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Abstract—This paper studies the performance of short packet
communications in the presence of multiple eavesdroppers. We
start our investigation by examining the fading wiretap channel,
where the communication is overheard by multiple non-colluding
single antenna eavesdroppers. A closed-form expression for the
average secrecy throughput is derived, when the transmitter has
a single antenna. The Monte-Carlo simulations show a close
match of the analytical expression with the numerical results.
Moreover, the optimal blocklength value that maximizes the
secrecy throughput is determined, when the communication is
observed by single and multiple eavesdroppers. We then extend
our analysis for the case of a multiple-antenna transmitter and
consider artificial noise (AN) to confuse the eavesdroppers. A
closed-form expression for the average secrecy throughput is
obtained for the scenario of a two-antenna transmitter and two
eavesdroppers with a single antenna. The results demonstrate the
validity of the approximation when compared with Monte-Carlo
simulations. The results further reveal that an increased number
of antennas at the transmitter is associated with higher average
secrecy throughput and applying AN helps to eliminate the harm
of the eavesdroppers.

Index Terms—Finite blocklength, physical layer security, se-
crecy throughput, multiple eavesdroppers, multiple antennas

I. INTRODUCTION

PHYSICAL layer security (PLS) has received a lot of
interest in recent years. It exploits the randomness of the

wireless medium for securing communication, eliminating the
need to use cryptographic solutions which are computationally
expensive [1]. This renders PLS a potential candidate for
securing future communication systems. These systems need
to support different traffic types, including those consisting
of shorter packets like industrial Internet of Things (IoT)
messages, and haptic communications packets, among others,
that demand low latency and increased reliability. In practi-
cal wireless communication systems, the communication is
subject to overhearing by external eavesdroppers due to the
broadcast nature of wireless communications. Particularly, the
use of short packets introduces a penalty on the secrecy
capacity because it is well-known that PLS is based on the
assumption that transmission happens with a maximum rate
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reliably and securely when the blocklengths are sufficiently
large. Therefore, the communication links that transmit short
packets may become more prone to security attacks. Apart
from that, in applications like IoT, there are typically a massive
number of connected devices and users. Due to the large-
scale nature of the 5G systems, they may be less robust to
adversaries. On the other hand, short packet communications
result in new challenges in terms of security. Although existing
works on PLS have extensively investigated several commu-
nication scenarios for wiretap channels, there are only a few
studies that focus on PLS for short packet communications.
Further, the existing works are limited as they mainly assume
a single eavesdropper. Motivated by the above, in this paper,
we conduct a short packet analysis of PLS for multiple
eavesdroppers and multiple-antenna transmitter settings.

A. Related Works and Motivations

This section summarizes works studying single and
multiple-antenna transmitters in the wiretap channels under the
presence of multiple eavesdroppers when medium to large size
packets are employed. A framework to find the maximum se-
crecy level for a multiple-input multiple-output (MIMO) chan-
nel when there are multiple multiple-antenna eavesdroppers in
unknown locations was presented in [2]. AN-aided transmis-
sion strategy that results in maximizing the secrecy rate was
considered in [3] for a multiple-input single-output (MISO)
channel in the presence of multiple eavesdroppers. On the
other hand, the secrecy outage probability (SOP) for a wiretap
channel scenario, which involves MISO wiretap channel in
the presence of Poisson distributed passive eavesdroppers,
was obtained in [4]. The proposed approach employed AN
and used stochastic geometry theory to provide a solution to
the defined problem. A comprehensive study on performance
analysis for the scenario of randomly located eavesdroppers
with a multiple-antenna transmitter, which injects AN, was
presented in [5]. A closed-form expression was derived for
the optimal power allocation that minimizes secrecy outage
probability. Similarly, AN-aided secure transmission in MISO
channels was investigated in [6]. A semi-adaptive transmis-
sion scheme was proposed in [7] where the focus was on
maximization of the secrecy throughput. In another study [8],
a MISO multiple eavesdropper system with the existence of
two receivers, where one of them receives the confidential
data and the other one helps to confuse the eavesdroppers, are
considered. Transmission schemes that maximize the effective
secrecy throughput (EST) are investigated as well as the joint
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optimization of power allocations and wiretap code rates.
In [9], a traditional cellular and a millimeter wave base
station are compared by obtaining the secrecy throughput and
millimeter wave systems are found to improve the secrecy
performance. Unlike the mentioned studies, which focused on
passive and non-colluding eavesdroppers, cooperation between
the adversaries are also explored in the literature. Both non-
colluding and colluding eavesdroppers cases are analysed in
[10] and [11] to obtain the probability of secrecy outage. The
study in [12] takes into account a different scenario, where
the model is finite-sized in-band selective relaying system with
multiple transmitters and multiple collaborative eavesdroppers.
Closed-form expressions of the secrecy outage probability,
probability of non-zero achievable secrecy rate and ergodic
secrecy rate are derived. Relaying scenario is again considered
in [13] and the expressions for the secrecy outage probability,
the non-zero secrecy rate and the ergodic secrecy rate are
obtained, while a group of eavesdroppers monitors the relays.

Recent works in [14]–[16] extended their analysis in wiretap
channel scenarios by focusing on short packet communica-
tions. The authors in [14] investigated the performance of
secure short packet communications in a mission-critical IoT
system in the presence of a multiple-antenna eavesdropper.
In this work, the AN impact on the system performance was
analyzed and also the optimal blocklength that maximizes the
secrecy throughput was found. The impact of finite block-
length secrecy coding on the design of secure transmission
in a wiretap channel was explored in [15]. Specifically, an
optimization problem was defined, which aimed at maximizing
the secrecy throughput considering various blocklengths, code
rates, and transmission policies. Moreover, the power alloca-
tion of AN was optimized for a multiple-antenna setting. In
[16], a full-duplex multiple-user MIMO wiretap scenario was
introduced. The system performance was again quantified by
secrecy throughput, and the transmission strategy was explored
by considering self-interference, co-channel interference, and
imperfect channel state information.

