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Low-Resolution RIS-Aided Multi-User MIMO
Signaling

A. A. Nasir, H. D. Tuan, E. Dutkiewicz, H. V. Poor, and L. Hanzo

Abstract—A multi-antenna aided base station (BS) supporting
several multi-antenna downlink users with the aid of a recon-
figurable intelligent surface (RIS) of programmable reflecting
elements (PREs) is considered. Low-resolution PREs constrained
by a set of sparse discrete values are used for reasons of cost-
efficiency. Our challenging objective is to jointly design the
beamformers at the BS and the RIS’s PREs for improving the
throughput of all users by maximizing their geometric-mean,
under a variety of different access schemes. This constitutes
a computationally challenging problem of mixed continuous-
discrete optimization, because each user’s throughput is a compli-
cated function of both the continuous-valued beamformer weights
and of the discrete-valued PREs. We develop low-complexity
algorithms, which iterate by directly evaluating low-complexity
closed-form expressions. Our simulation results show the advan-
tages of non-orthogonal multiple access-aided signaling, which
allows the users to decode a part of the multi-user interference
for enhancing their throughput.

Index Terms—Reconfigurable intelligent surface, coordinated
signaling (CoSig), non-orthogonal multiple access (NOMA),
MIMO beamforming, trigonometric function optimization, ge-
ometric mean maximization, low-complex algorithms

I. INTRODUCTION

Reconfigurable intelligent surfaces (RISs) relying on large
numbers of programmable reflecting elements (PREs), have
recently been shown to beneficially improve the wireless cov-
erage and security [1]–[3]. A hot topic in RIS-aided multi-user
(MU) communication is the joint design of the downlink (DL)
transmit beamformers at the base station (BS) and the RIS
PREs for spectral efficiency in terms of the sum-throughput
(ST) subject to transmit power constraints [4]–[7], the trans-
mit power subject to the signal-to-interference-plus-noise-ratio
(SINR) constraints [8], [9], or users’ individual throughput
[10], [11]. All these works rely on multiple input single output
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(MISO) schemes, since the users are equipped with single
antennas. Furthermore, there is a paucity of literature on low-
resolution RIS PREs due to their discrete-valued natures.

The explosive growth of internet-of-things (IoT) applica-
tions motivates the aggressive reuse of the resources, such
as the bandwidth and time slots to serve as many users as
possible. Hence efficient multi-user interference (MUI) man-
agement is critical for maintaining a high quality-of-service
(QoS) in terms of information throughput. Non-orthogonal
multiple access (NOMA) [12]–[14] may be viewed as a
particular class of MU multiple input single output (MISO)
transmit beamforming, which enables the clustered users to
successively decode the whole messages destined to other
users of the same cluster to mitigate intra-cluster interference
for their message throughput enhancement. In this context, it
is important to compare its spectral efficiency to that achieved
by the conventional coordinated signaling scheme (CoSig),
under which each user decodes its own message by treating
the MUI as noise. The most popular NOMA scheme pairs
users, so both of the two users of the same cluster decode
the entire message destined for one of them. In terms of
users’ worst throughput, this NOMA scheme was shown to
outperform CoSig, provided that the channel conditions of the
paired users are sufficiently differentiated [15]. However, when
the paired users have similar channel conditions, the former
is outperformed by the latter [16], [17]. A new-NOMA (n-
NOMA) scheme was conceived in [17], which assigns only
a part of the message intended to one user, as the common
message to be decoded by both of them. This solution has been
shown to outperform both NOMA and CoSig under flexible
users’ channel conditions.

It has recently been shown that RISs are also capable
of supporting NOMA [18], [19]. The performance analysis
of RIS-aided MISO-NOMA networks has been studied in
[20]–[22]. Resource allocation in RIS-aided NOMA commu-
nication, which relies on the joint design of the transmit
beamformers at the base station (BS) and PREs at the RIS, has
been studied in [23], [24] for single-input-single-output (SISO)
cases, and in [25]–[28] for MISO cases. Their computation is
based on semi-definite relaxation, which is computationally
demanding due to its dependency on the solution of a high-
dimensional convex problem at each iteration. Yet, the conver-
gence of their algorithms is not guaranteed [29]. Their spectral
efficiency comparison to conventional non-optimal orthogonal
multiple access (OMA) (with no optimal time or bandwidth
allocations) cannot be conclusive because these OMA schemes
are attractive owing to their simple single-user detection, but



2

their spectral efficiency has not been optimized.1 Furthermore,
these previous researches cannot address quantized RIS PREs
and cannot be applied to RIS-aided multiple-input multiple-
output (MIMO)-NOMA systems.

Against the above background, this paper is the first work
to consider RIS-aided MU MIMO networks relying on low-
resolution RIS PREs. It develops a novel low-complexity
design for DL transmit beamformers at the BS and low-
resolution constrained PREs at the RIS to maximize the
geometric-mean of the users’ throughput (GM-throughput).
Our recent paper [11] shows that the GM-throughput consti-
tutes a more appropriate metric, since its optimization naturally
leads to fair throughput distribution associated with low stan-
dard deviation among the users’ throughput without enforcing
nonconvex throughput constraints. It is thus in contrast to the
ST, whose maximization results in unfair throughput distribu-
tion by allocating a major portion of the resources to a few
users having favorable channel conditions, while leaving the
users having low channel quality with near-zero throughput.
In contrast to the minimum users’ throughput, which is a
non-smooth function, the GM-throughput is smooth and thus
lends itself to developing convenient computationally tractable
solutions. In contrast to our previous research [10], [11],
this work considers (i) MU MIMO networks; (ii) RIS-aided
communication under NOMA, n-NOMA, and CoSig; (iii) low-
resolution constrained PREs for practical implementation.

The advantage of adopting these novel elements will also
be shown through extensive simulations. Explicitly, our new
contributions are as follows:
• The design under both convex sum-power constraint and

nonconvex individual transmit-antenna (TA) power con-
straints is considered, while the RIS PREs are constrained
by discrete values of their low resolution.

• The transmit beamformers at the BS and the PREs at
the RIS are optimized for the RIS-aided MIMO network
by iterating the linearly scalable closed-form expressions.
As such, our results are novel even considered from
mathematical programming.

• We assess the performance of the proposed algorithms
through extensive simulations by varying the transmit
power budget, the number of PREs, the resolution of the
phase shifters in the PREs, and the number of receiver
antennas. The performance of the proposed algorithms
is also evaluated for another scenario, where a direct
communication between BS and UEs is blocked by
obstacles. Explicitly,

– The simulation results show the superiority of n-
NOMA and NOMA-based RIS implementation over
CoSig. However, for a particular scenario, where
direct communication between the BS and UEs is
blocked, NOMA is outperformed by CoSig under
per-TA power constraints based design.

– Compared to the conventional sum-throughput max-
imization, the achievable sum-throughput of the pro-
posed GM-throughput maximization algorithms is

1To the best of our knowledge, only [30] provides a comparison between
NOMA and optimal OMA.

TABLE I: Boldly and explicitly contrasting our contributions
to the literature

this
work

[4]–[9] [10] [11] [25]–[28]

MU MIMO X
b-bit PREs optimization X
NOMA X X
n-NOMA X
CoSig X X X X
Semi-definite relaxation X X
Computational tractability X X

smaller, as expected. However, it is shown that
the achievable sum-throughput of n-NOMA is only
slightly compromised compared to the NOMA and
CoSig schemes.

In a nutshell, we boldly contrast our new contributions to
the state-of-the-art in Table I.

The paper is organized as follows. Section II is devoted
to the problem formulation of GM-throughput optimization
to jointly design the transmit beamformers and RIS’s PREs.
Section III derives a low-complexity solution of the problem
formulated. Section IV is dedicated to solving the same
problem under individual TA power constraints instead of a
total sum-power constraint. Section V provides our detailed
numerical simulations for quantifying the performance of the
proposed algorithms. Finally, Section VI concludes the paper.

Notation. Only the beamformer and PRE variables are
printed in boldface; In is the identity matrix of size n × n,
while Om×n is a zero matrix of size m × n. For x =
(x1, . . . , xn)T , diag(x) is a diagonal matrix of the size
n × n with x1, x2, . . . , xn on its diagonal; [X]2 is XXH ,
and 〈X,Y 〉 = trace(XHY ) for the matrices X and Y .
Accordingly, the Frobenius norm of X is defined by ||X|| =√

trace(XHX). We also write 〈X〉 = trace(X) for notational
simplicity. The notation X � 0 (X � 0, resp.) used for the
Hermitian symmetric matrix X indicates that it is positive def-
inite (positive semi-definite, resp.). Let us denote the maximal
eigenvalue of the Hermitian symmetric matrix X by λmax(X);
For a real valued vector x = (x1, . . . , xn)T ∈ Rn, ex is entry-
wise understood, i.e. ex = (ex1 , . . . , exn)T ∈ Cn. For a
complex number x, ∠x denotes its argument, i.e. x = e∠x for
|x| = 1 and it is fully characterized by ∠x ∈ [0, 2π). Lastly,
let us denote the set of circular Gaussian random variables
with the zero means and variance a by C(0, a).

