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Abstract—Light nodes in blockchains improve the scalability
of the system by storing a small portion of the blockchain ledger.
In certain blockchains, light nodes are vulnerable to a data
availability (DA) attack where a malicious node makes the light
nodes accept an invalid block by hiding the invalid portion of
the block from the nodes in the system. Recently, a technique
based on LDPC codes called Coded Merkle Tree (CMT) was
proposed by Yu et al. that enables light nodes to detect a DA
attack by randomly requesting/sampling portions of the block
from the malicious node. However, light nodes fail to detect a
DA attack with high probability if a malicious node hides a small
stopping set of the LDPC code. To mitigate this problem, Yu et al.
used random LDPC codes that achieve large minimum stopping
set size with high probability. Although effective, these codes are
not necessarily optimal for this application, especially at short
code lengths, which are relevant for low latency systems, IoT
blockchains, etc.. In this paper, we focus on short code lengths
and demonstrate that a suitable co-design of specialized LDPC
codes and the light node sampling strategy can improve the
probability of detection of DA attacks. We consider different
adversary models based on their computational capabilities of
finding stopping sets in LDPC codes. For a weak adversary
model, we devise a new LDPC code construction termed as
the entropy-constrained PEG (EC-PEG) algorithm which con-
centrates stopping sets to a small group of variable nodes.
We demonstrate that the EC-PEG algorithm coupled with a
greedy sampling strategy improves the probability of detection
of DA attacks. For stronger adversary models, we provide a co-
design of a sampling strategy called linear-programming-sampling
(LP-sampling) and an LDPC code construction called linear-
programming-constrained PEG (LC-PEG) algorithm. The new
co-design demonstrates a higher probability of detection of DA
attacks compared to approaches in earlier literature.

Index Terms—Blockchain Systems, Data Availability Attacks,
LDPC codes, Coded Merkle Tree

I. INTRODUCTION

Blockchains are tamper-proof ledgers of transaction data

maintained by a network of nodes in a decentralized manner.

They were initially proposed in the field of cryptocurrencies

like Bitcoin and Ethereum. However, the decentralized nature

of blockchains has lead to their application in fields such as

supply chains [5], Internet of Things [6], and healthcare [7].

A blockchain is a collection of transaction blocks arranged

in the form of a hash-chain. Full nodes in the blockchain

network store the entire blockchain ledger and operate on it

to validate transactions. However, storing the entire ledger re-
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quires a significant storage overhead1 which prevents resource

limited nodes from joining the blockchain system. To alleviate

this problem, some blockchain systems also run light nodes

[4]. These are nodes that only store the headers corresponding

to each block of the blockchain. The header for each block

contains a field called a Merkle root which is constructed from

the block transactions [4]. Using the Merkle root, light nodes

can verify the inclusion of a given transaction in a block via a

technique called a Merkle proof. However, they cannot verify

the correctness of the transactions in the block.

Assuming that the system has a majority of honest full

nodes, light nodes simply accept headers that are a part of

the longest header chain because honest full nodes will not

mine blocks on chains containing fraudulent transactions (i.e.,

a longest chain consensus protocol [4] is used). However,

when the honest majority assumption is removed, the longest

chain protocol becomes insecure for light nodes. As such,

researchers were prompted to find methods to provide security

even under a dishonest majority of full nodes. One such

research endeavor was [1] where authors provided protocols

for honest full nodes to broadcast verifiable fraud proofs of

invalid transactions. The mechanism allows light nodes, even

in the presence of a majority of malicious full nodes, to reject

headers of invalid blocks on receiving fraud proofs from an

honest full node. However, with a majority of malicious full

nodes, the light nodes are still susceptible to data availability

(DA) attacks [1], [2]. In this attack, as illustrated in Fig. 1 left

panel, a malicious full node generates a block with invalid

transactions, publishes the header of the invalid block to the

light nodes, and hides the invalid portion of the block from

the full nodes. Honest full nodes cannot validate the missing

portion of the block and hence are unable to generate fraud

proofs to be sent to the light nodes. Since the absence of a

fraud proof also corresponds to the situation that the block is

valid, light nodes accept the invalid header2.

Light nodes can independently detect a DA attack if a

request for a portion of the block is rejected by the full node

that generates the block. As such, as illustrated in Fig. 1 right

panel, light nodes randomly sample the block, i.e., randomly

request for different portions of the block transactions and

accept the header if all the requested portions are returned.

In this paper, we are interested in reducing the probability of

failure for a light node to detect a DA attack for a given sample

1At the time of writing, the size of the Bitcoin and Ethereum ledgers are
around 400GB [9] and 650GB [10], respectively.

2In this system, there is no way of identifying honest alarm messages sent
by full nodes about block unavailability [2], [11].

http://arxiv.org/abs/2108.13332v3
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Fig. 1: Left: Data Availability (DA) attack; Right: Detection of DA attack via light node sampling

size, thus improving the security of the system. Since the size

of individual transactions is much smaller compared to the

entire block, an adversary can hide a very small portion of the

block corresponding to the invalid transactions. Such a hiding

will result in a high probability of failure for the light nodes

using random sampling. To alleviate this problem, authors in

[1] proposed coding the block using erasure codes3. When the

block is erasure coded, to make the invalid portion of the block

unavailable, the malicious block producer must prevent honest

full nodes from decoding back the original block. They do so

by either 1) hiding a larger portion of the coded block (more

than the erasure correcting capability of the code). This hiding

can be detected with a high probability by the light nodes using

random sampling; 2) incorrectly generating the coded data. In

this case, honest full nodes can broadcast verifiable incorrect-

coding (IC) proofs [1], [2] allowing light nodes to reject the

header. To keep the IC proof size small, authors in [1] used

2D Reed-Solomon (RS) codes. 2D-RS codes result in an IC

proof size of O(
√
b log b), where b is the size of the block.

Work in [2] extends the idea into a technique called Coded

Merkle Tree (CMT). A CMT uses Low-Density Parity-Check

(LDPC) codes for encoding a Merkle tree and it provides the

following benefits: 1) small check node (CN) degrees in the

LDPC codes reduce the IC proof size to O(log b) [2]; 2) LDPC

codes can be decoded using a linear time peeling decoder [12],

thus reducing the decoding complexity compared to Reed-

Solomon codes. Despite these benefits, an LDPC code with

a peeling decoder leads to certain problematic objects, called

stopping sets [12] that allow malicious nodes to successfully

hide a smaller portion of the block compared to Reed-Solomon

codes. A stopping set of an LDPC code is a set of variable

nodes (VNs) that if erased prevents a peeling decoder from

fully decoding the original block. If a malicious node hides

coded symbols corresponding to a stopping set of the LDPC

code, full nodes will not be able to decode the CMT. Since

the malicious node can hide the smallest stopping set, the

best code design strategy to reduce the probability of failure

3As with all applications of channel coding, coded redundancy results in
a rate penalty, which in this case is a storage overhead at the full nodes. In
this work, we improve the trade-off between the storage overhead and the
probability of failure of detecting DA attacks by providing better codes, thus,
making channel coding a more viable solution despite the overhead.

using random sampling is to construct deterministic LDPC

codes with large minimum stopping set size. Constructing such

LDPC codes is considered a hard problem [13].

Another important coding parameter for the CMT is the

length of the LDPC codes which affects the encoding/decoding

complexity and Merkle proof sizes. Similar to applications

such as wireless systems, short code lengths are beneficial

in CMT applications (like low latency blockchains [8] or

resource limited IoT blockchains [6]) since they keep the

above quantities small. Previous work in [2] have focused on

using codes from an LDPC ensemble to construct the CMT.

At large code lengths, the LDPC ensemble guarantees, with

high probability, a large stopping ratio (the smallest stopping

set size divided by the code length [2]) and hence a low

probability of failure. However, at short code lengths, the

LDPC ensemble is unable to provide good guarantees on the

minimum stopping set size. Authors in [2] combat this issue

through the use of bad-code proofs when codes with a smaller

stopping ratio (bad-codes) than guaranteed by the ensemble

get used. A bad-code proof triggers all nodes in the system

to use a newly sampled code from the ensemble. However, at

short code lengths, this approach requires many rounds of bad

codes until a good code has been found which undermines

the security of the system. Thus, the LDPC code design of

[2] is inappropriate for short CMT code lengths. Hence, in

this paper, we focus on short CMT code lengths and provide

deterministic LDPC codes that allow for good detection of DA

attacks. Due to our focus on short code-lengths, we do not

make guarantees for the extension of the techniques proposed

in this paper to longer code lengths. For various adversary

models, we provide a co-design of specialized LDPC codes

and sampling strategies that reduce the probability of failure

compared to techniques used in earlier literature.

We can broadly categorize all possible adversaries into

three types based on their computational capabilities. The

computational complexity is based on how hard it is for

a malicious node to find the minimum stopping set in the

LDPC code (which is known to be an NP-hard problem

[14]). Note that the light node sampling strategy is known

by all entities in the system. The first adversary type is

termed as a weak adversary. A weak adversary does not

have the resources to find a large number of stopping sets. It
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settles for hiding a random one it finds and is unable to take

advantage of the light node sampling strategy. The second

type is a medium adversary. A medium adversary, using

more computational resources, can find all stopping sets up

to a certain size and select the stopping set that performs the

worst under the posted light node sampling strategy. While

the medium adversary has more computational capability

than a weak adversary, a medium adversary represents a

malicious node with bounded resources and can only find

stopping sets up to a certain size within a reasonable time

frame. The final type is a strong adversary which we assume

has unlimited resources and can find all stopping sets (of

any size) and hide one among them that performs the worst.

These three models represent how much resources we assume

an adversary possesses to disrupt our system. As such, our

modeling encompasses everything from a single hacker with

a standard computer to a small group of hackers with a

cluster of computers to a large organization with unlimited

resources.

A. Contributions

Our main contributions in this paper are co-design tech-

niques for LDPC codes and coupled light node sampling

strategies that result in a low probability of failure under

the different adversary models described above. In LDPC

codes with no degree-one VNs, all stopping sets are made

up of cycles [21]. Since working with stopping sets directly

is computationally difficult, in this paper we design LDPC

codes by optimizing cycles to indirectly optimize stopping

sets. We show that our LDPC codes result in the desired

stopping set properties and produce low probability of failures

for the different adversary models. The contributions are listed

as follows:

1) For the weak adversary, we demonstrate that concen-

trating stopping sets in LDPC codes to a small set of VNs

and then greedily sampling this small set of VNs results

in a low probability of light node failure. We then provide

a specialized LDPC code construction technique called the

entropy-constrained Progressive Edge Growth (EC-PEG) al-

gorithm that is able to concentrate stopping sets in the LDPC

code to a small set of VNs. We provide a greedy sampling

strategy for the light nodes to sample this small set of VNs.

We demonstrate that for a weak adversary, LDPC codes

constructed using the EC-PEG algorithm along with the greedy

sampling strategy result in a significantly lower probability of

failure compared to techniques used in earlier literature.

2) To secure the light nodes against a medium and a strong

adversary, we provide a co-design of a light node sampling

strategy called linear-programming-sampling (LP-sampling)

and an LDPC code construction called linear-programming-

constrained PEG (LC-PEG) algorithm. LP-sampling is tailor-

made for the particular LDPC codes used to construct each

layer of the CMT. It is designed by solving a linear program

(LP) based on the knowledge of the small stopping sets in

the LDPC codes to minimize the probability of failure. We

demonstrate that, for a medium and a strong adversary, LDPC

codes designed by the LC-PEG algorithm coupled with LP-

sampling result in a lower probability of failure compared to

techniques used in earlier literature.