The aforementioned studies either consider multiple inde-
pendent/collaborative adversaries with no limitation on the
blocklength size or take into account a single eavesdropper in
the context of short packet communications. Specifically, the
presence of a single eavesdropper may not be representative
of practical settings, where typically multiple eavesdroppers
exist. In addition, to the best of our knowledge, the security
of wiretap channels against multiple adversaries in the context
of secrecy throughput for short packet communications has not
been studied previously. In this work, we focus on secure short
packet communications against multiple independent passive
eavesdroppers, when the transmitter is equipped with either a
single or multiple antennas. The multiple-antenna transmitter
case scenario allows us to show the impact of AN on the
system performance.

B. Contributions

This paper examines the average secrecy throughput of
secure short packet communications between legitimate par-
ties when multiple, passive, and single-antenna eavesdroppers

exist. This research aims to address the design of short packet
communications for large-scale networks under the presence of
multiple adversaries. Specifically, the novelty of our work lies
on the fact that we assume each eavesdropper is independent,
a.k.a. non-colluding. Further, any of the eavesdroppers has
the ability to individually overhear the transmitted message
that is intended for the legitimate receiver, but each eaves-
dropper channels are affected by different fading parameters.
If multiple eavesdroppers can collaborate and perform joint
processing and try to decode the message with the gathered
information, namely colluding eavesdroppers, then they can be
seen as a single eavesdropper with multiple antennas, which
is not the case in our system model. Our work is based upon
our preliminary study presented in [17], where we analyzed
the performance of the system for a transmitter with a single
antenna scenario. In this paper, we extend those findings to
the case of a multiple-antenna transmitter and carry out an
optimal blocklength evaluation.

The main contributions of this paper are listed as follows:

• We derive a closed-form approximation of average se-
crecy throughput for the single antenna transmitter sce-
nario when multiple eavesdroppers exist. The proposed
approximation is validated through Monte-Carlo simula-
tions, which show the validity of our approximation;

• We provide a framework to derive the optimal block-
length that maximizes the average secrecy throughput for
both single and multiple eavesdroppers cases;

• We formulate the average secrecy throughput for the
multiple-antenna transmitter case, where AN is intro-
duced to the system model to confuse the eavesdroppers.
We obtained a closed-form expression for the special
case, where the transmitter has two antennas, and there
are two eavesdroppers. Monte-Carlo simulations show the
closeness of the closed-form formula with the simula-
tions;

• Finally, we study extensively the impact of the AN,
the number of transmitter antennas, and the number of
eavesdroppers on system security performance.

The rest of the paper is organized as follows. Section II
describes the system model and performance metric formula-
tion. The average secrecy throughput is also characterized in
this section. Section III presents an analysis for both single
and multiple-antenna transmitter settings. Section IV presents
the corresponding numerical results and discussion. Finally,
Section V concludes the paper and summarizes the numerical
findings.

Notation: Small letters depict scalars. Matrices are denoted
by capital bold letters, while vectors are represented by bold
lower case letters. E{.} denotes expectation operator. f(.) and
F (.) stand for the probability density function (PDF) and the
cumulative distribution function (CDF). Pr(.) represents prob-
ability. [.]T , [.]† denote the transpose and Hermitian transpose,
respectively. N (µ, σ2) means µ-mean complex Gaussian dis-
tribution with variance σ2. |.| and ||.|| correspond to absolute
value and norm. C shows the set of complex numbers.
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II. SYSTEM MODEL AND PERFORMANCE METRIC
FORMULATION

A. Average Secrecy Throughput

In this work, the average secrecy throughput is used as the
performance metric. Therefore, in this section, we will first
introduce what steps are followed to obtain the average secrecy
throughput, then this approach is implemented for single and
multiple-antenna transmitter cases, respectively.

Secrecy capacity is the theoretical upper bound of the secret
information rate of a wiretap channel. The maximum secret
information rate over a wiretap channel is achieved only when
the message is mapped to sufficiently long codewords that
renders both the decoding error probability ϵ and information
leakage δ very small [18], [19]. For the finite blocklength case,
the impact of the decoding error probability and information
leakage probability on both receiver and eavesdropper are not
negligible. In other words, the transmission rate stays close
to the channel capacity when the decoding error probability
tends to zero at infinite blocklength. For this reason, the
channel capacities of the main and wiretapper cannot be
achieved with low error probabilities when the blocklength
n is finite. In addition, in short packet communications,
classical information-theoretic performance metrics, such as
secrecy outage probability, do not apply [20]. Therefore, it is
fundamental to investigate the achievable secrecy rate for finite
blocklengths. For short codewords with blocklength n, given
a target decoding error probability ϵ and information leakage
probability δ, the maximal achievable secrecy rate R∗(n, ϵ, δ)
can be approximated (as in [14], [21]–[23]) as follows

R∗(n, ϵ, δ) = Cs −
√
VγB

n

Q−1(ϵ)

log(2)
−
√
VγE

n

Q−1(δ)

log(2)
, (1)

where VγB = 1− (1 + γB)
−2 and VγE = 1− (1 +max

k
γEk

)−2

are the dispersion of the main and eavesdropper channels,
respectively. Q(x) is the Q-function, which is defined as
Q(x) =

∫∞
x

1√
2π
e−

t2

2 dt, while Q−1(x) represent its inverse.
Under the considered setting, the secrecy capacity can be,
hence, computed as

Cs =

{
CB − CE, when γB > γE,

0, when γB ≤ γE,
(2)

where the capacity of the main channel is

CB = log2(1 + γB), (3)

and the capacity of the strongest eavesdropper’s channel equals
to

CE = log2(1 + max
k
γEk

)

= log2(1 + γE).
(4)

Each independent eavesdropper channels are affected by dif-
ferent fading parameters and any of the eavesdroppers can
individually retrieve the message that is intended for Bob. In
this case, secure communication has limitation and can only
be guaranteed when the instantaneous SNR of the legitimate
receiver is larger than the strongest eavesdropper. In addition,
the secrecy capacity will be almost zero, if eavesdroppers are

located closer to Alice than Bob. Therefore, to achieve a non-
zero secrecy capacity, all eavesdroppers should be prevented
to be close to the transmitter than the legitimate receiver and
the worst-case scenario is when all eavesdroppers are located
on the same distance ring as the legitimate user.