Our mathematical ingredient is the following inequality,
which holds true for all matrices V and V̄ of size n × m
and Y � 0 and Ȳ � 0 of size n× n [31]:

ln
∣∣In + [V]2(Y)−1

∣∣ ≥ ln
∣∣In + [V̄ ]2(Ȳ )−1

∣∣− 〈[V̄ ]2(Ȳ )−1〉
+ 2<{〈V̄ H(Ȳ )−1V〉} −

〈
(Ȳ )−1

− (Ȳ + [V̄ ]2)−1, [V]2 + Y
〉
. (1)

Considering both sides of (1) as functions of the variables
(V,Y), they match at (V̄ , Ȳ ), i.e. the function defined by the
right-hand-side (RHS), which is concave quadratic because
(Ȳ )−1 − (Ȳ + [V̄ ]2)−1 � 0, provides a tight minorant of
the log-determinant function defined by the left-hand-side
(LHS) at (V̄ , Ȳ ) [32]. The latter is seen as a throughput



3

function, where [V]2 plays the role of the covariance of the
signal of interest while Y plays the role of the covariance
of the interference-plus-noise signal. As such, the RHS of (1)
provides a tight concave quadratic minorant of the throughput
functions.

II. PROBLEM STATEMENTS
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Fig. 1: System model

We consider the RIS-aided communication system illus-
trated by Fig. 1, where a RIS of N reflecting units supports the
downlink (DL) communication from an Nt-antenna array BS
to K Nr-antenna users (UEs) k ∈ K , {1, . . . ,K}. Since the
RIS is typically deployed on the facade of high-rise buildings
and the BS is also usually at a certain elevated height [33], it is
justified to assume a line-of-sight (LoS) link between the BS
and RIS, LoS communication between the RIS and UEs, and
NLoS propagation between the BS and UEs. Accordingly, we
model the quasi-static and flat-fading channels spanning from
the BS and the RIS to UE k and from the BS to the RIS
by H̃B,k =

√
βB,kHB,k ∈ CNr×Nt , H̃R,k =

√
βR,kHR,k ∈

CNr×N , and H̃B,R =
√
βB,RHB,R ∈ CN×Nt , where

√
βB,k,√

βR,k, and
√
βB,R model the path-loss and large-scale fading

of the BS-to-UE k link, the RIS-to-UE k link, and the
BS-to-RIS link, respectively [5], [34]. Furthermore, HR,k is
modelled by Rician fading for representing the LoS channels
between the RIS and the UEs [35]. By contrast, HB,k is
modelled by Rayleigh fading in the face of non-LoS (NLoS)
channels between the BS and the UEs. Like many other papers
on RIS-aided communication networks, we assume having
perfect channel state information, which can be obtained by
channel estimation [4], [8], [36]. Later, we will see the effect
of imperfect channel state information (CSI) on the overall
system performance in simulation results. The channel matrix
of the RIS-aided connection between the BS and UE k ∈ K
is given by

CNr×Nt 3 Hk(θθθ) , H̃R,kR
1/2
R,kdiag(eθθθ)H̃B,R + H̃B,k (2)

= H̃BR,kdiag(eθθθ)HB,R + H̃B,k, (3)

with H̃BR,k ,
√
βB,R

√
βR,kHR,kR

1/2
R,k ∈ CNr×N , where

RR,k ∈ CN×N represents the spatial correlation matrix of the
RIS elements with respect to user k [5], [37], and diag(eθθθ)
in (5) for θθθ = (θθθ1, . . . , θθθN )T ∈ [0, 2π)N represents the matrix
of PREs. We are interested in quantized PREs having b-bit
resolution, formulated as:

θθθn ∈ B ,

{
ν

2π

2b
, ν = 0, 1, . . . , 2b − 1

}
, (4)

for n ∈ N , {1, . . . , N}. Let X ∈ CNt×Nr be the signal to
be transmitted from the BS. The signal received at UE k ∈ K
is

yk = Hk(θθθ)X + nk, (5)

where nk ∈ C(0, σINr ) is the background noise at UE k.
We briefly portray a signaling scheme, termed as n-NOMA

[17], which includes NOMA and CoSig as a particular case.
The UEs are divided into two sets K1 , {1, 2, · · · ,K/2} and
K2 , {K/2 + 1, · · · ,K}, so each UE k ∈ K1 is paired with
UE π(k) = K/2 + k ∈ K2 to form a virtual cluster. The
widely preferred strategy is to pair users having differentiated
channel conditions [38, Sec. II-C], which are determined by
their location relative to the BS. Thus the users are ordered
based on their geographical distance from the BS. The ordered
first user is paired with the ordered (K/2 + 1)-th user. The
ordered second user is paired with the ordered (K/2 + 2)-th
user and so on.

Under n-NOMA [17], in addition to the information mes-
sages sk ∈ C(0, INr ) intended for UE k ∈ K, there are
also information messages sk+K ∈ C(0, INr ) intended for UE
π(k) ∈ K2, which are decoded by the paired UEs k ∈ K1 and
π(k) ∈ K2.2. Each sk′ with k′ ∈ KE , {1, . . . ,K + K/2}
is beamformed by the matrix Wk′ ∈ CNr×Nt to create the
signal Xk′ = Wk′sk′ ∈ CNt×Nr , so the transmit signal X
in (5) is given by X =

∑
k′∈KE Wk′sk′ . The equation (5)

becomes
yk = Hk(θθθ)

∑
k′∈KE

Wk′sk′ + nk. (6)

Let W , {Wk′ , k
′ ∈ KE}. First, the information sK+k

is decoded by the UEs k ∈ K1 and π(k) ∈ K2 with the
throughput defined by

rK+k(W, θθθ) , min{r1,K+k(W, θθθ), r2,K+k(W, θθθ)}, (7)

where r1,K+k(W, θθθ) is the throughput of sK+k at UE k
defined by

r1,K+k(W, θθθ) , ln
∣∣∣INr + [Hk(θθθ)WK+k]2Λ−1

1,K+k(W, θθθ)
∣∣∣ ,
(8)

with Λ1,K+k(W, θθθ) ,
∑
k′∈KE\{K+k}[Hk(θθθ)Wk′ ]

2 + σINr ,
while r2,K+k(W, θθθ) is the throughput of sK+k at UE π(k)
defined by

r2,K+k(W, θθθ) , ln
∣∣∣INr + [Hπ(k)(θθθ)WK+k]2Λ−1

2,K+k(W, θθθ)
∣∣∣ ,

(9)

with Λ2,K+k(W, θθθ) ,
∑

k′∈KE\{K+k}

[Hπ(k)(θθθ)Wk′ ]
2 + σINr .

Next, UEs k ∈ K1 and π(k) ∈ K2 subtract sK+k from their
received signal to decode sk and sπ(k) with the throughput

rχ(W, θθθ) = ln
∣∣INr + [Hχ(θθθ)Wχ]2Λ−1

χ (W, θθθ)
∣∣ , (10)

where χ ∈ {k, π(k)} and Λχ(W, θθθ) =∑
k′∈K\{χ,K+k}[Hχ(θθθ)Wk′ ]

2 + σINr .

2This n-NOMA scheme may be regarded as a subclass of Han-Kobayshi
signal superposition [39], [40], or rate-splitting based signal superposition [41]
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The throughput at UE π(k) is

rπ(k)(W, θθθ) + min
i=1,2

ri,K+k(W, θθθ) = min
i=1,2

ri,π(k)(W, θθθ),

(11)
for

ri,π(k)(W, θθθ) , rπ(k)(W, θθθ) + ri,K+k(W, θθθ), i = 1, 2. (12)

The problem of maximizing the GM-throughput of n-NOMA
is thus formulated as

max
W,θθθ

f(W, θθθ) ,

( ∏
k∈K1

(
rk(W, θθθ) min

i=1,2
ri,π(k)(W, θθθ)

))1/K

s.t. (4), (13a)∑
k′∈KE

||Wk′ ||2 ≤ P, (13b)

where (13b) sets the transmit power constraint, given the
power budget P .

