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Abstract

The reconfigurable intelligent surface (RIS) is a promising technology that is anticipated to enable high

spectrum and energy efficiencies in future wireless communication networks. This paper investigates optimum

location-based RIS selection policies in RIS-aided wireless networks to maximize the end-to-end signal-to-

noise ratio for product-scaling and sum-scaling path-loss models where the received power scales with the

product and sum of the transmitter-to-RIS and RIS-to-receiver distances, respectively. These scaling laws cover

the important cases of end-to-end path-loss models in RIS-aided wireless systems. The random locations of

all available RISs are modeled as a Poisson point process. To quantify the network performance, the outage

probabilities and average rates attained by the proposed RIS selection policies are evaluated by deriving the

distance distribution of the chosen RIS node as per the selection policies for both product-scaling and sum-

scaling path-loss models. We also propose a limited-feedback RIS selection framework to achieve distributed

network operation. The outage probabilities and average rates obtained by the limited-feedback RIS selection

policies are derived for both path-loss models as well. The numerical results show notable performance gains

obtained by the proposed RIS selection policies.

Index Terms

Poisson point process (PPP), reconfigurable intelligent surface (RIS), stochastic geometry.

I. INTRODUCTION

A. Background and Motivation

Globally, mobile and machine-to-machine data traffic is expected to grow at a rate of about 55%

per year from 2020 to 2030, reaching 5,000 Exabytes per month in 2030 [1]. While supporting

1 Terabyte per second speeds, the sixth-generation (6G) wireless networks are expected to facilitate

sensing, localization, and computing in real-time by using a smart wireless environment. One of the key

enablers to realizing a smart environment is a reconfigurable intelligent surface (RIS), which includes

many nearly passive elements having ultra-low power consumption. Each element can electronically

control the phase of the reflected radio waves to concentrate energy in the desired spatial directions [2].

As such, an RIS dynamically adapts to changing wireless channel conditions to create a favorable
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propagation environment and to increase the energy efficiency of wireless networks [3]. Moreover,

RIS greatly decreases hardware costs and power consumption. This is because the spatial feeding

method of the RIS avoids the immoderate power loss due to the massive feeding networks of phased

arrays [4]. A critical milestone to realize the full scale of these advantages in a network setting is to

have adaptive algorithms optimizing the selection and activation of RISs to enhance smart wireless

connectivity, which will be an essential feature of future wireless systems.

Due to the possible irregular terrain for deployment of RISs, it is naturally expected that multiple

RISs will be deployed according to a potentially random-looking topology to provide connectivity in

future wireless networks. In these cases, the best RISs will need to be selected for achieving high

quality connection between given source and destination nodes, in contrast to popular single and fixed

RIS deployments. Similar to relay networks, utilizing multiple RISs for single-user communication

increases the overall system complexity and signaling overhead. Thus, a well-designed adaptive RIS-

selection policy is of particular importance to achieve the benefits of the multiple RIS deployment

topologies. Further, RISs are proposed to be nearly passive network elements with limited computing

power to support signal processing and edge computing. Therefore, a selection policy utilizing only

location information of available RISs is more practical in this context, which can be assumed to be

time-invariant. Motivated by these facts, this paper aims to focus on the location-based optimum RIS

selection problem in RIS-aided future wireless networks that consist of multiple randomly distributed

RISs and derives performance metrics under the optimum selection policy.

B. Related Work

Most previous work on performance analysis of RIS-aided wireless communications considers

different wireless network scenarios with single and fixed RIS setup, e.g., [5], [6]. [7]–[14] considers

a given set of locations of multiple RISs without RIS selection. Specifically, the signal-to-noise

ratio (SNR), achievable sum-rate, secrecy rate, and energy efficiency of RIS-assisted networks are

maximized in [7]–[10], respectively. [11] proposes and analyzes a double-RIS aided system. [12]

investigates the capacity region of a two-user network with one access point aided by multiple RIS

elements. [13] proposes a channel estimation framework for a RIS-aided multi-user system. [14]

designs a novel hybrid beamforming scheme for a RIS-aided multi-hop network. Very recently, the

RIS-user associations with and without the BS power control are optimized in a multi-RIS aided

network in [15]. The RIS with the highest instantaneous end-to-end SNR is selected among multiple

fixed RISs to aid the communication in [16], where the outage probability and average sum-rate are
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investigated. This paper only focuses on deterministic RIS deployment without modeling potential

randomness in RIS locations.

Spatial point processes are regarded as tractable analytical tools to model the locations of the

network elements (e.g., base stations, users, or relays), with a good statistical fit to physical wireless

network deployments [17]. However, only a few papers have so far focused on spatial network models

for the deployment of RISs or the distribution of users in RIS-assisted networks; see [18]–[23]. In

[18], environmental objects are assumed to be coated as RISs where the deployment is modeled as

a modified line process with random locations and orientations. In [19], they propose a joint design

for the detection weight at randomly distributed users and passive beamforming weight at RISs. [20]

considers a cellular network where the midpoints of the blockages are distributed according to a

Poisson point process (PPP) and the blockages are equipped with RISs. [21] provides performance

analysis of a large-scale mmWave cellular network where the locations of base stations and RISs

are modeled using independent PPPs. Recently, [22] studies the coverage of an RIS-aided large-

scale mmWave cellular network where the buildings with RISs are distributed according to a PPP.

[23] analyzes the coverage probability, ergodic capacity, and energy efficiency for indirect RIS-aided

network with where the locations of the RISs follow a binomial point process. Very recently, [24]

analyzes the outage probability of an RIS-aided network where multiple IRSs are randomly distributed

with different association policies activating a random RIS, the closest RIS to the transmitter, or all

available RISs. However, none of these papers considered a selection strategy choosing the best RIS

from a collection of randomly distributed RISs to optimize connectivity between source and destination

nodes. Performance characterization of RIS-aided random wireless networks with such optimum RIS

selection is an open problem in the literature, which we tackle in this paper.

C. Our Approach and Contributions

In this paper, we consider an RIS-aided wireless network where multiple RISs are randomly

distributed and an RIS is optimally selected to assist data transmission from a transmitter (TX) to a

receiver (RX) based on the relative locations of RISs with respect to TX and RX nodes. As analyzed in

[25]–[27], the scaling law of received power through the reflection of an RIS is a function of the TX-

RIS and RIS-RX distances. We note that the product-scaling law where the path-loss scales according

to the product of the TX-RIS and RIS-RX distances and the sum-scaling law where the path-loss scales

according to the sum of these distances have been established as the fundamental path-loss models

to model the end-to-end signal power attenuation when the TX and RX nodes are connected by an

intermediate RIS. They will be the path-loss models that we follow in this paper. Using the tools from
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stochastic geometry, we develop a tractable theoretical framework to obtain the outage probability

and average rate for the RIS-aided wireless network under the optimum RIS selection policies for

both path-loss scaling laws. We also analyze the limited feedback case to achieve distributed network

operation under the assumption of availability of RIS feedback capability for selection. We emphasize

that the derivations of our theoretical results are challenging since we need to tackle the random

instantaneous SNR values at the random RIS locations coupled with the randomness over the fading

process. Despite these challenges, we make the following novel contributions:

• Based on the nature of the SNR in RIS-aided wireless networks, we propose location-based

optimum RIS selection policies that maximize the end-to-end SNR of the link connecting a TX

and a RX via an RIS for product-scaling and sum-scaling path-loss models. These selection

policies make RIS selection decisions based on the insight that the optimum RIS given the

product-scaling path-loss law is the RIS that has the minimal product of the distances of the

TX-RIS and RIS-RX links among all randomly distributed RISs. On the other hand, the optimum

RIS given the sum-scaling path-loss law is the RIS that has the minimal sum of these distances.

• We derive the distance distribution of the optimum RIS node for both path-loss models. These

distributions are of critical importance to obtain the outage probability of RIS-aided wireless

networks. The derived distributions have broader applicability where a node that has the minimal

product or sum of the distances is selected. Using the derived distance distribution and the gamma

approximation for fading channels, we derive theoretical expressions for the outage probability

and average rate of the optimum RIS selection policies for product-scaling and sum-scaling

path-loss models.

• To characterize the system performance given limited-feedback RIS selection policy, we derive

the average number of RISs feeding back and confirm the number of RISs feeding back is a

Poisson random variable (RV) for both path-loss models. Using this result, we obtain theoretical

expressions for the outage probability and average rate under the limited-feedback RIS selection

policies for both path-loss models.

We verify the derived analytical results by means of extensive numerical analysis and simulations.

The potential performance improvement obtained by the optimum RIS selection policy is demonstrated

by comparing the performance gains obtained by the optimum policy with those of heuristic sub-

optimum policies via simulations. Our results reveal that a selection policy performing optimally

for decode-and-forward (DF) relay networks (i.e., the min-max policy) can perform very poorly

for RIS networks due to fundamentally different signal propagation characteristics. From a system
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Transmitter
Receiver
Available RIS

Fig. 1: An example illustration for an RIS-aided wireless network.

design point of view, this is an important result. Numerical results also demonstrate that limited-

feedback RIS selection policies achieve almost the same outage and data rate performance as the

optimum centralized RIS selection policy while significantly reducing the feedback and signaling

load. Through these theoretical and numerical results, this paper provides important guidelines for

selecting the optimal RIS towards a reliable yet practical RIS-aided wireless network.

The results in [28] focus on the node distance distribution given the min-max optimum selection

criteria, and cannot be directly applied to this paper. Our key technical challenges are to solve the

node distance distribution given the min-product and min-sum optimum selection criteria. These

are fundamentally different problems with their own particular technical challenges requiring new

solution approaches when compared to those investigated in [28]. Moreover, there are also fundamental

differences between RIS-aided networks and relay-aided networks in terms of their end-to-end path-

loss scaling laws as a function of the TX-to-RIS and RIS-to-RX distances; see [25], [29]. Thus, this

paper provides novel theoretical results and numerical insights that have not been studied before.

