
 

 
 

 

 

 

 

 

Liu, Y., Zhang, L., Gao, F. and Imran, M. A. (2022) Intelligent reflecting 

surface networks with multiorder-reflection effect: system modeling and 

critical bounds. IEEE Transactions on Communications, 70(10), pp. 6992-

7005. (doi: 10.1109/TCOMM.2022.3202212) 

 

There may be differences between this version and the published version. 

You are advised to consult the published version if you wish to cite from it. 

 
 
 
 
 
 
 
 

http://eprints.gla.ac.uk/277554/ 
 
      
 

 
 
Deposited on 24 August 2022 

 

 

 

Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk 

 
 

 

https://doi.org/10.1109/TCOMM.2022.3202212
http://eprints.gla.ac.uk/277554/
http://eprints.gla.ac.uk/


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Intelligent Reflecting Surface Networks with
Multi-Order-Reflection Effect: System Modelling

and Critical Bounds
Yihong Liu, Graduate Student Member, IEEE, Lei Zhang, Senior Member, IEEE, Feifei Gao, Fellow, IEEE

and Muhammad Ali Imran, Senior Member, IEEE,

Abstract—In this paper, we model, analyze and optimize
the multi-user and multi-order-reflection (MUMOR) intelligent
reflecting surface (IRS) networks. We first derive a complete
MUMOR IRS network model applicable for the arbitrary times
of reflections, size and number of IRSs/reflectors. The opti-
mal condition for achieving sum rate upper bound with one
IRS in a closed-form function and the analytical condition to
achieve interference-free transmission are derived, respectively.
Leveraging this optimal condition, we obtain the MUMOR sum
rate upper bound of the IRS network with different network
topologies, where the linear graph (LG), complete graph (CG)
and null graph (NG) topologies are considered. Simulation results
verify our theories and derivations and demonstrate that the sum
rate upper bounds of different network topologies are under a
𝐾-fold improvement given 𝐾-piece IRS.

Index Terms—Intelligent reflecting surface networks, beam-
forming, MIMO, multi-order-reflection, sum rate, graph theory.

I. INTRODUCTION

THE 5th generation (5G) communication is supported by
various radio and network techniques such as millimeter

wave (mmWave), ultra-dense network, and massive multiple-
input multiple-output (MIMO) to achieve unrivaled data rate,
ultra-reliability, ultra-low latency communications, and satisfy
the ever-increasing demands from various applications [2].
Nevertheless, researchers have begun to seek the pathway
toward the future 6th generation (6G) communication for
obtaining even higher spectral efficiency (SE) and energy
efficiency (EE).

The intelligent reflecting surface (IRS) [3], also named
as reconfigurable intelligent reflecting surface (RIS) [4, 5]
or metasurface [6, 7], has been proposed as a potential 6G
technique. The initial idea of IRS is originated from creating
a smart and programmable wireless channel with a class of
artificial surfaces. It can be produced by integrating artificially
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designed electronic elements, e.g., PIN diodes or varactors, on
the facet of surfaces, e.g., printed circuit board (PCB), plus
corresponding processors and controllers [8]. The processor
can compute the controlling parameters for reconfiguring each
element based on different design criteria. The controller, e.g.,
field programmable gate array (FPGA), can correspondingly
reconfigure the statement of each element [9]. Then, the phase
and amplitude of the reflected electromagnetic (EM) wave
impinging on IRS can be manipulated correspondingly with
designed manners. In this way, IRS is able to realize pas-
sive beamforming between transmitters (Txs) and receivers
(Rxs) by reflecting the signal towards the desired Rxs,
which essentially collect extra transmitted power from Txs
to Rxs. Therefore, EE can be improved by using IRS to
increase the signal-to-noise ratio (SNR) [10, 11]. Meanwhile,
IRS can suppress the inter-user interference by adding the
interference power destructively at Rxs [12]. From this view,
more transceivers can share the same frequency bandwidth
to achieve better SE [13]. In addition, compared with base
stations (BSs) or active relaying (AF), IRS has a significantly
lower cost because it does not involve any energy starving
components like RF chains [14].

Single IRS assisted communication systems have been
considered in many works from different aspects, including
EE maximization and weighted sum rate maximization [15–
18]. An IRS network, which is defined as deploying multi-
piece IRS in the transmission environment, has been studied
to further enhance the EE and SE. In [19], the statistical
path loss model of a large-scale IRS network is derived. The
throughput of a single user (SU) has been maximized by the
IRS network leveraging the supervised learning approach [20].
Multi-user (MU) transmission via IRS network is investigated,
considering minimizing the power consumption of transmit
beamforming with constraints of the power supply, signal
to average interference plus noise ratio (SINR) of each Rx,
and constant modulus [21]. The authors of [22] derived the
lower bound of the MU average SINR by considering the
rayleigh fading channel in the IRS network [22]. The wideband
transmission of MU has further been designed to maximize the
sum rate with limited power and constant modulus constraints
in the IRS network [23]. To realize a decentralized IRS
network, the authors of [24] proposed distributed scheme
of IRS networks to maximize the MU weighted sum rate.
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Fig. 1: An example of indoor transmission assisted by IRS
network with the same furniture setting shown in [27]

Additionally, the IRS network has been proposed to realize
robust, secure MU communication by jointly designing the
transmit beamforming, artificial noise and IRS network [25].
Considering the multi-order-reflection (MOR) [26–28], the
authors of [29] analyzed the single user multi-order-reflection
(SUMOR) transmission in one path of the IRS network and
then provided the beam routing solution. Further, the authors
gave a tutorial for optimizing the wireless channel of one
reflection to multi-user and multi-order-reflection (MUMOR)
transmission [30].

However, the intrinsic nature of EM wave transmission in
IRS has been overlooked in the literature for a long time,
i.e., the dual reflection of MOR signal between two reflectors.
The dual reflection is a common phenomenon for reflectors
having spatial correlation and has been widely considered in
radar systems [31–33]. Specifically, the dual reflection happens
between two reflectors in placement with a dihedral angle
such that beam lobes of two reflectors can point towards
each other. For instance, as shown in Fig. 1, path A is the
blocked path between a transceiver pair; thus, leveraging IRS
is necessary, and other paths are the line of sight (LoS) paths
between transceivers and IRS or two IRSs. Considering the
reflections between IRS1 and IRS2, Rx receives the second-
order-reflection (SOR) signal passing through a cascaded line
of sight (C-LoS) path B-E-G and third-order-refection signal
along another C-LoS path D-F-E-C. Due to the dual reflection
between IRS1 and IRS2 will still occur immediately, higher-
order reflection signals are successively produced by repetitive
signal reflections between IRS1 and IRS2 and can reach Rx
in longer C-LoS paths B-E-E-C and B-E-E-E-G. Note that
signal components from higher-order reflections should not
be neglected as long as they are not overwhelmed by Rx’s
noise power, or potential destruction of signal amplitude, fatal
phase distortion and inter-symbol interference can significantly
undermine the overall system performance.

In light of dual reflections, we notice most works about
IRS only consider FOR. Though works [29, 30] further
consider C-LoS paths in MOR, the signal component via dual
reflection is omitted in their models. To the best of the authors’
knowledge, two main issues remained unsolved. First, no

IRS works completely considered a complete channel model
in the reflective environment. Thus, an establishment of the
complete model for the IRS network is necessary for analyzing
generic and arbitrary reflecting scenarios. It is the most critical
prerequisite to laying a foundation for a precise, robust, and
reliable design for the IRS network. Further, no analytical
works have indicated clear bounds to guide the deployment
of IRS networks with multi-user interference, i.e., how much
EE and SE can be improved, where is the sum rate upper
bound and how to reach the upper bound.

By addressing the above issues, the main contributions of
this paper are listed as follows.

• To incorporate the MOR effect with dual reflection, we
introduce an index matrix to derive a complete model of
the IRS network, which is applicable for arbitrary orders
of reflections, an arbitrary number of IRS and arbitrary
network topologies.

• We mathematically derive two critical conditions: the
optimal condition to reach the sum rate upper bound and
the condition to realize interference-free transmission as
insights for studying the EE and SE of the IRS network.

• Considering different topologies of the IRS network, we
analyze the sum rate upper bound of MUMOR trans-
mission assisted by an IRS network; by employing the
optimal condition, we use graph decomposition to derive
the maximized EE and SE.

The rest of the paper is organized as follows. Section II
derives two fundamental models of the MUMOR IRS network.
In Section III, the MUMOR IRS network channel model is
derived by permutationally combining fundamental models in
Section II. Section IV derives the optimal condition and the
interference-free condition. Section V obtains the sum rate
upper bound of the MUMOR IRS network in different network
topologies. Simulations and conclusions are given in Section
VI and Section VII, respectively.