B. Previous Work

In [1], authors proposed to solve DA attacks by encoding

the block using 2D-RS codes. Their approach was optimized

in [35]. However, 2D-RS codes results in an IC proof size of

O(
√
b log b). In [2], authors proposed the CMT and demon-

strated that encoding the CMT using LDPC codes results in a

small IC proof size ofO(log b). Authors in [2] used codes from

a random LDPC ensemble of [16] to construct the CMT to

result in a low probability of failure. However, random LDPC

ensembles used in [2] were originally designed for other types

of channels (i.e., BSC) and we show that they are not the

best choice for this specific application at short CMT code

lengths. At the same time, as described before, random LDPC

ensembles undermine the security of the system, especially at

short CMT code lengths. In this work, we demonstrate that the

presented co-design techniques result in a lower probability

of failure compared to using codes from a random LDPC

ensemble and random sampling. Furthermore, to alleviate

the security problem, we provide deterministic LDPC code

design algorithms in this paper. In [17], authors provide a

protocol called CoVer based on CMT, which allows light

nodes to collectively validate blocks. However, [17] still uses

random sampling and random LDPC ensembles to mitigate

DA attacks.

DA attacks are possible in other blockchain systems as well.

Sharded blockchains where each node stores a fraction of the

entire block are vulnerable to DA attacks that can be solved us-

ing the CMT [18]. The LDPC co-design techniques described

in this paper can also be used in sharded blockchains. Side

Blockchains [19] that improve the throughput of block trans-

actions are also vulnerable to DA attacks. The vulnerability

is mitigated in [19] by introducing a DA oracle that uses the

CMT. A similar idea as this paper of co-design to construct

specialized LDPC codes to improve the performance of the

DA oracle was demonstrated in [20].

While this paper focuses on designing codes to mitigate

DA attacks, channel coding has been extensively used to

mitigate other scalability issues in blockchain systems: [23]

uses network codes to reduce the storage cost associated with

full nodes; [24] combines downsampling and erasure coding to

reduce the storage cost while allowing nodes to directly use the

stored data without decoding; [25] proposes secure fountain

codes to reduce the storage and bootstrapping communication

cost of full nodes; [26] uses Lagrange coding in sharded

blockchains to simultaneously improve storage, computation,

and security; [27] proposes using erasure codes to allow light

nodes to contribute in storing the blockchain. The proposal in

[27] can be combined with techniques proposed in this paper

to enable light nodes to ensure data availability.

The rest of this paper is organized as follows. In Section

II, we provide the preliminaries and system model. In Section

III, we describe the greedy sampling strategy and the EC-

PEG algorithm and how they overcome DA attacks against

the weak adversary. In Section IV, we present our approach

for the medium and strong adversary where we describe the

LP-sampling strategy and the LC-PEG algorithm. We discuss

system aspects of our co-design in Section V. We provide
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simulation results in Section VI and concluding remarks in

Section VII.

II. PRELIMINARIES AND SYSTEM MODEL

In this section, we first look at the preliminaries of the CMT

and LDPC notation. We then present our system, network, and

threat model. We use the following notation in the rest of the

paper. For p = (p1, . . . , pt) such that pi ≥ 0,
∑t

i=1 pi = 1,

we use the entropy function H(p) = −∑t
i=1 pi log(pi). For

a vector a, let max(a) (min(a)) denote the largest (smallest)

entry of a and let ai denote the ith element of a. For a matrix

M of size c × d, let Mki denote the element of M on the

kth row and ith column, 1 ≤ k ≤ c, 1 ≤ i ≤ d. Define

x mod p := (x)p.

A. Coded Merkle Tree (CMT)

1) CMT construction: A CMT of a block is built using the

block transactions as leaf nodes and the CMT root is included

in the block header. It is constructed by encoding each layer of

the Merkle tree [4] with an LDPC code and then hashing the

layer to generate its parent layer. A simplified description of

the CMT construction is shown in Fig. 2 left panel. As shown

in Fig. 2 left panel, coded symbols of a layer are interleaved

into the data symbols of the parent layer4. In this paper, we

adopt the interleaving technique introduced in [19]. Let the

CMT have l layers (except the root), L1, L2, . . . , Ll, where

Ll is the base layer. The root of the CMT is referred to as

L0. For 1 ≤ j ≤ l, let Lj have nj coded symbols and let the

LDPC code used in Lj have a parity check matrix Hj . Let

Nj [i], 0 ≤ i < nj , be the (i + 1)th symbol of the jth layer

Lj
5. Also, let Dj [i] = Nj [i], 0 ≤ i < Rnj and Pj [i] = Nj [i],

Rnj ≤ i < nj , be the systematic (data) and parity symbols

of Lj , respectively. Coded symbols Pj [i], Rnj ≤ i < nj are

obtained from Dj[i], 0 ≤ i < Rnj using a rate R systematic

LDPC code Hj . In the above CMT, hashes of every q coded

symbols of Lj are concatenated to form a data symbol of

Lj−1. Hence, nj = nl

(qR)l−j , j = 1, . . . , l. The CMT root

has t = n1 hashes. Let the number of systematic and parity

symbols in Lj be denoted by sj = Rnj and pj = (1−R)nj ,
respectively. For 1 ≤ j ≤ l, the data symbols of Lj−1 are

formed from the coded symbols of Lj as follows:

Dj−1[i] = Nj−1[i] =concat({Hash(Nj [x]) | 0 ≤ x < nj ,

i = (x)sj−1}) ∀ 0 ≤ i < sj−1,

where Hash and concat represent the hash and the string

concatenation functions, respectively.

2) Merkle Proof for CMT symbols: The Merkle proof of a

symbol in Lj consists of a data symbol and a parity symbol

from each intermediate layer of the tree that is above Lj [19].

An illustration of a Merkle proof is shown in Fig. 2 left panel.

In particular, the Merkle proof of the symbol Nj [i], 1 < j ≤ l,

is the set of symbols {Nj′ [ (i)sj′ ], Nj′ [ sj′ +(i)pj′ ] |1 ≤ j′ ≤

4In this paper, we refer to chunks of a fixed length as symbols of a field. A
symbol of c bits is represented as an element in F

c
2 and encoding and decoding

are performed using bitwise XOR operations over the bitwise representation of
the symbols (similar to [25]). Thus, the complexity of encoding and decoding
depends on the size of the chunks (i.e., symbols) c which is calculated as

c = b
nR

where b is the block size, and n and R are the length and rate of
the LDPC code in the CMT base layer.

5Due to modulo operations, we define Nj [i] starting with index 0 for i.
All other variables in the paper start with index 1.

j−1}. Detailed discussion on the properties of Merkle proofs6

can be found in [19].

3) Hash-Aware Peeling decoder: Using the CMT root and

the available symbols of each layer of the CMT, the original

block can be decoded using a hash-aware peeling decoder

described in [2]. The hash-aware peeling decoder decodes each

layer of the CMT (from top to bottom) like a conventional

peeling decoder [12]. However, after decoding a symbol in

layer j, the decoder matches its hash with the corresponding

hash present in layer j − 1. Matching the hashes allows

the decoder to detect IC attacks and generate IC proofs as

described in [2]. The IC proof size is proportional to the degree

of CNs in the LDPC codes used to build the CMT.

B. Stopping sets and LDPC notation

A stopping set of an LDPC code is a set of VNs such

that every CN connected to this set is connected to it at least

twice [12]. A stopping set is hidden (made unavailable) by a

malicious node if all VNs present in it are hidden. The hash-

aware peeling decoder fails to successfully decode layer j of

the CMT if a stopping set of Hj is unavailable. Let the Tanner

graph (TG) [12] representation of Hj be denoted by Gj such

that Gj has nj VNs {v(j)1 , . . . , v
(j)
nj }. VN v

(j)
i corresponds to

the ith column of Hj and CNs in Gj correspond to the rows of

Hj . Let Hj [v
(j)
i ] denote the column of the parity check matrix

corresponding to VN v
(j)
i . CMT symbol Nj[i], 0 ≤ i < nj ,

corresponds to VN v
(j)
i+1 of Gj . A cycle of length g is called a

g-cycle. For a set S, let |S| denote its cardinality. For a cycle

(stopping set) in the TG G, we say that a VN v touches the

cycle (stopping set) iff v is part of the cycle (stopping set).

Define the weight of a stopping set as the number of VNs

touching it. Let ω
(j)
min denote the minimum stopping set size

of Hj , 1 ≤ j ≤ l. The girth of a TG is defined as the length

of the smallest cycle present in the graph.

C. System and Network Model

We consider a blockchain system similar to [1] and [2] that

has full nodes and light nodes. One of the full nodes acts

as a block producer of a new block. We consider the same

blockchain network model as [2]. In particular, we assume

a synchronous network where the subgraph of honest full

nodes is connected7 and the messages sent on the network

are anonymous. The network can have a dishonest majority

of full nodes, but each light node is connected to at least

one honest full node (thus preventing eclipse attacks [1]).

Nodes broadcast a message (fraud proofs, IC proofs, and CMT

symbols) by sending the message to all its connected nodes.

The connected nodes check the message correctness (Merkle

proofs) and forward valid messages to their neighbors8. In

6The data part of the Merkle proof of Nj [i] from each layer lie on the path
of Nj [i] to the CMT root and can be used to check the integrity of Nj [i]
in a manner similar to regular Merkle trees in [4]. The parity symbols in the
Merkle proof are only for sampling purposes and the information provided in
the Merkle proof of Nj [i] are sufficient to check their integrity [19].

7The connected subgraph of honest full nodes ensures that a message
broadcasted by a honest node reaches all honest nodes.

8Since messages are communicated only to connected nodes, the cost of
broadcasting is not high. Moreover, honest nodes prevent fake communication
from malicious nodes by forwarding only valid messages.
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Fig. 2: Left Panel: Construction process of a CMT. A block of size b is partitioned into k data chunks (data symbols) each of size b
k

and
a rate R systematic LDPC code is applied to generate n coded symbols. These n coded symbols form the base layer of the CMT. The n
coded symbols are then hashed using a hashing function and the hashes of every q coded symbols are concatenated to get one data symbol
of the parent layer. The data symbols of this layer are again coded using a rate R systematic LDPC code and the coded symbols are further
hashed and concatenated to get the data symbols of its parent layer. This iterative process is continued until there are only t (t > 1) hashes
in a layer which form the CMT root. Left panel shows a CMT with n = 16, q = 4, R = 0.5 and t = 4. The circled symbols in L1 and L2

are the Merkle proof of the circled symbol in L3. Right panel: DA attack on the CMT.

the following, we describe actions performed by the block

producer, other full nodes, and light nodes. We also mention

the items included in the publicly available protocol that is

designed by a blockchain system designer to be used by nodes

in the system. In Section V, we provide a discussion on the

blockchain system designer.

1) Items included in the protocol: Parity check matrices Hj ,

1 ≤ j ≤ l, systematic generator matrix of each Hj , and the

light node sampling strategy (a rule to sample CMT symbols).