D. Notation

We use boldface letters to represent vector quantities. N denotes the set of natural numbers and

R
2 denotes the two-dimensional Euclidean space. |x| and ‖x‖ denote the absolute value of a scalar

quantity x (real or complex) and the Euclidean norm of a vector quantity x, respectively. P (·) denotes

probability. EZ [·] is the expectation over RV Z. EΦ [·] is the expectation over the point process Φ.

II. SYSTEM AND ANALYTICAL MODELS

A. System Model

We consider an RIS-aided wireless system in R
2, as illustrated in Fig. 1, where the TX and RX

are located at arbitrary locations, denoted by xs ∈ R
2 and xd ∈ R

2, respectively. Potential RISs are
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randomly distributed according to a spatial homogeneous Poisson point process (PPP) Φ with density

λ > 0. The locations of available RISs are denoted by φ = {x1,x2, . . .}, where xi ∈ R
2 is the ith

RIS location for i ∈ N and φ is a particular realization of Φ = {X1,X2, . . .}. We consider that the

locations of available RISs are known by a central network controller to make a decision for selecting

an RIS to aid the communication between the TX and RX1. As in [15], [24], we assume when one

RIS is selected (activated), the remaining RISs remain switched off. We assume the signal power

received over the longer TX-RX link is much smaller than the one received over the shorter RIS-RX

link, i.e., there is no direct link between TX and RX2.

We assume nearly passive RISs as introduced in [25] where each RIS is implemented with N

number of reflecting elements which can be adjusted individually for adapting to fading conditions.

We denote W = diag (exp (j̟i,1) , . . . , exp (j̟i,N)) as phase shifts of the ith RIS. Further, we denote

hi,n = αi,n exp(−jψi,n) and gi,n = βi,n exp(−jϕi,n) as fading channels between the TX and the nth

reflecting element of the ith RIS and that between the nth reflecting element of the ith RIS and the

RX, respectively. As in [29], [30], we assume hi,n and gi,n are independent and identically distributed

(i.i.d.) complex Gaussian RVs with zero mean and unit variance i.e., hi,n, gi,n ∼ CN (0, 1). Hence,

magnitudes αi,n and βi,n follow the Rayleigh distribution. Then, the instantaneous received signal3 at

time t via the ith RIS located at Xi is given by [30, eq. (11)]

yi(t) =

√
P
∑N

n=1 αi,nβi,n exp(j(̟i,n − ψi,n − ϕi,n))√
G (‖xs −Xi‖ , ‖Xi − xd‖)

s(t) + w(t), (1)

where P denotes the transmit power, s(t) is a unit energy signal, w(t) is additive white Gaussian noise

(AWGN) having complex Gaussian distribution with mean zero and variance N0. G (‖xs −Xi‖ , ‖Xi − xd‖)
is a path-loss function and we will discuss its dependence on the TX-RIS distance ‖xs −Xi‖
and the RIS-RX distance ‖Xi − xd‖ in Sec. II-B. A careful inspection of the structure of (1)

reveals that the optimal choice of ̟i,n that maximizes the instantaneous received signal yi(t) is

̟i,n = ψi,n + ϕi,n, i ∈ N. This is feasible at RISs since they can obtain the knowledge of the

channel phases by various methods mentioned in [2], [30], [32], e.g., by embedding low-power sensors

1Our system setup can be applied in the scenarios where RISs are irregularly deployed and one RIS is selected to enhance the

communication from the source to destination. For example, in a RIS-enhanced cellular network, potential RISs are employed on

irregularly-located trees or buildings and the optimal RIS is selected to strengthen the received signal power of a cell-edge user.

2This assumption is reasonable when the direct link is severely shadowed by an object in the environment or the decay of path-loss

with distance is very sharp.

3In practice, the obliquity factor (i.e., the incidence and reflected angles of signals at the RIS) mentioned in [31] and blockages may

affect the power received at the RX via the RIS. For tractability, as in [16], [19], [23], we ignore the obliquity factor and blockages

when modeling the received power via the RIS.
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throughout the RISs. Thus, the assumption of optimal phase shifting is widely adopted in existing

RIS studies, e.g., [29], [30], [33], [34]. Using this assumption, (1) can be rewritten as

yi(t) =

√
PZi√

G (‖xs −Xi‖ , ‖Xi − xd‖)
s(t) + w(t), (2)

where Zi =
∑N

n=1 αi,nβi,n. We note that Zi are i.i.d. RVs for different RISs. Thus, for compactness,

we remove subscript “i” from Zi, i.e., Zi = Z, ∀i, in the rest of the paper, and it will be clear from

the context that Z is the power gain associated with the RIS selected to connect TX and RX.

B. RIS Selection Policies

In this subsection, we first give the instantaneous SNR of an RIS-aided wireless network, then

discuss the path-loss scaling laws, and finally formulate the location-based optimum RIS selection

policies that maximize the instantaneous SNR for different path-loss scaling laws.

We consider the case where a single RIS is selected for aiding the communication between the TX

and RX according to a given RIS selection policy which is defined as follows:

Definition 1: an RIS selection policy P : Σ 7→ R
2 is a mapping from the set of all countable locally

finite subsets of R2, denoted by Σ, to R
2, that satisfies the condition P (φ) ∈ φ for all φ ∈ Σ.

With a slight abuse of notation, we will denote the RIS selected by P as XP . Using (2), we write

the instantaneous SNR associated with RIS XP according to

SNRinst (P,Φ, Z) =
γ̄Z2

G(‖xs −XP‖ , ‖XP − xd‖)
, (3)

where γ̄ = P
N0

is the average SNR.

We next discuss the dependence of a path-loss function G(‖xs −XP‖ , ‖XP − xd‖) on the TX-

RIS distance ‖xs −XP‖ and the RIS-RX distance ‖XP − xd‖. Based on [25]–[27], [31], the scaling

law of the end-to-end received power through the reflection of an RIS as a function of the TX-RIS

and RIS-RX distances, depends on the relation between the geometric size of the RIS, the wavelength

of the radio wave, and the relative TX-RIS and RIS-RX distances. Notably, two path-loss scaling laws

of the TX-RIS and RIS-RX distances are worth of analysis.

1) Product-Scaling path-loss models: If the size of the RIS is not large enough as compared with

the wavelength and the transmission distances ‖xs −XP‖ and ‖XP − xd‖, the end-to-end received

power at the receiver scales, as 4L2
1(‖xs −XP‖ ‖XP − xd‖) [27], where 2L1 is the length of one-

dimensional RIS. [26] also gives similar scaling laws4 with different power of product distances

4For example, in [26], a large RIS with the size of 1m × 1.2m and the carrier frequency of 10.5 GHz at the TX-RIS distance of

100 m and the RIS-RX distance of 100 m and a small RIS with the size of 0.384m × 0.096 m and the carrier frequency of 4.25 GHz

at the TX-RIS distance of 3.5 m and the RIS-RX distance of 10 m are shown to operate as the product-scaling path-loss model.
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in the far-field case5, where the path loss of through the reflection of an RIS is proportional to

(‖xs −XP‖ ‖XP − xd‖)2. The path-loss given in [26] also relates to the antenna gains, the RIS

element gain, and other system parameters. Moreover, [31] shows for focusing lenses of RISs, a

single scaling law is observed, i.e., the product path-loss model is sufficiently accurate for short and

long distances. On the other hand, for a classical power-law path-loss model, signal power decays

as Gpow(d) = dη, where d is the link distance and η > 2 is the path-loss exponent. The end-to-end

path-loss for the power-law model is Gpow(‖xs −XP‖ , ‖XP − xd‖) = (‖xs −XP‖ ‖XP − xd‖)η.

Overall, the end-to-end path-loss for all aforementioned cases is proportional to the product of the

distances between TX-RIS and RIS-RX, although being with different exact path-loss expressions. Our

key analytical results below will hold for all path-loss functions resulting in product-scaling for the

end-to-end SNR achieved via an intermediate RIS. For performance evaluation, we will consider a

specific product-scaling path-loss model.

2) Sum-Scaling path-loss models: If the geometric size of the RIS is large enough as compared with

the wavelength λs and the transmission distances ‖xs −XP‖ and ‖XP − xd‖, the end-to-end received

power scales according to (µk ‖xs −XP‖ + νk ‖XP − xd‖), where k = 2π
λs

and the coefficients µ

and ν depend on the angles of incidence and reflection of the radio waves [25], [27]. Further, [26]

also empirically validates that the path-loss function G, when the TX and RX both or only one of

them are in the near-field of RIS6, is approximately proportional to (‖xs −XP‖+‖XP − xd‖)2. G in

this particular case depends on antenna gains, wavelength, and the amplitude value of RIS elements

as well. Also, for the exponential-law path-loss model, which we refer to as exp-law for brevity

for the rest of the paper, signal power decays over a link as Gexp(d) = exp(αdβ), where α > 0

and β > 0 are tunable parameters [35]. We note that the exp-law model is suitable for modeling

short-range communication, e.g., indoor communication7, which is one of the important scenarios

that RISs can be deployed to assist communications. For β = 18, the exp-law path-loss model can

be expressed as Gexp(‖xs −XP‖ , ‖XP − xd‖) = exp (α (‖xs −XP‖+ ‖XP − xd‖)). In the cases

5When the distance between the TX(RX) and the center of the RIS is less than ξ =
2D2

λs
, the RIS is considered to be in the near-field

of the TX(RX). Otherwise, the RIS is said to be in the far-field of the TX(RX).