On one hand, under NOMA, both UE k and UE π(k)
decode the entire information message intended for UE π(k),
so NOMA may be viewed as a particular case of the above
n-NOMA with

Wπ(k) ≡ 0, k ∈ K1, (14)

i.e. the GM-throughput maximization problem (13) corre-
sponding to NOMA is

max
W,θθθ

( ∏
k∈K1

(
rk(W, θθθ) min

i=1,2
ri,K+k(W, θθθ)

))1/K

s.t. (4), (14), (13b), (15)

because under (14), rπ(k)(W, θθθ) in (11) is zero, and the
throughput at UE π(k) is defined by mini=1,2 ri,K+k(W, θθθ).
It should be noted that most of the related trea-
tises [13], [14], [25]–[28] enforce the additional con-
straints of r1,K+k(W, θθθ) ≥ r2,K+k(W, θθθ) to have
mini=1,2 ri,K+k(W, θθθ) = r2,K+k(W, θθθ), which are compu-
tationally intractable and they unnecessarily limit the NOMA
feasibility. Our previous contribution [15], [17] showed that
this nonsmooth function mini=1,2 ri,K+k(W, θθθ) can be effi-
ciently handled by convex-solver based computation.

On the other hand, CoSig, under which each information
message is decoded by its intended user while treating other
messages as interference, may also be interpreted as a partic-
ular case of the above n-NOMA along with

WK+k ≡ 0, k ∈ K, (16)

and the GM-throughput problem (13) corresponding to CoSig
is

max
W,θθθ

f(W, θθθ) ,

(∏
k∈K

rk(W, θθθ)

)1/K

s.t. (4), (16), (13b),

(17)
for rk(W, θθθ) = ln

∣∣∣INr + [Hk(θθθ)Wk]2(∑
k′∈K\{k}[Hk(θθθ)Wk′ ]

2
)−1 ∣∣∣. Our previous contribution

[11] considered the particular MISO case (Nr = 1) of (17)
with the PREs having infinite resolution (b = ∞). Again,

the motivation of GM-throughput maximization is two-fold.
(i) It leads to fair throughput distribution with reasonable
ST without enforcing additional computationally-intractable
QoS throughput constraints. (ii) It is widely acknowledged
that the popular ST maximization and max-min throughput
optimization may unfairly allocate excessive resources to the
users of favorable and unfavorable users, respectively. This
problem is circumvented by GM-throughput optimization at
an appealingly low complexity, since there is only a single
power constraint [42].

III. LOW-COMPLEXITY COMPUTATIONAL SOLUTION

Since, the solution of NOMA problem (15) and CoSig
problem (17) is a byproduct of n-NOMA problem (13), this
section is devoted to addressing the latter. Although the non-
smooth function mini=1,2 ri,π(k)(W, θθθ) in (13) may not cause
difficulty in developing the convex-solver based computational
procedures [10], [17], it is an obstacle to deriving the optimal
solution of the problem (13) based on closed forms.

By Cauchy’s inequality, we have∑2
i=1 ri,π(k)(W, θθθ)

2
≥

√√√√ 2∏
i=1

ri,π(k)(W, θθθ), (18)

with equality holding at r1,π(k)(W, θθθ) = r2,π(k)(W, θθθ).
This mean that maximizing the left-hand side (LHS) of (18)
leads to unbalanced r1,π(k)(W, θθθ) and r2,π(k)(W, θθθ) and
thus minimizes their minimum, while maximizing the right-
hand side (RHS) of (18) leads to balanced r1,π(k)(W, θθθ)
and r2,π(k)(W, θθθ) and thus maximizes their minimum.
We hence opt for the RHS of (18) as a surrogate for
mini=1,2 ri,π(k)(W, θθθ) in (13). Accordingly, we address (13)
via the following surrogate problem

max
W,θθθ

f(r(W, θθθ)) s.t. (4), (13b), (19)

where f(r(W, θθθ)) is the composite of the function

f(r) ,

 ∏
k∈K1

rk
√√√√ 2∏
i=1

ri,π(k)

1/K

, (20)

of K +K/2 variables and of the mapping, defined as

r(W, θθθ) , (r1(W, θθθ), r1,π(1)(W, θθθ), r2,π(1)(W, θθθ), . . . ,

rK/2(W, θθθ), r1,π(K/2)(W, θθθ), r2,π(K/2)(W, θθθ)). (21)

Observe that problem (19) is still very computationally chal-
lenging because the objective function in (19) is highly non-
linear and nonconcave while constraint (4) is discrete. We will
now develop an iterative procedure for computing (19). In
what follows define RN+ = {(γ1, . . . , γN ) : γn > 0, n =
1, . . . , N} and then

Ξπ(k) ,

{
ξπ(k) , (ξ1,π(k), ξ2,π(k)) ∈ R2

+ :

2∏
i=1

ξi,π(k) = 1

}
and

Ξ =
{

(ξπ(1), . . . , ξπ(K/2)) ∈ Ξπ(1) × · · · × Ξπ(K/2)

}
,
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while

Γ , {γ , (γ1, γπ(1), . . . , γK/2, γπ(K/2)) ∈ RK+ :∏
k∈K1

γkγπ(k) = 1}.

By using the equalities√√√√ 2∏
i=1

ri,π(k) = min
ξπ(k)∈Ξπ(k)

1

2

2∑
i=1

ξi,π(k)ri,π(k)

and  ∏
k∈K1

rk
√√√√ 2∏
i=1

ri,π(k)

1/K

=

min
γ∈Γ(K)

1

K

∑
k∈K1

γkrk + γπ(k)

√√√√ 2∏
i=1

ri,π(k))


we can express f(r) in (20) by

f(r) = min
(γ,ξ)∈Γ×Ξ

F (r, γ, ξ),

with

F (r, γ, ξ) ,

∑
k∈K1

(
γkrk +

γπ(k)

2

∑2
i=1 ξi,π(k)ri,π(k)

)
K

.

As such the problem (19) is equivalent to the following
problem of maximin optimization

max
W,θθθ

min
(γ,ξ)∈Γ×Ξ

F (r(W, θθθ), γ, ξ) s.t. (4), (13b). (22)

Initialized by its feasible point (W (0), θ(0)), for κ = 1, . . . ,
we optimize in (γ, ξ) to have

ξ
(κ)
i,π(k) =

√∏2
i′=1 ri′,π(k)(W (κ), θ(κ))

ri,π(k)(W (κ), θ(κ))

and

γ
(κ)
k =

f(r(W (κ), θ(κ)))

rk(W (κ), θ(κ))
, k ∈ K1,

while

γ
(κ)
π(k) =

f(r(W (κ), θ(κ)))√∏2
i=1 ri,π(k)(W (κ), θ(κ))

, k ∈ K1.

For f (κ)(W, θθθ) , F (r(W, θθθ), γ(κ), ξ(κ)) which is∑
k∈K1

[
γ

(κ)
k rk(W, θθθ) +

2∑
i=1

γ
(κ)
i,π(k)ri,π(k)(W, θθθ)

]
,

with γ
(κ)
i,π(k) = 1

2γ
(κ)
π(k)ξ

(κ)
i,π(k) = f(r(W (κ),θ(κ)))

2ri,π(k)(W (κ),θ(κ))
, i = 1, 2,

we iterate (W (κ+1), θ(κ+1)) by solving the problem of mixed
continuous-discrete optimization

max
Wθθθ∈BN

f (κ)(W, θθθ) s.t. (4), (13b). (23)

In what follows, we use the following definition:

H
(κ)
k , Hk(θ(κ)), k ∈ K;H

(κ)
1,k ≡ H

(κ)
k & H

(κ)
2,k ≡ H

(κ)
π(k).

(24)

A. Beamforming iteration

We seek W (κ+1) such that

f (κ)(W (κ+1), θ(κ)) > f (κ)(W (κ), θ(κ)). (25)

Define r(κ)
b,k (W) , rk(W, θ(κ)), k ∈ K, and r

(κ)
b,i,π(k)(W) ,

ri,π(k)(W, θ(κ)), and r
(κ)
b,i,K+k(W) , ri,K+k(W, θ(κ)), i =

1, 2; k ∈ K1.
Then for k ∈ K, applying the inequality (1) yields the

following tight concave quadratic minorant of r(κ)
b,k (W) at

W (κ):

r̃
(κ)
b,k (W) , a

(κ)
k + 2<{〈B(κ)

k ,Wk〉}

−
∑
k′∈KE

〈(Wk′)
HC(κ)

k,k′Wk′〉, (26)

where a(κ)
k , r

(κ)
b,k (W (κ))−〈[H(κ)

k W
(κ)
k ]2(Λ

(κ)
k )−1〉−〈C(κ)

k 〉σ,
B

(κ)
k , (H

(κ)
k )H(Λ

(κ)
k )−1H

(κ)
k W

(κ)
k , and

C(κ)
k,k′ ,

{
ONt×Nt for k′ = K + k

(H
(κ)
k )HC

(κ)
k H

(κ)
k otherwise,

with Λ
(κ)
k , Λk(W (κ), θ(κ)), and C(κ)

k , (Λ
(κ)
k )−1 − (Λ

(κ)
k +

[H
(κ)
k W

(κ)
k ]2)−1.