2) Block Producer: A full node that produces (mines) a

new block (see Fig. 1). On producing a new block, the block

producer encodes the block to construct its CMT using the

systematic generator matrices specified in the protocol. It

then broadcasts all the coded symbols in the CMT (including

the root) to other full nodes and the root of the CMT to

the light nodes. On receiving a sampling request from the

light nodes, it returns the requested symbols along with their

Merkle proofs. The block producer can be malicious and can

act arbitrarily.

3) Full nodes that are not the block producer: These

nodes perform Merkle proof checks on the coded symbols

of the CMT that they receive from a block producer, other

full nodes, or light nodes (see Fig. 1). They forward symbols

that satisfy the Merkle proofs to other connected full nodes.

Using the symbols that they received, they decode each

layer of the CMT with a hash-aware peeling decoder using

the parity check matrices Hj , 1 ≤ j ≤ l, specified in the

protocol. After decoding the base layer of the CMT, which

contains transaction data, they verify all the transactions.

They store a local copy of all blocks (i.e., its CMT) that they

verify to be valid (i.e., fully available, having no fraudulent

transactions and no incorrect-coding at any layer). They

declare the availability of this valid block to all other nodes

and respond to sample requests from the light nodes. If they

find a certain block to be invalid, either due to fraudulent

transactions or incorrect coding, they broadcast a fraud proof

or an IC proof for other nodes to reject the block. If they

find a certain layer of the CMT to be unavailable (i.e., having

coded symbols missing that prevent decoding), they reject

the block. A malicious full node need not follow the above

protocol and can act arbitrarily.

4) Light nodes: These nodes are storage constrained and

only store the CMT root corresponding to each block (see

Fig. 1). They download only a small portion of the block and

perform tasks like fraud and IC proof checks. Additionally,

light nodes check the availability of each layer of the CMT.

They do so by making sampling requests for coded symbols

of the CMT base layer from the block producer (or any other

full node that declares the block to be available). They make

sample requests using the sampling strategy specified in the

protocol. They perform Merkle proof checks on the returned

symbols and broadcast symbols that satisfy the Merkle proofs

to other connected full nodes. Upon receiving all the requested

symbols and verifying their Merkle proofs, light nodes accept

the block as available and store the block header. On receiving

fraud proofs or IC proofs sent out by a full node, light nodes

verify the proof and reject the header if the proof is correct.

We assume that each light node is honest.

Remark 1. In this paper, we provide co-design of LDPC codes

and sampling strategies (that are included in the protocol)

to reduce the probability of failure. As such, we do not

compromise on other performance metrics considered in [2]:

the CMT root has a fixed size t which does not grow with the

blocklength; the hash-aware peeling decoder has a decoding

complexity linear in the blocklength; we empirically show that

the IC proof size for our codes is similar to [2].

D. Threat Model

A blockchain system involves two aspects: block generation

and block verification. The block generation depends on the

consensus algorithm used in the blockchain e.g., Proof of

Work (PoW) [4], Proof of Stake (PoS) [28], etc.. However,

a DA attack caused by an adversary with dishonest majority

(in terms of work, stake, etc.) affects the block verification

process. Hence, the exact consensus algorithm used by the

blockchain is not relevant to our work. Similar to [1] and [2],

we focus on block verification and propose LDPC codes to

mitigate DA attacks9.

9Note that forking-based double spending attacks (related to block genera-
tion) where an adversary generates an invalid longest chain are still possible
with a dishonest majority of full nodes [1] but are not necessary to launch a
DA attack.
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Similar to [1] and [2], we model our system security in

terms of two properties: i) Soundness: If a light node thinks

that a block is available and accepts the block, then at least

one honest full node in the system will be able to fully

decode all layers of the CMT corresponding to the block;

ii) Agreement: If a light node determines that a block is

available, all light nodes in the system determine that the

block is available. Similar to [1], we analyse probability of

soundness or agreement failure per light client. Let P
S,A
f be

the probability that soundness or agreement fails for a single

light client due to a DA attack. In Section V, we show that

in our proposed co-design, P
S,A
f is reduced by reducing the

probability of failure of a single light node to detect DA attacks

when there is a sufficiently large number of light nodes in the

system. Thus, in the rest of the paper, we focus on reducing

the probability of failure of a single light node.

We consider an adversary that conducts a DA attack by

hiding coded symbols of the CMT. An illustration of a DA

attack is shown in Fig. 2 right panel. On receiving sampling

requests from the light nodes, the adversary only returns coded

symbols that it has not hidden and ignores other requests. The

adversary conducts a DA attack at layer j of the CMT by 1)

generating coded symbols of layer j, that satisfy their Merkle

proof, for the light nodes to accept these coded symbols as

valid, and 2) hiding a small portion of the coded symbols of

layer j, corresponding to a stopping set of Hj , such that honest

full nodes are not able to decode the layer. A DA attack at

layer j prevents an honest full node from generating a fraud

proof of fraudulent transactions (if j = l) or an IC proof

for incorrect coding at layer j. Since an incorrect coding can

occur at any layer, for the full nodes to be able to send IC

proofs, light nodes must detect a DA attack at any layer j that

the adversary may perform. They do so by sampling few base

layer coded symbols. For each intermediate layer j, 1 ≤ j < l,

the symbols of layer j collected as part of the Merkle proofs

of the base layer samples are used to check the availability of

layer j.

Light nodes fail to detect a DA attack if none of the base

samples requested or the symbols in their Merkle proofs are

hidden. Let P
(j)
f (s), 1 ≤ j ≤ l, be the probability of failure

of detecting a DA attack at layer j by a single light node

when it samples s base layer coded symbols. Also, let Jmax =

argmax
1≤j≤l

P
(j)
f (s). To maximize the probability of failure, we

assume that the adversary is able to perform a DA attack at

layer Jmax. We now provide precise mathematical definitions

of the three adversary models discussed in Section I based on

their computational capabilities:

1) Weak Adversary: For each layer j, 1 ≤ j ≤ l, they

hide stopping sets of size < µj for the parity check matrix

Hj (for some integer µj). Moreover, they do not exhaustively

find all stopping sets of a particular size of a given parity

check matrix or perform a tailored search for stopping sets.

Instead, we assume that to conduct a DA attack at layer j,

for all stopping sets of Hj of a particular size, they randomly

choose one of them to hide.

2) Medium Adversary: For each layer j, 1 ≤ j ≤ l, they

hide stopping sets of size < µj for the parity check matrix

Hj . However, they use the knowledge of the sampling strategy

employed by the light nodes to hide the worst case stopping

set that has the lowest probability of being sampled by the

light nodes. Let Ψj be set of all stopping sets of Hj of size

< µj . Also, let P
(j)
f (s) = max

ψ∈Ψj

P
(j)
f (s;ψ), where P

(j)
f (s;ψ)

is the probability of failure for the light nodes to detect a DA

attack at layer j under the light node sampling strategy when

the adversary hides the stopping set ψ of Hj . For Jmax =

argmax
1≤j≤l

P
(j)
f (s), the medium adversary conducts a DA attack

at layer Jmax by hiding a stopping set ψ from ΨJmax with the

highest P J
max

f (s;ψ).

3) Strong Adversary: They can find the worst case stopping

sets of any size of Hj , 1 ≤ j ≤ l. Let Ψ∞
j be the set of all

stopping sets of Hj . Similar to the medium adversary, define

P
(j)
f (s) = max

ψ∈Ψ∞

j

P
(j)
f (s;ψ) and Jmax = argmax

1≤j≤l
P

(j)
f (s). The

strong adversary conducts a DA attack at layer Jmax by hiding

a stopping set ψ from Ψ∞
Jmax with the highest P J

max

f (s;ψ).
The co-design that we provide to mitigate DA attacks

against weak adversaries, i.e., the EC-PEG algorithm and

the greedy sampling strategy, has the advantage of being

computationally cheap and does not involve finding stopping

sets. In order to mitigate DA attacks against a medium and

a strong adversary we provide LP-sampling and the LC-PEG

algorithm. LP-sampling uses stopping sets of size < µj from

layer j of the CMT and is more computationally expensive. It

is an overkill for the weak adversary which can be mitigated

using cheaper techniques. Factors such as the choice of the

consensus algorithm, area of deployment, etc. can give an idea

about the expected computational capabilities of full nodes

in the system and allow the system designer to choose the

adversary model. For example, in PoS [28] and PoSpace [29]

consensus blockchains, full nodes need not have a high com-

putational power and a weak adversary would be a reasonable

model to follow. For PoW blockchains [4], full nodes are

expected to have high computational power and a strong and

medium adversary model would be a suitable design choice.

Another example is small scale IoT-blockchains where the

blockchain nodes are IoT devices [6]. Here, full nodes have

low computational power and a weak adversary model would

be appropriate.

In our co-design to mitigate a DA attack against a medium

and a strong adversary, we assume that a blockchain system

designer decides the value of µj , 1 ≤ j ≤ l, and is able

to find all stopping sets of Hj of size < µj , that is used

to design LP-sampling. Although finding all stopping sets of

Hj of size < µj is NP-hard, since we focus on short code

lengths in this paper, the set of stopping sets can be found in a

reasonable amount of time using Integer Linear Programming

(ILP) methods demonstrated in [30]. Note that µj and the set

of all stopping sets of Hj of size < µj that the designer uses

to design LP-sampling is not publicly released. Only the final

design output, i.e., the LP-sampling strategy is included in the

protocol. Here, we have made a trusted set up assumption of

a blockchain system designer to design the items included in

the protocol. In Section V, we will discuss potential ways to

prevent security attacks by a malicious designer and how some
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attacks are naturally handled by our co-design method.

Given the above adversary models, we provide LDPC code

construction and sampling strategies to minimize the proba-

bility of failure for a single light node to detect DA attacks.

In the next section, we discuss the techniques to mitigate DA

attacks conducted by a weak adversary.

III. LDPC CODE AND SAMPLING CO-DESIGN FOR WEAK

ADVERSARY

In this section, we demonstrate our novel design idea of

concentrating stopping sets in LDPC codes to reduce the

probability of failure against a weak adversary. Since work-

ing with stopping sets directly is computationally difficult,

we focus on concentrating cycles to indirectly concentrate

stopping sets. It is well known that codes with irregular VN

degree distributions are prone to small stopping sets. Thus, we

consider VN degree regular LDPC codes of VN degree dv ≥ 3
in this paper. In the following, we first look at the effect of

the light node sampling strategy on the probability of failure

when a DA attack occurs on the base layer of the CMT. This

will motivate the LDPC code construction for the base layer.

Later, we demonstrate how the LDPC code construction for

the base layer can be used in all layers by aligning the columns

of the parity check matrices before constructing the CMT. For

simplicity of notation, we denote Hl by H having n VNs V =
{v1, v2, . . . , vn} and TG G. Consider the following definition.

Definition 1. For a parity check matrix H , let ssκ =
(ssκ1 , ss

κ
2 , . . . , ss

κ
n) denote the VN-to-stopping-set of weight

κ distribution where ssκi is the fraction of stopping sets of H

of weight κ touched by vi. Similarly, for a parity check matrix

H , let ζg = (ζg1 , ζ
g
2 , . . . , ζ

g
n) be the VN-to-g-cycle distribution

where ζ
g
i is the fraction of g-cycles of H touched by vi.