Notations: Throughout this paper, bold-faced upper case
letters, bold-faced lower case letters, and light-faced lower
case letters are used to denote matrices, column vectors, and
scalar quantities, respectively. ∠ is the phase of a complex
variable. The superscripts (·)𝑇 and (·)𝐻 represent matrix
(vector) transpose, complex conjugate transpose, respectively.
⊙ denotes point-wise multiplication. I is the identity matrix.
The number of 𝑌 -combinations from a set 𝑆 of 𝑋 elements
is denoted by

(𝑋
𝑌

)
, 𝑋𝑃𝑌 means the number of 𝑌 -permutations

from a set 𝑆 of 𝑋 elements. 𝑑𝑖𝑎𝑔(·) is the symbol for vectoring
a matrix by taking its diagonal terms.

II. FUNDAMENTAL IRS MODELS

In this section, two fundamental models in IRS networks are
presented. We consider LoS channels obey the quasi-optical
transmission nature of EM carrier following works [5, 27, 28,
34–36]. Meanwhile, the NLoS channel between transceivers
is considered, as no LoS paths between transceivers could be
a common and pressing issue [37], as shown in Fig. 1. In
addition, we assume each transceiver and IRS is located in a
far-field as did in the literature [15–17, 19–25, 29, 30].
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Fig. 2: A single IRS model for MU transmission. Different
colors mark the signal transmission path from different Txs.

A. The Single IRS Channel Model

As shown in Fig. 2, we consider N pairs of transceivers
where each Tx or Rx is equipped with a single antenna, M ele-
ments in ULA1 for each IRS piece and LoS channels between
Txs/Rxs and IRS. Denote A𝑖𝑛 ∈ C𝑀×𝑁 and A𝑜𝑢𝑡 ∈ C𝑀×𝑁

as the LoS channel matrix of angle of arrivals (AOA) and
angle of departures (AOD) form Txs to IRS and IRS to Rxs,
respectively. Then, we have

A𝑖𝑛 = [a(𝜙𝑖𝑛,1), a(𝜙𝑖𝑛,2), . . . , a(𝜙𝑖𝑛,𝑁 )] (1)

and

A𝑜𝑢𝑡 = [a(𝜙𝑜𝑢𝑡,1), a(𝜙𝑜𝑢𝑡,2), . . . , a(𝜙𝑜𝑢𝑡,𝑁 )] , (2)

where a(𝜙𝑖𝑛,𝑖) and a(𝜙𝑜𝑢𝑡,𝑖) are steering vectors of incident
directions 𝜙𝑖𝑛,𝑖 and exit directions 𝜙𝑜𝑢𝑡,𝑖 from Tx𝑖 to the IRS
and IRS to Rx𝑖 , respectively. The IRS weights matrix W ∈
C𝑀×𝑀 is a diagonal matrix with each entity on the diagonal
being the weight value. The received signal for all Rxs can
be rewritten as

y = A𝑇𝑜𝑢𝑡WA𝑖𝑛s + n , (3)

where s = [𝑠1, 𝑠2, . . . , 𝑠𝑁 ]𝑇 ∈ C𝑁×1 is the source signal vector
from all Txs. In addition, n is the noise vector at the Rxs.
The received signal of Rx𝑖 in Eq. (3) can be rewritten as [38]

𝑦𝑖 = w𝐻A𝐶,𝑖s + 𝑛𝑖 , 𝑖 = 1, 2, ..., 𝑁 , (4)

where w is a column vector whose elements are the main
diagonal elements of W. Meanwhile, 𝑛𝑖 is the noise at Rx𝑖 .
The 𝑖-th combined steering vector A𝐶,𝑖 can be written as

A𝐶,𝑖 = [a𝐶 (𝜙𝑜𝑢𝑡,𝑖 , 𝜙𝑖𝑛,1), . . . , a𝐶 (𝜙𝑜𝑢𝑡,𝑖 , 𝜙𝑖𝑛,𝑁 )] ∈ C𝑀×𝑁 ,
(5)

where

a𝐶 (𝜙𝑜𝑢𝑡,𝑣 , 𝜙𝑖𝑛,𝑢) = 𝑙𝐼𝑅𝑆a(𝜙𝑜𝑢𝑡,𝑣) ⊙ a(𝜙𝑖𝑛,𝑢), 𝑢, 𝑣 = 1, ... , 𝑁,
(6)

and

a(𝜙) = [1, 𝑒− 𝑗𝑘𝑑 cos 𝜙 , . . . , 𝑒− 𝑗𝑘𝑑 cos 𝜙 (𝑀−1) ]𝑇 . (7)

1Although ULA is adopted, the proposed IRS framework can be generalized
to URA [38] or any other geometry.

Here, 𝑙𝐼𝑅𝑆 is the path loss factor for LoS path and its specific
expression has been given in [39]. It should be noted that
𝑙𝐼𝑅𝑆 includes the free space path loss (FSPL) and effective
area of IRS [40]. Without loss of generality, we normalize the
effective area of IRS and consider the path loss factor of far
field to be inversely proportional to (𝑑𝑖𝑛𝑑𝑜𝑢𝑡 )2 [5], where 𝑑𝑖𝑛
and 𝑑𝑜𝑢𝑡 is the distance from Tx to IRS and IRS to Rx.

Note that this model can represent an arbitrary reflecting
object with multiple impinging and reflected signals. In par-
ticular, the ‘ Txs’ and ‘Rxs’ can represent multiple incident
and reflected signals’ direction in Fig. 2. The directions of
‘ Txs’ is not necessarily the actual Tx as they can also
be reflected signals from other objects. Similarly, reflected
signals’ directions can also be those of other reflecting objects.
Meanwhile, if the weights of IRS are fixed, which means non-
reconfigurable, the single IRS model can also represent other
non-IRS reflecting objects, such as walls/floors/ceilings uncov-
ered by the IRS. Thus, the single IRS model is fundamental
for extending one-time reflection on one object toward MOR
on multiple objects in the environment, which becomes a basic
unit model in the IRS networks.

B. Channel Model Between Two IRSs
In this subsection, we derive the LoS channel model be-

tween one IRS to another as it is fundamental to make up a
part of the complete model of the IRS network.

Lemma 1. The channel matrix between any two IRSs is rank-
one and can be written as

E = a(𝜙𝑖𝑛)a(𝜙𝑜𝑢𝑡 )𝑇 , (8)

where 𝜙𝑜𝑢𝑡 is the AOD of signal leave from the first IRS
towards the next IRS, and 𝜙𝑖𝑛 is the AOA of signal arriving
at the next IRS.

From the view of Lemma 1, each IRS can regard another
IRS as a point source located in the far-field, but both of them
can shape a pencil beam towards each other. Additionally, it
means that only a single data stream can be supported by an
LoS channel between two pieces of IRS. In real applications,
ranks can be greater than one due to the diffraction and refrac-
tion effects of EM waves. However, as the carrier frequency
increases for more spectrum resources, the diffraction and
refraction effects become weak and vulnerable. Hence multiple
streams transmission between two IRSs becomes impractical,
where the traditional Rayleigh fading model is inconsistent in
this case [35]. Therefore, in this work, we consider the rank-
one channel between two IRSs.

III. IRS NETWORK CHANNEL MODEL

A. The MUFOR Network Channel
Denote the channel of FOR IRS network as H𝐼,1. Based on

Eq. (3), the received signal with 𝐾 pieces IRS can be expressed
as

y = H𝐼,1s + n , (9)

where

H𝐼,1 =

𝐾∑︁
𝑘=1

A𝑇𝑜𝑢𝑡,𝑘W𝑘A𝑖𝑛,𝑘 (10)
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and A𝑖𝑛,𝑘 and A𝑜𝑢𝑡,𝑘 are two steering vector matrices of AOA
and AOD with respect to 𝑘-th IRS. Note that, the 𝑘-th C-LoS
path component is made up via multiplexing only one weights
matrix W𝑘 one time with other two steering vector matrices,
A𝑖𝑛,𝑘 and A𝑜𝑢𝑡,𝑘 . Thus, the IRS network channel H𝐼,1 embody
𝐾 different paths and all of these paths only experience one
time reflection.

B. The Exemplification of MUMOR Network Channel

To model the MOR effect analytically, we define the
maximum order of reflections within the IRS network as Γ.
Essentially, Γ plays the effective cut-off parameter on the
MOR effect. Though it is possible to consider Γ → ∞2, we
need to cut off using Γ as a finite value because we have path
loss in practical scenarios. In this case, the reflection order
of signal components less than or equal to Γ is considered.
In contrast, the signal components with orders higher than Γ

are assumed to be overwhelmed by the noise power and can
be neglected. To involve arbitrary number of reflections in the
IRS network, we denote the IRS network channel in 𝛾-th order
as H𝐼,𝛾 , where 𝛾 ∈ [1, Γ]. Then, we extend the IRS network
channel in Eq. (10) from FOR to MOR via superposition as

H𝐼 =

Γ∑︁
𝛾=1

H𝐼,𝛾 , (11)

where totally Γ orders of IRS network channels are added
up. The 𝛾-th order MU channel component H𝐼,𝛾 includes
all C-LoS path components that experience 𝛾 orders in the
network, which also means each C-LoS path component in
H𝐼,𝛾 is exactly weighted for 𝛾 times.