6For example, a RIS prototype in [26], whose size is 0.34m × 0.5m and whose carrier frequency is 10.5 GHz, at the TX-RIS

distance of 0.5 m and the RIS-RX distance of 1 m is shown to operate as the sum-scaling path-loss model.

7For indoor environments, mmWave transmissions would be more appropriate due to having shorter transmission distances. Hence,

the RIS size can be considered as large when compared to the transmission wavelength for indoor environments.

8β = 1 suits for indoor communications when the number of obstacles scales linearly with the distance of the link between xs and

XP and the one between XP and xd.
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mentioned above, we note that the path-loss function G scales with the sum of the distance between

TX-RIS and RIS-RX and our results below hold correct for such cases.

Due to the random locations of RISs in a PPP, the TX-RIS and RIS-RX distances are random.

Thus, RISs in a PPP may be in the regime where the product-scaling law holds or the regime

where the sum-scaling law holds. We note that considering mixture path-loss models (e.g., product-

scaling, sum-scaling, or other models which do not directly depend on distances) for potential RISs

and analytically deriving the performance metrics of corresponding optimum selection policies is

important future work. For tractable performance analysis, we assume all RIS-aided links in a PPP

have the product-scaling law or all RIS-aided links in a PPP have the sum-scaling law for solving

the optimum RIS selection problems. We note that this assumptions is reasonable because in some

cases, a single scaling law is accurate. For example, based on [31], for focusing lenses of RISs, a

single product-scaling law is observed, and for anomalous reflectors, the sum-scaling law may be

accurate up a few tens of meters. We also have conducted simulations with mixture path-loss models

and compare these simulations with our analysis with a single path-loss model for all potential RISs,

to show the feasibility of the assumption. The reasonableness is shown by the facts that i) the results

derived by assuming all RISs have the sum-scaling law can be good approximations of the results

that assumes the mixture product and sum scaling path-loss models for large RISs, and ii) the results

assuming all RISs have the product-scaling path-loss model can be good approximations of the results

assuming the mixture product and sum scaling path-loss models for small RISs. Our simulation results

and detailed discussions are presented in Appendix D. Moreover, this assumption is widely used in

the papers that consider random locations of RISs or users, e.g., [19], [20], [23], [24].

We can maximize the instantaneous SNR by selecting the RIS that has the minimal product of the

distances of the TX-RIS and RIS-RX links over the set of RIS locations in Φ, when all available RIS-

aided links follow product-scaling path-loss models (i.e., only the product-based path-loss scaling law

is observed). Similarly, the optimum RIS that maximizes the instantaneous SNR for the sum-scaling

path-loss model is the one that has the minimal sum of these distances, when all available RIS-aided

links follow sum-scaling path-loss models (i.e., only the sum-based path-loss scaling law is observed).

Thus, we can formulate the optimum RIS selection problem for the product-scaling path-loss model

as follows:

minimize
X∈R2

ŝpro (X)

subject to X ∈ Φ
, (4)

where ŝpro (X) is given by ŝpro (X) = ‖xs −X‖ × ‖X − xd‖. With the aim of maximizing the
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instantaneous SNR for the sum-scaling path-loss model, the optimum RIS selection problem can be

formulated as:

minimize
X∈R2

ŝsum (X)

subject to X ∈ Φ
, (5)

where ŝsum (X) is given by ŝsum (X) = ‖xs −X‖ + ‖X − xd‖. The corresponding optimum RIS

selection policies for the product-scaling and sum-scaling path-loss models are formally defined as

follows:

Selection Policy 1: The optimum RIS selection policy for the product-scaling path-loss law, denoted

by P∗
pro, is the one solving (4) for all realizations of Φ in Σ. The optimum RIS location maximizing

the instantaneous SNR for the product-scaling path-loss law, X∗
×, is X

∗
× = argmin

X∈Φ ŝpro (X),

which is unique with probability one.

Selection Policy 2: The optimum RIS selection policy under the sum-scaling path-loss law, denoted

by P∗
sum, is the one solving (5) for all realizations of Φ in Σ. The optimum RIS location to maximize

the instantaneous SNR for the sum-scaling path-loss law, X∗
+, is X

∗
+ = argmin

X∈Φ ŝsum (X), which

is also unique with probability one.

C. Performance Metrics

In this paper, we aim to characterize the performance metrics associated with P∗
pro and P∗

sum. To

this end, we first define the performance metrics of a given RIS selection policy P in this subsection.

We will use the averaged SNR to determine outage probability and data rate over the fading process

to characterize the data performance of an RIS selection policy P9. We use EZ [SNRinst (P,Φ, Z)] and

EZ [log2 (1 + SNRinst (P,Φ, Z))] as the SNR and data rate averaged over the fading process, respec-

tively. For compactness, we define EZ [SNRinst (P,Φ, Z)] , SNR (P,Φ) and EZ [log2 (1 + SNRinst (P,Φ, Z))] ,
R (P,Φ) in the rest of the paper. We note that SNR (P,Φ) and R (P,Φ) are still random quantities

since they depend on random RIS locations. Using SNR (P,Φ), we define the outage probability as

follows:

Definition 2: For a target SNR ρ, the SNR-outage probability Pout (P) achieved by an RIS selection

policy P is given by

Pout (P) = Pr {SNR (P,Φ) ≤ ρ} . (6)

Using R (P,Φ), we define the average rate as follows:

9These are relevant metrics when the permissible decoding delay is large enough to average over the fading process.
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Definition 3: The average rate achieved by an RIS selection policy P is given by

Rave (P) = EΦ [R (P,Φ)] . (7)

In the next sections, we will evaluate Pout and Rave for the optimum RIS selection policies P∗
pro

and P∗
sum. This is a challenging problem since we need to derive the distribution of optimum RIS

distance functions ŝpro
(
X

∗
×
)

and ŝsum
(
X

∗
+

)
over the random spatial point process Φ and the averaged

performance metrics over the random fading process.

III. OPTIMUM RIS DISTANCE DISTRIBUTION AND PERFORMANCE ANALYSIS

In this section, we first obtain the optimum RIS distance distributions under the product-scaling and

sum-scaling path-loss models. We second derive the averaged performance metrics over the fading

process for general path-loss functions G(‖xs −XP‖ , ‖XP − xd‖).
Using the optimum RIS distance distribution and the averaged performance metrics, we will evaluate

the outage probability and average rate for the given optimum RIS selection policy under specific

path-loss models. We note that there are multiple potential models for product-scaling and sum-scaling

path-loss models, as discussed in Sec. II-B. For performance analysis, we will consider classic power-

law path-loss and exp-law path-loss models. It is important to note that the analytical results we obtain

for the distributions of ŝpro
(
X

∗
×
)

and ŝsum
(
X

∗
+

)
can be used to obtain the performance metrics for

general path-loss models obeying the product-scaling and sum-scaling property.

A. Distance Distribution for Optimum RIS Selection

For the sake of simplicity, we define Υopt , ŝpro
(
X

∗
×
)

and Λopt , ŝsum
(
X

∗
+

)
. We now derive the

distribution functions for Υopt and Λopt which are key to characterize the performance of the RIS

selection policies P∗
pro and P∗

sum, respectively. We will consider xs = (−d, 0)⊤ and xd = (d, 0)⊤

without loss of generality due to the stationary nature of HPPPs [37]. In the following theorems, we

provide the distribution of Υopt and Λopt. We also numerically verify these distribution in Fig. 2.

Theorem 1: The CDF of Υopt is given by

FΥopt
(γ) =





1− exp
(

−2λ
d2

(
d4E(γ

2

d4
) + (γ2 − d4)K(γ

2

d4
)
))

if γ < d2

1− exp
(
−2λγE( d

4

γ2 )
)

if γ ≥ d2
, (8)

where E(·) is the complete elliptic integral of the second kind and K(·) is the complete elliptic

integral of the first kind [38]. The PDF of Υopt is given by

fΥopt
(γ) =





2
d2γλ

exp
(
−2λ

d2

(
d4E

(
γ2

d4

)
+ (γ2 − d4)K

(
γ2

d4

)))
K
(

γ2

d4

)
if γ < d2

2λ exp
(
−2γλE

(
d4

γ2

))
K
(

d4

γ2

)
if γ ≥ d2

. (9)
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Fig. 2: The complementary CDF of Υopt and Λopt for different RIS densities λ = 0.1, 1, 5, 10 when

d = 1.2, for validating (8) and (10), respectively.

Proof: See Appendix A.

Theorem 2: The CDF of Λopt is given by

FΛopt
(γ) =





0 γ < 2d

1− exp

(
−λπγ

√
γ2−4d2

4

)
γ ≥ 2d

. (10)

The PDF of Λopt is given by

fΛopt
(γ) =





0 γ < 2d

πλ(γ2−2d2)
2
√

γ2−4d2
exp

(
−λπγ

√
γ2−4d2

4

)
γ ≥ 2d

. (11)

Proof: See Appendix B.

