
E [Φ(N)]−E [Φ(0)]

NV
−

1

N

∑N−1
t=0 E

[

∑K

i=1r
Ψ
i (t)

]

≤
C + υ

V
−R̄∗

P2. (60)

By rearranging terms and setting N → ∞, we prove a) that

R̄Ψ = lim
N→+∞

1

N

∑N−1
t=0 E

[

∑K

i=1r
Ψ
i (t)

]

≥ R̄∗
P2−

C + υ

V

(§)

≥ R̄∗
P1−

C + υ

V
, (61)
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where § holds for R̄∗
P1 ≤ R̄∗

P2.

To prove b) and c), we plug the ω-only policy Γ that satisfies the Slater conditions (40) into

the RHS of the inequality (†) in (58). By dropping the negative term −ǫ
∑K

i=1 λe (Ωi − Bi(t)),

we obtain

E [Φ(t+ 1)−Φ(t)|Θt]−V E

[

∑K

i=1r
Ψ
i (t)|Θ(t)

]

≤C+υ −V ϕ(ǫ)−
(

Z0(t)λc+
∑K

i=1Qi(t)+Q0(t)
)

ǫ. (62)

Taking iterated expectations and telescoping sums over t = 0, · · · , N − 1, normalizing by Nǫ,

and letting N → ∞, we have that

lim
N→+∞

1

N

∑N−1
t=0E

[

Z0(t)λc+Q0(t)+
∑K

i=1Qi(t)
]

≤
C+υ+V

(

R̄Ψ−ϕ(ǫ)
)

ǫ

(§)

≤
C+υ+V

(

R̄∗
P2−ϕ(ǫ)

)

ǫ
, (63)

where § uses the fact that R̄Ψ ≤ R̄∗
P2. (63) implies that Z0(t), Q0(t) and Qi(t) are strongly

stable, i.e.,

lim
N→+∞

1

N

∑N−1
t=0 E [Z0(t)]<∞, lim

N→+∞

1

N

∑N−1
t=0 E [Q0(t)]<∞, lim

N→+∞

1

N

∑N−1
t=0 E [Qi(t)]<∞. (64)

Because a strongly stable Z0(t) is also mean rate stable (see Theorem 2.8 in [24]), the long-term

average power constraint (15d) is satisfied according to Lemma 7, which proves b).

Besides, as shown in (64), LEESE satisfies all the long-term constraints in (P1). When the

battery capacity of each WD is larger than the threshold in Proposition 2, LEESE produces a

feasible solution to (P1). In this case, we always have R̄Ψ ≤ R̄∗
P1. By substituting this into the

RHS of § in (63) and using the fact that Z0(t), Q0(t) and Qi(t) are non-negative, we obtain

(42) and thus prove c).
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