Analogously, a tight concave quadratic minorant of
r

(κ)
b,i,K+k(W) at W (κ) is

r̃
(κ)
b,i,K+k(W) , a

(κ)
i,K+k + 2<{〈B(κ)

i,K+k,WK+k〉}

−
∑
k′∈KE

〈(Wk′)
HC(κ)

i,K+kWk′〉, (27)

where a
(κ)
i,K+k , r

(κ)
b,i,K+k(W (κ)) −

〈[H(κ)
i,kW

(κ)
K+k]2(Λ

(κ)
i,K+k)−1〉 − σ〈C(κ)

i,K+k〉, B
(κ)
1,K+k ,

(H
(κ)
i,k )H (Λ

(κ)
i,K+k)−1H

(κ)
i,kW

(κ)
K+k), and C(κ)

i,K+k ,

(H
(κ)
i,k )HC

(κ)
i,K+kH

(κ)
k , with Λ

(κ)
i,K+k , Λi,K+k(W (κ), θ(κ)),

and C
(κ)
i,K+k , (Λ

(κ)
i,K+k)−1 − (Λ

(κ)
1,K+k + [H

(κ)
i,kW

(κ)
K+k]2)−1,

i = 1, 2.
Then, we have the following tight concave quadratic mino-

rant of r(κ)
b,i,π(k)(W) at W (κ):

r̃
(κ)
b,i,π(k)(W) , r̃

(κ)
b,π(k)(W) + r̃

(κ)
b,i,K+k(W)

= a
(κ)
i,π(k) + 2<{〈B(κ)

π(k),Wπ(k)〉}

+ 2<
{〈
B

(κ)
i,K+kWK+k

〉}
−
∑
k′∈KE

〈(Wk′)
HC(κ)

i,π(k),k′Wk′〉, (28)

where a(κ)
i,π(k) , a

(κ)
π(k) + a

(κ)
i,K+k, and C(κ)

i,π(k),k′ = C(κ)
π(k),k′ +

C(κ)
i,K+k, i = 1, 2.
In summary, a tight concave quadratic minorant of

f (κ)(W, θ(κ)) ≥ f̃ (κ)
b (W) is

f̃
(κ)
b (W) ,

∑
k∈K1

[
γ

(κ)
k r̃

(κ)
b,k (W) +

2∑
i=1

γ
(κ)
i,π(k)r̃

(κ)
b,i,π(k)(W)

]
= a(κ) + 2

∑
k∈KE

<{〈B̃(κ)
k ,Wk〉}
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−
∑
k∈KE

〈(Wk)HΨ
(κ)
k Wk〉, (29)

for a(κ) ,
∑
k∈K1

(
γ

(κ)
k a

(κ)
k +

∑2
i=1 γ

(κ)
i,π(k)a

(κ)
i,π(k)

)
,3

B̃
(κ)
k ,


γ

(κ)
k B

(κ)
k , k ∈ K1

(
∑2
i=1 γ

(κ)
1,π−1(k))B

(κ)
π−1(k), k ∈ K2∑2

i=1 γ
(κ)
i,π(k−K)B

(κ)
k,k−K , k > K,

and Ψ
(κ)
k ,

∑
k′∈K1

(
γ

(κ)
k′ C

(κ)
k′,k +

∑2
i=1 γ

(κ)
i,π(k′)C

(κ)
i,π(k′),k, k ∈

KE .
We solve the following convex quadratic problem of tight

minorant maximization for (23) to generate W (κ+1)

max
W

f̃
(κ)
b (W) s.t. (13b), (30)

which admits the closed-form solution of

W
(κ+1)
k =

{
(Ψ

(κ)
k )−1B̃

(κ)
k , if Ξ(κ) ≤ P

(Ψ
(κ)
k + µ(κ)INt)

−1B̃
(κ)
k , otherwise,

(31)
where Ξ(κ) ,

∑
k∈KE ||(Ψ

(κ)
k )−1B̃

(κ)
k ||2 and µ(κ) >

0 is found by bisection, such that
∑
k∈KE ||(Ψ

(κ)
k +

µ(κ)INt)
−1B̃

(κ)
k ||2 = P .

As W (κ+1) and W (κ) are the optimal solution and a
feasible point for (30), it follows that f̃

(κ)
b (W (κ+1)) >

f̃
(κ)
b (W (κ)) as far as f̃ (κ)

b (W (κ+1)) 6= f̃
(κ)
b (W (κ)). We then

have f (κ)(W (κ+1), θ(κ)) ≥ f̃
(κ)
b (W (κ+1)) > f̃

(κ)
b (W (κ)) =

f (κ)(W (κ), θ(κ)), verifying (25).

B. PREs iteration

Similarly to (25), now we seek θ(κ+1), such that

f (κ)(W (κ+1), θ(κ+1)) > f (κ)(W (κ+1), θ(κ)). (32)

Define r(κ)
p,k(θθθ) , rk(W (κ+1), θθθ), k ∈ K, and r

(κ)
p,i,π(k)(θθθ) ,

ri,π(k)(W
(κ+1), θθθ), and r

(κ)
p,i,K+k(θθθ) , ri,K+k(W (κ+1), θθθ),

i = 1, 2; k ∈ K1.
For k ∈ K, using the inequality (1) yields the following

minorant of r(κ)
p,k(θθθ) at θ(κ):

r̃
(κ)
p,k(θθθ) , ã

(κ)
k + 2<{〈(H(κ)

k W
(κ+1)
k )H(Λ̃

(κ)
k )−1Hk(θθθ)

×W (κ+1)
k 〉} − 〈C̃(κ)

k ,Hk(θθθ)W(κ+1)
k HHk (θθθ)〉, (33)

with ã
(κ)
k , r

(κ)
p,k(θ(κ)) − 〈[H(κ)

k W
(κ+1)
k ]2(Λ̃

(κ)
k )−1〉 −

σ〈C̃(κ)
k 〉, Λ̃

(κ)
k , Λk(W (κ+1), θ(κ)), 0 � C̃

(κ)
k ,

(Λ̃
(κ)
k )−1 − (Λ̃

(κ)
k + [H

(κ)
k W

(κ+1)
k ]2)−1, and W(κ+1)

k ,∑
k′∈KE\{K+k}[W

(κ+1)
k′ ]2.

We may write diag(eθθθ) =
∑N
n=1 e

θθθnΥn, where Υn is the
matrix of size N ×N having only zero entries, except for its
(n, n)-entry, which is 1. Then the matrix Hk(θθθ) defined by
(3) is represented by Hk(θθθ) =

∑N
n=1 e

θθθnHk,n + H̃B,k with
Hk,n , H̃BR,kΥnHB,R. Therefore,

〈(H(κ)
k W

(κ+1)
k )H(Λ̃

(κ)
k )−1Hk(θθθ)W

(κ+1)
k 〉 =

3For k ∈ K2, π−1(k) is k′ ∈ K1 such that π(k′) = k

α
(κ)
k,1 +

N∑
n=1

b̃
(κ)
k,1(n)eθθθn , (34)

with4 α
(κ)
k,1 , 〈(H(κ)

k W
(κ+1)
k )H(Λ̃

(κ)
k )−1H̃B,kW

(κ+1)
k 〉,

b̃
(κ)
k,1(n) = 〈(H(κ)

k W
(κ+1)
k )H(Λ̃

(κ)
k )−1Hk,nW (κ+1)

k 〉, n ∈ N .
Furthermore,

〈C̃(κ)
k ,Hk(θθθ)W(κ+1)

k HHk (θθθ)〉 =

α
(κ)
k,2 + 2<{b̃(κ)

k,2(n)eθθθn}+ (eθθθ)HΦ
(κ+1)
k eθθθ, (35)

with α
(κ)
k,2 , 〈(H̃B,k)HC̃

(κ)
k H̃B,kW(κ+1)

k 〉, and
b̃
(κ)
k,2(n) = 〈(H̃B,k)HC̃

(κ)
k Hk,nW

(κ+1)
k 〉, n = 1, . . . , N , and

Φ
(κ+1)
k (n′, n) , 〈HHk,n′C̃

(κ)
k Hk,nW

(κ+1)
k 〉, (n′, n) ∈ N ×N .

Based on (34), and (35), we obtain

r̃
(κ)
p,k(θθθ) = ã

(κ+1)
k +2<

{ N∑
n=1

b̃
(κ+1)
k (n)eθθθn

}
−(eθθθ)HΦ

(κ+1)
k eθθθ,

(36)
with ã(κ+1)

k , ã
(κ)
k +2<{α(κ)

k,1}−α
(κ)
k,2, b̃(κ+1)

k (n) , b̃
(κ)
k,1(n)−

b̃
(κ)
k,2(n), n ∈ N .