B. Averaged Performance Metrics over Fading Channel

Based on (6) and (7), we recall that Pout (P) and Rave (P) relate to SNR (P,Φ) and R (P,Φ),
respectively. To facilitate the derivation of Pout and Rave for the optimum RIS selection policies P∗

pro

and P∗
sum, we derive SNR (P,Φ) and R (P,Φ) in this subsection. We derive SNR (P,Φ) as

SNR (P,Φ) = EZ

[
γ̄Z2

G(‖xs −XP‖ , ‖XP − xd‖)

]
=

γ̄EZ [Z2]

G(‖xs −XP‖ , ‖XP − xd‖)
, (12)

where EZ [Z2] is given by

EZ

[
Z2
]

= N +N(N − 1)
π2

16
. (13)

Applying (13) to (12), we have

SNR (P,Φ) =
γ̄N(16 + (N − 1)π2)

16G(‖xs −XP‖ , ‖XP − xd‖)
. (14)
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We next derive R (P,Φ) as

R (P,Φ) = R (P, Y ) = EZ

[
log2

(
1 + γ̄Y Z2

)]
=

∫ ∞

0

log2
(
1 + γ̄Y z2

)
fZ(z)dz, (15)

where Y = 1
G(‖xs−XP‖,‖XP−xd‖) and Y is a statistic summarising the overall effect of the point process

Φ on the data rate. Based on (15), we study the distribution of Z. Since Z is a sum of the product

of two i.i.d. Rayleigh RVs, its exact distribution is difficult to determine for N > 1. However, we

can still approximate its distribution by using a gamma distribution with the shape parameter given

by k = Nπ2

16−π2 and the scale parameter given by θ = 16−π2

4π
very tightly, as established in [29], [33].

Using suggested gamma distribution approximation and the result in [33, Eq. (20)], we can express

(15) as

R (P, Y ) =
∫ ∞

0

log2
(
1 + γ̄Y z2

)
fZ(z)dz

.
=

∫ ∞

0

log2
(
1 + γ̄Y z2

) zk−1 exp
(
−z

θ

)

θkΓ (k)
dz

.
=

1

log(2)

[
2 log(θ) + log(γ̄ Y ) + 2ψ(0)(k) +

2F3

(
1, 1; 2, 3

2
− k

2
, 2− k

2
;− 1

4θ2γ̄ Y

)

θ2γ̄ Y (k2 − 3k + 2)

+
π(γ̄ Y )−

k
2

θkΓ(k + 1)

(
1F2

(
k
2
; 1
2
, k
2
+ 1;− 1

4θ2γ̄ Y

)

(
csc
(
πk
2

))−1 −
1F2

(
k
2
+ 1

2
; 3
2
, k
2
+ 3

2
;− 1

4θ2γ̄ Y

)

√
γ̄ Y θ(1 + k)

(
k sec

(
πk
2

))−1

)]
(16)

where we use
.
= to indicate that the equality is valid when the gamma approximation is applied,

log(·) denotes natural logarithm, pFq (·; ·; ·) denotes the generalized hypergeometric functions [39],

and ψ(n)(z) denotes the nth derivative of the digamma function [39]. Numerical results in Section V

will confirm the accuracy of this approximation used in (16).

We note that the calculation of (16) requires high computational complexity. To ease the complexity,

using Jensen’s inequality, we can also derive an upper bound on R (P,Φ) as

R (P,Φ) = EZ [log2 (1 + SNRinst (P,Φ, Z))] ≤ log2 (1 + EZ [SNRinst (P,Φ, Z)]) . (17)

By applying (14) to (17), we rewrite (17) as

R (P, Y ) ≤ log2

(
1 +

γ̄NY (16 + (N − 1)π2)

16

)
, (18)

where we write R̃ (P, Y ) = log2

(
1 + γ̄NY (16+(N−1)π2)

16

)
in the rest of the paper. We will use R̃ (P, Y )

to calculate the upper bounds on the average rate in Section III-C2.

C. Performance Analysis

Based on subsections III-A and III-B, we evaluate the outage probability and average rate achieved

by the optimum RIS selection policies P∗
pro and P∗

sum. To illustrate specific applications of our results,
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we will consider classical power-law and exp-law path-loss models for the performance evaluation in

this subsection.

1) Outage Probability: We denote P
pow
out

(
P∗

pro

)
and P

exp
out(P∗

sum) as the outage probabilities achieved

under the power-law and exp-law path-loss models by the optimum RIS selection policies, respectively.

Using (6) and applying10 Gpow(‖xs −XP‖ , ‖XP − xd‖) = (‖xs −XP‖ ‖XP − xd‖)η to (14), we

derive P
pow
out

(
P∗

pro

)
as

P
pow
out

(
P∗

pro

)
= Pr

{
SNR

(
P∗

pro,Φ
)
≤ ρ
}
= Pr

{
γ̄N(16 + (N − 1)π2)

16Υη
opt

≤ ρ

}

= 1− FΥopt

((
γ̄N(16 + (N − 1)π2)

16ρ

) 1
η

)
, (19)

where FΥopt
(γ) is the CDF of RV Υopt given in (8). Applying Gexp(‖xs −XP‖ , ‖XP − xd‖) =

exp (α (‖xs −XP‖+ ‖XP − xd‖)) to (14), we derive P
exp
out(P∗

sum) as

P
exp
out(P∗

sum) = Pr {SNR (P∗
sum,Φ) ≤ ρ} = Pr

{
γ̄N(16 + (N − 1)π2)

16 exp (αΛopt)
≤ ρ

}

= Pr

{
Λopt > log

(
γ̄N(16 + (N − 1)π2)

16ρ

)
α−1

}

= 1− FΛopt

(
1

α
log

(
γ̄N(16 + (N − 1)π2)

16ρ

))
. (20)

where FΛopt
(γ) is the CDF of RV Λopt given in (10).

2) Average Rate: We denote Rpow
ave

(
P∗

pro

)
and Rexp

ave (P∗
sum) as the data rate obtained under the

power-law and exp-law path-loss models by the optimum RIS selection policies, respectively. Based

on the definition of Rave (P) in (7), we evaluate Rpow
ave

(
P∗

pro

)
as

R
pow
ave

(
P∗

pro

)
= EΦ [R (P, Ypow)] =

∫
R (P, y) fYpow

(y)d y, (21)

where y is a realization of RV Ypow and Ypow = 1

Gpow(‖xs−X∗
×‖,‖X∗

×
−xd‖) = Υopt

−η. We note that

R (P, Ypow) is given by (16). Using the distribution of Υopt, we derive the PDF of Ypow = Υopt
−η as

fYpow
(y) =





S1 (y) =
2 exp

(
−2y

−
1
η λE(d4y

2
η )

)
y
−1− 1

η λK(d4y
2
η )

η
if 0 < y ≤ d−2η

S2 (y) =

2 exp




−

2λ






d4E







y

−2
η

d4






+

(

−d4+y

−2
η

)

K







y

−2
η

d4













d2




y
−2+η

η λK

(
y

−2
η

d4

)

d2η
if y ≥ d−2η

.

(22)

10We assume that the path-loss exponents of the TX-RIS and RIS-RX channels are the same. This assumption is reasonable when

the TX-RIS and RIS-RX channels have similar propagation environments.
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There is no closed form expression for R
pow
ave

(
P∗

pro

)
but it can be evaluated numerically with the

aid of (16), (21), and (22) by calculating the integrals given below:

R
pow
ave

(
P∗

pro

)
=

∫ d−2η

0

R (P, y)S1 (y) d y +

∫ ∞

d−2η

R (P, y)S2 (y)d y. (23)

As (21), we write Rexp
ave (P∗

sum) as

R
exp
ave (P∗

sum) =

∫
R (P, y) fYexp

(y)d y, (24)

where y is a realization of Yexp and Yexp = exp (−αΛopt). R (P, Yexp) is given by (16). We then

derive the PDF of Yexp. By using variable transformation and fΛopt
(γ) in (11), the PDF of Yexp can

be derived as

fYexp
(y) =

πy
πλ

√

√

√

√

log2( 1
y )

α2
−4d2

4α
−1λ

(
log2( 1

y )
α2 − 2d2

)

2α

√
log2( 1

y )
α2 − 4d2

, (25)

for y ≤ e−2αd. fYexp
(y) is zero for y > e−2αd. With the aid of (16), (24) and (25), the average rate

can be numerically calculated by evaluating the integral

R
exp
ave (P∗

sum) =

∫ e−2αd

0

R (P, y) fYexp
(y)d y. (26)

Remark 1: The upper bounds on R
pow
ave

(
P∗

pro

)
and R

exp
ave (P∗

sum) via Jensen’s inequality can be obtained

by replacing R (P, y) by R̃ (P, y) in (23) and (26), where R̃ (P, Y ) is given in (18).

IV. LIMITED-FEEDBACK RIS SELECTION

In previous sections, we consider that there exists a central entity (i.e., a network controller) knowing

the locations of all RISs to perform the selection based on this knowledge by optimising either product

or sum distances without feedback. Different from previous sections, in this section, we assume the

existence of extra feedback capability at RISs for distributed operation. We assume that the RISs can

feed back their channel quality indicators11, whilst still functioning as the nearly passive elements for

communications after the feedback phase.

In this section, we propose a limited-feedback RIS selection policy that selects the best RIS from

a limited number of RISs feeding back. We will first derive the distribution of the number of RISs

feeding back under the product-scaling and sum-scaling path-loss models. We will then evaluate the

11An RIS can know its channel quality by employing some active sensors among the passive reflective elements at the RISs as

proposed in [40] or deploying anchor nodes near the RISs as proposed in [41].
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Fig. 3: An example illustration for the limited-feedback RIS selection with 5 potential RISs. RIS1,

RIS2, and RIS5, whose the channel quality indicators ŝ (x1), ŝ (x2), ŝ (x5) are less than the given

threshold value T , send their channel quality indicators to the source node. The source node then

performs selection policy PFB
pro or PFB

sum to select the RIS with optimum location X
∗
× or X∗

+.

average rate and outage probability attained by the proposed limited-feedback RIS selection policy

under the specific path-loss models. To illustrate specific applications of our results, we will consider

classic power-law and exp-law path-loss models for the performance evaluation in this section. We

note that the derivation method used to obtain the performance metrics under power-law and exp-law

path-loss models can be also used for other path-loss models.