To differentiate MOR from FOR in the IRS network and
illustrate the dual reflection, we exemplify by considering two
pieces of IRS, where 𝐾 = 2 and Γ = 2, as shown in Fig. 3. In
this case, each C-LoS path passes maximal 2 pieces IRS. The
C-LoS paths with a reflection order of more than three are
ignored. Thus, the received signal of all Rxs should consist
of MU signals passing along the FOR IRS network channel
H𝐼,1 and the SOR IRS network channel H𝐼,2 which has been
respectively shown in Fig. 3(a) and (b). Considering the FOR
IRS network channel, we can have

H𝐼,1 = A𝑇𝑜𝑢𝑡,1W1A𝑖𝑛,1 + A𝑇𝑜𝑢𝑡,2W2A𝑖𝑛,2 . (12)

2It is similar to the LoS path of visible light reflected within two mirrors
or more mirrors for infinite times.

For SOR IRS network channel, we have

H𝐼,2 = A𝑇𝑜𝑢𝑡,2W2E12W1A𝑖𝑛,1 +A𝑇𝑜𝑢𝑡,1W1E21W2A𝑖𝑛,2 . (13)

Note that E12 and E21 are the LoS channels between between
IRS1 and IRS2, as we derived in Eq. (41), where E12 = E𝑇21.
We can observe the number of C-LoS path components in
H𝐼,𝛾 with different 𝐾 and different 𝛾 variates and still follow
the permutation’s rule. For example, for 𝐾 = 2, we have the
IRS candidate set ^ = {1, 2} which means there are only IRS1
and IRS2 in the environment. Since 𝛾 = 1, the number of FOR
paths is equal to 2 where one FOR path passes through IRS1,
and another one passes through IRS2. Using the permutation
rule, we can denote the number of FOR paths as 2𝑃1 = 2
(𝑋𝑃𝑌 means 𝑌 -permutations of a set with 𝑋 elements, where
𝑋,𝑌 ∈ N+). Similarly, for 𝐾 = 2 and Γ = 2, the number of
SOR paths equal to 2 since 2𝑃2 = 2. Specific order sequences
of these two SOR paths can be enumerated here, i.e., we have
[1 2], meaning a SOR path first passes through IRS1 and then
IRS2, and [2 1], meaning another SOR path passes through
IRS2 and then IRS1. Consequently, the total number of C-LoS
paths of 𝛾 orders in the 𝐾-piece IRS network is equal to 𝐾𝑃𝛾 .
Note that although 𝐾𝑃𝛾 only includes the number of C-LoS
paths which pass each IRS only once in IRS networks, we
will discuss and consider C-LoS paths which repetitively visit
the same IRS later. To expand H𝐼,𝛾 in general expression, we
define an index matrix X𝛾 to denote the order sequences for
all C-LoS paths in 𝛾 orders. In particular, all rows of index
matrix X𝛾 are used to hold specific order sequences of all C-
LoS paths of 𝛾 orders. For example, given 𝐾 = 2, 𝛾 = 2, by
leveraging the index matrix X2, Eq. (13) can now be written
as

H𝐼,2 =

2𝑃2∑︁
𝑢=1

A𝑜𝑢𝑡,𝑋𝛾,𝑢2W𝑋𝛾,𝑢2E𝑋𝛾,𝑢1𝑋𝛾,𝑢2W𝑋𝛾,𝑢1A𝑖𝑛,𝑋𝛾,𝑢1 , (14)

where the index matrix X2 for H𝐼,2 is

X2 =

[
𝑋2,11 𝑋2,12
𝑋2,21 𝑋2,22

]
=

[
1 2
2 1

]
. (15)

We can observe [𝑋2,11 𝑋2,12]=[1 2] and [𝑋2,21 𝑋2,22] =

[2 1] are exactly two sequences we enumerate.

C. The MUMOR Network Channel

For arbitrary value of 𝛾 and 𝐾 , we define the index matrix
as X𝛾 ∈ N+𝐾𝑃𝛾×𝛾 . The term 𝑋𝛾,𝑢𝑣 at the 𝑢-th row and the 𝑣-th
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column of X𝛾 is a positive integer representing an index of a
specific IRS in the network. Each row of X𝛾 holds a specific
and non-repetitive sequence with 𝛾 columns. The index matrix
X𝛾 has 𝐾𝑃𝛾 rows in total, which means all order sequences
under a partial permutation 𝐾𝑃𝛾 are included. To generate the
index matrix, one can enumerate the permutation sequences
of 𝛾 terms from the IRS candidate set ^ = {1, 2, ..., 𝐾}
respectively as rows of X𝛾 [41].

Theorem 1. The general expression of 𝛾-order IRS network
channel H𝐼,𝛾 can be written as

H𝐼,𝛾 =

𝐾𝑃𝛾∑︁
𝑢=1

A𝑜𝑢𝑡,𝑋𝛾,𝑢𝛾 [
𝛾−1∏
𝑣=1

W𝑋𝛾,𝑢(𝑣+1) E𝑋𝛾,𝑢𝑣𝑋𝛾,𝑢(𝑣+1) ] ...

W𝑋𝛾,𝑢1A𝑖𝑛,𝑋𝛾,𝑢1 (16)

where X𝛾 ∈ N+𝐾𝑃𝛾×𝛾 is the index matrix of 𝛾 orders.

Note that the dual reflection is common, and we should
consider other C-LoS paths whose order sequences are with
repetitive indices. These C-LoS paths should at least visit a
single IRS of all pieces twice. For the order sequences of these
C-LoS paths with repetition, the adjacent two terms in rows of
the index matrix should be different as we consider that there
is no LoS path between one IRS and itself. Thus the EM wave
would not impinge on the same IRS twice immediately, i.e.,
𝑋𝛾,𝑢𝑣 ≠ 𝑋𝛾,𝑢(𝑣+1) , 𝑢 ∈ [1, 𝐾𝑃𝛾], 𝑣 ∈ [1, 𝛾 − 1]. To complete
the IRS network model, we include order sequences, whose
two interleaved indices can be equal to another, into the index
matrix X𝛾 with extra rows. Therefore, the row dimension of
X𝛾 extends from 𝐾𝑃𝛾 to 𝐾 (𝐾 − 1) (𝛾−1) . By far, if we replace
H𝐼,1 with Eq. (11) and Eq. (16) in Eq. (9), then the complete
model of IRS network is established.

Also, we would like to point out that the completeness
of our proposed model can also include the NLoS com-
ponents from non-IRS scatters/reflectors. In previous works,
NLoS components are modeled as a class of random/unknown
variables to be estimated [42]. However, from the modeling
view of this work, as long as we precisely measure the
combining steering vector and weights vector of these non-
IRS scatters/reflectors, we can have a further analytical design.
Specifically, as the difference between the IRS and non-IRS
scatters/reflectors in the environment is on the characteristic of
controllability, we can regard these non-IRS scatters/reflectors
as a class of special IRS with fixed weights. Therefore, we can
leverage them for effective localization, channel estimation and
efficient transmission.

IV. PROPOSED THEOREMS FOR A SINGLE IRS

A. Optimal sum rate Condition Based On Single IRS

In case of single IRS, where Γ = 1, 𝐾 = 1 in Eq. (11), then
the received signal for all Rxs becomes:

y = H𝐼,1s + n = A𝑇𝑜𝑢𝑡,1WA𝑖𝑛,1s + n , (17)

where

H𝐼,1 =


w𝐻a𝐶 (𝜙𝑜𝑢𝑡,1 , 𝜙𝑖𝑛,1) . . . w𝐻a𝐶 (𝜙𝑜𝑢𝑡,1 , 𝜙𝑖𝑛,𝑁 )
w𝐻a𝐶 (𝜙𝑜𝑢𝑡,2 , 𝜙𝑖𝑛,1) . . . w𝐻a𝐶 (𝜙𝑜𝑢𝑡,2 , 𝜙𝑖𝑛,𝑁 )

...
. . .

...

w𝐻a𝐶 (𝜙𝑜𝑢𝑡,𝑁 , 𝜙𝑖𝑛,1) . . . w𝐻a𝐶 (𝜙𝑜𝑢𝑡,𝑁 , 𝜙𝑖𝑛,𝑁 )


.