Analogously, under the definition (24), and H̃1,B,k , H̃B,k,
H̃2,B,k , H̃B,π(k), while H1,k,n , Hk,n and H2,k,n ,

Hπ(k),n, we obtain the following minorant of r(κ)
p,i,K+k(θθθ) at

θ(κ)

r̃
(κ)
p,i,K+k(θθθ) , ã

(κ+1)
1,K+k + 2<{

N∑
n=1

b̃
(κ+1)
1,K+k(n)eθθθn}

−(eθθθ)HΦ
(κ+1)
1,K+ke

θθθ, (37)

where (i) ã
(κ+1)
i,K+k , ã

(κ)
i,K+k + 2<{α(κ)

i,K+k,1}−α
(κ)
i,K+k,2 with

ã
(κ)
i,K+k , r

(κ)
p,i,K+k(θ(κ)) − 〈[H(κ)

i,kW
(κ+1)
K+k ]2(Λ̃

(κ)
i,K+k)−1〉 −

σ〈C̃(κ)
i,K+k〉 with Λ̃

(κ)
i,K+k , Λi,K+k(W (κ+1), θ(κ)) and 0 �

C̃
(κ)
i,K+k , (Λ̃

(κ)
i,K+k)−1 − (Λ̃

(κ)
i,K+k + [H

(κ)
i,kW

(κ+1)
K+k ]2)−1, and

α
(κ)
i,K+k,1 , 〈(H(κ)

i,kW
(κ+1)
K+k )H(Λ̃

(κ)
1,K+k)−1H̃i,B,kW

(κ+1)
K+k 〉,

and α
(κ)
i,K+k,2 , 〈(H̃i,B,k)HC̃

(κ)
i,K+kH̃i,B,kW(κ+1)

K+k 〉; (ii)

b̃
(κ+1)
i,K+k(n) , b̃

(κ)
i,K+k,1(n) − b̃

(κ)
i,K+k,2(n), n ∈ N , with

b̃
(κ)
i,K+k,1(n) = 〈(H(κ)

i,kW
(κ+1)
K+k )H(Λ̃

(κ)
i,K+k)−1Hi,k,nW (κ+1)

K+k 〉,
and b̃

(κ)
i,K+k,2(n) , 〈(H̃i,B,k)HC̃

(κ)
i,K+kHi,k,nW

(κ+1)
K+k 〉 with

W(κ+1)
K+k ,

∑
k′∈KE [W

(κ+1)
k′ ]2, n ∈ N ; and (iii)

Φ
(κ+1)
i,K+k(n, n′) , 〈HHi,k,n′C̃

(κ)
i,K+kHi,k,nW

(κ+1)
K+k 〉, (n′, n) ∈

N ×N .
Then a minorant of r(κ)

p,i,π(k)(θθθ) at θ(κ) is

r̃
(κ)
p,i,π(k)(θθθ) , r̃

(κ)
p,π(k)(θθθ) + r̃

(κ)
p,1,K+k(θθθ)

= ã
(κ+1)
i,π(k) + 2<

{
N∑
n=1

b̃
(κ+1)
i,π(k)(n)eθθθn

}
−(eθθθ)HΦ

(κ+1)
i,π(k)e

θθθ, (38)

where ã(κ+1)
i,π(k) , ã

(κ+1)
π(k) + ã

(κ+1)
i,K+k, b̃(κ+1)

i,π(k) , b̃
(κ+1)
π(k) + b̃

(κ+1)
i,K+k,

and Φ
(κ+1)
i,π(k) , Φ

(κ+1)
π(k) + Φ

(κ+1)
i,K+k, i = 1, 2.

4In what follows b(i) is the i-th entry of b and [A](i, i) is the i-th diagonal
entry of A, and [A]∗(i, i) is the complex conjugate of [A](i, i)
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In summary, a minorant of f (κ)(W (κ+1), θθθ) at θ(κ) is

f̃ (κ)
p (θθθ) ,

∑
k∈K1

[
γ

(κ)
k r̃

(κ)
p,k(θθθ) +

2∑
i=1

γ
(κ)
i,π(k)r̃

(κ)
p,i,π(k)(θθθ)

]
= ã(κ+1)

p + 2<{
N∑
n=1

b̃(κ+1)
p (n)eθθθn}

−(eθθθ)HΦ(κ+1)eθθθ, (39)

for ã
(κ+1)
p ,

∑
k∈K1

(
γ

(κ)
k ã

(κ+1)
k +

∑2
i=1 γ

(κ)
i,π(k)ã

(κ+1)
i,π(k)

)
,

b̃
(κ+1)
p ,

∑
k∈K1

(
γ

(κ)
k b̃

(κ+1)
k +

∑2
i=1 γ

(κ)
i,π(k)b̃

(κ+1)
i,π(k)

)
, and

Φ(κ+1) ,
∑
k∈K1

(
γ

(κ)
k Φ

(κ+1)
k +

∑2
i=1 γ

(κ)
i,π(k)Φ

(κ+1)
i,π(k)

)
.

Furthermore,

f̃ (κ)
p (θθθ) ≥ ã(κ+1)

p + 2<
{ N∑
n=1

(
b̃(κ+1)
p (n)−

N∑
n′=1

e−θ
(κ)

n′

× Φ(κ+1)(n′, n) + λmax(Φ(κ+1))e−θ
(κ)
n

)
eθθθn

}
− (eθ

(κ)

)HΦ(κ+1)eθ
(κ)

− 2λmax(Φ(κ+1))N (40)

, ˜̃
f (κ)
p (θθθ). (41)

The function ˜̃
f

(κ)
p (θθθ) is still a tight minorant

of f (κ)(W (κ+1), θθθ) at θ(κ), because we have
˜̃
f

(κ)
p (θ(κ)) = f (κ)(W (κ+1), θ(κ)) We thus solve the following

discrete problem of tight minorant maximization for (23) to
generate θ(κ+1):

max
θθθ∈BN

˜̃
f (κ)
p (θθθ), (42)

which admits the closed-form solution of

θ(κ+1)
n = 2π −

⌊
∠
(
b̃(κ+1)
p (n)−

N∑
m=1

e−θ
(κ)
m Φ(κ+1)(m,n)

+ λmax(Φ(κ+1))e−θ
(κ)
n

)⌉
b
, n ∈ N , (43)

where bαeb represents the projection of α ∈ [0, 2π] into B
defined by

bαeb = να
2π

2b
, (44)

with
να , arg min

ν=0,1,...,2b

∣∣∣∣ν 2π

2b
− α

∣∣∣∣ , (45)

which can be readily found because we have να ∈ {ν, ν + 1}
for α ∈ [ν 2π

2b
, (ν + 1) 2π

2b
]. We also reset να = 0, when the

optimal solution of (45) is 2b.
It follows from (40) that f (κ)(W (κ+1), θ(κ+1)) ≥

˜̃
f

(κ)
p (θ(κ+1)) >

˜̃
f

(κ)
p (θ(κ)) = f (κ)(W (κ+1), θ(κ)), confirming

(32).

C. GM-throughput optimization algorithm

Algorithm 1 provides the pseudo-code for the procedure
proposed for computing (19). It can be observed from (25) and
(32), which are proved at the end of Sections III-A and III-B,
respectively, that the objective function in (23) improves after
each iteration. Since (23) and (19) share the same first order
optimality condition, this implies that Algorithm 1, which
provides a procedure for computing (19), converges to a local

solution satisfying the first order optimality condition. Interest-
ingly, it has been consistently observed from our simulations
that

f(r(W (κ+1), θ(κ+1))) > f(r(W (κ), θ(κ))), (46)

i.e., Algorithm 1 provides a path-following procedure for
computing (19) and generates a sequence of improved feasible
points to converge at least to a locally optimal solution of the
problem (19) [43].

Algorithm 1 GM-throughput maximization algorithm

1: Initialization: Set κ = 0. Randomly generate (W (0), θ(0))
satisfying the constraints (4) and (13b).

2: Repeat until convergence of the objective in (19):
Generate W (κ+1) by (31) and θ(κ+1) by (43). Reset
κ← κ+ 1.

3: Output (W (κ), θ(κ)) and rates rk(W (κ), θ(κ)),
k ∈ K with their achieved GM[∏

k∈K1

(
rk(W (κ), θ(κ)) mini=1,2

{
rπ(k)(W

(κ), θ(κ)) +

ri,K+k(W (κ), θ(κ))
})]1/K

.

D. Sum throughput optimization

It is straightforward to adjust Algorithm 1 to address the
problem of ST maximization:

max
W,θθθ∈BN

∑
k∈K1

(
rk(W, θθθ) + min

i=1,2
ri,π(k)(W, θθθ)

)
s.t. (13b),

(47)
via the following surrogate problem

max
W,θθθ∈BN

∑
k∈K1

(
rk(W, θθθ)

+
√
r1,π(k)(W, θθθ)r2,π(k)(W, θθθ)

)
s.t. (13b). (48)

Algorithm 1 is ready to compute (48) with γ
(κ)
k and γ

(κ)
i,π(k)

for k ∈ K1 in (23) adjusted to γ
(κ)
k ≡ 1, and γ

(κ)
i,π(k) =√

r1,π(k)(W (κ),θ(κ))r2,π(k)(W (κ),θ(κ))

2ri,π(k)(W (κ),θ(κ))
, i = 1, 2.