A. Limited-Feedback Strategy

To alleviate the feedback overhead, we will consider an effective yet simple limited-feedback

strategy (illustrated in Fig. 3), which is formally put forward as follows.

Limited-Feedback Strategy: An RIS located at X ∈ Φ will send its channel quality indicator

ŝ (X) back to the source node when ŝ (X) ≤ T , where T > 0 is a given threshold value. For the

product-scaling path-loss law, ŝ (X) is ŝ (X) = ŝpro (X), where ŝpro (X) is given by ŝpro (X) =

‖xs −X‖ × ‖X − xd‖. For the sum-scaling path-loss law, ŝ (X) is ŝ (X) = ŝsum (X), where

ŝsum (X) is ŝsum (X) = ‖xs −X‖ + ‖X − xd‖. If no RIS feeds back its channel quality indicator,

no data is transmitted by the source node.

We will characterize the number of RISs feeding back given the aforementioned feedback strategy

and evaluate the average rate and outage probability attained by limited-feedback RIS selection policies

in the following subsections.

B. Distribution of the Feedback Load with Limited-Feedback

Given the feedback strategy proposed in subsection IV-A, we denote the total number of RISs

feeding back under the product-scaling and the sum-scaling RIS selection function by NFB
pro and NFB

sum,
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respectively. That is, NFB
pro =

∑
X∈Φ 1{ŝpro(X)≤Tpro} and NFB

sum =
∑

X∈Φ 1{ŝsum(X)≤Tsum}, where 1{·} is

the indicator function. Tpro and Tsum are the thresholds used in the product-scaling and sum-scaling

scenarios, respectively. The average number of RISs feeding back is given by Ξpro = EΦ

[
NFB

pro

]
and

Ξsum = EΦ

[
NFB

sum

]
. The sets of the RISs feeding back are given by ΦFB

pro = {X ∈ Φ : ŝpro (X) ≤ Tpro}
and ΦFB

sum = {X ∈ Φ : ŝsum (X) ≤ Tsum}.

We now formulate the RIS selection policy with limited-feedback for the power-law and exp-law

path-loss models as follows:

Selection Policy 3: The RIS selection policy with limited-feedback strategy under the product-

scaling path-loss law, denoted by PFB
pro, is the one that solves the following optimization problem

minimize
X∈R2

ŝpro (X)

subject to X ∈ ΦFB
pro

. (27)

Selection Policy 4: For the sum-scaling path-loss law, the RIS selection policy with limited-feedback

strategy, denoted by PFB
sum, is the one that solves the following optimization problem

minimize
X∈R2

ŝsum (X)

subject to X ∈ ΦFB
sum

. (28)

Derivation of the distributions of NFB
pro and NFB

sum is a key step to quantify the performance attained

by PFB
pro and PFB

sum. We present the distributions of NFB
pro and NFB

sum in the following theorems.

Theorem 3: NFB
pro is a Poisson RV with the mean Ξpro given by

Ξpro =





2λ
(

1
d2

(
d4E(

T 2
pro

d4
) + (T 2

pro − d4)K(
T 2
pro

d4
)
))

if Tpro ≤ d2

2λ
(
TproE(

d4

T 2
pro

)
)

if Tpro > d2
. (29)

Proof: See Appendix C.

Theorem 4: NFB
sum is a Poisson RV with the mean Ξsum given by

Ξsum =





0 if Tsum ≤ 2d

λπTsum

4

√
−4d2 + T 2

sum if Tsum > 2d
. (30)

Proof: The proof is similar to the one given for Theorem 3. Hence, it is omitted to avoid

repetitions.

In Fig. 4, we plot the expected numbers of RISs feeding back and compare the simulated distribution

of the total number of RISs feeding back with the Poisson distribution with analytical means in (29)

and (30). We observe that simulated distributions match the theoretical ones perfectly, which validates

the Theorems 3 and 4. As discussed in [28], the threshold value Ξpro ≥ 5 enables the limited-feedback

RIS selection strategy to achieve very similar outage and data rate performance as the centralized
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Fig. 4: Average number of RISs feeding back and probability distribution of the number of RISs

feeding back for d = 1.2 for product-scaling path-loss law in Figs. 2(a) and 2(b) and for sum-scaling

path-loss law in Figs. 2(c) and 2(d).

RIS selection strategy, while providing a massive reduction in the feedback overhead. This is because

the RIS with optimum location, X∗
×, always feeds its channel quality indicators back to the source

node if NFB
pro ≥ 1 and Pr

{
NFB

pro ≥ 1
}
≥ 0.99 when Ξpro > 5 due to the exponentially decaying tail of

Poisson distribution. The same arguments also apply to the sum-scaling path loss models.

C. Performance Analysis

We next evaluate the outage probability and average rate attained by the limited-feedback RIS

selection policies, parameterized by the threshold values Tpro and Tsum, for the power-law and exp-

law path-loss models, respectively.

The outage probability with limited feedback for the power-law and exp-law path-loss models are

given in the following theorems:

Theorem 5: The outage probability P
pow
out

(
PFB

pro

)
for a limited-feedback RIS selection policy PFB

pro

with threshold Tpro is equal to

P
pow
out

(
PFB

pro

)
=





exp (−Ξpro) if ρ ≤ γ̄N(16+(N−1)π2)
T

η
pro16

1− FΥopt

((
γ̄N(16+(N−1)π2)

ρ16

) 1
η

)
otherwise

, (31)

where Ξpro is the average feedback load at Tpro and given in (29).

Proof: To prove Theorem 5, we first write the outage event as follows:

{
EZ

[
SNR

pow
(
P∗

pro

)]
≤ ρ
}
= {Υopt > Tpro}

⋃(
{Υopt ≤ Tpro}

⋂{
γ̄N(16 + (N − 1)π2)

Υη
opt16

≤ ρ

})
.

Hence, Pout

(
PFB

pro

)
is given by

Pout

(
PFB

pro

)
=Pr {Υopt > Tpro}+ Pr

(
{Υopt ≤ Tpro}

⋂{
γ̄N(16 + (N − 1)π2)

Υη
opt16

≤ ρ

})

=exp (−Ξpro)+Pr

{
γ̄N(16+(N − 1)π2)

T
η
pro16

≤ γ̄N(16 + (N − 1)π2)

Υη
opt16

≤ ρ

}
. (32)
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If ρ <
γ̄N(16+(N−1)π2)

T
η
pro16

, then the second summand in (32) becomes zero, and we have

Pout (PFB, Tpro) = exp (−Ξpro), which is the first condition in (31). If ρ >
γ̄N(16+(N−1)π2)

T
η
pro16

, we have

Pout (PFB, T ) = Pr

{
γ̄N(16+(N−1)π2)

Υη
opt16

≤ ρ
}

= 1 − FΥopt

((
γ̄N(16+(N−1)π2)

ρ16

) 1
η

)
, which is the second

condition in (31). This completes the proof of Theorem 5.

Theorem 6: The outage probability P
exp
out

(
PFB

sum

)
for a limited-feedback RIS selection policy PFB

pro

with threshold Tsum is given by

P
exp
out

(
PFB

sum

)
=





exp (−Ξsum) if ρ ≤ γ̄N(16+(N−1)π2)
exp(αTsum)16

1− FΛopt

(
log
(

γ̄N(16+(N−1)π2)
ρ16

)
α−1
)

if
γ̄N(16+(N−1)π2)

exp(αTsum)16
< ρ <

γ̄N(16+(N−1)π2)
exp(α2d)16

1 if ρ ≥ γ̄N(16+(N−1)π2)
exp(α2d)16

.

(33)

Proof: Theorem 6 can be proven similarly to Theorem 5.

We evaluate the average rate achieved by PFB
pro and PFB

sum in the following theorems:

Theorem 7: The average rate R
pow
ave

(
PFB

pro

)
for a limited-feedback RIS selection policy PFB

pro with

threshold Tpro is given by

R
pow
ave

(
PFB

pro

)
=

∫ d−2η

T
−η
pro

R (P, y)S1 (y) d y +

∫ ∞

d−2η

R (P, y)S2 (y)d y. (34)

Proof: Theorem 7 can be proven by using the equivalence of events
{
NFB

pro ≥ 1
}

and {Υopt > Tpro}.

Theorem 8: The average rate Rexp
ave

(
PFB

sum

)
for a given limited-feedback RIS selection policy PFB

sum

with threshold Tsum is equal to

R
exp
ave

(
PFB

sum

)
=

∫ e−2αd

exp(−αTsum)

R (P, y) fYexp
(y)d y. (35)

Proof: Theorem 8 can be proven similarly to Theorem 7.

We note that the upper bounds on Rpow
ave

(
PFB

pro

)
and Rexp

ave

(
PFB

sum

)
using Jensen’s inequality can be

obtained as in Remark 1.

V. NUMERICAL RESULTS

In this section, we present simulation and numerical results to verify our derived analytical results,

discuss the performance of the proposed centralized and limited-feedback RIS selection policies, and

reveal the effect of system parameters on the system performance.

In our simulations, the target SNR and the distance between TX and RX are set to ρ = 5 dB and

d = 1.2m, respectively. The unit for λ is RISs/m2 and the value of λ will be mentioned in each

figure. For the performance evaluation, the path-loss exponent η is taken to be 4 and the tunable
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Fig. 5: Outage probability achieved by different RIS selection schemes versus average SNR γ̄, d = 1.2,

η = 4, ρ = 5 dB, for the power-law path-loss model.

parameter α of the exp path-loss model is 1.037 [35]. The simulation results are averaged over many

realizations of the random locations of RISs and channel fading.