To characterize the decoding error probability, the transmis-
sion rate is given by R∗ = b/n, which corresponds to b bits of
information message that is transmitted by the blocklength n.
(Throughout this paper, the arguments of (n, ϵ, δ) are dropped
in R∗). For γB > γE, i.e., when the secrecy capacity is greater
than zero, the decoding error probability can be computed
according to [14] as

ϵ = Q

(√
n

VγB

(
log
(1 + γB

1 + γE

)
−
√
VγE

n
Q−1(δ)− b

n
log(2)

))
.

(5)
For γB ≤ γE, the decoding error probability ϵ is set simply
to 1. The decoding error probability ϵ in (5) is defined by the
instantaneous SNR of the main channel, γB, conditioned on
the eavesdropper’s instantaneous maximum SNR, γE, and is
represented as ϵγB|γE .

The average achievable secrecy throughput, Ts, (measured
in bits per channel use (BPCU)), can be computed as [14]

Ts = EγB,γE

{ b
n
(1− ϵ)

}
=
b

n
(1− ϵ),

(6)

The parameter ϵ = EγBγE [ϵ] stands for the average error prob-
ability. Therefore, the average successful decoding probability
is given by

1− ϵ = 1− EγB,γE [ϵ]. (7)

Now, we can obtain the closed-form approximation for the
average secrecy throughput when all the channels are affected
by Rayleigh fading, as

Ts =

∫ ∞

0

∫ ∞

0

(1− ϵ)
b

n
f(γB)f(γE)dγBdγE. (8)

We can analyze the integral in (8) into two integrals:

Ts =
b

n

∫ ∞

0

S(γE)f(γE)dγE, (9)

and
S(γE) =

∫ ∞

0

(1− ϵγB|γE)f(γB)dγB. (10)

When γB ≤ γE, which means secrecy capacity is zero, ϵγB|γE

is set to 1. In the more interesting case γB > γE, ϵγB|γE has
an intractable form, and thus we approximate it using the
linearization technique presented in [14], [24], [25]. According
to this approximation, it is:

ϵγB|γE(x) ≈


1, x < α+ u,
1
2 + β(x− α), α− u ≤ x ≤ α+ u,

0, x > α− u,

(11)

where u = 1
2β . The parameter α is found by

α = e

(√
V γE
n Q−1(δ)+ b

n log(2)
)
(1 + γE)− 1, (12)
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Fig. 1. Wiretap channel model

and β, the slope of the ϵγB|γE(x), is computed by

β =
dϵγB|γE(x)

dx

∣∣∣
x=α

= −
√

n

2πα(α+ 2)
. (13)

If we set V γE ≈ 1, then α can be simplified as:

α = e

(
Q−1(δ)√

n
+ b

n log(2)
)
(1 + γE)− 1. (14)

To derive the final expression, we set r = e
Q−1(δ)√

n
+ b

n log(2),
and then (14) can be compactly written as

α = r(1 + γE)− 1. (15)

III. SYSTEM ANALYSIS

A. Single Antenna Alice

The considered setting is shown in Fig. 1, where we assume
only a single antenna at the transmitter. The transmitter, Alice,
wants to send a message to a legitimate receiver, Bob, while
the communication is overheard by multiple eavesdroppers,
Eves. The message at Alice is encoded into a set of xl =
[x(1), x(2), .., x(i), .., x(l)] codewords and Bob receives these
codewords as

yB(i) = hB(i)x(i) + nB(i), (16)

where hB(i) is Bob’s channel fading coefficient at time i
and nB(i) is the Additive White Gaussian Noise (AWGN)
experienced during transmission with nB ∼ N (0, σ2

B), which
has zero mean and variance σ2

B. As we mentioned, besides
Bob, there exist L eavesdroppers and the links connecting
them with Alice are represented as Ek, where k = {1, . . . , L}.
Each eavesdropper observes the main channel transmission
and is affected by a fading channel. Assume that the kth
eavesdropper overhears the transmission in its attempt to
acquire the transmitted information by Alice. Then, the kth
eavesdropper observes a message

yEk
(i) = hEk

(i)x(i) + nEk
(i), k = 1, 2, .., L, (17)

where hEk
(i) denotes the fading coefficient at time i of the kth

eavesdropper. The transmission is corrupted by AWGN noise
of nEk

(i) ∼ N (0, σ2
Ek
) with zero mean and variance σ2

Ek
. We

assume the channel coefficients remain constant over a block
period and vary across the blocks independently. Therefore, we
omit the time index of the channels coefficients hereafter. The
channel state information (CSI) of the legitimate receiver, Bob
is known to the transmitter, Alice, while only the statistics of
the channel distribution of eavesdroppers are available to the
transmitter. This is very common assumption in physical layer
security literature, even if the eavesdropper is passive [5], [7],
[25]. The instantaneously received signal-to-noise ratio (SNR)
at Bob and kth Eve can be formulated as

γB =
|hB|2P
σ2

B
, (18)

and

γEk
=

|hEk
|2P

σ2
Ek

, (19)

respectively, where P is the transmit power. Therefore, Bob’s
channel average SNR is given by

γB =
E{|hB|2}P

σ2
B

, (20)