IV. GM-THROUGHPUT MAXIMIZATION UNDER
INDIVIDUAL TRANSMIT-ANTENNA POWER CONSTRAINTS

Instead of the sum power constraint (13b), which is convex
quadratic, we now consider individual per-TA equal-power
constraints to support low-cost amplification at each TA:∑

k′∈KE

Nr∑
j=1

|Wk′(i, j)|2 = P/Nt, i = 1, . . . , Nt, (49)

which are not convex, i.e. the objective of this section is to
solve the following problem:

max
W,θθθ

f(W, θθθ) s.t. (4), (49). (50)

As such, the PREs ascent iteration in Algorithm 1 remains
unchanged, but the beamforming ascent iteration is processed
differently, namely as follows.
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Let as before f̃ (κ)
b (W) be defined by (29). Define also5

λ(κ) , max
k∈KE

λmax(Ψ
(κ)
k ). (51)

We now rewrite f̃ (κ)
b (W) defined by (29) as

f̃
(κ)
b (W) = a(κ) + 2

∑
k∈KE

<{〈B̃(κ)
k ,Wk〉} − λ(κ)

∑
k∈KE

||Wk||2

+
∑
k∈KE

〈(Wk)H
(
λ(κ)INt −Ψ

(κ)
k

)
Wk〉 (52)

= a(κ) + 2
∑
k∈KE

<{〈B̃(κ)
k ,Wk〉} − λ(κ)P

+
∑
k∈KE

〈(Wk)H
(
λ(κ)INt −Ψ

(κ)
k

)
Wk〉

≥ a(κ) + 2
∑
k∈KE

<{〈B̃(κ)
k ,Wk〉} − λ(κ)P

+
∑
k∈KE

[
2<
{
〈(W (κ)

k )H
(
λ(κ)INt −Ψ

(κ)
k

)
Wk〉

}
− 〈(W (κ)

k )H
(
λ(κ)INt −Ψ

(κ)
k

)
W

(κ)
k 〉

]
= â(κ) + 2

∑
k∈KE

<{〈B̂(κ)
k ,Wk〉} (53)

, f̂
(κ)
b (W), (54)

where â(κ) , a(κ) − 2λ(κ)P +
∑
k∈KE

〈(W (κ)
k )HΨ

(κ)
k W

(κ)
k 〉,

and B̂
(κ)
k , B̃

(κ)
k +

(
λ(κ)INt −Ψ

(κ)
k

)
W

(κ)
k , k ∈ KE . The

function f̂
(κ)
b (W) is a tight minorant of f̃ (κ)

b (W) over the
nonconvex domain constrained by (49), because we have
f̂

(κ)
b (W (κ)) = f̃

(κ)
b (W (κ)). We thus seek an ascent point

W (κ+1) satisfying (25) from solving the following problem
of tight minorant maximization

max
W

f̂
(κ)
b (W) s.t. (49), (55)

which is not convex, but still admits the following closed-form
solution

W
(κ+1)
k (i, j) =

√
P/Nt

µ(κ)(i)
(B̂

(κ)
k (i, j)),

j = 1, . . . , Nr; i = 1, . . . , Nt; k ∈ KE , (56)

with µ(κ)(i) =
(∑

k∈KE
∑Nr
j=1 |B̂

(κ)
k (i, j)|2

)1/2

, i =

1, . . . , Nt.
Next, we consider the following per-TA inequality con-

straint instead of (49):

max
W,θθθ

f(W, θθθ) s.t. (4), (57a)

∑
k′∈KE

Nr∑
j=1

|Wk′(i)|2 ≤ P/Nt, i = 1, . . . , Nt. (57b)

With λ(κ) defined in (51), it follows from (52) that, we have:

f̃
(κ)
b (W) ≥ a(κ) −

∑
k∈KE

(W
(κ)
k )H

(
λ(κ)INt −Ψ

(κ)
k

)
W

(κ)
k

5In fact, we can even avoid the eigenvalue calculation by taking any λ(κ)

more than maxk∈KE λmax(Ψ
(κ)
k ) such as maxk∈KE 〈Ψ(κ)

k 〉/µ for some
µ > 1.

+
˜̂
f

(κ)
b (W), (58)

where

˜̂
f

(κ)
b (W) , −λ(κ)

∑
k∈KE

||Wk||2 + 2
∑
k∈KE

<{〈B̂(κ)
k ,Wk〉}

=

Nt∑
i=1

∑
k∈KE

Nr∑
j=1

[
− λ(κ)|Wk(i, j)|2

+ 2<{(B̂(κ)
k (i, j))∗Wk(i, j)}

]
(59)

and B̂(κ)
k is defined in (53). The RHS of (58) provides a tight

minorant for f̃ (κ)
b (W) in the LHS as they match at W (κ).

We thus seek an ascent point W (κ+1) satisfying (25) from
solving the following problem of tight minorant maximization.
We thus generate W (κ+1) by solving the problem

max
W

˜̂
f

(κ)
b (W) s.t. (57b), (60)

which is decomposed into Nt independent subproblems

max
Wk(i)

∑
k∈KE

Nr∑
j=1

[
− λ(κ)|Wk(i, j)|2

+ 2<{(B̂(κ)
k (i, j))∗Wk(i, j)}

]
s.t.

∑
k∈KE

Nr∑
j=1

|Wk(i, j)|2 ≤ P/Nt, (61)

each of which admits the closed-form solution

W
(κ+1)
k (i, j) =


1

λ(κ)
B̂

(κ)
k (i, j) if Ξ̄κ ≤ (λ(κ))2P/Nt
1

λ(κ) + µ(κ)(i)
B̂

(κ)
k (i, j) otherwise,

(62)
where Ξ̄κ ,

∑
k∈KE

∑Nr
j=1 |B̂

(κ)
k (i, j)|2 and µ(κ)(i) is found

from bisection such that∑
k∈KE

Nr∑
j=1

|B̂(κ)
k (i, j)|2 = (λ(κ) + µ(κ)(i))2P/Nt.

Algorithm 2 recaps the development of this section. Like
Algorithm 1, its convergence to a local solution satisfying the
first order optimality condition is granted.

Algorithm 2 Per-TA power constrained GM algorithm for
(50)/(57).

1: Initialization: Set κ = 0. Generate (w(0), θ(0)) feasible
for (50)/(57).

2: Repeat until convergence of the objective in (50)/(57):
Generate W (κ+1) by (56)/(62), and θ(κ+1) by (43). Reset
κ← κ+ 1.

3: Output (W (κ), θ(κ)) and rates rk(W (κ), θ(κ)),
k ∈ K with their achieved GM[∏

k∈K1

(
rk(W (κ), θ(κ)) mini=1,2

{
rπ(k)(W

(κ), θ(κ)) +

ri,K+k(W (κ), θ(κ))
})]1/K

.
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V. NUMERICAL EXAMPLES

In our simulations, we set the path-loss of the BS-to-
UE k link at a distance dB,k to βB,k , GBS − 33.05 −
36.7 log10(dB,k) (dB), that of the BS-to-RIS link at a dis-
tance dB,R to βB,R = GRIS + GBS − 35.9 − 22 log10(dB,R)
(dB), and that of the RIS-to-UE k link at a distance dR,k
to βR,k , GRIS − 33.05 − 30 log10(dR,k) (dB), where
GRIS = 5 dBi and GBS = 5 dBi are the antenna gains
of the BS and RIS elements. Similar to [5], [35], the
above parameters are modeled using the 3GPP urban micro
(UMi) scenario from [44, Table B.1.2.1-1] under 2.5 GHz
operating frequency. The elements of the LoS channel ma-
trix between the BS and RIS are given by [HB,R]n,m =

ejπ((n−1) sin θ̄n sin φ̄n+(m−1) sin θn sinφn), where θn and φn are
uniformly distributed as θn ∼ U(0, π) and φn ∼ U(0, 2π),
respectively, and θ̄n = π − θn and φ̄n = π + φn [5].
The elements of normalized small-scale fading channel matrix
HB,k follow Rayleigh distribution, while those of the small-
scale fading channel matrix HR,k obey Rician distribution with
a Rician K-factor of 3. The spatial correlation matrix, which
models the correlation between RIS elements, is given by
[RR,k]n,n′ = ejπ(n−n′) sin φ̃k sin θ̃k , where φ̃k and θ̃k represent
the azimuth and elevation angle for UE k, respectively. The
azimuth angles are generated using the Von Mises distribution
with mean angle of departure (AoD) of ¯̃

φk and spread of 0.2,
while the elevation angles are generated using the Laplace
distribution with mean AoD ¯̃

θk and spread of 8o [37]. We
set the noise power spectral density to = −174 dBm/Hz.
Additionally, Nt = 7 antennas are employed at the BS and
K = 10 UEs are assumed at random locations. Unless stated
otherwise, we set N = 100 PREs at RIS, b = 3 bits for the
quantized PREs, and Nr = 2 antennas at the UEs.