(18)
With equal power 𝑃𝑇 from all transmitters, the channel

capacity of MU transmission on a single IRS can be expressed
as

𝐶 = 𝑙𝑜𝑔 det(I𝑁 + 𝑃𝑇
𝑁0

H𝐼,1H𝐻
𝐼,1) . (19)

Then, the optimization on weights w is equivalent to maximize
the diagonal terms and minimize the off-diagonal terms in Eq.
(18). However, it is hard to decide whether the main diagonal
terms and the off diagonal terms of H𝐼,1 can be simultaneously
maximized and minimized, i.e, |w𝐻a𝐶 (𝜙𝑜𝑢𝑡,𝑖 , 𝜙𝑖𝑛,𝑖) | = 𝑀 and
|w𝐻a𝐶 (𝜙𝑜𝑢𝑡,𝑖 , 𝜙𝑖𝑛, 𝑗 ) | = 0, 𝑖 ≠ 𝑗 .

Note that once the spatial correlation between each
transceiver pairs a𝐶 (𝜙𝑜𝑢𝑡,𝑢 , 𝜙𝑖𝑛,𝑣), 𝑢, 𝑣 = 1, ..., 𝑁 are fixed,
we can calculate w. As the IRS channel is deterministic with
fixed w, the spatial correlation between all transceiver pairs
is another dominating factor in deciding the sum rate upper
bound. For example, the higher the spatial channel between
Tx𝑖 and Tx 𝑗 or between Rx𝑖 and Rx 𝑗 , the lower the channel
ranks and singular values of H𝐼,1 are, which further lower
the upper bound of the overall sum rate in a specific spatial
realization. To find an optimal upper bound of the sum rate, we
derive the optimal condition in the spatial correlation between
each transceiver pair. In this case, every pair can leverage
the optimal gain brought by the single IRS. Besides, the
interference between each pair can be nullified simultaneously.

Let the 𝑖-th pair user locate at 𝜙𝑖𝑛,𝑖 = 𝛼𝑖 , 𝜙𝑜𝑢𝑡,𝑖 = 𝛽𝑖 and
the 𝑗-th pair locate at 𝜙𝑖𝑛, 𝑗 = 𝛼 𝑗 , 𝜙𝑜𝑢𝑡, 𝑗 = 𝛽 𝑗 where 𝑖 ≠

𝑗 , 𝑖, 𝑗 = 1, 2, ..., 𝑁 . Denote Δ𝑟 = 𝑑
_

as the normalized spacing
between each element since 𝑑 is the distance between each
element and _ is the carrier wavelength. Additionally, denote
𝐿 = 𝑀Δ𝑟 is the relative length respect to normalized spacing.
Then we have

𝑤𝑚 = 𝑒− 𝑗 Z𝑚𝑘𝑑𝑚 , \𝑚 ∈ (0, 2𝜋] , 𝑚 = 1, . . . , 𝑀 , (20)

where
Z𝑚 = − cos𝛼𝑖 − cos 𝛽𝑖 +

𝐾

Δ𝑟
(21)

is the optimal factor given by maximal ratio combining (MRC)
algorithm to realize power gain of the 𝑖-th pair user, i.e.,
|w𝐻a𝐶 (𝜙𝑜𝑢𝑡,𝑖 , 𝜙𝑖𝑛,𝑖) | = 𝑀 .

Lemma 2. Given 𝑁 pairs of transceivers assisted by a single
piece IRS, the optimal sum rate upper bound can be obtained
when each transceiver pair’s position for Tx and Rx are at

𝛼 𝑗 = cos−1
(
𝑗

𝐿
− Z𝑚 − cos 𝛽𝑖 ±

1
Δ𝑟

)
(22)

and
𝛽 𝑗 = cos−1

(
𝑗

𝐿
− Z𝑚 − cos𝛼𝑖 ±

1
Δ𝑟

)
(23)

respectively.
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Lemma 2 reveals that if the position of each transceiver
can be coordinated correspondingly, H𝐼,1 can be optimized
such that diagonal terms can be maximized and off-diagonal
terms can be nullified respectively at the same time. Physically,
each reflected beam towards each Rx is orthogonal to each
other. The whole IRS channel can be orthogonal space-division
multiplexed (OSDM) by 𝑀 pairs of the transceiver. Thus, we
call links with correlation obeying Lemma 2 as the optimal
link. Proof of Lemma 2 is shown in Appendix A. Additionally,
without changing 𝐿, no matter how the element number and
spacing variate, the optimal condition in Lemma 2 will not
change. In fact, the characteristic of channel rank is essentially
proportional to 𝐿 [43]. Therefore, we propose to use 𝑑 = _

2
since this is the maximal spacing for a fixed 𝐿 to secure the
narrowest reflected beam, which causes no grating lobe of the
reflected beam. Note that there is a trade-off between EE and
spacing as well. This is due to smaller spacing resulting in
fewer channel ranks and larger beamwidth. Still, the redundant
beam, causing energy waste in trivial directions, will less likely
occur [38]. Thus, the actual spacing can be less than this value
based on different design criteria. Some discussions about the
spacing of elements and the beamwidth of IRSs can be referred
to in [12, 39, 44]. With fixed 𝐿, 𝑀 , half-wavelength spacing,
we have

Theorem 2. Given all transceivers are optimally positioned,
the upper bound of the sum rate for a single IRS of 𝑀 elements
is

𝐶𝑀𝑎𝑥 =

𝑁∑︁
𝑛=1

𝑙𝑜𝑔(1 + 𝑃𝑇𝑀
2

(𝑑𝑖𝑛,𝑛𝑑𝑜𝑢𝑡,𝑛)2𝑁0
), if 𝑁 ≤ 𝑀 , (24)

where 𝑃𝑇 is the power of Txs, 𝑁 is the spatial multiplexing
gain and 𝑁0 is the noise power at the Rxs, and 𝑑𝑖𝑛,𝑛 and
𝑑𝑜𝑢𝑡,𝑛 represent the incident distance and exit distance on the
single IRS for the 𝑛-th pair transceiver.

Based on Theorem 2, the sum rate upper bound is reached
when 𝑁 = 𝑀 and each pair receives the power gain of 𝑀2. If
normalized power from the Tx is considered without path loss,
then the power gain should be 1 since the whole IRS network
is a passive system. When 𝑁 > 𝑀 , user interference is un-
avoidable, and now sum rate should be determined specifically
by the spatial correlation of transceivers and the ratio between
𝑁 and 𝑀 . Other multiplexing schemes are proposed to avoid
inter-user interference if 𝑁 > 𝑀 . However, this case is rare in
the real situation since 𝑁 ≤ 𝑀 can be guaranteed as there can
be hundreds of thousands of IRS elements while keeping the
far-field condition [40]. In addition, we notice that the path
loss is only related to the distance between transceivers and
IRS. For simplicity, we can omit (𝑑𝑖𝑛,𝑛𝑑𝑜𝑢𝑡,𝑛)2 and consider
the path loss as different constant values for specific analysis.

Note that the upper bound in Theorem 2 is hard to achieve
as transceivers can not always stay at the optimal position
in Lemma 2. Moreover, the element spacing may be less than
half wavelength, and the mutual coupling effect can be an issue
[45]. Nevertheless, Theorem 2 is meaningful as it analytically
provides a sum rate upper bound for each IRS and can only

be obtained by satisfying the optimal condition in Lemma 2.

B. Interference-free Condition Based on A Single IRS

When the spatial correlation between transceiver pairs is not
orthogonal, with one IRS, we can nullify the interference to
achieve interference-free transmission.

Lemma 3. To achieve interference-free transmission without
orthogonal spatial correlations between each transceiver pair,
the element number on a single IRS should satisfy 𝑀 ≥ 𝑁2.

The interference-free condition can be easily achieved in
practical deployment since each IRS can have a sufficient
amount of elements. The proof is given in Appendix B, where
we also show a single IRS is able to support multiple streams
transmission with only one vector. As there is a similarity and
equivalence in the function between IRS and MIMO precod-
ing/decoding, with the deployment of the IRS, transceivers
can transfer some workloads to the IRS. Thus the structure
of transceivers can be simplified. Nevertheless, IRSs still have
unique advantages over the traditional MU scheme compared
with the traditional scheme. In particular, the IRS can suppress
the inter-user interference before Rxs are jammed, while the
traditional scheme can not conveniently suppress the inter-
user interference at Rxs due to joint decoding is usually not
available.

Remark 1. The number of transceivers that access the IRS
network from a single IRS should be significantly below the
number of elements of that a single IRS. And it is better
transceivers can locate in a much more different direction than
one IRS, or extra pieces IRS nearby should be involved to
solve this issue since extra pieces IRS can distinguish these
transceivers from a much more different location.