Let us denote the maximum average SNR of all the eavesdrop-
pers now as γE and the instantaneous SNR of the strongest
eavesdropper as γE = max

k
γEk

. It holds that

γE =
E{|hE|2}P

σ2
Ek

. (21)

Recall that the channels from transmitter to the legitimate
receiver and eavesdroppers are Rayleigh fading. Hence, the
probability density function of the main channel, according to
[26], is given by

f(γB) =
1

γB
e
− γB

γB . (22)

Differently from the setting in [14], which considers an
external multi-antenna eavesdropper, our system has multiple
independent eavesdropper channels, which their channel gains
follow the same distribution. Therefore, according to [26], the
probability distribution function of the adversarial channels
becomes

f(γE) = L
(
1− e

− γE
γE

)L−1 1

γE
e
− γE

γE . (23)

The average secrecy throughput evaluation for single antenna
Alice is done as follows. First, we compute

S(γE) =

∫ ∞

0

(1− ϵγB|γE(x))
1

γB
e
− γB

γB dγB, (24)

where f(γB) is defined as in (22). Then, the integral can be
written for given values of γB = x and γE = y as

S(y) =

∫ ∞

0

(1− ϵγB|γE(x))
1

γB
e
− x

γB dx, (25)

which can be rewritten as

S(y) = 1−
∫ ∞

0

ϵ(x)
1

γB
e
− x

γB dx. (26)
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Replacing (11) into (26) yields

S(γE) = 1−
(∫ α+u

0

1

γB
e
− x

γB dx︸ ︷︷ ︸
D

+

∫ α−u

α+u

(β(x− α) + 1/2)
1

γB
e
− x

γB dx
)

︸ ︷︷ ︸
G

.

(27)

With some manipulation, we find that the first integral is equal
to

D = 1− e
−α+u

γB , (28)

and the second integral is given by

G = β(α+ u+ γB)e
−α+u

γB − β(α− u+ γB)e
−α−u

γB

+
(1
2
− βα

)(
e
−α+u

γB − e
−α−u

γB

)
.

(29)

Thus, by inserting (28) and (29) into (27), the following is
obtained

S(γE) = γBβ
(
e
−α−u

γB − e
−α+u

γB

)
, (30)

and, hence, it is rearranged as

S(γE) = γBβe
− α

γB

(
e

u
γB − e

− u
γB

)
. (31)

Also, by following [14], for large values of γB, (31) can be
further simplified as

S(γE) ≈ e
− α

γB . (32)

Now, by replacing (32) into (9), we get

Ts ≈
b

n

∫ ∞

0

e
− α

γB L(1− e
− γE

γE )L−1 1

γE
e
− γE

γE dγE =⇒

Ts ≈
bL

nγE

∫ ∞

0

e
− α

γB e
− γE

γE (1− e
− γE

γE )L−1dγE.

(33)

Thus, we find

Ts ≈
bL

nγE

∫ ∞

0

e
− r(1+γE)−1

γB e
− γE

γE (1− e
− γE

γE )L−1dγE =⇒

Ts ≈
bL

nγE
e

1−r
γB

∫ ∞

0

e
−(

γEr−γB
γBγE

)γE(1− e
− γE

γE )L−1dγE.

(34)
by using the following based on [27, Eq. 3.312.1]∫ ∞

0

(
1−e−

x
β
)v−1

e−µxdx = βB(βµ, v), [Re β, v, µ > 0],

(35)
where Re depicts the real part of the imaginary numbers and
the beta function B(., .) can be represented as follows [27, Eq.
8.384.1]:

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
(36)

where Γ(z) =
∫∞
0
tz−1e−tdt is the gamma function [27, Eq.

8.310.1]. Therefore, our simplified expression for the average
secrecy throughput is given by:

Ts ≈
bL

n
e

1−r
γB B(z, L), (37)

with z = γEr+γB
γB

.

Fig. 2. Multi-antenna transmitter system model

For the case of single antenna Alice and single antenna
single Eve, we set L = 1 to (37) and we can further simplify
the average secrecy throughput as follows

Ts1 ≈ bγBe
1−r
γB

n(γEr + γB)
. (38)

When there is flexibility in choosing the blocklength n,
we can determine the value of n that optimizes the secrecy
throughput. To do so, we evaluate the optimal blocklength n
considering that the message size b is fixed. We find that the
optimal blocklength that maximizes the secrecy throughput
for single-antenna Alice and a single Eve is characterized by
Lemma 1.

Lemma 1: For the case of a single eavesdropper, the optimal
blocklength that gives the highest secrecy throughput for (38)
can be determined by solving

∆(n) =
(Q−1(δ)

2
√
n

+
b

n
log(2)

)(
r +

γEγBr

γEr + γB

)
− γB = 0,

(39)
taking into consideration that blocklength should be a positive
value. The optimal blocklength can be determined by applying
bisection method. The proof can be found in Appendix A.
Now, we focus on finding the optimal blocklength for the
wiretap channel, which consists of single-antenna Alice and
multiple Eves in the following.

Lemma 2: For the case of multiple eavesdroppers, the
optimal blocklength for (37) is obtained by finding a positive
root of the following expression by setting it to zero.

Ω(n) =
1

nγB

(
Mr
(
1 + γE

(
ψ0(z + L)− ψ0(z)

))
− γB

)
= 0,

(40)
where ψ0(.) is the digamma function [28, Eq. 6.3.1], which is
the logarithmic derivative of the gamma function. Similar to
the single antenna case, the bisection search method is applied
to solve the expression numerically. The proof is given in
Appendix B.