We use the following legends to specify the proposed
implementations: “n-NOMA”/“NOMA”/ “CoSig” refers to the
specific scheme, “b = ∞/3” refers to the resolution of RIS
PREs, and ”TA-equal-P”/”TA-ineq.-P” refers to the TA-wise
equal power constraints (49)/TA inequality power constraints
(57b), which are addressed by Algorithm 2. The default when
the latter is absent is the sum power constraint, which is
addressed by Algorithm 1. Lastly ”ST max.” refers to ST-
maximization.

We consider a pair of practical scenarios for simulations.
The first one assumes the availability of a direct links between
the BS and UEs, as shown in Fig. 1, while the second scenario
assumes that the direct transmission path between the BS and
UEs is blocked by some obstruction [28]. We term them as
“Scenario 1” and “Scenario 2”, respectively. In the following
subsections, we characterize the performance of the proposed
algorithms under both scenarios.

A. Results for Scenario 1

Under this scenario, which is shown in Fig. 1, the
coordinate-locations of the BS and RIS are given by (60, 0, 25)
m and (0, 90, 40) m, respectively, where 25 m and 40 m refers
to the height of BS antennas and PREs of RIS from the ground,
respectively. The UEs are randomly placed in a 180m×180m

area to the right of the BS and RIS. Unless stated otherwise,
the transmit power budget is set to P = 16 dBm.

Fig. 2 plots the achievable GM-throughput versus the trans-
mit power budget P for both b = 3-bit resolution and ∞-
bit resolution PREs achieved by Algorithm 1. Fig. 2 shows
a very small gap between their performances. This is due to
the presence of a direct path between the BS and UEs. Fig. 2
clearly shows the performance gain of n-NOMA over NOMA
and CoSig, which increases upon increasing P . Fig. 3 plots
the achievable GM-throughput versus the number of receiver
antennas Nr. Fig. 3 clearly shows the performance gain of
n-NOMA and NOMA over CoSig, which increases upon
increasing Nr. More particularly, in contrast to n-NOMA and
NOMA, CoSig fails to provide any significant performance
gain with the increase in Nr.

Fig. 4 plots the achievable ST of GM-throughput maxi-
mization (Algorithm 1) and compares it with the respective
ST maximization (Section III-D). As expected, the achievable
ST of the proposed GM-throughput maximization is lower
than that of sum-throughput maximization. However, it can
be observed from Fig. 4 that the achievable ST of the n-
NOMA scheme is only modestly compromised (just 3% drop
in the ST at P = 24 dBm power budget). Note that a
clear advantage of GM-throughput maximization over ST
maximization is that the former avoids assigning a zero or
low throughput to any UE and thus ensures low deviation
among the users’ throughput, which will be shortly shown
through simulations. Actually, there is no need to enforce
additional computationally intractable QoS throughput con-
straints in GM-throughput optimization due to the specific
nature of its objective function (see e.g., (17)). On the other
hand, the QoS throughput constraints have to be included
in the ST maximization problem to avoid the assignment of
a zero or low throughput to any UE. This QoS-constrained
ST maximization problem has to be solved using a convex-
solver based approach, which is computationally very complex
compared to the proposed GM-throughput optimization. The
detailed computational complexity of the proposed Algorithms
and convex-solver based approach is provided in Section V-C.

Fig. 5 shows the effect of imperfect CSI on the achievable
GM-throughput. In order to simulate this effect, we introduced
random channel estimation errors both into the BS-to-UE
channels and RIS-to-UE channels.6 The magnitude of those
channel estimation errors is bounded by δ times the magnitude
of the corresponding channel estimates, where δ represents the
relative CSI uncertainty [45]. As expected, we can observe
from Fig. 5 that the GM-throughput decreases upon increas-
ing the channel uncertainty. However, the reduction is quite
modest. Explicitly, even at a very high channel uncertainty
of δ = 0.08, we observe a moderate 25% drop in the
GM-throughput of the n-NOMA scheme, which shows the
robustness of our proposed algorithms against CSI uncertainty.

6We consider channel uncertainty only in the BS-to-UEs channels and RIS-
to-UEs channels [45]. This is because it is convenient to obtain BS-to-RIS
channel with a very small error compared to the BS-to-UEs and RIS-to-UEs
channels [45].
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Fig. 2: Achievable users’ GM-throughput versus the
transmit power budget P under Scenario 1.
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Fig. 3: Achievable users’ GM-throughput versus number
of receiver antennas Nr under Scenario 1.
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Fig. 4: Achievable sum-throughput versus the transmit
power budget P under Scenario 1.
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Fig. 5: Achievable users’ GM-throughput versus relative
CSI uncertainty δ under Scenario 1.

Fig. 6 plots the ratio between the maximum and minimum
UE-throughput, maxk rk

mink rk
versus Nr. Fig. 6 shows that the

throughput-ratio is lower for NOMA and n-NOMA compared
to CoSig, which shows the advantage of employing NOMA
and n-NOMA in terms of a fairer user-throughput distribution.
We can also observe from Fig. 6 that the throughput-ratio
decreases by increasing Nr, which shows the benefit of
deploying multiple antennas at the UE in achieving fairer user-
throughput distribution.. Fig. 6 also shows that by employing
ST maximization, the ratio between the maximum and min-
imum UE-throughput tends to ∞ because ST maximization
may end up assigning zero or a very low throughput to some
UEs. The advantage of deploying multiple antennas at the UE
and employing n-NOMA and NOMA over CoSig in terms of
promising a fairer user-throughput distribution can also be seen
from Fig. 7, which shows the standard-deviation among the
users’ throughputs for these schemes.7 The standard deviation

7For fairness, the standard-deviation results in this paper are normalized by
the mean of the users’ throughput.

among the users’ throughput decreases upon increasing Nr.
This is because when we increase Nr, the GM-throughput
increases due to the increase in the number of receive antennas.
Next, it can be observed from the definition of GM-throughput
in (17) that maximization of GM-throughput actually reflects
the improvement in the throughput of all the users, which
reduces the standard deviation among the users’ throughputs.

Fig. 8 plots Jain’s fairness index (JFI) of the users’ through-

put, which is defined as JFI =
(
∑K
k=1 rk)

2

K
∑K
k=1 r

2
k

[46]. JFI is a
well-known metric of quantifying the QoS fairness and it
assumes continuous values in [0, 1], where the value 1 implies
maximum fairness (minimum standard-deviation) among the
users’ throughput [46]. It can be observed from Fig. 8 that JFI
increases upon increasing Nr and that the n-NOMA scheme
achieves the highest JFI, outperforming both the NOMA
and CoSig schemes. This result is equivalent to saying that
the standard-deviation among the users’ throughput decreases
upon increasing Nr and the n-NOMA scheme has a lower
standard-deviation than the NOMA and CoSig schemes, which
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Fig. 7: Standard deviation among the users’ throughputs
versus Nr under Scenario 1.
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versus Nr under Scenario 1.

is consistent with what we observed in Fig. 7. In other
words, these results prove that the n-NOMA attains the best
throughput fairness outperforming both the NOMA and CoSig
schemes and that the fairness increases with the increase of
Nr.

Fig. 9 plots the achievable GM-throughput versus the power
budget P for both b = 3-bit resolution and ∞-bit reso-
lution PREs under the per-TA equality power (TA-equal-P)
constraints (49), which is computed by Algorithm 2. Again,
the performance gap between the b = 3 and b = ∞ cases
is small, due to the presence of a direct path between the
BS and UEs under Scenario 1. Similar trend in the results
is observed under per-TA inequality power constraints (57b).
The performance comparison between the achievable GM-
throughput under per-TA equality power constraints (49) and
that under per-TA inequality power constraints (57b) versus the
number of receiver antennas Nr is provided in Fig. 10, which
shows that the performances of (50) and (57) are similar,

particularly for Nr ≥ 2. This shows that the achievable GM-
throughput is maximized if the TAs transmit at their maximum
available power budget. Fig. 10 also shows the advantage of
employing n-NOMA and NOMA over CoSig.

B. Results for Scenario 2

In this subsection, we consider another practical situation,
namely “Scenario-2”, where the direct path between the BS
and UEs is blocked by obstacles (i.e., HB,k ≡ 0), as shown
in Fig. 11. Due to the absence of the direct path, the distances
between the nodes have to be kept smaller, i.e., the coordinate-
location of he BS and RIS is given by (20, 0, 25) m and
(0, 30, 40) m, respectively, while the UEs are randomly placed
in a 85m×85m area to the right of the BS and RIS. Since the
direct path between the BS and UEs is blocked, the UEs are
paired under this scenario based on their geographical distance
from the RIS. Unless stated otherwise, the transmit power
budget is set to P = 34 dBm.
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Fig. 9: Achievable users’ GM-throughput under TA-wise
equal-power constraint (49) versus P under Scenario 1.
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Fig. 10: Achievable users’ GM-throughput under the
TA-wise constraints (49) and (57b) under Scenario 1.
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Fig. 12: Achievable users’ GM-throughput versus the
transmit power budget P under Scenario 2.