We informally say that distribution ssκ (ζg) is concentrated

if a small set of VNs have high corresponding stopping set (g-

cycle) fractions ssκi (ζ
g
i ). The following lemma demonstrates

that LDPC codes with concentrated ssκ results in a smaller

probability of light node failure when a weak adversary

conducts a DA attack (on the base layer). The proof is

straightforward and we omit it due to space limitations. It can

be found in [3] and references therein.

Lemma 1. Let SSκ denote the set of all weight κ stopping sets

of H . For a weak adversary that randomly hides a stopping set

from SSκ, the probability of failure at the base layer, P
(l)
f (s),

when the light nodes use s samples and any sampling strategy

satisfies P
(l)
f (s) ≥ 1−maxS⊆V,|S|=s τ(S, κ). Here, τ(S, κ) is

the fraction of stopping sets of weight κ touched by the subset

of VNs S of H . The lower bound in the above equation is

achieved when light nodes sample, with probability one, the

set Soptκ = argmaxS⊆V,|S|=sτ(S, κ).
Lemma 1 suggests that for a sample size s, the lowest

probability of failure is 1 − τ(Soptκ , κ) and is achieved when

the light nodes sample the set Soptκ . Now, τ(Soptκ , κ) is large if

a majority of stopping sets of weight κ are touched by a small

subset of VNs. This goal is achieved if the distributions ssκ

are concentrated towards a small set of VNs. Thus, designing

LDPC codes with concentrated ssκ increases τ(Soptκ , κ) and

reduces the probability of failure. In Section III-B, we design

the EC-PEG algorithm that achieves concentrated stopping set

distributions.

We are unaware of an efficient method to find Soptκ . Instead,

we use a greedy algorithm using cycles to find the light node

samples, provided in Algorithm 1. Algorithm 1 takes as input

the TG G, its girth gmin, an upper bound cycle length gmax,

and the sample size s. It outputs a set of VNs S
(s)
greedy that

the light nodes will sample, which we call greedy samples.

The probability of failure using this strategy when a weak

adversary randomly hides a stopping set of size κ from the

base layer is P
(l)
f (s) = 1−τ(S(s)

greedy, κ) (see proof of Lemma

1 in [3]). At the end of this section, we empirically show that

concentrating the cycle distributions ζg also concentrates the

stopping set distributions. Thus, the EC-PEG algorithm aims to

concentrate the cycle distributions to improve the probability

of failure. It is easy to see that the complexity of Algorithm

1 is dominated by the complexity of finding cycles (of worst

case length gmax) and is O(ngmax/2) using brute force.

Remark 2. (Overall Greedy Sampling Strategy) In the above

sampling strategy, some coded symbols may never get sampled

which can affect the soundness of the system. We allevi-

ate this problem without affecting the probability of failure

by modifying the sampling strategy as follows: Let ρ be

a fixed parameter where 0 < ρ < 1. For a total of s

samples, the light nodes select ρs greedy samples S
(ρs)
greedy =

greedy-set(G, gmin, gmax, ρs) and randomly select s− ρs

base layer coded symbols for the remaining samples. We dis-

cuss the soundness and agreement of this modified strategy in

Section V. For this strategy, P
(l)
f (s) = [1− τ(S(ρs)

greedy , κ)]
(
1−

ω
(l)
min

nl

)(s−ρs)
.

A. Aligning the parity check matrices of the CMT

In the above discussion, we demonstrated how to mitigate

a DA attack conducted by a weak adversary on the base layer

of the CMT using greedy sampling. Now, we extrapolate the

idea of greedy sampling to the intermediate layers. Since the

intermediate layers are sampled via the Merkle proofs of the

base layers samples, we align the base and intermediate layer

symbols such that the intermediate layers are also sampled

greedily. We do so by aligning (permuting) the columns of

the parity check matrices used in different CMT layers. We

align the columns such that the samples of an intermediate

layer j collected from the Merkle proofs of the base layer

samples coincide with the greedy samples for layer j provided

by greedy-set(Gj , g(j)min, g
(j)
max, s̃). Here, g

(j)
min is the girth of

Gj and g
(j)
max is the upper cycle length for layer j.

We assume that the output S
(s)
greedy of Algorithm 1 is

ordered according to the order VNs were added to S
(s)
greedy .

Let S
(j)
ordered = greedy-set(Gj , g(j)min, g

(j)
max, nj), 1 ≤ j ≤ l.

VNs in S
(j)
ordered are all the VNs of Hj ordered (permuted)

according to the order they were added to S
(j)
ordered. Hence,

we denote S
(j)
ordered[i] as the ith VN in this ordered list

of VNs. The procedure to align the columns of the parity

check matrices of different layers of the CMT is provided in

Algorithm 2. In the algorithm, we first permute the columns of

the base layer parity check matrix Hl (to obtain H̃l) such the
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Algorithm 1 Light node sampling strategy for weak adversary: greedy-set(G, gmin, gmax, s)

1: Inputs: TG G, gmin, gmax, s, Output: S
(s)
greedy , Initialize: S

(s)
greedy = ∅, g = gmin, Ĝ = G

2: while |S(s)
greedy | < s do

3: v = VN that touches the maximum number of g-cycles in Ĝ (ties broken randomly)

4: S
(s)
greedy = S

(s)
greedy ∪ {v}, Purge v and all its incident edges from Ĝ

5: if Ĝ has no g-cycles then g = g + 2

6: if g ≥ gmax then

7: Vr = randomly select s− |S(s)
greedy| VNs from Ĝ (ordered arbitrarily); S

(s)
greedy = S

(s)
greedy ∪ Vr

the VNs in S
(l)
ordered appear as columns 1, 2, . . . , nl in H̃l (line

3). Recall that when the base layer symbol corresponding to

v
(l)
i is sampled, then for every intermediate layer j, the VNs

with with subscript indices {1+(i−1)sj , 1+sj+(i−1)pj} get

sampled. We assign columns of H̃j at these indices (starting

from i = 1) the columns of Hj correspond to the greedy

samples in S
(j)
ordered from start to end (lines 4-6). We continue

this process until all columns of H̃j have been assigned. The

complexity of Algorithm 2 is dominated by the complexity of

finding S
(j)
ordered using Algorithm 1 and has a complexity of

O(
∑l

j=1 n
g(j)max/2
j ).

Remark 3. The parity check matrices H̃j , 1 ≤ j ≤ l, after

the alignment are included in the protocol. Recall that a CMT

is built using systematic LDPC codes. Under the assumption

of full rank, for the parity check matrices H̃j , 1 ≤ j ≤ l,

the corresponding generator matrices are constructed in a

systematic form which are then included in the protocol

for CMT construction. Also, after the alignment, the overall

greedy sampling strategy as described in Remark 2 becomes:

sample the first ρs coded symbols of the base layer of the CMT

and then randomly sample s− ρs base layer coded symbols.

This sampling rule is included in the protocol.

For a CMT built using H̃j , 1 ≤ j ≤ l, provided by

Algorithm 2, greedy sampling of the base layer of the CMT

according to Algorithm 1 ensures that all intermediate layers

of the CMT are greedily sampled according to Algorithm 1

through the Merkle proofs of the base layer samples. Next,

we provide a design strategy to construct LDPC codes with

concentrated stopping set distributions that result in a low

probability of failure under greedy sampling. Note that codes

produced in the next subsection are aligned by Algorithm 2

and then included in the protocol.

B. Entropy-Constrained PEG (EC-PEG) Algorithm

The EC-PEG algorithm is based on minimizing the entropy

of cycle distribution ζg . The intuition behind our algorithm

is using the fact that uniform distributions have high entropy

and distributions that are concentrated have low entropy. Thus,

we construct LDPC codes using the PEG algorithm [15] by

making CN selections that minimize the entropy of the cycle

distributions. Algorithm 3 presents the EC-PEG algorithm for

constructing a TG G̃ with n VNs, m CNs, and VN degree dv
that concentrates distributions ζg

′

, ∀g′ < gc. Choice of gc is

a complexity constraint of how many cycles we keep track in

the algorithm. All ties in the algorithm are broken randomly.

The PEG algorithm builds a TG by iterating over the set of

VNs and for each VN vj in the TG, establishing dv edges to

it. For establishing the kth edge to VN vj , the PEG algorithm

encounters two situations: i) addition of the edge is possible

without creating cycles; ii) addition of the edge creates cycles.

In both situations, the PEG algorithm finds a set of candidate

CNs that it proposes to connect to vj , to maximize the girth.

We abstract out the steps followed in [15] to find the set

of candidate CNs by a procedure PEG(G̃, vj). The procedure

returns the set of candidate CNs K for establishing a new

edge to VN vj under the TG setting G̃ according to the PEG

algorithm in [15]. For ii), the procedure returns the cycle

length g of the smallest cycles formed when an edge is added

between any CN in K and vj . For i), it returns g = ∞. K is

the set of all CNs in G̃ that create new g-cycles when an edge

is added between the CN and vj . When g = ∞, K is the set

of all CNs in G̃ that if connected to vj create no cycles.
Thus, when the PEG(G̃, vj) procedure returns g ≥ gc, either

no new cycles are created or the cycles created have length

≥ gc. In both these situations, similar to the original PEG algo-

rithm in [15], we select a CN from K with the minimum degree

under the current TG setting G̃ (line 7). When PEG(G̃, vj)
returns g < gc, we modify the CN selection procedure so that

the resultant cycle distributions get concentrated. We explain

the modified CN selection procedure next.

While progressing through the EC-PEG algorithm, for

all g′-cycles, g′ < gc, we maintain VN-to-g′-cycle counts

Λ(g′) = (Λ
(g′)
1 ,Λ

(g′)
2 , . . . ,Λ

(g′)
n ), where Λ

(g′)
i is the number

of g′-cycles that are touched by VN vi. When the PEG(G̃, vj)
procedure returns g < gc, for each candidate CN c ∈ K, new

g-cycles are formed in the TG when an edge is established

between c and vj . These cycles are listed in Lcycles (line 11).