B. Multiple-Antenna Alice

In this section, we consider the more general case, where
multiple-antenna Alice communicates with Bob under the
presence of L non-colluding passive eavesdroppers. In par-
ticular, the transmitter, Alice, is equipped with N antennas,
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while the receiver and the eavesdroppers are equipped with
a single antenna. The system model is presented in Fig. 2.
All channels are Rayleigh fading and are independent of each
other. In this setting, secure communication is achieved only
when no eavesdropper can retrieve the information of the
transmitted message. hB is 1×N vector denoting the main
channel between Alice and Bob. The elements of hB are
independent and identically distributed zero-mean complex
Gaussian random variables with unit variance. The transmitted
signal x in Alice consists of two parts, xt, which is the
information to be sent to the receiver Bob and xa, which is the
(N − 1)× 1 vector of artificial noise signal added to confuse
the eavesdroppers [8], [29], [30]. The AN is transmitted to
degrade the quality of channels in all directions except towards
Bob. Transmission happens with the help of N × N matrix
of W = [wt,Wa], which is an orthonormal basis of CN

and a unitary matrix. The reason to transmit W as AN is to
reduce the quality of the received signal by Eves. While wt is
used to transmit xt, Wa is used for transmission of xa. wt is
chosen as the largest eigenvalue vector of h†

B||hB||, where h†
B

corresponds to the Hermitian transpose of hB and the rest of
the (N − 1) eigenvectors are used for transmitting Wa. Also,
wt is normalized as ||wt||2 = 1. Overall, N× 1 transmitted
vector at Alice is given by

x = [wt Wa][xt xa]T = wtxt + Waxa. (41)

The received signal at Bob

yB = hBx + nB

yB = hBwtxt + hBWaxa + nB

yB = hBwtxt + nB.

(42)

and nB like in the single antenna case is AWGN with
nB ∼ (0, σB

2). The reason of the transition in the equation
(42) is the columns of Wa create hBWa = 0. This happens
as Wa is chosen such that it lies on the null space of hB
so that Bob is not affected by AN. The elements of each hEk

are independent and identically distributed zero mean complex
Gaussian random variables with unit variance. The received
signal at kth Eve

yEk
= hEk

x + nEk

yEk
= hEk

wtxt + hEk
Waxa + nEk

, k = 1, 2, .., L.
(43)

and nEk
is AWGN with nEk

∼ (0, σEk
2). Similar to the single

antenna case, P denotes the total transmit power. We define
a parameter, ϕ, which represents the power allocation ratio (
0 < ϕ ≤ 1) between the information signal power and AN. In
other words, it represents the fraction of the power allocated to
xt. Alice equally allocates the transmit power of AN to each
entry of xa. Hence, the total power is P = σt

2+σa
2(N − 1),

where the variance of the transmitted information signal equals
to σt

2 = ϕP and the variance of artificial noise equals to
σa

2 = (1−ϕ)P
(N−1) . Additionally, the scope of this work does not

cover the power allocation optimization issues, which we plan
to investigate in the future. The average SNR at Bob is given
by

γB =
P

σB
2
, (44)

and the instantaneous received SNR at Bob

γB = ϕγB||hB||2. (45)

Next, we define the statistics of γB according to ||hB||2 ∼
Γ(N, 1) due to multiple antennas at the transmitter under
Rayleigh fading environment

fγB(γ) =
γN−1e

− γ
ϕγB

(ϕγB)
NΓ(N)

. (46)

Further, the cumulative distribution function of γB is given as

FγB(γ) = 1−
Γ(N, γ

ϕγB
)

Γ(N)
, or

FγB(γ) = 1− e
− γ

ϕγB

N−1∑
k=0

1

k!

( γ

ϕγB

)k
.

(47)

As in this work, we consider the presence of multiple eaves-
droppers, secure message transmission is only possible when
the channel gain between the transmitter and the legitimate
receiver is greater than the maximum gain between the trans-
mitter and any of the eavesdroppers. Therefore, the secrecy
capacity, when there are multiple eavesdroppers, depends on
the strongest eavesdropper’s (best channel condition), i.e., the
channel, which is less degraded by fading and noise. The
average signal-to-interference-plus-noise-ratio (SINR) at kth
Eve is equal to

γEk
=

P

σ2
Ek

, (48)

and the instantaneous received SINR at the kth Eve is

γEk
=

ϕP ||hEk
wt||2

1−ϕ
N−1P ||hEk

Wa||2 + σ2
Ek

, or

γEk
=

ϕγEk
||hEk

wt||2
1−ϕ
N−1γEk

||hEk
Wa||2 + 1

.

(49)

The PDF of f(γE) is as following

fγE(γ) = L
(
1− τ1−Ne

− γ
ϕγE

)L−1

e
− γ

ϕγE

(
τ1−N

ϕγE
+

(1− ϕ)

ϕτN

)
,

(50)
where τ = 1 + (1−ϕ)γ

ϕ(N−1) . The derivations can be found in
Appendix C.

With all the above information, we can obtain the average
secrecy throughput by calculating the expression in (8). For
simplicity, first, S(γE) as in (10) is approximated, and then
this result is used in (9). The following shows the steps of the
approximation process for S(γE)

S(γE) =

∫ ∞

0

(1− ϵγB|γE(x))
xN−1e

− x
ϕγB

(ϕγB)
NΓ(N)

dx

= 1−
∫ ∞

0

ϵ(x)
xN−1e

− x
ϕγB

(ϕγB)
NΓ(N)

dx.

(51)
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Now, S(γE) is rewritten in the form of 1− (S1 + S2) in the
following

S(y) = 1−
(∫ α+u

0

xN−1e
− x

ϕγB

(ϕγB)
NΓ(N)

dx︸ ︷︷ ︸
S1

+

∫ α−u

α+u

(β(x− α) + 1/2)
xN−1e

− x
ϕγB

(ϕγB)
NΓ(N)

dx︸ ︷︷ ︸
S2

)
.

(52)

where β, α have been defined in (13), (14), respectively. The
calculation of S1 is based on the following

S1 =
1

(ϕγB)
NΓ(N)

∫ α+u

0

xN−1e
− x

ϕγB dx, (53)

and S2 is obtained as calculating the following expression

S2 =
1

(ϕγB)
NΓ(N)

∫ α−u

α+u

(β(x− α) + 1/2)xN−1e
− x

ϕγB dx.