Fig. 12 plots the achievable GM-throughput versus the
transmit power budget P for both b = 3-bit and ∞-bit
resolution PREs. In contrast to Fig. 2 of Scenario 1, Fig. 12
clearly shows the gap between the performances of the b = 3-
bit and b =∞-bit resolutions, which is due to the absence of
a direct path between the BS and UEs, and it decreases upon
increasing P . Fig. 12 also shows the superiority of n-NOMA
over NOMA and CoSig. The same trend is also observed
in Figures 13, 14, and 15, which plot the achievable GM-
throughput versus the number of receiver antennas Nr, the
resolution of PREs b, and the number of PREs N .

“It can be observed from Figures 13, 14, and 15 that there
is a wider gap between the performances of low- and high-
resolution PREs in Scenario 2 than in Scenario 1. This is
because in Scenario 1, the presence of a direct BS-UE link
is the major source of throughput enhancement, which can be
observed from the simulation results since the performance
gap between the low- and high-resolution PREs is small. On
the other hand, in Scenario 2, there is no direct link between
the BS and UEs. The users’ throughput is only dependent on

the indirect twin-hop BS-RIS-UE link. In other words, the
achievable throughput depends on the presence or absence of
RIS. Hence, the resolution of RIS PREs has a substantial
impact on the overall throughput and we see a clear gap
between the performances of low- and high-resolution PREs.”

Fig. 16 plots the achievable ST versus the number of PREs
N under Scenario 2 and compares it to that achieved by the
ST maximization approach. As expected, the achievable ST of
the proposed GM-throughput maximization (Algorithm 1) is
lower than that by the ST maximization (Section III-D). The
advantage of GM-throughput maximization is that it avoids
assigning a zero or a very low throughput to any UE and thus
ensures a smaller deviation among the users’ throughputs.

Fig. 17 plots the standard deviation among the users’
throughputs versus the number of PREs N . By reducing
the standard deviation among the users’ throughputs, Fig. 17
shows the advantage of employing n-NOMA and NOMA over
CoSig in terms of promising a fairer user-throughput distribu-
tion. Figures 16 and 17 also show that by employing the pro-
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Fig. 13: Achievable users’ GM-throughput versus number
of receive-antennas Nr under Scenario 2.
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Fig. 14: Achievable users’ GM-throughput versus the
bit-resolution b of PREs under Scenario 2.
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Fig. 15: Achievable users’ GM-throughput versus number
of PREs N under Scenario 2.

50 100 150 200
30

35

40

45

50

55

A
c
h

ie
v
a

b
le

 s
u

m
-t

h
ro

u
g

h
p

u
t 

(b
it
s
/s

e
c
/H

z
) Scenario 2

Fig. 16: Achievable sum-throughput versus number of
PREs N under Scenario 2.

posed GM-throughput maximization, increasing the number of
PREs not only increases the achievable sum-throughput, but
also slightly decreases the standard deviation among the users’
throughputs. This is because when we increase the number
of PREs, the GM-throughput increases due to the increase in
diversity gain through additional reflected paths. Furthermore,
it can be observed from the definition of GM-throughput in
(17) that the maximization of the GM-throughput actually
reflects the improvement in the throughput of all the users,
which yields a reduced standard deviation among the users’
throughputs.

Fig. 18 shows the effect of imperfect CSI on the achievable
GM-throughput under Scenario 2. Observe from Fig. 18 that
the GM-throughput decreases with the increase of the channel
uncertainty δ. However, in contrast to Scenario 1, which
exhibits a moderate drop of 25% in the throughput, the GM-
throughput drops only by 4% under Scenario 2 at a high
channel uncertainty of δ = 0.08. This is because the BS-
to-UEs links do not exist in Scenario 2 and the channel

uncertainty only contaminates the RIS-to-UEs links.
Figures 19 and 20 plot the achievable GM-throughput and

the standard deviation among the users’ throughput, under
both the per-TA equality power constraints (49) and inequality
power constraints (57b). We observe that (57) achieves better
performance than (50) because the former does not limit each
BS TA to transmit at the fixed power P/Nt. In contrast to
all the results observed under Scenario 1 and that observed
under Scenario 2 under the sum-power constraint, these figures
show the supremacy of CoSig and n-NOMA over NOMA. This
may be explained by realizing that in Scenario 2, no diversity
contribution is gleaned from the direct BS-UE link. Under
this situation, if we enforce the per-TA power constraints,
the n-NOMA scheme does not get much room for intelligent
resource allocation.

C. Computational Complexity

The proposed algorithms are computationally efficient, since
their solution is based on evaluating closed-form expressions
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Fig. 17: Standard deviation among the users’ throughputs
versus the number of PREs N under Scenario 2.
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Fig. 18: Achievable users’ GM-throughput versus relative
CSI uncertainty δ under Scenario 2.
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Fig. 19: Achievable users’ GM-throughput under the
TA-wise constraints (49) and (57b) under Scenario 2.
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Fig. 20: Standard deviation among the users’ throughputs
under the TA-wise constraints (49) and (57b).

TABLE II: Average number of iterations required for the convergence of proposed algorithms.

Scenario 1 Scenario 2
Algorithms Alg. 1 Alg. 2 for (50) Alg. 2 for (57) Alg. 1 Alg. 2 for (50) Alg. 2 for (57)

CoSig 24.45 42.96 41.93 16.6 36.4 44.15
NOMA 33.95 94.13 93.06 31.36 74.8 96.1

n-NOMA 44.75 91.38 91.12 27.74 45.75 54.65

at each iteration. The number of iterations required for the
convergence of the proposed algorithms is shown in Table
II. It can be observed from Table II that generally, n-NOMA
requires more iterations to converge than CoSig and NOMA,
because the former has to optimize one and a half times higher
number of beamforming matrices compared to the latter. Table
II also shows that Algorithms 2 requires more iterations for
convergence compared to Algorithm 1. This is because the
former involves M power constraints (at each TA) instead of
a single sum-power constraint.

Table III shows the computational complexity of the pro-
posed Algorithms 1-3 and compares it to that of a convex-

solver based approach for the considered three problems
(i) sum-power (sum-P) constraint (const.) based optimization
(opt.) in (19), (ii) per-TA equality power (equality-P) const.
based opt. in (50), and (iii) per-TA inequality power constraint
based optimization in (57). It can be observed from Table
III that the proposed Algorithms 1-3 are computationally
more efficient than the convex-solver based approach, because
our proposed solution is based on closed-form expressions.
Moreover, we would like to mention that a convex-solver based
approach to jointly designing the BS’s transmit beamformers
and RIS PREs in our RIS-enabled MU MIMO-NOMA system
is not available in the open literature, so fair performance
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TABLE III: Computational complexity of the proposed Algorithms and convex-solver based approach.

Problems Proposed Algorithms Convex-solver based approach [10]
BF iteration PREs iteration BF iteratiion PREs iteration

sum-P const. based opt. (19) O (Nt log2(Nt)NrK) O(N) O
(
(NtNrK)3

)
O(N3)

per-TA equality-P const. based opt. (50) O (NtNrK) O(N) O
(
(NtNrK)3Nt

)
O(N3)

per-TA inequality-P const. based opt. (57) O (NtNrK) O(N) O
(
(NtNrK)3Nt

)
O(N3)

comparisons to the existing solutions cannot be provided.

VI. CONCLUSIONS

This paper has considered the joint design of transmit
beamformers at the BS and PREs at the RIS for RIS-aided
MU MIMO networks to improve the throughput fairness of
all users, under both the sum-power and per-TA power con-
straints. A new-NOMA (n-NOMA)-based signaling scheme
has been adopted, which includes both NOMA and CoSig
as particular cases. The proposed solution is based on GM-
throughput maximization, which iterates by evaluating closed-
form expressions of very low computational complexity. Thus,
the proposed design is eminently suitable for very large net-
works, and GM-throughput maximization improves all users’
throughputs, resolving the issue of an unfair throughput alloca-
tion inherent in sum-throughput maximization. Our extensive
simulations results have shown the performance advantage of
n-NOMA and NOMA-based RIS implementation over CoSig
in terms of improving the achievable GM-throughput and min-
imizing the standard deviation among the users’ throughputs.
However, for a particular scenario, where direct communica-
tion between the BS and UEs is blocked by obstacles, it has
been shown through simulations that NOMA is outperformed
by CoSig under per-TA power constraints based design.
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