For these new g-cycles, we calculate the resultant VN-to-g-

cycle counts λ
(g,c)
i , 1 ≤ i ≤ n, if an edge is established

between c and vj (line 12). Using λ
(g,c)
i , we calculate the

VN-to-g′-cycle normalized counts αg
′

= (αg
′

1 , α
g′

2 , . . . , α
g′

n )
(line 13) and then the joint normalized cycle counts αgc
for g′-cycles, g′ < gc (line 14). The joint normalized cycle

counts αgc is simply the average of the normalized cycle

counts across all the cycle lengths. Using αgc , we calculate

the entropy H(αgc) for each CN c in K (line 14). Our

modified CN selection procedure is to select a CN from K
with minimum Entropy[] (line 15). We then update the VN-

to-g-cycle counts for the new g-cycles that get created (line

15) to be used in future iterations. Minimizing the entropy

of the joint normalized cycle counts ensures that the different
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Algorithm 2 Aligning parity check matrices of CMT for greedy sampling

1: Inputs: Hj , S
(j)
ordered, 1 ≤ j ≤ l, Outputs: H̃j , 1 ≤ j ≤ l

2: Initialize: H̃j : matrix with unassigned columns, 1 ≤ j ≤ l, counter = 1

3: H̃l[i] = Hl[S
(l)
ordered[i]], 1 ≤ i ≤ nl

4: for j = 1, 2, . . . , l − 1 do for i = 1, 2, . . . , nl do d = 1 + (i− 1)sj , p = 1 + sj + (i − 1)pj
5: if H̃j [d] is not assigned before then H̃j [d] = Hj [S

(j)
ordered[counter]], counter += 1

6: if H̃j [p] is not assigned before then H̃j [p] = Hj [S
(j)
ordered[counter]], counter += 1

7: if all columns of H̃j have been assigned then Break i for loop

Algorithm 3 EC-PEG Algorithm

1: Inputs: n, m , dv , gc, Outputs: G̃, gmin, Initialize G̃ to n VNs, m CNs and no edges

2: Initialize Λ
(g′)
i = 0, for all g′ < gc and 1 ≤ i ≤ n, T = |{4, 6, . . . , gc − 2}|

3: for j = 1 to n do

4: for k = 1 to dv do

5: [K, g] = PEG(G̃, vj)
6: if g ≥ gc then

7: csel = Select a CN from K with the minimum degree under the current TG setting G̃
8: else ⊲ (g-cycles, g < gc, are created)

9: for each c in K do

10: λ
(g′,c)
i = Λ

(g′)
i , g′ < gc, 1 ≤ i ≤ n

11: Lcycles = new g-cycles formed in G̃ due to the addition of edge between c and vj

12: for all v in G̃ do λ
(g,c)
v = λ

(g,c)
v + |{O ∈ Lcycles | v is part of O}|

13: α(g′) = (α
(g′)
1 , α

(g′)
2 , . . . , α

(g′)
n ), where α

(g′)
i =

λ
(g′ ,c)
i∑

n
i=1 λ

(g′,c)
i

, g′ < gc (define 0
0 = 0)

14: αgc = (
∑

g′<gc

α
(g′)
1

T ,
∑

g′<gc

α
(g′)
2

T , . . . ,
∑
g′<gc

α(g′)
n

T ); Entropy[c] = H(αgc)

15: csel = CN in K with minimum Entropy[c]; Λgi = λ
(g,csel)
i , 1 ≤ i ≤ n

16: G̃ = G̃ ∪ edge{csel, vj}

cycle distributions are concentrated towards the same set of

VNs.

We now mention the complexity of the EC-PEG algorithm.

Note that the complexity of the original PEG algorithm is

O(mn) [15]. The EC-PEG algorithm differs from the original

PEG algorithm in steps 8-15. Step 14 has the largest complex-

ity which results in the complexity of the EC-PEG algorithm

to be at most O(mn2) = O(n3). Note that Lcycles in step 11

is obtained during step 5 as a by-product and does not incur

additional complexity.

Fig. 3 demonstrates the effectiveness of the EC-PEG algo-

rithm in concentrating the stopping set distribution. In Fig.

3 left panel, we plot the cycle distributions generated by the

PEG and EC-PEG algorithms. From the figure, we see that

the EC-PEG algorithm generates significantly concentrated

distributions ζ6 and ζ8 compared to the original PEG algo-

rithm. Fig. 3 middle and right panels show the corresponding

stopping set distributions ssκ. We see that for the EC-PEG

algorithm, the VNs towards the left (right) on the x-axis

have high (low) stopping set fraction. Thus, concentrating the

cycle distributions concentrates the stopping set distributions

towards the same set of VNs as the cycles. In Section VI,

we demonstrate that such concentrated distributions result in

a low probability of failure using the greedy sampling strategy

in Algorithm 1.

IV. LDPC CODE AND SAMPLING CO-DESIGN FOR MEDIUM

AND STRONG ADVERSARY

For the medium and strong adversary, the EC-PEG al-

gorithm and greedy sampling is insufficient to secure the

system and requires stronger code and sampling design. In this

section, we focus on overcoming these stronger adversaries

that hide the worst case stopping set. Similar to Section III,

we first look at a medium and a strong adversary who conduct

a DA attack on the base layer of the CMT and propose a

sampling strategy for the light nodes to sample the base layer

to minimize the probability of failure. This will motivate the

construction of LDPC codes for the base layer. Finally, we

will generalize the sampling strategy and LDPC construction

for the situation when the adversary conducts a DA attack at

any layer of the CMT.

Recall that for each layer j, 1 ≤ j ≤ l, the medium

adversary hides stopping sets of Hj of size < µj . Let

Ψj = {ψ(j)
1 , ψ

(j)
2 , . . . , ψ

(j)
|Ψj|

} be the set of all stopping sets

of Hj of size < µj , 1 ≤ j ≤ l. For Ψj , let Π(j) denote the

VN-to-stopping-set adjacency matrix of size |Ψj| × nj , where

Π
(j)
ki = 1 iff v

(j)
i touches stopping set ψ

(j)
k , else Π

(j)
ki = 0,

1 ≤ i ≤ n, 1 ≤ k ≤ |Ψj|.
Definition 2. A sampling (with replacement) strategy(
x , β(l)

)
is a nl × 1 vector x = [x1 · · · xnl

]
T

, where xi is

the probability that a light node requests for the ith base layer
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Fig. 3: Results for LDPC codes with R = 0.5, dv = 4, n = 128 using different PEG algorithms. The x-axis in all the plots are the VN
indices vi in the decreasing order of the 6-cycle fractions ζ6i (for the respective codes); Left panel: cycle distributions ζ6 and ζ8; Middle
Panel: stopping set distribution ss13; Right Panel: stopping set distribution ss14. The lines in the middle and right panels are the best fit
lines for ssκ indicating the graph slope.

symbol (i.e., v
(l)
i ) for every sample request and β(l) controls

the minimum probability of requesting a given CMT base layer

symbol.
(
x , β(l)

)
satisfy 0 ≤ β(l) ≤ xi ≤ 1,

∑n
i=1 xi = 1.

Let P
(l)
(f,med)(s) (P

(l)
(f,str)(s)) be the probability of failure

against a medium (strong) adversary for a DA attack on the

base layer of the CMT. (Define similarly P
(j)
(f,med)(s) and

P
(j)
(f,str)(s) for DA attack on layer j). We have the following

lemma (all proofs are deferred to the Appendix).

Lemma 2. For a sampling strategy
(
x , β(l)

)
, P

(l)
(f,med)(s) =[

max(1−Π(l)x)
]s

. Define P
(l)
(f,str-bnd)(s) :=

(
1− β(l)µl

)s
.

Then, P
(l)
(f,str)(s) ≤ max

(
P

(l)
(f,med)(s), P

(l)
(f,str-bnd)(s)

)
.

In the rest of the paper, we assume that P
(l)
(f,str)(s) is equal

to the upper bound provided in Lemma 2. We find the light

node sampling strategy by formulating a linear program (LP)

in
(
x , β(l)

)
to minimize the probabilities in Lemma 2. The

optimization problem (which can be easily converted into an

LP by introducing additional variables) is provided below:

minimize
x , β(l)

max
(
max(1−Π(l)x), θ ×

[
1− β(l)µl

])
(1)

subject to β(l) ≤ xi ≤ 1, i = 1, . . . , nl; β
(l) ≥ 0;

nl∑

i=1

xi = 1,

where θ, 0 ≤ θ ≤ 1, is a parameter that controls the trade-off

between P
(l)
(f,med)(s) and P

(l)
(f,str)(s).

A. Linear-programming-sampling (LP-sampling) for DA at-

tacks on any layer of the CMT

In this subsection, we modify LP (1) to take into effect a

DA attack conducted on any layer of the CMT and derive the

sampling strategy based on the modified LP. We first align the

columns of the parity check matrices of all the CMT layers as

described in Section III-A. Assume that the stopping sets and

VNs in the following are based on the aligned parity check

matrices.

Since a base layer symbol samples, via its Merkle proof, two

symbols from every intermediate layer of the CMT, the events

of sampling intermediate layer symbols are not disjoint. To

calculate the probability that each intermediate layer symbol

is sampled, we define for each j, 1 ≤ j ≤ l−1, a matrix A(j)

of size nj × nl whose entries are as follows: 1) if (k ≤ sj

and 1 + (i − 1)sj = k) then A
(j)
ki = 1; 2) if (k > sj and

1+sj+(i−1)pj = k) then A
(j)
ki = 1; 3) A

(j)
ki = 0 for all other

cases. For simplicity, assume that A(l) is an nl × nl identity

matrix. Also, define for 1 ≤ j ≤ l, the matrices ∆(j) =
min(Π(j)A(j), 1) where the minimum is element wise. Using

the above matrices, we calculate P
(j)
(f,med)(s) and P

(j)
(f,str)(s)

in Lemma 3. First, consider the following definition.

Definition 3. A sampling (with replacement) strategy(
x , β(1) , β(2) , . . . , β(l)

)
is a sampling strategy

(
x , β(l)

)
,

such that for x(j) = A(j)x, 1 ≤ j ≤ l − 1, x
(j)
i ’s satisfy

x
(j)
i ≥ β(j), 1 ≤ i ≤ nj , 1 ≤ j ≤ l − 1. Parameter β(j),

1 ≤ j ≤ l, is a non-negative real number and controls the

minimum probability of requesting a given symbol from layer

j of the CMT.

Lemma 3. For a sampling strategy
(
x , β(1) , . . . , β(l)

)
, let

x(j) = A(j)x, 1 ≤ j ≤ l. x
(j)
k is the probability that v

(j)
k

is sampled and P
(j)
(f,med)(s) =

[
max(1−∆(j)x)

]s
. Also, for

1 ≤ j < l, let P
(j)
(f,str-bnd)(s) :=

(
1− 1

2β
(j)µj

)s
. Then,

P
(j)
(f,str)(s) ≤ max(P

(j)
(f,str-bnd)(s), P

(j)
(f,med)(s)).

Using Lemmas 2 and 3, we formulate the following LP to

find the light node sampling strategy:

minimize
x, β(1), . . . , β(l)

max

(
max
1≤j≤l

max(1 −∆(j)x), (2a)

max
1≤j≤l

θ(j) ×
[
1− ξ(j)β(j)µj

])
(2b)

subject to β(l) ≤ xi ≤ 1, i = 1, . . . , nl,

nl∑

i=1

xi = 1,

(2c)

β(j) ≤ min(A(j)x), j = 1, . . . , l − 1,
(2d)

β(j) ≥ 0, j = 1, . . . , l, (2e)

where ξ(j) = 1
2 for 1 ≤ j < l and ξ(l) = 1. The first and

second term in the outer maximum above corresponds to the

probability of failure against the medium and strong adversary

for a DA attack on different layers of the CMT. θ(j)’s are

trade-off parameters and control the importance given to a

strong adversary on layer j of the CMT compared to a medium

adversary.
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The sampling strategy
(
x , β(1), . . . , β(l)

)
obtained as the

optimal solution of LP (2) is called LP-sampling and is

included in the protocol. To reduce the probability of fail-

ure against a medium and a strong adversary under LP-

sampling, we design LDPC codes aimed towards minimizing

the probability for each layer. The complexity of LP-sampling

is determined by the complexity of finding all stopping sets of

Hj of size < µj . Although stopping set enumeration is NP-

hard, they can be found in a reasonable time for small code

lengths using an ILP [30]. However, it is difficult to obtain an

analytical complexity expression for stopping set enumeration

using ILP.