(54)
Then, S(γE) is approximated by

S(γE) ≈ (1− FγB(α)), (55)

while FγB(α) is given as

FγB(α) = 1− e
− α

ϕγB

N−1∑
k=0

1

k!

( α

ϕγB

)k
. (56)

Further, S(γE) is also can be rewritten either of the following
forms

S(γE) ≈1−
[
1−

Γ(N, α
ϕγB

)

Γ(N)

]
, or

S(γE) ≈e−
α

ϕγB

N−1∑
k=0

1

k!

( α

ϕγB

)k
.

(57)

The approximation in (55) also overlaps with the approxima-
tion given in [14]

S(γE) ≈ 1 + β

∫ α−u

α+u

FγB(x)dx, (58)

Then Ts becomes

Ts ≈
b

n

∫ ∞

0

(1− FγB(α))f(γE)d(γE). (59)

It is hard to obtain a closed-form formula for (59) due to
the complexity of the integral. However, we obtained a closed
form approximation by transforming (50) into the following
by setting L = 2

fγE(γ) =
(
2e

− γ
ϕγE − 2e

− 2γ
ϕγE τ1−N

)(τ1−N

ϕγE
+

(1− ϕ)

ϕτN

)
,

(60)
Then, (59) is simplified with the help of (56) and (60)

Ts ≈
2b

n

N−1∑
k=0

e
1−r
ϕγB

k!

k∑
j=0

(
k

j

)(r − 1

ϕγB

)k−j( r

ϕγB

)k
G−λΓ(λ)×

[ 1

ϕγEk

(ψ(λ, λ+ 2−N,Θ1)− ψ(λ, λ+ 3− 2N,Θ2))+

G(1−N)(ψ(λ, λ+ 2− 2N,Θ2)− ψ(λ, λ+ 1−N,Θ1))
]
,

(61)
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Fig. 3. Achieved Average Achievable Secrecy Throughput with respect to
different Blocklength values for various number of eavesdroppers.

for λ = (k + 1), Θ1 =
r

ϕγB
+ 1

ϕγEk
G and Θ2 =

r
ϕγB

+ 2
ϕγEk

G and
G = 1−ϕ

ϕ(N−1) .
We obtained simulation results of the formula in (61) for

the special case of 2 antenna transmitter and 2 eavesdroppers.
In the next section, both the general formula for Ts in (59) and
closed-form approximation (61) are numerically evaluated and
presented with the other numerical results.

IV. SIMULATION RESULTS

In this section, we examine the impact of the number
of transmitter antennas, the number of eavesdroppers, block-
length and power allocation ratio on the system performance.
Unless otherwise stated, we assume the parameters presented
in Table I for the simulations. The rest of the parameters are
reported when the setting for each figure is discussed. We
also stated in each figure captions when the initial parameter
values are changed. For all the evaluations, the number of
Monte-Carlo trials is 104.

TABLE I
SYSTEM PARAMETERS

Notation Description Value

b Information Message (bits) 100
δ Information Leakage Probability 10−4

γB Average SNR of the main channel 10 dB
γE Average SNR of the eavesdropper channel 10 dB
ϕ Power Allocation Coefficient 0.8

A. Single Antenna Transmitter and Multiple Eavesdroppers

First, we investigate the accuracy of the approximation
derived in (37) by comparing it with Monte-Carlo simulation
results.

In Fig. 3, we evaluate the average achieved secrecy through-
put by Monte-Carlo simulation and compare it with our
closed-form approximation in (37) for various blocklength
values n. In this comparison, we consider various numbers
of eavesdroppers. By observing Fig. 3, we can see that the
Monte-Carlo simulation results and our derived approximation
formula closely match, which confirms the accuracy of our ap-
proximation. This figure further shows that the average secrecy
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Fig. 4. Achieved Average Achievable Secrecy Throughput with respect to
R∗ = b/n for various numbers of eavesdroppers, L, and information leakage
probabilities δ.
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throughput decreases with the number of eavesdroppers. This
is according to our expectations as the more eavesdroppers
exist, the more likely is one of them to receive the message
with fewer errors.

In Fig. 4, we explore the evolution of the average secrecy
throughput versus R∗ = b/n for various information leakage
probability values δ and for various numbers of eavesdroppers
L. For this simulation, we fix the blocklength n to 100 channel
uses, whereas the number of information bits b takes values
up to 500 bits. This evaluation confirms the trend we reported
in Fig. 3, i.e., when the number of eavesdroppers increases,
the secrecy throughput falls. Information leakage probability
also affects the average secrecy throughput, which drops when
the information leakage to the eavesdropper decreases. For
a greater number of eavesdroppers, the transmission should
be at the lower transmission rates in order to maintain an
achievable secrecy throughput, but values of the information
leakage probability still behave similarly in each case with
respect to average secrecy throughput.

In Fig. 5, we study the impact of having an increased num-
ber of eavesdroppers on the average secrecy throughput for
various transmission rates. From this simulation, for the same
number of eavesdroppers in the channel, lower transmission
rates result in low average secrecy throughput. In addition,
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Fig. 6. Average Achievable Secrecy Throughput with respect to various
Blocklength values for various number of eavesdroppers L and information
leakage probabilities values δ.

we observe that as the number of eavesdroppers increases,
it causes a considerable loss in average secrecy throughput.
Further, we note that although the rate values differ, they
all converge to the same point when there are more than
eight eavesdroppers and result in very low average secrecy
throughput. This also shows that secure communication can
be guaranteed, but the secure transmission rate is very low.