V. ANALYSIS ON SUM RATE UPPER BOUND OF IRS
NETWORK

For simplicity, we use the terminology of graph theory for
the following discussion [46]. We call an LoS channel an edge,
a single IRS/transceiver as a node, nodes connected to one
node by an edge as adjacent nodes, the number of edges that
are incident to a node as the degree, a C-LoS path as a path, the
number of IRS nodes that the path passes through as the path
length or simply length, and the IRS network as the network.

In the network, the sum rate is affected by the network’s
topology and geometry, the number of IRS/transceiver nodes,
and IRS nodes’ weights design. The topology is the connection
statement of nodes by edges existing within the network, while
the geometry is determined by the relative AOA and AOD
between arbitrary two nodes. Thus all nodes and edges have
a specific topological and geometrical relationship with each
other, as shown in Theorem 1. However, it is difficult to derive
the exact sum rate upper bound without prior determining the
network topology, geometry, and weights design.

Note that, Theorem 2 indicates each IRS node can fulfill the
criteria of power maximization and interference nullification
given the optimal condition in Lemma 2. To maximize the
EE and SE performance, we leverage Lemma 2 to determine
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Fig. 4: MUMOR Transmission based on IRS network with
𝐾 single IRS. (a) An LG topology. (b) A CG topology. (c)
An example of a network shaping an LG to serve MU where
𝐾=3, 𝑀 = 2, Γ = 3, 𝑁=4. The solid line represents the edge
that connects two adjacent nodes. The dashed line represents
a series of other adjacent connections that are omitted.

the network’s geometry, topology and weights design. In
particular, each IRS node can optimally serve other adjacent
IRS/transceiver nodes, where maximally 𝑀 pair of adjacent
nodes can be supported, or 2𝑀 degrees can be possessed by
one IRS node. As the topology is versatile given 𝐾 nodes of
IRS to form a network, we derive the sum rate upper bound for
two kinds of common graphs, which are linear graph (LG)3

and complete graph (CG)4, as shown in Fig. 4(a) and Fig. 4(b)
respectively. In addition, a special topology without edges is
considered, which is called the null graph (NG)5 and means
each IRS only forms FOR paths locally without LoS between
any two IRS nodes in the network.

A. The IRS Network In Linear Graph

With the signal of Tx𝑖 passing along an LG with a length
of 𝐾 order, where Γ = 𝐾 , we can write the received signal of
Rx𝑖 after 𝐾 orders reflection as

𝑦𝑖 = a(𝜙𝑜𝑢𝑡,𝑖,𝑋𝐾,1𝐾 ) [
𝐾−1∏
𝑣=1

W𝑋𝐾,1(𝑣+1) E𝑋𝐾,1𝑣𝑋𝐾,1(𝑣+1) ] ...

W𝑋𝐾,11a(𝜙𝑖𝑛,𝑖,𝑋𝐾,11 )𝑠𝑖 + 𝑛𝑖 , (25)

where a(𝜙𝑜𝑢𝑡,𝑖,𝑋𝐾,1𝐾 ) and a(𝜙𝑖𝑛,𝑖,𝑋𝐾,11 ) are the corresponding
steering vector in matrix A𝑜𝑢𝑡,𝑋𝐾,1𝐾 and A𝑖𝑛,𝑋𝐾,11 for 𝑖-th pair
transceiver. Since each transceiver pair now communicates

3Linear Graph/Path Graph: a linear graph is a graph whose vertices/nodes
can be listed in the order 𝑣1, 𝑣2, ..., 𝑣𝑛 such that the edges exist between 𝑣𝑖
and 𝑣𝑖+1 where 𝑖 = 1, 2, ..., 𝑁 . Paths are often important in their role as
subgraphs of other graphs, in which case they are called paths in that graph.

4Complete Graph: A complete graph is one in which every two ver-
tices/nodes are adjacent: all edges that could exist are present.

5Null Graph: A null graph, or an empty graph, is a graph in which there
are no edges between its vertices.

orthogonally in the network following optimal condition, the
index matrix X𝐾 now is simplified to contain only one row,
holding one specific sequence of one C-LoS path. Note that
though the dual reflection exist within the LG network as well.
As Γ = 𝐾 , there is only one path with the maximal effective
length that can reach to Rx𝑖 . Moreover, Eq. (25) can be written
in a similar form with Eq. (4) such that

𝑦𝑖 = [
𝐾∏
𝑣=1

w𝐻𝑋1𝑣
a𝐶,𝑖,𝑋1𝑣 ]𝑠𝑖 + 𝑛𝑖 , (26)

where a𝐶,𝑖,𝑘 means the equivalent channel of 𝐼𝑅𝑆𝑘 for 𝑖-th
pair transceiver and w𝑘 = 𝑑𝑖𝑎𝑔(W𝑘) is the corresponding
weights vector on 𝐼𝑅𝑆𝑘 for 𝑘 = 1, ..., 𝐾 . As the optimal power
gain for a single pair transceiver is 𝑀2 from a single IRS, with
𝐾 order reflection where each IRS applying weights to realize
maximal power gain in Eq. (26), the cascaded power gain
would be 𝑀2𝐾 . In this case, EE is maximized for a single
pair in an LG network. Thus, based on Eq. (26), the sum rate
upper bound for one transceiver pair is

𝐶𝑆𝑈,𝐿𝐺, (𝐾 ) = 𝑙𝑜𝑔(1 + 𝑃𝑇𝑀
2𝐾

𝑁0
) , (27)

where the subscripts 𝑆𝑈, 𝐿𝐺, and (𝐾) mean a single pair,
linear graph, and a 𝐾-order reflection. Since an edge between
two nodes is a rank-one channel from Lemma 1, we cannot
realize multi-stream information transmission based on one
edge, and thus the cascaded channel of an LG is rank one.
Nevertheless, MU transmission in an LG network is still
available as each IRS node can have 2𝑀 degrees. E.g., with
the topology of the network as shown in Fig. 4(c), the sum
rate upper bound can be reached by combining three 1-length
paths and a 3-length path where each IRS node has 4 degrees.
By including the sum rates from all 1-length paths and one
𝐾-length path, we have the MU sum rate upper bound as

𝐶𝑀𝑈,𝐿𝐺, (1,𝐾 ) = 𝑙𝑜𝑔(1+
𝑃𝑇𝑀

2𝐾

𝑁0
) +𝐾 (𝑀 −1)𝑙𝑜𝑔(1+ 𝑃𝑇𝑀

2

𝑁0
),

(28)
where the power of all Txs is equal to 𝑃𝑇 and the subscript
(1, 𝐾) means only the paths whose lengths are equal to 1
and 𝐾 are involved. In this case, spatial multiplexing has
been maximized while these paths would not introduce extra
interference from reflections or dual reflections since all paths
still keep spatially orthogonal.

B. The IRS Network In Complete Graph

For CG network, though multiple paths can be leveraged by
one pair transceiver, this is equivalent to transferring spatial
multiplexing into power gain, which introduces a trade-off.
For the maximal spatial multiplexing gain of the network,
each transceiver should send one stream via one path. Thus,
the network sum rate depends on how many Eulerian paths6

without revisiting nodes in the CG network. Eulerian paths
with revisiting nodes are excluded because these transmissions
are unnecessary for the network. To clarify the number of

6Eulerian path: or Eulerian trail is a trail in a finite graph that visits every
edge exactly once (allowing for revisiting vertices/nodes).
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paths with different lengths in the network, we denote 𝑁𝛾 as
the number of transceiver pairs whose Eulerian paths have
𝛾-length. Thus, following Eq. (27), we have

𝐶𝑀𝑈,𝐶𝐺, (1,...,Γ) =
Γ∑︁
𝛾=1

𝑁𝛾 𝑙𝑜𝑔(1 + 𝑃𝑇𝑀
2𝛾

𝑁0
), (29)

which is the sum rate upper bound of MUMOR transmission
assisted by the CG network. Note that the number of total
transceiver pair 𝑁 that can achieve interference-free transmis-
sion is a variable, where

𝑁 =

Γ∑︁
𝛾=1

𝑁𝛾 . (30)

Since there are multiple ways to decompose a CG into the
different number of Eulerian paths with different lengths, the
value of 𝑁𝛾 , 𝛾 = 1, 2, ..., Γ are to be determined by a specific
graph decomposition. To rewrite 𝑁 in a general expression,
we decompose the CG into paths where all of their lengths
are equal to 𝛾. To ensure the upper bound is reached at
maximal SE, all these Eulerian paths should pass through
all edges. Note that a class of graph decomposition problem
is introduced here, which is determining if the CG network
can be completely decomposed into paths of 𝛾 length equally,
which has been proven to be NP-complete [47]. Therefore, it
is hard to determine 𝑁𝛾 and write 𝑁𝛾 in a general expression.