A. Centralized RIS Selection

In this subsection, we focus on the performance of optimum centralized RIS selection policies. To

benchmark the optimum selection policy, we consider three other RIS selection schemes:

1) Min-min scheme selects the closet RIS to the TX and RX set {xs,xd}, i.e.,

minimize
X∈R2

min {‖xs −X‖ , ‖X − xd‖} , X ∈ Φ;

2) Min-max scheme selects an RIS according to

minimize
X∈R2

max {‖xs −X‖ , ‖X − xd‖} , X ∈ Φ;

which is the optimum scheme for a decode-and-forward relay network [28];

3) Mid-point scheme selects the RIS that has the minimal distance to the mid-point between the

TX and the RX.

In Figs. 5 and 6, we investigate the performance for power-law communications scenarios under

the optimum and other different RIS selection schemes as described above. In Fig 5, we plot the

outage probability curves versus the average SNR for N = 8, N = 32 and N = 128 (i.e., see Fig. 5a)

and for λ = 0.1 and 2 (i.e., see Fig. 5b). In Fig. 5, analytical curves are obtained by using (19). The

perfect agreement between analytical and simulation curves verifies the outage probability expression
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for the optimum RIS selection scheme in (19). In Fig. 5a, we also plot max-SNR-instantaneous-

channel (max-SNR-IC) scheme that selects the RIS yielding the largest instantaneous SNR based

on the instantaneous channels. In Fig. 5a, we first see the outage probability decreases significantly

when the number of elements increases from 8 to 32, where an RIS with N = 8 requires around

15 times more power than an RIS with N = 32 to achieve the outage probability level of 10−3.

For N = 8, 32 and 128, the optimum scheme has the best performance among all schemes. We see

that max-SNR-IC slightly outperforms the optimum policy. We note that the max-SNR-IC scheme is

actually the optimal RIS selection policy, but this scheme is more difficult to be implemented than the

optimum scheme proposed in the paper since max-SNR-IC requires the knowledge of instantaneous

fading channels of all available RIS-aided links. Among the other three schemes, min-min is the

best suboptimal one when the average SNR γ̄ is less than 0 dB; otherwise, mid-point is the best

suboptimal one. For example, the optimum scheme only requires around 63% transmit power that

mid-point scheme requires to achieve the outage probability level of 10−3. Further, min-max always

has the worst performance among these four schemes. In Fig. 5b, we observe a significant decrease

in outage probability when the density increases from λ = 0.1 to λ = 2. When λ is very small as

0.1, all selection schemes have very similar performance. This observation indicates there is a high

probability to select the same RIS by different schemes at a very low RIS density and the superiority

of the optimum scheme is not obvious. However, the performance gap clearly increases with λ. For

example, when λ is 2, the optimum scheme only requires around 32% transmit power that min-min

scheme requires to achieve the outage probability level of 10−3.

We plot the average rate versus γ̄ in Fig. 6a and the average rate versus the density in Fig. 6b.

We only consider the optimum scheme and min-min scheme since these two schemes generally

outperform the other two schemes for different sets of parameters based on Fig 5. Analytical values

calculated from (23) has a perfect agreement with the simulation, which verifies the accuracy of our

analysis. In Fig. 6, we see that the optimum and min-min selection schemes have small rate differences

for different values of N at λ = 0.5. For example, the rate difference is around 0.3 [bits/sec/Hz] for

N = 16 at SNR = 5 dB. Interestingly, the average rate increases almost linearly with SNR and the gap

between the optimum scheme and min-min scheme keeps unchanged as the average SNR increases.

In Fig. 6b, we see the average rate for both schemes increases as the RIS density increases, but the

increase in average rate with the density is not linear as that with the average SNR. In addition,

we observe that the upper bounds obtained via Jensen’s inequality is tighter as N increases. Similar

observations will be illustrated in Fig. 8 as well.
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Fig. 6: Average rate achieved by different RIS selection schemes for different values of N , d = 1.2,

η = 4, for the power-law path-loss model.
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Fig. 7: Outage probability achieved by different RIS selection schemes versus average SNR γ̄, d = 1.2,

α = 1.037, ρ = 5 dB, for the exp-law path-loss model.

In Figs. 7 and 8, we focus on the performance of the exp-law path-loss model. In Fig. 7, we

plot the outage probability curves versus SNR for N = 8, N = 32 and N = 128 (i.e., see Fig.

7a) and for λ = 0.1 and 2 (i.e., see Fig. 7b). Analytical curves obtained by (20) match with the

simulations, thus validating the accuracy of (20). The optimum and max-SNR-IC schemes outperform

the other schemes, which is similar to the observations in Fig. 5. However, the other schemes perform

differently than the behavior observed in Fig. 5 for the power-law path-loss model. Specifically, the
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Fig. 8: Average rate achieved by different RIS selection schemes for different values of N , d = 1.2,

α = 1.037, for the exp-law path-loss model.

mid-point scheme always has very close performance with the optimum scheme. For example, the

optimum scheme can save around 10% transmit power with respect to mid-point scheme to achieve

the outage probability level of 10−3. Min-min and min-max have the worst performance among these

four schemes, where min-min starts to outperform min-max when SNR increases. In Fig. 7b, we see

a significant outage performance increase when the density increases and the performance gap among

the different schemes increases with the density, as we observed in Fig. 5b. In Fig. 7b, we also see

that the performance advantage achieved by the optimum scheme over the mid-point scheme is minor

when the density λ = 0.1. This means that the mid-point scheme is a near suboptimum selection

scheme when the density is very small.

In Fig. 8, we plot the average rate versus the average SNR (i.e., see Fig. 8a) and the average

rate versus density λ (i.e., see Fig. 8b). Analytical values calculated from (26) overlap with the

simulation results, which verifies (26). Interestingly, we see that the optimum and mid-point selection

schemes have very small rate differences for both N = 16 and 32 at λ = 0.5. For example, the rate

difference is around 0.07 [bits/sec/Hz] for N = 16 at SNR = 5 dB. For all three cases N = 8, 16, 32

in Fig. 8b, we have significant rate improvement from λ = 0.1 to λ = 0.5, and then there is a rate

floor when λ increases further. This is due to the fact that there is a sufficient number of RISs within

the neighborhood of TX and RX to support the communication. Thus, it is not worth to densify RISs

in a given area beyond a certain limit.
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Fig. 9: Outage probability achieved by limited-feedback RIS selection versus the average SNR γ̄ for

different values of the threshold T . d = 1.2, N = 16, λ = 0.5, and ρ = 5 dB.

B. Distributed Network Operation and Limited-Feedback Case

In Fig. 9, we plot the outage probability achieved by limited-feedback RIS selection versus the

average SNR γ̄ for the power-law model (Fig. 9a) and for the exp-law model (Fig. 9b). The analytical

curves in Figs. 9a and 9b are obtained by (31) and (33), respectively. These curves perfectly match

with simulations, thus validating the accuracy of (31) and (33). We do not consider T = 1 in Fig. 9b

since there is no RIS feeding back when T < 2d for the exp-law path-loss. In both figures, we see that

outage probability curves first overlap with the centralized case and then keep constant as γ̄ increases.

This is because when γ̄ is small, the values of target SNR satisfy the condition ρ >
γ̄N(16+(N−1)π2)

T
η
pro16

for

the power-law model and the condition ρ >
γ̄N(16+(N−1)π2)

exp(αTsum)16
for the exp-law model. In such conditions,

the outage performance is the same as the centralized case and does not depend on T since at least

one RIS feeds its location information back to the source node. When γ̄ continuously increases, these

conditions are not satisfied and the outage probability does only depend on the average number of

RISs feeding back, without any dependence on the average SNR and fading behavior. This is because

the achieved outage probability depends on whether or not there is at least one RIS feeding its location

information back to the source. We also see when T is larger, the outage performance is better in

the flat region of outage curves. This is because when T is larger, we have a higher probability of at

least one RIS feeding back, thus achieving better outage performance.

We plot the average rate for limited-feedback RIS selection versus γ̄ for the power-law model in
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Fig. 10: Average rate achieved by limited-feedback RIS selection for different values of the threshold

T . d = 1.2 and N = 16.

Fig. 10a and for the exp-law model in Fig. 10b. The perfect agreement between analytical curves

obtained by (34) and (35) and simulations verify the accuracy of (34) and (35). For both Figs. 10a

and 10b, we observe that for λ = 0.1, the performance loss from centralized case (which assumes the

availability of location information from all RISs) to the case of T = 5 is much less than that from the

case of T = 5 to that of T = 3. Based on (29), T = 5 leads to the average feedback load Ξpro ≈ 1.54.

This observation numerically demonstrates that small average feedback load around 1.54 is enough

to experience negligible optimization loss, compared to the non-feedback case. This suggests that

we can achieve a significant reduction in the feedback load in distributed network operation with

limited-feedback, whilst not sacrificing from the data rate performance.

VI. CONCLUSION

In this paper, we have considered an RIS-aided wireless network where a single RIS is chosen

from multiple PPP-distributed RISs to establish a communication link between the TX and RX. We

have analyzed product-scaling and sum-scaling path-loss models in detail, which covers the important

cases of RIS-aided end-to-end path-loss models. For each path-loss law, we have proposed an optimum

location-based RIS selection policy which aims to maximize the network SNR and derived the distance

distribution of the optimum RIS node location. Based on these distributions, we have evaluated the

outage probability and the average rate of the optimum RIS selection policies to assess the network

performance for the product-scaling and sum-scaling path-loss models. To make the network operation
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distributed, we have further assumed the extra feedback capability at RISs and proposed limited-

feedback RIS selection policies. We have derived the outage probabilities and average rates achieved

by limited-feedback RIS selection policies for both path-loss models by deriving the distribution of the

number of RISs feeding back. Our numerical results show the performance advantage of the proposed

optimum and limited feedback RIS selection policies and reveal the performance gap for sub-optimum

policies for product-scaling and sum-scaling path-loss models. Furthermore, the impact of system

parameters, e.g., the number of reflecting elements and RIS node density, on the network performance

have been quantified thoroughly by means of a comprehensive numerical analysis utilizing the derived

analytical results.