B. Linear-programming-Constrained PEG (LC-PEG) Algo-

rithm

In this section, we design LDPC codes that perform well

under LP-sampling. We design such codes by modifying

the CN selection procedure in the PEG algorithm. We call

our construction linear-programming-constrained PEG or LC-

PEG algorithm since it is trying to minimize the optimal

objective value of an LP. Codes designed in this section are

aligned by Algorithm 2 and then included in the protocol.

Similar to the EC-PEG algorithm, we optimize cycles instead

of stopping sets. The motivation for focusing on cycles is

the following: for lists C and Ψ of cycles and stopping sets,

respectively, such that for every ψ ∈ Ψ, there exists a O ∈ C
which is part of ψ, we have maxψ∈Ψ

(
1−∑

vi:vi∈ψ
xi

)
≤

maxO∈C

(
1−∑

vi:vi∈O xi
)
. Thus, the optimal objective value

of LP (1) can be upper bounded by the optimal objective value

of a modified version of LP (1) which is based on cycles. We

select CNs in the PEG algorithm depending on the optimal

objective value they produce on the modified LP. Algorithm

4 presents our LC-PEG algorithm for constructing a TG G̃
with n VNs, m CNs, and VN degree dv. All ties are broken

randomly.

In the LC-PEG algorithm, we use the concept of the

extrinsic message degree (EMD) of a set of VNs that allows

us to rank the harm a cycle may have in creating stopping sets.

EMD of a set of VNs is the number of CN neighbors singly

connected to the set [21] and is calculated using the method in

[22]. EMD of a cycle is the EMD of the VNs involved in the

cycle. Low EMD cycles are more likely to form stopping sets

and we term cycles with EMD below a threshold Tth as bad

cycles. We use bad cycles to form the modified linear program

below:
min
x̂, β̂

max
(
max(1 − Cx̂), θ̂[1− β̂µ̂]

)

s.t. β̂ ≤ x̂i ≤ 1, i = 1, . . . , n̂; β̂ ≥ 0;

n̂∑

i=1

x̂i = 1.

(3)

The LC-PEG algorithm uses LP (3) via the procedure

LP-objective(L̂, Ĝ) which outputs its optimal objective

value. The procedure has inputs of a list L̂ = {O1, . . . ,O|L̂|}
of cycles and a TG Ĝ. Let Ĝ have n̂ VNs {v̂1, . . . , v̂n̂}. Here, C
is a matrix of size |L̂|× n̂, such that Cki = 1 if v̂i touches Ok,

else Cki = 0, 1 ≤ i ≤ n̂, 1 ≤ k ≤ |L̂|. Also, θ̂, 0 ≤ θ̂ ≤ 1, is

a parameter.

In the LC-PEG algorithm, we use the procedure PEG()
defined in Section III-B for the EC- PEG algorithm. The LC-

PEG algorithm proceeds exactly as the EC-PEG algorithm

when the PEG() procedure returns cycle length g ≥ gc. When

the PEG() procedure returns cycle length g < gc, we select a

CN from the set of candidate CNs K such that the resultant

LDPC codes have a low optimal objective value of LP (1).

We explain the CN selection procedure next.

While progressing through the LC-PEG algorithm, we main-

tain a list L of cycles. L contains cycles of length g < gc that

had EMD less than or equal to threshold Tth when they were

formed. Cycles in L are considered bad cycles and we base

our CN selection procedure on these cycles. When the PEG()
procedure returns candidate CNs K, we first select the set of

CNs Kmindeg that have the minimum degree under the current

TG setting G̃ (line 5). Of the CNs in Kmindeg , we select the set

of CNs Kmincycles that form the minimum number of new g-

cycles if an edge is established between the CN and vj (line 8).

Now for every CN c in Kmincycles, we find the list Lccycles of

new g-cycles formed due to the addition of an edge between c

and vj (line 10) and compute LP-objective(L∪Lccycles, G̃)
to get cost[c] (line 11). Our modified CN selection procedure is

to select a CN in Kmincycles that has the minimum cost[c] (line

12). After selecting csel using the above criteria, we update L
as follows: let Lsel be the list of g-cycles in Lcselcycles that have

EMD ≤ Tth. We add Lsel to L (line 13). Finally, we update

the TG G̃ (line 14).

Remark 4. We empirically observed that reducing the number

of cycles in the TG (and hence the number of stopping sets)

reduces the probability of failure against the medium and

strong adversary when LP-sampling is employed. The above

holds even if the size of the smallest stopping set remains

unchanged. This is in contrast to random sampling where the

probability of failure only depends on the size of the smallest

stopping set and is agnostic to the number of stopping sets of

small size present in the code. Thus, based on this observation,

we have added line 8 in our LC-PEG algorithm which selects

CNs Kmincycles that form the minimum number of cycles

when a new edge is established. However, we further make

an informed choice among the CNs in Kmincycles to select a

CN that has the minimum optimal objective value of LP (3).

We now discuss the complexity of the LC-PEG algorithm.

Note that it differs from the original PEG algorithm (that has

complexity O(mn) [15]) in steps 7-13. Of these steps, step

11 has the largest complexity due to solving LP (3). An LP

minAz≤b c
T z with d variables and t constraints can be solved

with complexity Õ((nnz(A)+ d2)
√
d) [31] where nnz(A) is

the number of non-zero entries in A and Õ hides factors poly-

logarithmic in d and t. In our case, LP (3) has n variables and

at most mndv constraints (step 10 in the algorithm can result

in at most m cycles) and hence nnz(A) ≤ gcmndv . Thus,

the overall complexity of the LC-PEG algorithm is at most

Õ(mn
√
n(gcmndv + n2)) = Õ(n4.5). In our simulations, we

were able to generate codes up to length 500 for different

rates in a reasonable time frame (within a day) using the

LC-PEG algorithm. Note that the algorithms proposed in this

paper for LDPC code construction and sampling strategy

design have more complexity compared to [2]. However,

these algorithms are used offline instead of on-the-fly. The
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Algorithm 4 LC-PEG Algorithm

1: Inputs: n, m , dv , gc, Tth, θ̂, µ̂; Outputs: G̃, gmin

2: Initialize G̃ to n VNs, m CNs and no edges, L = ∅
3: for j = 1 to n do

4: for k = 1 to dv do

5: [K, g] = PEG(G̃, vj); Kmindeg = CNs in K with the minimum degree under the TG setting G̃
6: if g ≥ gc then csel = Select a CN randomly from Kmindeg
7: else ⊲ (g-cycles, g < gc, are created)

8: Kmincycles = CNs in Kmindeg that result in the minimum number of new g-cycles due to the addition of edge

between the CN and vj
9: for each c in Kmincycles do

10: Lccycles = new g-cycles formed in G̃ due to the addition of edge between c and vj

11: cost[c] = LP-objective(L ∪ Lccycles, G̃)
12: csel = CN in Kmincycles with minimum cost[c]

13: Lsel = cycles in Lcselcycles that have EMD ≤ Tth; L = L ∪ Lsel

14: G̃ = G̃ ∪ edge{csel, vj}

complexity increase is still tractable for short code lengths. We

demonstrate improvement in the probability of failure using

our algorithms in Section VI.

V. SYSTEM ASPECTS

1) Security Performance: Here, we discuss how soundness

and agreement defined in Section II-D are affected by our co-

design. Let M be the total number of light nodes in the system

and ηrec =

(
max
1≤j≤l

nj−ω
(j)
min+1

nj

)
, where ω

(j)
min is the minimum

stopping set size of the LDPC code used in layer j of the

CMT. We have the following lemmas (we defer the proofs to

the Appendix).

Lemma 4. For a weak adversary, when light nodes sample

according to the overall greedy sampling strategy, the proba-

bility of soundness or agreement failure per light client P
S,A
f

satisfies

P
S,A
f ≤

max

(
max

1≤j≤l, ω(j)<µj

[
[1− τ(S

(ρs , j)
greedy , ω

(j))]
(
1− ω(j)

nj

)s−ρs
]
,

2[H(ηrec,1−ηrec)nl−Ms(1−ρ) log( 1
ηrec

)]

)

Here, S
(ρs , j)
greedy is the samples of layer j, 1 ≤ j ≤ l, collected

when the light nodes request for the first ρs coded symbols

from the base layer of the CMT.

Lemma 5. For a medium and a strong adversary, when light

nodes sample according to LP-sampling x, the probability of

soundness or agreement failure per light client P
S,A
f satisfies

P
S,A
f ≤ max

(
max
1≤j≤l

P
(j)
f (s),

2
[H(ηrec,1−ηrec)nl−Ms log

(
1∑ηrecnl

i=1
x[i]

)
]
)

Here, P
(j)
f (s) = P

(j)
(f,med)(s) and P

(j)
f (s) = P

(j)
(f,str)(s) for

the medium and strong adversary, respectively, as defined in

Section IV-A and x[i] is the ith largest entry in vector x.

The first term in the maximum in Lemma 4 and 5 is the

probability of failure of a single light node against different

adversaries. Thus, when the number of light nodes M is large,

P
S,A
f is affected by the probability of failure of a single light

node, which we minimize in this paper.

2) Blockchain System Designer: In the system model in

Section II-C, we have made a trusted set up assumption of

a blockchain system designer who designs the parity checks

matrices and the LP-sampling strategy. Note that for greedy

sampling, after the overall sampling rule described in Remark

3, nothing more needs to be designed by the system designer.

Additionally, as previously mentioned in Section II-D, only

the final LP-sampling strategy obtained by solving LP (2) is

included in the protocol and inputs to LP (2) (µj and set of all

stopping sets of Hj of size < µj) are not part of the protocol.

Existing examples of blockchain systems that rely on trusted

set up assumptions include [28], [32], [33]. In our system,

there are two attacks possible by a compromised designer: i)

incorrect protocol design (i.e., the designed sampling strategy

and LDPC codes do not result in the claimed probability of

failure. Here, the probability of failure can be thought of

as an output of the protocol design computation task and

nodes join the system based on the published probability of

failure performance); ii) the designer acts as the adversary and

launches a DA attack using the known stopping sets of Hj of

size < µj .

A possible direction to remove the first attack is as follows.

A cryptographic tool called zk-STARK [34] can be used

by the system designer to create verifiable proofs of correct

computation of the LDPC codes, the LP-sampling strategy, and

the probability of failure. This proof can be verified by nodes

(full and light) before joining the blockchain system to ensure

that the protocol is correctly designed. The proof created

using zk-STARK has the following properties: it has a small

size, it can be verified using significantly less computational

complexity compared to the actual computation, it is secure

against quantum computers, it reveals no information about the

secrets involved in the computation (here µj and all stopping

sets of Hj of size < µj).