In order to obtain a general expression of the sum rate upper
bound of CG network, we denote Λ𝑖 , 𝑖 ∈ [1, 𝑁], as the path
length for 𝑖-th pair transceiver, and we consider Λ𝑖 = 𝜏, 𝑖 =

1, ..., 𝑁 , and Γ = 𝜏 > 1, where 𝜏 is a specific value of path
length. In addition, we denote

𝑁𝜏 =

(𝐾
2
)

𝜏 − 1
=
𝐾 (𝐾 − 1)
2(𝜏 − 1) , (31)

where
(𝐾

2
)

is the total edges’ number of a 𝐾-nodes CG. To
completely decompose the CG, we should satisfy

𝑁𝜏 ∈ Z , (32)

as it is a necessary and sufficient condition for the existence of
an edge-disjoint decomposition of a 𝐾-nodes CG into simple
isomorphic paths consisting of (𝜏 − 1) edges each [48]. With
𝑁𝜏 ∈ Z, the edge number of a CG can be equally divided up
into paths with 𝜏-length. Thus, 𝑁𝜏 is the multiplexing gain
while the cascading power gain of a corresponding pair is
𝑀2𝜏 . Following Eq. (29), the sum rate now becomes

𝐶𝑀𝑈,𝐶𝐺, (𝜏 ) = 𝑁𝜏 𝑙𝑜𝑔(1 + 𝑃𝑇𝑀
2𝜏

𝑁0
), (33)

which is the sum rate upper bound for the MUMOR transmis-
sion for 𝑁𝜏 pairs transceivers with length of 𝜏. By combining
the sum rate upper bound of 1-length paths, we have

𝐶𝑀𝑈,𝐶𝐺, (1,𝜏 ) = 𝑁𝜏 𝑙𝑜𝑔(1 + 𝑃𝑇𝑀
2𝜏

𝑁0
)+

(𝐾𝑀 − 𝑁𝜏𝜏)𝑙𝑜𝑔(1 + 𝑃𝑇𝑀
2

𝑁0
), (34)

and now the upper bound is reached for 𝑁 = 𝐾𝑀 + 𝑁𝜏 (1− 𝜏)

Fig. 5: The capacity vs transceiver pairs’ position with 𝑀 = 64,
𝐿 = 2.

Fig. 6: The capacity vs transceiver pairs’ position with 𝑀 = 4,
𝐿 = 2.

pairs of transceiver. The form of second term can be derived
similarly as to derive Eq. (28).

For the sum rate upper bound in a general case, i.e.,
path lengths are different for different pairs, the sum rate
upper bound can still be computed as long as the graph
decomposition is determined. Then, the value of 𝑁𝛾 is fixed,
and the sum rate upper bound can be computed using Eq. (29).

C. The IRS Network In Null Graph
When 𝜏 = 1, since the graph of the network has no edges,

we can call it a null graph (NG). In this case, each IRS serves a
local network in different cells, and no edges connect any two
IRS nodes. The sum rate upper bound can be straightforwardly
obtained from Theorem 2 as 𝐶𝑀𝑈,𝑁𝐺 = 𝐾𝐶𝑀𝑎𝑥 , which is
directly scaled by 𝐾-folds. Since each IRS node is isolated
locally, inter-user interference is not induced.

Also, as one proof has been shown in [43] that leveraging
Jensen’s inequality, we know at low SNR, the sum rate reaches
an upper bound if equal decomposition is realized for the 𝐾
nodes CG with largest 𝜏. In addition, at high SNR, the upper
bound is reached with 𝜏 = 1.

VI. SIMULATION

A. The Single IRS Optimal Capability
In Fig. 5, Fig. 6 and Fig. 7, we consider the MRC solution

of beamforming to illustrate the optimal transceiver position
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Fig. 7: The capacity vs transceiver pairs’ position with 𝑀 = 8,
𝐿 = 4.
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Fig. 8: Sum rates of three different transmission schemes
changing with IRS elements number, given 𝑁 = 4.

of IRS depicted in the Section IV, where MRC is optimal
for the 1st fixed pair, which is located at a𝐶 (𝜙𝑖𝑛,1, 𝜙𝑜𝑢𝑡,1) =
(30°, 135°) considering ULA shape’s IRS. SNR is assumed to
be 10 dB. According to the theorems proposed in this paper,
we can analytically calculate the optimal available positions
for the 2nd pair, where it can harvest maximal power gain
from a single IRS with nullified interference from the 1st

fixed pair. Analytically, these positions are (68.53°, 101.95°),
(97.70°, 72.97°), and (129.34°, 37.54°), respectively when the
relative length 𝐿 = 2. Fig. 5, Fig. 6 and Fig. 7 show that
theorems in Section IV accurately depict the optimal positions
for other pairs. We can also observe that increasing the
elements under the fixed-length 𝐿 will not change the optimal
positions. All the optimal positions remain in the same place
but only with higher power gain. Fig. 7 shows that doubling
𝐿 also doubles the number of optimal positions, and 8 pairs
can be optimally supported in this case.

B. The Single IRS Interference Suppressing

To validate the interference-free transmission scheme is
effective with only a single IRS, we simulate 10000 times the
realization of three transmission schemes. The first one is the
C-LoS channel with random weights on the single IRS. The
second scheme still transmits through the C-LoS channel with
random weights, but a 4 by 4 joint decoding matrix at Rxs’
side using the zero-forcing (ZF) algorithm is leveraged as a
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Fig. 9: The sum rate upper bound of LG and NG network with
optimal condition.

benchmark (though it may not be practically implemented).
The third one transmits through the C-LoS channel with
weights obtained by multi-user linearly constrained minimum
variance (MU-LCMV) algorithm [38], which can simultane-
ously support multiple streams by a single IRS. For a specific
realization, 4 pairs of transceivers are distributed uniformly
around an IRS and transmit normalized power. Since ZF at
Rxs causes the noise amplification of Rxs but MU-LCMV
from IRS does not, the noise is neglected at Rxs for a fair
comparison.

The sum rates of these three schemes, changing with the
number of elements of a single IRS, are shown in Fig. 8.
The lower bound of the sum rate for 4 pairs of transceivers is
plotted for reference. It can be observed that with a relatively
small amount of reflector elements, e.g., 4 < 𝑀 < 16, the IRS
with the MU-LCMV algorithm is less likely to outperform
the traditional MIMO ZF-decoding scheme. At this point, the
capability of the IRS is less likely to manage the interference
with a limited amount of elements. However, the IRS can
suppress the interference effectively at 𝑀 = 16, where the
sum rate exhibits a jump. This is critical since the relation of
𝑀 = 𝑁2 in Lemma 3 is exactly satisfied. After that, the sum
rate of MU-LCMV on the IRS also reaches a plateau and can
have an equivalent performance with the ZF decoding scheme.
Nevertheless, since the size of the decoding matrix is fixed,
with sufficiently large 𝑀 on the IRS, the MU-LCMV scheme
can finally outperform the benchmark in terms of the power
gain from the controlled channel.

C. The IRS Network Capability

For illustrating the sum rate upper bound of networks, the
FSPL is assumed to be −10 dB per edge. Another scenario
in which each edge has unified path loss, i.e., 0 dB path loss
per edge, is considered for reference. As shown in Fig. 9,
the sum rate upper bound of LG (Γ = 𝐾) and NG (Γ = 1)
are compared under different SNR, given 𝑀 = 128 and 𝐾 =

4, 8. We can observe that the sum rate upper bound of the
LG outperforms that of the NG due to the power gain from
each C-LoS can be positively cascaded. In contrast, in a high
SNR region, the sum rate upper bound of the NG can slightly
outperform better than that of the LG due to larger spatial
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Fig. 10: The sum rate upper bound of MUMOR CG network
with optimal condition.
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Fig. 11: The energy efficiency with FSPL, 𝑁 = 4, 𝐾 = 2, 𝑀 =

128, Γ = 2.

multiplexing gain. Given an apparent path loss for all edges,
the benefit of cascading becomes significant with higher SNR.
Fig. 10 displayed the sum rate upper bound of CG networks
with different path lengths and IRS nodes, where 𝑀 = 128.
For 𝐾 = 4, we can have Γ = 2, 4, while for 𝐾 = 6, we have Γ =

2, 4, 6 such that the graph decomposition into Eulerian paths
with equal length is complete. Note that the sum rate upper
bound of CG is dominated by the spatial multiplexing gain.
Since the CG network can shape more FOR paths with fewer
transceiver nodes leveraging edges of the CG, decomposing
the CG with the largest path length should result in the least
number of MOR paths. Hence, the sum rate upper bound is
also related to the value of the maximum order of reflections
Γ. In addition, both Fig. 9 and Fig. 10 verify the sum rate of
networks increases substantially with 𝐾 folds scaling, as we
analyzed in Section V.