Interesting future work includes considering the mixture product and sum scaling path-loss models

for all RISs in a PPP and analyzing the performance metrics of the optimum selection policies under

the mixture path-loss models. This work is an open problem since there are no completely consistent

conditions to determine the regime where the product-scaling law holds and the regime where the

sum-scaling law holds. Existing work, e.g., [26], [31], derive the path-loss under different setups and

assumptions. Moreover, some conditions for determining these regimes and path-loss functions in

[26], [31] do not have straightforward relationships with the TX-RIS and RIS-RX distances. This

consequently makes it very challenging to analytically derive the performance metrics of optimum

RIS selection policies where potential RISs have mixture path-loss models using the available path-

loss models in the current literature. This problem may become tractable when easy-to-use conditions

and path-loss expressions for the product-scaling and sum-scaling laws are available.

APPENDIX A

PROOF OF THEOREM 1

We first present an important lemma that lays the foundations for proving Theorem 1. This lemma

will also be used in Appendix C for proving Theorem 3 as well.

Lemma 1: We denote Bright (0, τ) as the right half disc having non-negative first coordinates with

radius τ centered at the origin 0. We assume that Ur is a uniformly distributed random node over

Bright (0, τ). Let also Υ = ŝpro (Ur). The expression for the CDF of RV Υ, FΥ(γ), is given by (A.1).

Proof: By using the law of cosines, Υ can be written as

Υ =
√(

‖Ur‖2 + 2d ‖Ur‖ cosΘ + d2
) (

‖Ur‖2 − 2d ‖Ur‖ cosΘ + d2
)

=

√
d4 + ‖Ur‖4 − 2d2‖Ur‖2 cos 2Θ, (A.2)
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FΥ(γ) =





2
πτ2

(
1
d2

(
d4E(γ

2

d4 ) + (γ2 − d4)K(γ
2

d4 )
))

if γ ≤ d2

2
πτ2

(
γE( d

4

γ2 )
)

if d2 < γ ≤ τ2 − d2

2
πτ2

(
− d2

2

√
1− (d4

−γ2+τ4)2

4d4τ4 + γE( d
4

γ2 )−
γE(arccos( d4+τ4

−γ2

2d2τ2 ), d
4

γ2 )

2 + θ2τ
2

)
; if τ2 − d2 < γ ≤ d2 + τ2

1 if γ > d2 + τ2

(A.1)

where Θ is the angle between the non-negative x-axis and the line segment connecting 0 and Ur. Θ is

uniformly distributed over
[
−π

2
, π
2

]
, and is independent of ‖Ur‖ because Ur is uniformly distributed.

Thus, we derive the conditional CDF of Υ given {Θ = θ} as

FΥ|Θ (γ|θ) = Pr
{
Υ2 ≤ γ2|Θ = θ

}
= Pr

{
d4 + ‖Ur‖4 − 2d2‖Ur‖2 cos 2θ ≤ γ2|Θ = θ

}
. (A.3)

To solve (A.3), we study the monotonicity of the function f (‖Ur‖) = d4+‖Ur‖4−2d2‖Ur‖2 cos 2θ.

We obtain the first derivative of f (‖Ur‖) with respect to ‖Ur‖ as f
′

(‖Ur‖) = 4‖Ur‖3−4d2 ‖Ur‖ cos 2θ.

Based on the expression of f
′

(‖Ur‖), we find that f
′

(‖Ur‖) > 0 holds when the case 1) cos 2θ ≤ 0

and ‖Ur‖ > 0 or case 2) cos 2θ > 0 and ‖Ur‖ >
√
d2 cos 2θ is satisfied. That is to say, for

θ ∈
[
π
4
, π
2

]
∪ θ ∈

[
−π

2
,−π

4

]
, f (‖Ur‖) is an increasing function with ‖Ur‖. For θ ∈

[
−π

4
, π
4

]
,

f (‖Ur‖) is an increasing function when ‖Ur‖ >
√
d2 cos 2θ and f (‖Ur‖) is a decreasing function

when ‖Ur‖ <
√
d2 cos 2θ.

We first solve (A.3) for θ ∈
[
π
4
, π
2

]
∪
[
−π

2
,−π

4

]
. Under these conditions, only one positive root U1

for f (‖Ur‖)− γ2 = 0 exists, which is given by

U1 =

√

−d2 + 2d2 cos2 θ +

√
−d4 + 2γ2 + d4 cos 4θ√

2
. (A.4)

Since 0 ≤ ‖Ur‖ ≤ τ and f (‖Ur‖) is an increasing function with ‖Ur‖, thus we obtain d4 ≤
f (‖Ur‖) ≤ d4 + τ 4 − 2d2τ 2 cos 2θ. Given U1 and the range of f (‖Ur‖), we solve (A.3) for θ ∈
[
π
4
, π
2

]
∪
[
−π

2
,−π

4

]
as

FΥ|Θ

(
γ|θ, θ ∈

[π
4
,
π

2

]
∪
[
−π
2
,−π

4

])
=





0 if γ < d2

Pr {‖Ur‖ ≤ U1} = U1
2

τ2

if d2 ≤ γ ≤
√
d4 + τ 4 − 2d2τ 2 cos 2θ

1 if γ >
√
d4 + τ 4 − 2d2τ 2 cos 2θ

(A.5)

where Pr {‖Ur‖ ≤ U1} = U1
2

τ2
is based on the CDF of ‖Ur‖, i.e., F‖Ur‖(u) =

u2

τ2
.
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We next solve (A.3) for θ ∈
[
−π

4
, π
4

]
. Under these conditions, two positive roots U1 and U2 for

f (‖Ur‖)− γ2 = 0 exist, where U1 is given by (A.4) and U2 is given by

U2 =

√
−d2 + 2d2 cos2 θ −

√
−d4+2γ2+d4 cos 4θ√

2
. Since f (‖Ur‖) is an increasing function when (‖Ur‖) >√

d2 cos 2θ and f (‖Ur‖) is a decreasing function when (‖Ur‖) <
√
d2 cos 2θ, f (‖Ur‖) attains the

minimal value f
(√

d2 cos 2θ
)
= d4 − d4 cos2 2θ at ‖Ur‖ =

√
d2 cos 2θ. Thus, the range of f (‖Ur‖)

is d4 − d4 cos2 2θ ≤ f (‖Ur‖) ≤ d4 + τ 4 − 2d2τ 2 cos 2θ. Given U1, U2, and the range of f (‖Ur‖), we

solve (A.3) when θ ∈
[
−π

4
, π
4

]
as

FΥ|Θ

(
γ|θ, θ ∈

[
−π
4
,
π

4

])
=





0 if γ <
√
d4 − d4 cos2 2θ

Pr {U2 ≤ ‖Ur‖ ≤ U1} = U1
2−U2

2

τ2

if
√
d4 − d4 cos2 2θ ≤ γ ≤ d2

Pr {‖Ur‖ ≤ U1} = U1
2

τ2

if d2 ≤ γ ≤
√
d4 + τ 4 − 2d2τ 2 cos 2θ

1 if γ >
√
d4 + τ 4 − 2d2τ 2 cos 2θ

(A.6)

We will obtain FΥ(γ) by averaging FΥ|Θ(γ|θ) over Θ. For θ ∈
[
π
4
, π
2

]
∪
[
−π

2
,−π

4

]
, we have

FΥ

(
γ|θ ∈

[π
4
,
π

2

]
∪
[
−π
2
,−π

4

])
=





0 if γ < d2

2
π

(∫ π
2
π
4

U1
2

τ2
dθ
)

if d2 ≤ γ ≤
√
d4 + τ 4

2
πτ2

(∫ π
2

θ2
U1

2dθ +
∫ θ2

π
4

τ 2dθ
)

if
√
d4 + τ 4 ≤ γ ≤ d2 + τ 2

2
πτ2

(∫ π
4
π
2

τ 2dθ
)

if γ ≥ d2 + τ 2

(A.7)

For θ ∈
[
−π

4
, π
4

]
, we have

FΥ

(
γ|θ ∈

[
−π
4
,
π

4

])
=





2
π

(∫ π
4

θ1
0dθ +

∫ θ1

0
U1

2−U2
2

τ2
dθ
)

if γ < d2

2
π

(∫ π
4

0
U1

2

τ2
dθ
)

if d2 ≤ γ ≤
√
τ 2 − d2

2
π

(∫ π
4

θ2

U1
2

τ2
dθ +

∫ θ2

0
1dθ
)

if τ 2 − d2 ≤ γ ≤
√
d4 + τ 4

2
π

(∫ π
4

0
1dθ
)

if γ ≥
√
d4 + τ 4

(A.8)

Combining (A.7) and (A.8), for θ ∈
[
−π

2
, π
2

]
, we have

FΥ

(
γ|θ ∈

[
−π
2
,
π

2

])
=





2
π

(∫ θ1

0
U1

2−U2
2

τ2
dθ
)

if γ < d2

2
π

(∫ π
4

0
U1

2

τ2
dθ +

∫ π
2
π
4

U1
2

τ2
dθ
)

if d2 ≤ γ ≤ τ 2 − d2

2
π

(∫ π
4

θ2

U1
2

τ2
dθ +

∫ θ2

0
1dθ +

∫ π
2
π
4

U1
2

τ2
dθ
)

if τ 2 − d2 ≤ γ ≤
√
d4 + τ 4

2
π

(∫ π
4

0
1dθ +

∫ π
2

θ2

U1
2

τ2
dθ +

∫ θ2
π
4

1dθ
)

if
√
d4 + τ 4 ≤ γ ≤ d2 + τ 2

2
π

(∫ π
4

0
1dθ +

∫ π
2
π
4

1dθ
)

if γ ≥ d2 + τ 2

(A.9)

June 7, 2022 DRAFT



29

Applying [42, eq. (2.576)] given by
∫ √

a + b cosxdx = 2
b

(
(a− b)F (c1,

1
c2
) + 2bE(c1,

1
c2
)
)

and

applying
∫ √

a+ b cos xdx = 2
√
a+ bE(x

2
, c1) to (A.9), where c1 = arcsin

√
b(1−cos x)

a+b
and c2 =√

2b
a+b

, we obtain FΥ(γ) as in (A.1) in Lemma 1. The proof of Lemma 1 ends here. Finally, using

the relation FΥopt
(γ) = 1 −

(
limτ→∞ exp

(
−λπτ2

2
FΥ (γ)

))2
given by [28] and the result of FΥ(γ)

given in Lemma 1, we arrive at (8), which concludes the proof.