In Fig. 6, we show the average achievable secrecy through-
put with respect to different numbers of eavesdroppers for
information leakage probabilities that vary from 10−3 to
10−5. For this simulation, the considered blocklength n is
between 100 to 500 channel uses. We can observe from this
simulation that as the number of eavesdroppers increases,
shorter blocklengths result in higher average secrecy through-
put. Another conclusion derived from Fig. 6 is that the average
secrecy throughput for the examined information leakage
probabilities (δ) has closer outputs for different blocklength
values when the number of eavesdroppers is small. When the
eavesdroppers’ number increases, the gap between the average
secrecy throughput for various information leakage proba-
bilities widens. For example, for a single eavesdropper, the
average secrecy throughput for all the examined information
leakage probability values decreases for larger blocklengths.
However, when the number of eavesdroppers increases, a
larger blocklength results in a slightly lesser average secrecy
throughput.

The impact of the blocklength on the average secrecy
throughput is presented in Fig. 7. The optimal blocklength
is calculated according to Theorem 1 for various values of
transmitted information bits. The optimal value is illustrated
by a purple marker in Fig. 7. By observing this figure, we can
see that the optimal average secrecy throughput is lower when
the transmitted messages are shorter.

Finally, Fig. 8 shows the secrecy throughput and the nu-
merical results that are obtained as described in Theorem 2
when there are multiple eavesdroppers. We examine different
settings, i.e., the number of eavesdroppers and different com-
binations of received SNR values at the legitimate receiver
(Bob) and the eavesdroppers (Eves). The evaluation shows
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Fig. 7. Average Achievable Secrecy Throughput with respect to different
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tion bits b are considered. The optimal value is calculated as described in
Theorem 1.
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that the analytical calculations for optimal blocklength meet
the highest average secrecy throughput for each case. Apart
from that, when the average received SNRs are the same, the
presence of more eavesdroppers leads to lower average secrecy
throughput. If the eavesdroppers are weaker than the legitimate
receiver, higher average secrecy throughput is achievable, even
if the number of eavesdroppers is high. For the case of
weaker Bob than the strongest eavesdropper, when several
eavesdroppers exist, the average secrecy throughput is in the
lowest level.

B. Multiple-Antenna Transmitter and Multiple Eavesdroppers

In this section, we examine the impact of having multiple
antennas at the transmitter on system performance. Specifi-
cally, we explore the validity of the approximations given in
(59) and (61), which quantify the average secrecy throughput
when the transmitter has multiple antennas.

In Fig. 9, the transmitter has 3 antennas. This evaluation
shows the impact of blocklength on the average secrecy
throughput for various combinations of information leakage
probabilities and number of eavesdroppers. The proposed
approximation is compared with the Monte-Carlo simulations.
The first general conclusion is that an increase in the number
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Fig. 9. Average Achievable Secrecy Throughput with respect to different
Blocklength values for various number of eavesdroppers and the information
leakage probability values.
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of eavesdroppers leads to a lower throughput. This is expected
as the higher the number of eavesdroppers is, the larger is the
probability that one of the eavesdroppers is less affected by
the noise than Bob. Another conclusion is that the higher the
dispersion probability is, the higher is the achieved average se-
crecy throughput, but the difference is not significant. Finally,
from this figure, we can observe that Monte-Carlo simulations
match the approximation given in (59).

We now examine the accuracy of the derived closed-form
formula of the average secrecy throughput for a 2-antenna
Alice and 2 eavesdroppers (given in 61). The results are
depicted in Fig. 10 where the evaluation of (61) is compared
with the general expression presented in (59) and Monte-
Carlo simulations. The figure shows the combined impact
of the number of antennas and eavesdroppers on the system
performance. It is clear that the Monte-Carlo simulation, the
closed-form formula and the general expression perform very
close to each other, which validates the accuracy of our
closed-form formula. We can see that for the same received
SNR values for Bob and Eves, the achieved average secrecy
throughput is higher for a smaller number of information
bits (see scenarios (a) and (b)). Moreover, when the channel
conditions at the eavesdroppers are worse (scenario (c)), the
secrecy throughput tends to be higher compared to having
the same average received SNR with the legitimate receiver
(scenario (a)).
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Fig. 11. Average Achievable Secrecy Throughput with respect to Power
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Fig. 11 captures the relation between power allocation rate
and secrecy throughput. From the evaluation, we observe that
higher throughput is achieved when 100 information bits are
transmitted with 100 channel uses compared to when this
happens with 200 channel uses. This is the case regardless
of the number of antennas at the transmitter. Further, when
the number of antennas increases, the throughput gets higher
for the same number of eavesdroppers. From this figure,
we can also observe that the throughput almost halves if
the transmission rate decreases to half (R∗ = b/n = 0.5).
Further, we can see the impact of the number of antennas
on the throughput becomes lesser when the transmission rate
decreases. Moreover, the power allocation ratio affects the
system more when the number of channel uses is small.
However, when the power allocation ratio of the AN becomes
larger, the average secrecy throughput drops. In other words,
if the transmitter allocates more of its power to inject AN, the
average secrecy throughput drops.

V. CONCLUSION

In this paper, we provide a novel approximation of the aver-
age secrecy throughput for a wiretap channel under Rayleigh
fading with multiple eavesdroppers for short packet commu-
nications. We observed that the average secrecy throughput
depends on the transmission rate, the average SNR of the
legitimate receiver, and the received average SNR of the
strongest eavesdropper, as well as the number of the eaves-
droppers. We compare the theoretical and analytical results
and find that the obtained approximations are very close to
the simulated performance. The evaluation shows that when
the number of eavesdroppers increases, the average secrecy
throughput decreases, and the strict information leakage proba-
bility decreases, resulting in lower average secrecy throughput.
In addition, the optimal blocklength value that maximizes
the average secrecy throughput is obtained for the single
antenna transmitter scenario. Moreover, we extend the sce-
nario when the transmitter has multiple antennas and examine
the impact of the AN allocation ratio at the transmitter on
the overall system performance. We also carry out Monte-
Carlo simulations to confirm the derived results. A closed-
form formula is found for the case the transmitter has two
antennas and there are two adversaries. The further evaluation

shows that our proposed approximation for a multiple-antenna
transmitter also matches the numerical results. Although an
increased number of antennas leads to higher average secrecy
throughput, higher transmission rates are more effective in
obtaining high average secrecy throughput. Finally, although
AN is helpful to have even higher secrecy throughput, we can
conclude that the transmitter should not use all of its power to
inject AN. A promising future direction is to investigate the
scenario with users having non-identical distribution channel
statistics due to different distances from the transmitter.
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APPENDIX A
PROOF OF LEMMA 1