D. The Energy Efficiency of IRS Network

We illustrate the EE by leveraging MOR under the optimal
condition. In particular, 2 IRSs make up the IRS network to
support 4 pair transceivers. Each IRS has 128 elements, i.e.,
𝐾 = 2, 𝑀 = 128. Transceivers only have LoS conditions to
two IRSs, and they transmit with unified power. In addition,
we consider the maximum reflection order to be Γ = 2. We let
the distances of edges in the network be an equal value. We
notice that the EE decrease as the FSPL gradually increases

with the edge distance, as shown in Fig. 11. The receiver with
a better design over noise can also have a better performance
on the EE.

VII. CONCLUSION

In this paper, we study the MUMOR transmission assisted
by the IRS network. Firstly, we analytically establish a com-
plete model of the IRS network by permutationally combining
two fundamental models. Secondly, the optimal condition
to reach the sum rate upper bound is derived, where the
function of optimal positions for the transceivers is written in a
closed-form. In addition, we found that to sufficiently realize
interference-free transmission, 𝑀 ≥ 𝑁2 should be satisfied.
Lastly, the sum rate upper bound, which the IRS network can
provide, is analyzed, where different topologies can enhance
the sum rate concerning different numbers of users and SNR.
The simulation results verify our proposed theorems, indicate a
promising 𝐾 folds scaling from the IRS network and illustrate
the promising improvement on the EE and SE by leveraging
the MOR effect of IRS networks.

APPENDIX A

We consider IRS𝐴 and IRS𝐵 have 𝑀𝐴, 𝑀𝐵 elements with
element spacing 𝑑𝐴 and 𝑑𝐵 respectively. We denote 𝐴𝑖 and
𝐵 𝑗 are the 𝑖-th element and 𝑗-th element on IRS𝐴 and IRS𝐵,
𝑖 ∈ [1, 𝑀𝐴], 𝑗 ∈ [1, 𝑀𝐵]. The relative distance from the 𝑖-th
element on IRS𝐴 to the first element A1 is 𝑑𝐴,𝑖 and for that
of IRS𝐵 is 𝑑𝐵, 𝑗 between the 𝑗-th element on IRS𝐵 and B1.
Since now we have two pieces IRS, to distinguish, we denote
the azimuth AOD of IRS𝐴 between elements 𝐴𝑖 and 𝐵 𝑗 as 𝛿𝑖 𝑗 ,
and denote the azimuth AOA of IRS𝐵 as Y𝑖 𝑗 . Then, we denote
the distance between element 𝐴𝑖 on IRS𝐴 and element 𝐵 𝑗 on
IRS𝐵 as 𝐷𝑖 𝑗 , and ` is the angle between IRS𝐴 and IRS𝐵, as
shown in Fig. 12. We assume 𝐷11, 𝛿11 and Y11 is known, and
there is ` = Y11 − 𝛿11. From the trigonometric relationship, we
have

Y𝑖 𝑗 = tan−1
(

𝐷11 sin Y11 − 𝑑𝐴,𝑖 sin `
𝐷11 cos Y11 − 𝑑𝐴,𝑖 cos ` − 𝑑𝐵, 𝑗

)
. (35)

The distance 𝐷𝑖 𝑗 between elements 𝐴𝑖 and 𝐵 𝑗 can be calcu-
lated as

𝐷𝑖 𝑗 =
𝐷11 sin Y11 − 𝑑𝐴,𝑖 sin `

sin Y𝑖 𝑗
. (36)

Since the far-field condition holds where distance is much
greater than the aperture of IRS such that D11 >> 𝑀𝑑, we
have Y𝑖 𝑗 ≈ Y11 and 𝛿𝑖 𝑗 ≈ 𝛿11 correspondingly. Thus, by
substituting Y𝑖 𝑗 with Y11 in Eq. (35), we have

𝑑𝐴,𝑖 sin 𝛿11 = −𝑑𝐵,𝑖 sin Y11. (37)

Then, we substitute Eq. (37) into Eq. (36), we have

𝐷𝑖 𝑗 = 𝐷11 − 𝑑𝐴,𝑖 cos 𝛿11 − 𝑑𝐵, 𝑗 cos Y11. (38)

Since the LoS channel between IRS𝐴 and IRS𝐵 can be
represented by

E𝐴𝐵 = 𝑒− 𝑗𝑘D, (39)
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Fig. 12: The illustration of channel model between two IRSs.

where D ∈ C𝑀𝐴×𝑀𝐵 is the distance matrix derived from 𝐷𝑖 𝑗 ,
E𝐴𝐵 can be rewritten as

E𝐴𝐵 = 𝑒− 𝑗𝑘𝐷11 (a(Y11)a(𝛿11)𝑇 )∗. (40)

Note that the path delay 𝐷11 is a constant between any two
fixed IRSs. Since the path delay is known, it can be regarded
as constant. In addition, by taking the inverse element order
of IRS𝐴 and IRS𝐵, which is equal to taking conjugate to the
steering vectors of AOA and AOD, Eq. (40) can be rewritten
as

E𝐴𝐵 = a(Y11)a(𝛿11)𝑇 . (41)

As 𝛿11 = 𝜙𝑜𝑢𝑡 , Y11 = 𝜙𝑖𝑛, we can observe that the LoS
channel between arbitrary two IRSs can be considered as the
out product of two steering vectors, which is a rank-one matrix
given in Eq. (8).

APPENDIX B

Lemma 2 can be proved by analysing the IRS channel as
a whole. I.e, we start by analysing the channel of a single
transceiver pair assisted by a single IRS. By referring Eq. (18),
we denote H𝐼,1 = H = A𝑇𝑜𝑢𝑡WA𝑖𝑛 for simplicity. Thus, the
channel between Tx𝑖 and Rx𝑖 in H can be written as

ℎ𝑖𝑖 = w𝐻a𝐶 (𝜙𝑜𝑢𝑡,𝑖 , 𝜙𝑖𝑛,𝑖). (42)

We can observed that the diagonal terms in the matrix of Eq.
(18) are signal gains for each Rx and these terms are required
to be maximized. Other off-diagonal terms are the interference
gain which should be minimized. Therefore, by calculating a
optimal weights vector w such that the diagonal terms are
maximized while nullifying off-diagonal terms, the optimal
IRS based channel can be obtained and the optimal sum rate
can be achieved. Note that, if the single IRS is considered as
the ULA or URA specification which has the characteristic of
equal spacing between each elements, the optimal weights can
be analytically obtained simply by MRC algorithm.
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Fig. 13: Optimal Spatial Multiplexing of |ℎ1 𝑗 |,|ℎ2 𝑗 |,|ℎ3 𝑗 | and
|ℎ4 𝑗 |, M=4,d=_2 , L=2.

Specifically, for ULA scenario and we let the i-th pair user
locate at 𝜙𝑖𝑛,𝑖 = 𝛼𝑖° , 𝜙𝑜𝑢𝑡,𝑖 = 𝛽𝑖°, Eq. (42) can be rewritten as

ℎ𝑖𝑖 = w𝐻a𝐶 (𝜙𝑜𝑢𝑡,𝑖 , 𝜙𝑖𝑛,𝑖) =
𝑀−1∑︁
𝑚=0

𝑤𝑚𝑒
− 𝑗𝑘𝑑 (cos 𝛼𝑖+cos 𝛽𝑖 )𝑚 ,

(43)

where 𝑘 = 2𝜋
_

is the wave number, 𝑑 is the distance between
each element and _ is the carrier wavelength. The path loss
here is assumed to be a constant value. Thus, with unit power
constraint on each IRS element, the weight on an IRS can then
be expressed as

𝑤𝑚 = 𝑒 𝑗 \𝑚 , \𝑚 ∈ (0, 2𝜋] , 𝑚 = 1, . . . , 𝑀 . (44)

As we can find, a necessary condition for |ℎ𝑖𝑖 | = 𝑀 is that
the weights need to guarantee each term in the summation in
phase by writing the channel gain as

ℎ𝑖𝑖 = w𝐻a𝐶 (𝜙𝑜𝑢𝑡,𝑖 , 𝜙𝑖𝑛,𝑖) =
𝑀−1∑︁
𝑚=0

𝑒− 𝑗𝑘𝑑 (cos 𝛼𝑖+cos 𝛽𝑖+Z𝑚 )𝑚,

(45)

where Z𝑚 is an arbitrary term comes from ∠[𝑤𝑚], the phase
design on each element of IRS, we can observe the maximal
value of |ℎ𝑖𝑖 | = 𝑀 is guaranteed as long as

𝑘𝑑 (𝑐𝑜𝑠𝛼𝑖 + 𝑐𝑜𝑠𝛽𝑖 + Z𝑚) = 2𝜋𝑛1 , 𝑛1 ∈ 𝑍. (46)