APPENDIX B

PROOF OF THEOREM 2

We assume Ur is a uniformly distributed random RIS location. We also assume that Λ = ŝsum (Ur),

which is the sum of the distance between the source node and Ur and the distance between Ur and

the destination node. By using the law of cosines, we write Λ as

Λ =

√
‖Ur‖2 + 2d ‖Ur‖ cosΘ + d2 +

√
‖Ur‖2 − 2d ‖Ur‖ cosΘ + d2 (B.1)

The conditional CDF of Λ given {Θ = θ} can be expressed as

FΛ|Θ (γ|θ) = Pr
{
Λ2 ≤ γ2|Θ = θ

}
= Pr

{
w (‖Ur‖) ≤ γ2|Θ = θ

}
, (B.2)

where

w (‖Ur‖) = 2d2 + 2 ‖Ur‖2+
√(

‖Ur‖2+2d ‖Ur‖ cos θ + d2
) (

‖Ur‖2 − 2d ‖Ur‖ cos θ + d2
)
. (B.3)

We note that only one positive root W1 for w (‖Ur‖)− γ2 = 0 exist, where W1 is given by

W1 =

√
−4d2γ2 + γ4

2
√
γ2 − 4d2 cos2 θ

. (B.4)

Based on w (‖Ur‖) is the increasing function with respect to ‖Ur‖ and 0 ≤ ‖Ur‖ ≤ τ , we obtain

the range of w (‖Ur‖) is 4d2 ≤ w (‖Ur‖) ≤ w (τ). Given W1 and the range of w (‖Ur‖), we solve

(B.2) as

FΛ|Θ (γ|θ) =





0 if γ < 2d

Pr {‖Ur‖ ≤ W1} = W1
2

τ2
if 2d ≤ γ ≤

√
w (τ)

1 if γ >
√
w (τ)

(B.5)

We will obtain FΛ(γ) by averaging FΩ|Θ(γ|θ) over Θ. We need to consider four cases separately,

as follows:

FΛ(γ) =





0 if γ ≤ 2d

2
πτ2

∫ π
2

0
W1

2dθ if 2d < γ ≤ 2τ

2
πτ2

∫ π
2

φ1
W1

2dθ + 2
π

∫ φ1

0
1dθ if 2τ < γ ≤ 2

√
d2 + τ 2

1 if γ > 2
√
d2 + τ 2

, (B.6)
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FΛ(γ) =





0 if γ ≤ 2d

2
πτ2


 1

8 (−1)

⌊

π−2Arg(γ)+Arg(−4d2+γ2)
2π

⌋

πγ
√
−4d2 + γ2


 if 2d < γ ≤ 2τ

2
πτ2


−

arctan

(

cot(θ)

√

−4d2+γ2

γ2

)√
γ2(−4d2+γ2)

4 + φ1τ
2


 if 2τ < γ ≤ 2

√
d2 + τ2

1 if γ > 2
√
d2 + τ2

(B.7)

where φ1 =
1
2
arccos

(
d4+τ4−(

γ2−2d2−2τ2)
2

4

2d2τ2

)
and φ1 is obtained by solving γ2 = w (τ). Applying [39,

eq. (2.562.2)], we obtain FΛ(γ) as in (B.7). Using FΛopt
(γ) = 1 −

(
limτ→∞ exp

(
−λπτ2

2
FΛ (γ)

))2

[28], we arrive at (10). This completes the proof.

APPENDIX C

PROOF OF THEOREM 3

We denote B (0, τ) as the disc centered at the origin 0 with radius τ . We assume Ξpro(τ) as the

average number of RISs located in B (0, τ) that feedback their channel quality indicators. We also

assume that U is a uniformly distributed random node over B (0, τ). Thus, we have

Ξpro(τ) = λπτ 2Pr {ŝpro (U) ≤ Tpro} . (C.1)

We next obtain Pr {ŝpro (U) ≤ Tpro}. We recall that Ur is defined in Lemma 1 and Ur is a uniformly

distributed random node over right half disc Bright (0, τ). Similarly, we define Bleft (0, τ) as the left

half disc that centered at the origin 0 with radius τ having negative first coordinates. We let Ul is a

uniformly distributed random node over left half disc Bleft (0, τ).

Since the distribution of Ur over Bright is same as the distribution of Ul over Bleft, U , Ur, and Ul

are identically distributed RVs. As such, we have

Pr {ŝpro (U) ≤ Tpro} = Pr {ŝpro (Ur) ≤ Tpro} = Pr {ŝpro (Ul) ≤ Tpro} . (C.2)

We note that the CDF of Υ, FΥ(γ), is given by (A.1), where Υ = ŝpro (Ur). Thus, the expression

for Pr {ŝpro (U) ≤ Tpro} can be obtained by replacing γ with Tpro in (A.1). Finally, applying the

expression for Pr {ŝpro (U) ≤ Tpro} to (C.1) and taking the limit Ξpro = limτ→ Ξpro(τ), we arrive at

(29). The Poisson distribution property for the number of RISs feeding back can be established by

using characteristic functions as in [28], which completes the proof.
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APPENDIX D

SIMULATIONS WITH MIXTURE PATH-LOSS MODELS

In this appendix, we conduct simulations with mixture product-scaling and sum-scaling path-loss

models and compare these simulations with our analysis with a single path-loss models for all potential

RISs, to show the reasonableness of the used assumption. We recall that [26] shows the path-loss

is product-scaling if the TX and RX are both in the far-field of RIS in the beamforming case and

shows the path-loss is sum-scaling if the TX and RX are both or only one of them in the near-field

of RIS, in the broadcasting case. Based on the conditions where product-scaling and sum-scaling

path-loss models hold in [26], in our simulations, we calculate the path-loss of each RIS using sum-

scaling law if the TX and RX are both or only one of them in the near-field of RIS or using the

product-scaling law if the TX and RX are both in the far-field of RIS. Fortunately, by conducting

new simulations, we show that i) the results derived by assuming all RISs have the same sum-scaling

path-loss model can be good approximations of the results that assumes mixture path-loss models for

large RISs, and ii) the results assuming all RISs have the same product-scaling path-loss model can

be good approximations of the results assuming mixture path-loss models for small RISs. Please see

the results below:
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(a) λ = 0.1, N = 16
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Fig. 11: In simulations, the path-loss of RIS-aided links follow the power-law path-loss model if the

RIS located at Xi satisfy ‖xs −Xi‖ > ξ and ‖Xi − xd‖ > ξ; otherwise, RIS-aided links follow the

exp-law path-loss model. ξ = 8LxLy

λs
is the boundary of the far-field and near-field defined in [26] and

other parameters are the same as those in the manuscript.
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In Fig. 11a, we observe that the simulations with the boundary values of ξ = 5, 7, 9, 11 have a

good agreement with (20). This means the analytical outage probability with the sum-scaling law

is a good approximation of the simulated outage probability with product-scaling and sum-scaling

path-loss models co-existing for potential RISs, when the boundary value ξ is relatively large, e.g.,

ξ ≥ 5. This is because the RISs in the regime of product-scaling path-loss model (i.e., the TX and

RX are both in the far-field of the RIS) are less likely to be the optimum one compared with the

RISs in the regime of sum-scaling path-loss model (i.e., the TX and RX are both or only one of them

in the near-field of RIS). This likelihood decreases when the boundary value ξ of the far-field and

near-field increases. We note that ξ ≥ 5 is the normal range values of ξ of electrically-large RISs.

For example, [26] considers one large RIS prototype with the size of 1m × 1.2m and another large

RIS prototype with the size of 0.34m × 0.5m, and carrier frequency is 10.5 GHz, which leads to

ξ = 71.4m and ξ = 11.9m. In Fig. 11b, we observe that the simulations with the boundary values

of ξ = 0.05, 0.1 have a good agreement with (19). This means the analytical outage probability with

the product-scaling law is a good approximation of the simulated outage probability with product-

scaling and sum-scaling path-loss models co-existing for potential RISs, when the boundary value ξ

is relatively small, e.g., ξ ≤ 0.1. This is because most of RISs are in the regime of product-scaling

path-loss model, i.e., the TX and RX are both in the far-field of most of RISs, when ξ is small.

We note that ξ ≤ 0.1 is the normal range values of ξ of electrically-small RISs. For example, [26]

considers a small RIS prototype with the size of 0.384m × 0.096m, which leads to ξ = 0.1m when

the carrier frequency is 425 MHz.
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