We first compute the partial derivative of Ts1 w.r.t. n to obtain
the optimal blocklength for the secrecy throughput in (38) :

∂Ts1
∂n

=
bγBe

1−r
γB

n2(γEr + γB)

(
Mr +

γEγBrM

γEr + γB
− γB

)
. (62)

where M = Q−1(δ)
2
√
n

+ b
n log(2). Since bγBe

1−r
γB

n2(γEr+γB)
> 0, the

sign of the partial derivative of Ts1 depends on the sign of the
following expression:

∆(n) =
(Q−1(δ)

2
√
n

+
b

n
log(2)

)(
r +

γEγBr

γEr + γB

)
− γB. (63)

∆(n) is a decreasing function with respect to n for n > 0
and ∆(n) is concave. r is also a decreasing function of n and
always positive. We know that γB ≥ 0 and Q−1(δ) ≥ 0. We
also have limn→0 ∆ > 0 and limn→∞ ∆ < 0, which means
the average secrecy throughput first increases and then falls.
We take the second derivative of (63) in order to find out
whether the function concave or convex :

∂∆(n)

∂n
=

1

n(γEr + γB)

(M2γ2EγBD

(γEr + γB)
− r(γEγB + γEr + γB)(M

2 +H)
)

︸ ︷︷ ︸
∆1

(64)

where D = e
2

Q−1(δ)√
n

+ 2b
n log(2) and H = Q−1(δ)

4
√
n

+ b
n log(2). In

(64) 1
n(γEr+γB)

> 0, therefore the sign of the equation depends
on the expression inside the brackets.

∆1 =
M2γ2EγBD

(γEr + γB)︸ ︷︷ ︸
J1

− r(γEγB + γEr + γB)(M
2 +H)︸ ︷︷ ︸

J2

. (65)

Since log(J1) < log(J2), the second derivative in (64) is
negative and hence Ts1 is concave.
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APPENDIX B
PROOF OF LEMMA 2

To find the optimal blocklength value that maximizes the
secrecy throughput in (37), we take the partial derivative of
the logarithm of Ts with respect to n :

∂ log Ts
∂n

=
∂Ω(n)

∂n
=

∂ log
(

bL
n e

1−e

Q−1(δ)√
n

+ b
n

log(2)

γB B(γEe
Q−1(δ)√

n
+ b

n
log(2)

γB
+ 1, L)

)
∂n

(66)
We apply the following equality to take the logarithm of
gamma function: logB(z, L) = log Γ(z)+log Γ(L)−log Γ(z+
L).

Ω(n) =
1

γBn

[
Mr
(
1 + γE

(
ψ0(z, L)− ψ0(z)

))
− γB

]
. (67)

Here ψ0 is the digamma function. We know that 1
nγB

> 0,
since n > 0 and γB ≥ 0. We then take the second derivative
of Ts :

∂Ω(n)

∂n
=

1

γBn
2

(γ2EDM2

γB
g1+ r(M2 +H +M)

(
γEg2 − 1)

)
+

1

n2
.

(68)
where the trigamma function is denoted by ψ1(.) [28, Eq.
6.4.1] and the substitutions of 1 =

(
ψ1(z) − ψ1(z + L)

)
,

g2 =
(
ψ0(z) − ψ0(z + L)

)
are applied. This expression is

always negative and the proof is complete.

APPENDIX C

For several eavesdroppers, the CDF of γE is calculated by:

FγE(γ) = Pr(γE < γ) = Pr(max
k

γEk
< γ)

= Pr{γE1
< γ, γE2

< γ, ...., γEk
< γ}

=
[ ∫ γ

0

fγE(x)dx
]L
.

(69)

According to [29], [30], the CDF of the instantaneous SINR
at an Eve under AN is given by

FγE(γ) = 1−
(
1 +

(1− ϕ)γ

ϕ(N − 1)

)1−N

e
− γ

ϕγE . (70)

For L non-colluding eavesdroppers, FγE(γ) becomes:

FγE(γ) =

(
1−

(
1 +

(1− ϕ)γ

ϕ(N − 1)

)1−N

e
− γ

ϕγE

)L

. (71)

Then, the PDF of the instantaneous SINR at Eve is described
by

fγE(γ) =
dFγE(γ)

dγ
= LfγE(γ)

[ ∫ γ

0

fγE(x)dx
]L−1

(72)

and

fγE(γ) = L

(
1−

(
1 +

(1− ϕ)γ

ϕ(N − 1)

)1−N

e
− γ

ϕγE

)L−1

×

((
1 + (1−ϕ)γ

ϕ(N−1)

)1−N

e
− γ

ϕγE

ϕγE
− (1− ϕ)(1−N)e

− γ
ϕγE

ϕ(N − 1)
(

(1−ϕ)γ
ϕ(N−1) + 1

)N
)
.

(73)
If we set τ = 1+ (1−ϕ)γ

ϕ(N−1) in (73), the PDF of f(γE) simplifies
to:

fγE(γ) = L
(
1− τ1−Ne

− γ
ϕγE

)L−1

e
− γ

ϕγE

(
τ1−N

ϕγE
+

(1− ϕ)

ϕτN

)
.

(74)
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