In the second attack, the system designer acts as the adver-
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Fig. 4: The probability of light node failure for various coding schemes and sampling strategies for CMT T1 = (128, 0.5, 4, 4) and weak
adversary. In this and all other figures, RS refers to random sampling; Left panel: probability of failure for a DA attack on the base layer
for different stopping set sizes. The black curve is achieved using stopping ratio ν∗ = 0.064353. The value ν∗ is the best stopping ratio
obtained for a rate 0.5 code following the method in [2, section 5.3] using parameters (c, d) = (8, 16). GS refers to the overall greedy

sampling strategy described in Section V 1) where we have used ρ = 0.9. P
(j)
f, ω(s) for GS is calculated as [1− τ (S

(ρs , j)
greedy , ω)](1−

ω
nj

)s−ρs,

where S
(ρs , j)
greedy is described in Lemma 4; Right panel: probability of failure across different layers of the CMT. P

(j)
f (s) is calculated as

P
(j)
f (s) = maxω<µj

P
(j)
f, ω(s), where µj = ω

(j),PEG

min + 6.

sary (medium) to launch a DA attack using the knowledge

of the stopping sets (which it enumerated while correctly

designing LP-sampling x). However, this DA attack will be

detected by the light nodes with a probability of failure

P
(j)
(f,med)(s) which is guaranteed by the protocol. Also, to

launch this DA attack, the system designer spends the same

amount of computational power as a medium adversary who

doesn’t have the knowledge of the stopping sets and wishes

to attack the system. Thus, the system designer is not at an

advantage to launch DA attacks due to the knowledge of the

secret.
VI. SIMULATION RESULTS

In this section, we compare the performance of our co-

design techniques with that of codes designed by the original

PEG algorithm and the performance of [2] using random

LDPC codes and random sampling (RS). Since many works

e.g., [17] [18] use random LDPC codes and random sam-

pling to mitigate DA attacks, any improvements we show in

comparison to [2] will also provide benefits in these works.

The different CMTs used for simulation are parametrized by

T = (nl, R, q, l) (individual parameters are defined in Section

II-A). For a CMT T , in order to compare the performance of

different PEG based codes, we choose µj = ω
(j),PEG
min + γ,

1 ≤ j ≤ l, for the various adversary models described in

Section II-D. Here, ω
(j),PEG
min is the minimum stopping set

size for an LDPC code constructed using the original PEG

algorithm for layer j of the CMT T and γ is a parameter. We

calculate the probability of failure when the light nodes request

for s base layer samples using random sampling for various

scenarios as follows: for the base layer when the adversary

hides a stopping set of size ω, P
(l)
f, ω(s) =

(
1− ω

nl

)s
; for

intermediate layers, we calculate the probability of failure for

the medium and strong adversary by substituting x =
1nl

nl

in the probability of failure expressions provided in Section

IV-A, where 1nl
is a vector of ones of length nl; for an

LDPC code with a stopping ratio ν∗ we calculate the prob-

ability of failure at the base layer using random sampling as

P
(l)
f (s) = (1−ν∗)s. The LDPC codes at different layers of the

CMTs are aligned using Algorithm 2 where we use gmax = gc
(observed cycles in the code constructions) and gmin is set to

the girth of the respective codes.

Fig. 4 demonstrates the performance of the EC-PEG al-

gorithm and the greedy sampling strategy for CMT T1 =
(128, 0.5, 4, 4) and a weak adversary. For the EC-PEG algo-

rithm, we have used the parameters: dv = 4 for all layers,

R = 0.5, g
(4)
c = 10 and g

(j)
c = 8 for j = 1, 2, 3. For

the adversary model we have chosen γ = 6. Note that

ω
(4),PEG
min = 9 and thus µ4 = 9 + 6 = 15. In Fig. 4 left

panel, we plot P
(4)
f, ω(s) for various coding algorithms and

sampling strategies when a weak adversary conducts a DA

attack on the base layer of the CMT by hiding stopping

sets of size ω < µ4. The codes designed by the original

PEG and EC-PEG algorithms have a minimum stopping set

size of 9 and 10, respectively. For these algorithms, P
(4)
f, ω(s)

quickly becomes zero for ω = 9, 10 using greedy sampling

as s increases. Hence, we have not included these stopping

set sizes in Fig. 4 left panel. The figure demonstrates three

benefits of our co-design. The first benefit is due to the use

of deterministic LDPC codes that provide larger stopping set

sizes than random ensembles, as can be seen when comparing

the black and green curves. The second benefit comes from

using greedy sampling as opposed to random sampling, which

can be observed by comparing the green and red curves. The

final benefit is provided by the EC-PEG algorithm, as can

be seen by comparing the red and blue curves. These benefits

combine to significantly reduce P
(4)
f, ω(s) compared to the black

curve which was proposed in earlier literature10.

10The singularities in some plots in Fig. 4 (e.g., Original PEG + GS ω =

11) is because P
(4)
f, ω

(s) becomes zero after certain number of greedy samples.

This situation happens when all the stopping sets of weight ω get touched by
the greedy samples.
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Fig. 5: Weak adversary performance plots for Nl = 200, R = 0.5, dv = 4. Left panel: probability of failure for a DA attack on the base
layer for different stopping set sizes (see Fig. 4 left panel for plot properties). We have parameters ωPEG

min = 13 and γ = 5, ρ = 0.9; Right
panel: stopping set distribution ss17.
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Fig. 6: For CMT T1 = (128, 0.5, 4, 4), we plot the probability of failure for a DA attack at all layers for different codes under the following
cases; i) Base layer is randomly sampled (RS base), ii) LP-Sampling with medium adversary (Med), iii) LP-sampling with strong adversary

(Str-bound). For the strong adversary, we plot P
(j)
(f,str)(s).

In Fig. 4 right panel, we plot the probability of failure

P
(j)
f (s) when the weak adversary conducts a DA attack on

layer j of CMT T1. From Fig. 4 right panel11, we see that

the base layer of the CMT (L4) has a larger probability of

failure compared to other layers and the probability of failures

for the intermediate layers quickly become very small. This

is due to the alignment of the columns of the parity check

matrices, which ensures that each intermediate layer is greedy

sampled. We next observe that the EC-PEG algorithm with

greedy sampling results in a lower P
(j)
f (s) compared to the

original PEG algorithm for all layers of the CMT. Moreover,

for the base layer, P
(4)
f (s) (for both EC-PEG and original PEG

coupled with greedy sampling) is lower than the probability

of failure using random sampling for ω = 14 (green curve)

and the probability of failure achieved by random LDPC codes

and random sampling (black curve). Thus, in combination, the

co-design of concentrated LDPC codes and greedy sampling

results in a significantly lower P
(4)
f, ω(s) compared to methods

proposed in [2]. To illustrate the benefits of the EC-PEG

algorithm and the greedy sampling strategy, we provide plots

11The plots for P
(4)
f, ω

(s) and P
(j)
f, ω

(s) in Fig. 4 sometimes exhibit floors

(i.e., they remain constant for different values of s). This is due to i) the new
greedy samples that are selected (on increasing s) do not increase the number
of stopping sets that are touched; ii) the number of random samples in the
overall greedy sampling strategy remain same on increasing s.

similar to Fig. 3 and Fig. 4 for a different choice of code

parameters in Fig. 5. From the figure, we see similar stopping

set concentration and probability of failure improvement as in

Fig. 3 and Fig. 4.

In Figs. 6, 7 and Table I, we demonstrate the performance

of the LC-PEG algorithm and LP-sampling (LS) against a

medium and a strong adversary. Fig. 6 and 7 correspond to

CMT T1 = (128, 0.5, 4, 4) where we have used γ = 4, thus

µj = ω
(j),PEG
min + 4. Table II lists ω

(j),PEG
min for different j.

Additionally, for LP-sampling, we have used θ(4) = 0.993,

θ(j) = 1, j = 1, 2, 3. For the LC-PEG algorithm, we have used

dv = 4 for all layers, R = 0.5, g
(4)
c = 10 and g

(j)
c = 8 for

j = 1, 2, 3, T
(j)
th = 3 for j = 1, 2, T

(j)
th = 4 for j = 3, 4,

θ̂(j) = 0.997, j = 1, 2, 3, 4 (we tested with Tth = 3, 4
and θ̂ = 0.995, 0.996, 0.997, 0.998 and picked the codes that

provide the lowest P J
max

f (s)) and µ̂j = µj , j = 1, 2, 3, 4.

To demonstrate the effectiveness of the LC-PEG algorithm,

we also plot the performance of an algorithm termed as the

Minimum-Cycles PEG (MC-PEG) algorithm. It is the same as

the LC-PEG algorithm but instead of the CN selection steps

in lines 10-13 of Algorithm 4, the MC-PEG algorithm selects

a CN randomly from Kmincycles as csel.

We first look at the improvements provided by LP-sampling.

Fig. 6 shows the performance of LP-sampling for a DA attack

at different layers of the CMT constructed using the PEG,



SUBMITTED PAPER 15

25 30 35 40 45

10-2

10-1

s

P
(4

)
f

(s
)

0.94 0.96 0.98 1
0.01

0.1

3 10-1

θ(4)

P
(4

)
f

(s
=

3
0
)

Fig. 7: The probability of light node failure for a DA attack on the base layer of CMT T1 = (128, 0.5, 4, 4); Left panel: comparison of

different coding schemes and sampling strategies. The black curve uses ν∗ = 0.064353; Right panel: variation in P
(4)
f (s = 30) for the

strong and medium adversary as a function of θ(4) for θ(j) = 1, j = 1, 2, 3.

TABLE I: P
(l)
f (s = 0.25nl) for a DA attack on the base layer for various CMT parameters, coding schemes, and sampling strategies. The

parameters used for the different CMTs is listed in Table II. For the ensemble codes, we follow the method of [2, Section 5.3] and for each
R obtain the following parameters (R, c, d, ν∗) = {(0.5, 8, 16, 0.0643),
(0.4, 6, 10, 0.0851), (0.8, 11, 55, 0.0187)} where (c, d) are optimized to maximize the stopping ratio ν∗.

Random Sampling LP-Sampling

CMT
Ensemble PEG MC-PEG LC-PEG

Strong Adversary Medium Adversary

T = (nl, R, q, l) PEG MC-PEG LC-PEG PEG MC-PEG LC-PEG

(128, 0.5, 4, 4) 0.1190 0.0970 0.0740 0.0428 0.04914 0.04602 0.04106 0.03925 0.03675 0.03279

(208, 0.5, 4, 4) 0.0314 0.0204 0.0155 0.0267 0.0304 0.02427 0.02294 0.00815 0.00651 0.00615

(200, 0.5, 4, 3) 0.0356 0.0347 0.0202 0.0202 0.02778 0.02028 0.01781 0.00606 0.00447 0.00388

(200, 0.4, 5, 4) 0.0117 0.0089 0.0067 0.0052 0.00558 0.00513 0.00484 0.00225 0.00207 0.00195

(200, 0.8, 5, 2) 0.3891 0.4697 0.3641 0.2820 0.2827 0.256 0.2332 0.171 0.1549 0.1411

TABLE II: Parameters used for LP-sampling and LC-PEG code construction for various CMTs in Table I. For all LDPC codes we use

dv = 4, g
(j)
c = g

(j)
max = g

(j)
min + 4, j = 1, . . . , l. For LC-PEG algorithm, we use µ̂(j) = µ(j) = ω

(j),PEG

min + γ, j = 1, . . . , l. Under each
variable that depends on the layer, we enumerate the layer numbers.