Denote Δ𝑟 = 𝑑
_

, which is the normalized spacing between
each element. We can compute the weight value on 𝑚-th
element such as

Z𝑚 = − cos𝛼𝑖 − cos 𝛽𝑖 +
𝐾

Δ𝑟
, (47)

to equalize the phase shifts. This is essentially the same to
use MRC algorithm to calculate weights vector. Actual phase
of weights can be obtained by \𝑚 = −Z𝑚𝑘𝑑𝑚. Then, after
applying the result of MRC, since the weights have been
determined, we can analyze other terms in the i-th column
of matrix in Eq. (18) and write them as

ℎ 𝑗𝑖 = w𝐻a𝐶 (𝜙𝑜𝑢𝑡, 𝑗 , 𝜙𝑖𝑛,𝑖) =
𝑀−1∑︁
𝑚=0

𝑒− 𝑗2𝜋Δ𝑟 (cos 𝛽 𝑗−cos 𝛽𝑖+ 𝐾Δ𝑟 )𝑚 ,

(48)
where Δ𝑟 = 𝑑

_
. Denote 𝑓𝑐𝑐 = (cos 𝛽 𝑗 − cos 𝛽𝑖 + 𝐾

Δ𝑟
) and

𝐿 = 𝑀Δ𝑟 which are the variable in angular domain and
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normalized length of IRS. Therefore, ℎ 𝑗𝑖 can be generalized
as the beampattern and thus becomes a function of 𝑓𝑐𝑐

ℎ 𝑗𝑖 ( 𝑓𝑐𝑐) = w𝐻a𝐶 (𝜙𝑜𝑢𝑡, 𝑗 , 𝜙𝑖𝑛,𝑖)

=

𝑀−1∑︁
𝑚=0

𝑒− 𝑗2𝜋Δ𝑟 (cos 𝛽 𝑗−cos 𝛽𝑖+ 𝐾Δ𝑟 )𝑚

= 𝑒− 𝑗Δ𝑟 𝑓𝑐𝑐 (𝑀−1) sin(𝜋 𝑓𝑐𝑐𝐿)
sin(𝜋 𝑓𝑐𝑐 𝐿𝑀 )

.

(49)

We can simply verify that ℎ 𝑗𝑖 is a periodic function of 𝑓𝑐𝑐
and the period is 1

Δ𝑟
. If the period of ℎ 𝑗𝑖 ( 𝑓𝑐𝑐) is within the

visible angular range which is 𝑓𝑐𝑐 ∈ [−2, 2] in this case, there
can be 𝑀 −1 other pairs of transceivers communicating at the
same time. These pairs can use the same frequency of carrier
since they are orthogonal in angular domain, which is shown
in Fig. 13. The nullifying point of ℎ 𝑗𝑖 is also in the period of
1
Δ𝑟

, separated by 1
𝐿

. Therefore, we can determine other Rx’s
position 𝛽 𝑗 such that there is no interference from the i-th Tx
where the position can be calculated by

𝛽 𝑗 = cos−1
(
𝑗

𝐿
− Z𝑚 − cos𝛼𝑖 ±

1
Δ𝑟

)
. (50)

These also means if other Rxs are standing in the same
position as the nullifying position of Tx𝑖 , there will be no
interference from Tx𝑖 , so other terms in the i-th column of
channel matrix can be nullified. In addition, since the weights
have been calculated as Z𝑚 is set by first pair, given the
position of Rx 𝑗 , we can calculate the optimal position of Tx 𝑗
correspondingly leveraging the Eq. (46) which is

𝛼 𝑗 = cos−1
(
𝑗

𝐿
− Z𝑚 − cos 𝛽𝑖 ±

1
Δ𝑟

)
. (51)

APPENDIX C

To make the proof easy to follow, we assume 𝑀 = 4 and
𝑁 = 2, where 𝑀 is the number of elements on IRS and 𝑁 is
the number of transceiver pairs. However, it is worth noting
that this conclusion can be extended to arbitrary numbers of
𝑁 and 𝑀 . Following the definition in the manuscript, we have

A𝑖𝑛 = A = [a(𝜙𝑖𝑛,1), a(𝜙𝑖𝑛,2)] (52)

which is the steering matrix of incident direction toward IRS
and a(𝜙𝑖𝑛,𝑖), 𝑖 = 1, 2 is the steering vector of incident direction
on the IRS. Similarly, we define

A𝑜𝑢𝑡 = [a(𝜙𝑜𝑢𝑡,1), a(𝜙𝑜𝑢𝑡,2)] = B. (53)

By ignoring the noise term, we can write the received signal
vector as

ŷ𝑟 = B𝑇WAs . (54)

Taking all the diagonal terms in W, we have w =

[𝑤1 𝑤2 𝑤3 𝑤4]𝑇 . By factorizing the incident and exit steer-
ing vectors above in Eq. (54), we can have[

�̂�1
�̂�2

]
=

[
w𝐻A𝐶,1s
w𝐻A𝐶,2s

]
, (55)

where we can similarly get the 𝑖-th user received signal as in
[12], for 𝑖 = 1, 2, ..., 𝑁 . Note that that in Eq. (55), for different

Rxs, their received signal is obtained along different steering
matrix A𝐶,𝑖 but processed by the same weight vector w. Due
to A𝐶,1 and A𝐶,2 shares the same incident matrix, we can
combine them further and move the difference on the two
different steering matrices to the weight vector. Thus, through
deviding A𝐶,2 by A𝐶,1 element-wisely, we can have matrix C
which can be regarded as a factor of Hadamard product such
that

A𝐶,1 ⊙ C = A𝐶,2. (56)

Next, we note that the columns of matrix C are same, thus we
denote c, the column vector, to be the column in C. Then we
can rewrite Eq. (55) as[

�̂�1
�̂�2

]
=

[
w𝐻A𝐶,1s

w𝐻A𝐶,1 ⊙ Cs

]
=

[
w𝐻A𝐶,1s

wC
𝐻A𝐶,1s

]
, (57)

where wC = w ⊙ c∗ is the equivalent vector for the second
Rx �̂�2 and we can know that it has a mapping relationship
to w, which is the unique characteristic in the IRS’s model.
Therefore, by combining the common term in Eq. (57), we
have

ŷ𝑟 =
[

w𝐻
wC

𝐻

] [
A𝐶,1s

]
, (58)

and by multiplying weight matrix with steering matrix, we
have

ŷ𝑟 =
[

w𝐻a𝐶 (𝜙𝑜𝑢𝑡,1 , 𝜙𝑖𝑛,1) w𝐻a𝐶 (𝜙𝑜𝑢𝑡,1 , 𝜙𝑖𝑛,2)
wC

𝐻a𝐶 (𝜙𝑜𝑢𝑡,1 , 𝜙𝑖𝑛,1) wC
𝐻a𝐶 (𝜙𝑜𝑢𝑡,1 , 𝜙𝑖𝑛,2)

]
s.
(59)

To suppress the interference, the weights vector w should
satisfy following constraints

w𝐻a𝐶 (𝜙𝑜𝑢𝑡,1 , 𝜙𝑖𝑛,1) = 𝛿1

w𝐻a𝐶 (𝜙𝑜𝑢𝑡,1 , 𝜙𝑖𝑛,2) = 0
wC

𝐻a𝐶 (𝜙𝑜𝑢𝑡,1 , 𝜙𝑖𝑛,1) = 0
wC

𝐻a𝐶 (𝜙𝑜𝑢𝑡,1 , 𝜙𝑖𝑛,2) = 𝛿2

, (60)

where 𝛿1 and 𝛿2 are non-zero values. Since wC can be replaced
by w, we can present Eq. (60) by using matrix as

a𝐶 (𝜙𝑜𝑢𝑡,1 , 𝜙𝑖𝑛,1)𝑇
a𝐶 (𝜙𝑜𝑢𝑡,1 , 𝜙𝑖𝑛,2)𝑇

a𝐶 (𝜙𝑜𝑢𝑡,1 , 𝜙𝑖𝑛,1) ⊙ c𝑇
a𝐶 (𝜙𝑜𝑢𝑡,1 , 𝜙𝑖𝑛,2) ⊙ c𝑇

 w∗ =


𝛿1
0
0
𝛿2

 . (61)

As the left-hand matrix is full rank assured by different place-
ment of transceivers, 4 linear equations with 4 unknowns can
be solved with a non-zero solution. Moreover, by increasing
the element number such that 𝑀 >> 𝑁2, the solution space
will be further enlarged. Thus, there must be multiple non-
zero solutions to achieve the diagonalization of the matrix in
the Eq. (59). In this case, the weights w and wC can be nearly
orthogonal to each other. As a result, the equivalence between
traditional MIMO and IRS is established, and the interference
can be suppressed among multiple transceiver pairs.
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