CMT T
(j)
th θ̂(j) g

(j)
min ω

(j),PEG
min γ

θ(j)

T = (nl, R, q, l) 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

(128, 0.5, 4, 4) 3 3 4 4 0.997 0.997 0.997 0.997 4 4 4 6 2 4 5 9 4 1 1 1 0.993

(208, 0.5, 4, 4) 3 4 4 5 0.997 0.997 0.997 0.9959 4 4 6 6 4 6 10 15 3 1 1 0.997 0.975

(200, 0.5, 4, 3) 4 4 5 - 0.997 0.997 0.998 - 4 6 6 - 6 8 13 - 3 1 0.99 0.97 -

(200, 0.4, 5, 4) 3 4 4 5 0.997 0.997 0.997 0.998 4 4 6 6 5 8 11 18 4 1 1 0.992 0.982

(200, 0.8, 5, 2) 4 5 - - 0.997 0.997 - - 4 4 - - 2 3 - - 3 1 0.99 - -

LC-PEG and MC-PEG algorithms. We see that while the

probability of failure for some layers worsens in comparison

to random sampling, for the worst layer, which is the base

layer, the probability of failure improves for both the strong

and medium adversary. We generally find that the base layer is

the worst layer so we focus on the base layer in the subsequent

simulations.

We plot P
(4)
f (s) vs. s for the PEG, MC-PEG, and LC-

PEG algorithms using LP-sampling in Fig. 7 left panel, where

we see the following improvements. The first improvement is

between the black and magenta curves due to using determin-

istic LDPC codes that produce larger stopping set sizes. The

second improvement is due to using LP-sampling compared

to random sampling. Compared to random sampling (magenta

curve), LP-sampling with the original-PEG algorithm results

in a lower probability of failure for the medium (red-solid

curve) and strong adversary (red-dotted curve). The third im-

provement (between the red and light blue curves) comes from

utilizing the MC-PEG algorithm to reduce the number of small

cycles as discussed in Remark 4. The final improvement comes

from the informed CN selection in the LC-PEG algorithm to

create tailored codes for LP-sampling as seen by comparing

the dark and light blue curves.

In Fig. 7 right panel, we plot P
(4)
f (s = 30) as a function

of the parameter θ(4) for the original PEG, MC-PEG and LC-

PEG algorithms using LP-sampling. From Fig. 7 right panel,

we see that θ(4) controls the trade-off between the probabilities

of failure for the medium adversary and strong adversary.

Thus, θ(4) can be chosen as a hyper-parameter based on the

system specifications. We also see from Fig. 7 right panel that

for all the values of θ(4), the LC-PEG algorithm outperforms

the PEG and MC-PEG algorithm for both the medium and

strong adversary.

For completeness, we provide further examples of how our

novel code constructions improve the probability of failure
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TABLE III: Maximum CN degree for the LDPC codes used in different layers of the CMT. Under each algorithm, we enumerate the layer
numbers and specify the maximum CN degree for that layer.

CMT
Ensemble

PEG EC-PEG MC-PEG LC-PEG

T = (nl, R, q, l) 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

(128, 0.5, 4, 4) 16 8 8 9 9 10 13 12 14 8 8 9 9 8 8 9 9

(208, 0.5, 4, 4) 16 8 9 8 8 11 11 11 16 8 9 8 9 8 8 9 9

(200, 0.5, 4, 3) 16 9 9 9 - 12 11 18 - 9 9 9 - 8 9 9 -

(200, 0.4, 5, 4) 10 7 7 7 7 12 9 11 14 7 7 7 8 7 8 7 7

(200, 0.8, 5, 2) 55 20 21 - - 26 48 - - 20 20 - - 20 20 - -

for different CMT parameters. In Table I, we list P
(l)
f (s)

and compare various sampling strategies and LDPC code

constructions. Similar to Fig. 7 left panel, from Table I, we

see that the novel co-design of the LC-PEG algorithm and

LP-sampling results in the lowest probability of failure for the

different CMT parameters. We see that even at a high rate of

0.8, our techniques of LC-PEG algorithm and LP-sampling

offer an improvement.

In Table III, we compare the maximum CN degree for

the LDPC codes used in different CMT layers for various

construction techniques. We see that PEG based constructions

have similar maximum CN degrees compared to the ensemble

LDPC codes used in [2]. Since the incorrect coding proof size

is proportional to the maximum CN degree, we conclude that

the new LDPC code constructions do not significantly impact

the incorrect coding proof size to improve the probability

of failure. Additionally for rate 0.8 codes, we see that the

LC-PEG algorithm results in a significantly lower maximum

CN degree compared to the ensemble LDPC codes thus also

improving the incorrect coding proof size along with the

probability of failure.

VII. CONCLUSION

In this paper, we considered the problem of DA attacks

pertinent to blockchains with light nodes. For various strengths

of the malicious nodes, we demonstrated that, at short code

lengths, a suitable co-design of specialized LDPC codes

and the light node sampling strategy can result in a much

lower probability of failure to detect DA attacks compared to

schemes in prior literature.
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APPENDIX

1) Proof of Lemma 2:

P
(l)
(f,med)(s) = max

k∈{1,2,...,|Ψl|}
P

(l)
f (s;ψ

(l)
k ) =

max
k∈{1,2,...,|Ψl|}

(
1−∑

i:v
(l)
i

∈ψ
(l)
k

xi

)s
=

[
max(1−Π(l)x)

]s
.

Recall that Ψ∞
j is set of all stopping sets of Hj . We

have the following: P
(l)
(f,str)(s) = maxψ∈Ψ∞

l
P

(l)
f (s;ψ) =

max
([

max(1−Π(l)x)
]s
,maxψ∈Ψ∞

l
,size(ψ)≥µl

P
(l)
f (s;ψ)

)

≤ max
([

max(1−Π(l)x)
]s
,
[
1− β(l)µl

]s)
=

(
max

(
max(1−Π(l)x), 1− β(l)µl

))s
.

The second term in the maximum of P
(l)
(f,str)(s) is because

max
ψ∈Ψ∞

l
,size(ψ)≥µl

P
(l)
f (s;ψ) ≤

(
1− β(l)µl

)s
.

2) Proof of Lemma 3:

For 1 ≤ j ≤ l − 1, the ith column of A(j) (see Section

IV-A) corresponds to VN v
(l)
i of the base layer and the non-

zero positions in the ith column (two per column) correspond

to the symbols of layer j which are part of the Merkle proof of

v
(l)
i . Thus, for a sampling strategy

(
x , β(l)

)
and x(j) = A(j)x,

1 ≤ j ≤ l, it is easy to see that x
(j)
k is the probability that

v
(j)
k is sampled. Now, consider a stopping set ψ that belongs

to an intermediate layer j. Note that the Merkle proof for a

base layer sample contains a single data and a single parity

symbol from layer j and is deterministic given the base layer

sample. If both the symbols (VNs) exist in ψ, it is possible for

a single base layer symbol to sample ψ at two VNs. To avoid

over-counting, we have defined the matrices ∆(j) in Section

IV-A. ∆(j) has the property that ∆
(j)
ki is 1 if the ith base layer

symbol (i.e., v
(l)
i ) samples, via its Merkle proof from layer

j, the kth stopping set of Ψj and zero otherwise. Thus, for

a sampling strategy
(
x , β(1) , . . . , β(l)

)
, it is not difficult to

see that P
(j)
(f,med)(s) =

[
max(1 −∆(j)x)

]s
, 1 ≤ j ≤ l.

Now, let us consider the strong adversary. Since a Merkle

proof contains one data and one parity symbol from every

intermediate layer, all data (parity) symbols are sampled

disjointly. As such, we can bound the probability of sam-

pling a stopping set ψ of size ≥ uj , 1 ≤ j < l, by

P
(j)
f (s = 1;ψ) ≤ 1 − ∑

x
(j)
i

:v
(j)
i

∈ψ,v
(j)
i

is a data symbol
x
(j)
i and

P
(j)
f (s = 1;ψ) ≤ 1 − ∑

x
(j)
i :v

(j)
i ∈ψ,v

(j)
i is a parity symbol

x
(j)
i .

Summing the two inequalities and dividing over 2 yields

P
(j)
f (s = 1;ψ) ≤ 1 − 1

2

∑
x
(j)
i

:v
(j)
i

∈ψ
x
(j)
i ≤ 1 − 1

2β
(j)µj .

Finally, use P
(j)
f (s;ψ) = (P

(j)
f (s = 1;ψ))s.

3) Proof of Lemma 4:

Soundness fails if the light nodes get back all the requested

samples but no honest full node is able to fully decode the

entire CMT. We consider two cases:

i) There is a DA attack at layer j: In this case, no honest

full node will be able to decode layer j of the CMT. Light

nodes fail to detect this DA attack using the overall greedy

sampling strategy described in Remark 3 with probability

P
(1)
f (s) = max

ω(j)<µj

[
[1− τ(S

(ρs , j)
greedy , ω

(j))]
(
1− ω(j)

nj

)s−ρs]
.

The term inside the maximum is the probability of failure

using the overall greedy sampling strategy when the weak

adversary hides a stopping set of size ω(j).

ii) There is no DA attack: In this case, light nodes will

accept the block. Soundness failure occurs when honest full

nodes are not able to decode the entire CMT from the samples

broadcasted by the light nodes. Let P
(2)
f (s) be the probability

of this event. To bound P
(2)
f (s), we use the following

property of the CMT which was proved in [19]: the Merkle

proof of η fraction of distinct base layer coded symbols

have at least η fraction of distinct coded symbols from each

layer of the CMT. Thus for ηrec =

(
max1≤j≤l

nj−ω
(j)
min+1

nj

)
,

if a full node has ηrec fraction of distinct coded symbols

from the base layer of the CMT, then it has at least ηrec
fraction or at least ηrecnj distinct coded symbols from

layer j of the CMT. Since ηrecnj ≥ nj − ω
(j)
min + 1, using

these ηrecnj distinct coded symbols, the full node will be

able to successfully decode layer j, ∀1 ≤ j ≤ l. Let Z

be the total number of distinct base layer coded symbols

collected by a honest full node from the random portion of

the light node’s overall greedy sampling strategy. Then, we

have P
(2)
f (s) ≤ P (Z ≤ ηrecnl) ≤

(
nl

ηrecnl

) (ηrecnl)
Ms(1−ρ)

n
Ms(1−ρ)
l

≤
2[H(ηrec,1−ηrec)nl−Ms(1−ρ) log( 1

ηrec
)]. The probability of

soundness failure is smaller than the maximum of the above

two cases. Moreover, in our system, for the same reasons

as [2], soundness implies agreement (since each light node

is connected to at least one honest full node and honest

full nodes form a fully connected graph; see network model

in Section II-C). Thus, P
S,A
f ≤ max(P

(1)
f (s), P

(2)
f (s))

completing the proof.

4) Proof of Lemma 5:

Again we consider the two cases described in the proof

of Lemma 4. For the first case, light nodes fail to de-

tect the DA attack at layer j using LP-sampling with

probability P
(1)
f (s) = max

1≤j≤l
P

(j)
f,med(s) and P

(1)
f (s) =

max
1≤j≤l

P
(j)
f,str(s) for the medium and the strong adversary,

respectively. For the second case, let Z be the total number

of distinct base layer coded symbols collected by a hon-

est full node when light nodes use LP-sampling. We have

P
(2)
f (s) ≤ P (Z ≤ ηrecnl) ≤

(
nl

ηrecnl

) (∑ηrecnl

i=1 x[i]
)Ms ≤

2
[H(ηrec,1−ηrec)nl−Ms log

(
1∑ηrecnl

i=1
x[i]

)

]

. Similar to the proof

of Lemma 4, soundness implies agreement and we have

P
S,A
f ≤ max(P

(1)
f (s), P

(2)
f (s)).
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