IEEE TRANSACTIONS ON COMMUNICATIONS

Neural Belief Propagation Auto-Encoder for Linear
Block Code Design

Guillaume Larue, Louis-Adrien Dufrene, Quentin Lampin,
Hadi Ghauch, Member, IEEE, and Ghaya Rekaya, Senior Member, IEEE

Abstract—The growing number of Internet of Thing (IoT)
and Ultra-Reliable Low Latency Communications (URLCC)
use cases in next generation communication networks calls for
the development of efficient Forward Error Correction (FEC)
mechanisms. These use cases usually imply using short to mid-
sized information blocks and requires low-complexity and/or fast
decoding procedures. This paper investigates the joint learning of
short to mid block-length coding schemes and associated Belief-
Propagation (BP) like decoders using Machine Learning (ML)
techniques. An interpretable auto-encoder (AE) architecture is
proposed, ensuring scalability to block sizes currently challenging
for ML-based linear block code design approaches. By optimizing
a coding scheme w.r.t. the targeted decoder, the proposed system
offers a good complexity/performance trade-off compared to
various codes from literature with length up to 128 bits.

Index Terms—Channel coding, Block codes, Iterative methods,
Neural networks, Artificial intelligence

I. INTRODUCTION

FFICIENT Forward Error Correction (FEC) schemes

are a key enabler for Internet of Things (IoT) sce-
narios and/or Ultra-Reliable Low Latency Communications
(URLLC). Such use-cases typically imply the use of short
packets and low-complexity and/or fast (de)coding schemes,
in line with latency, energy consumption, hardware cost and
computational power constraints. Existing FEC codes, such
as Bose Chaudhuri and Hocquenghem (BCH), Tail-Biting
Convolutional Code (TB-CC), Turbo, Polar or Low Density
Parity Check (LDPC) codes, and their respective decoders,
attempt to meet these needs, each with their own advantages
and limitations. In late 2018, 3GPP agreed to use Polar codes
for the control channels and LDPC for the data channels of
the 5G New Radio (5G-NR) interface for enhanced Mobile
Broad-Band (eMBB) applications [1]. On the one hand, for
high throughput applications, large LDPC codes offer near
capacity performances, efficient encoding and decoding with
highly parallel decoders based on Belief Propagation (BP) and
variants, e.g. Min-Sum (MS) [2] or Offset Min-Sum (OMS) [3].
On the other hand, Polar codes are proven to achieve capacity
on Binary Symetric Channel (BSC) and offer a reasonable
decoding complexity for shorter block lengths based on suc-
cessive cancellation list decoders. While BP decoders offer
high performance and efficient decoding for long and sparse

This work has been partly funded by the European Commission through
the H2020 project Hexa-X (Grant Agreement no. 101015956).

G. Larue, L-A. Dufrene and Q. Lampin are with Orange Labs, France (e-
mail: {name.surname} @orange.com)

G. Larue, H. Ghauch and G. Rekaya are with Télécom Paris, IP Paris,
France (e-mail: {name.surname} @telecom-paris.fr).

codes, they tend to be less efficient for decoding smaller,
usually denser, ones. Similarly, successive cancellation list
decoders offer high performance and low decoding complexity
for short codes, but they tend to become inapplicable when
considering larger codes. Therefore, there is currently no
efficient unified Linear Block Code (LBC) decoder architecture
for all code lengths and rate ranges. Such an architecture
would be of great interest for next generation communication
networks such as 6th Generation (6G) networks. Different
research directions can be explored to achieve this goal,
among which the improvement of the performance of BP-like
decoders and/or the design of better codes for such decoders
to extend their use to shorter block lengths. This option
has certain advantages. In particular, BP decoders were, to
some extent, originally designed for low complexity decoding
of long blocks. Such scalability is particularly difficult to
satisfy when designing a new decoding algorithm and the BP
therefore appears to be a judicious starting point. In addition,
some work in the literature has started to explore this direction
and some interesting initial results have been published [4]-
[8].

Artificial Intelligence (Al) and Machine Learning (ML)
techniques are deemed to play a major role in 6G networks
[9], [10] and they have naturally been applied to the field
of channel coding and particularly to the short block length
regime. Multiple contributions have succeeded in improving
the decoding performance by applying a Neural Network
(NN)-based decoder to an existing coding scheme. One such
example is the work on Neural Belief Propagation (NBP),
which seeks to implement a trainable weighted BP decoder
to improve the decoding performance of short BCH codes
[4]. Following this idea, similar approaches are employed in
[5]-[8], [11]. Other contributions try to learn an End-to-End
(E2E) communication schemes, including channel coding. As
an example, an Auto-Encoder (AE) NN models is used in
[12] to jointly design the transmitter and receiver of a simple
communication scheme. However, while interesting, these E2E
black-box approaches are, to the best of the authors knowledge,
currently limited to, either small code sizes, e.g. (8,4) or
(15,7) in [12], or rely on extremely large models, particularly
complex to train notably because of the so called “Curse
of dimensionality”. This well-known phenomenon in ML is
related to the fact that the solution space of a problem grows
exponentially with its dimensionality. This makes the available
training data sparse and thus non-statistically significant or the
needed volume of training samples too important. Similarly,
the “Curse of (code-word) dimensionality” appears in the

IEEE TRANSACTIONS ON COMMUNICATIONS

context of Physical (PHY) layer when one tries to train models
with increased information block sizes. The number of code-
words associated to information blocks of size k is of 2
which can rapidly become prohibitively large when increasing
k, making the learning of large codes a challenging problem
(91, [12].

To alleviate this problem, one solution is to use structured
approaches [13]-[15], [16, p 576-577]. One can for example
exploit code structures such as convolutional codes [17] or
construct specific NN-based decoder structure using Recurrent
Neural Network (RNN) [18] or Convolutional Neural Network
(CNN) [17] to circumvent this dimensionality problem. Still,
existing approaches are, to the best of the authors knowledge,
limited to the design of convolutional [17], [18], Turbo [19]
or Polar codes [20] and often exhibit a high number of
model parameters and a reduced interpretability. Also, the
comparison with traditional (de)coding schemes is sometimes
complex. Indeed, the proposed solutions are often based on
the learning of E2E communication schemes (usually based on
AE), not limited to the (de)coding function but also allow the
joint learning of (de)modulation, equalization, etc. It then be-
comes difficult to distinguish the contribution of each of these
functions to the final performance in view of a fair comparison
with classical approaches. A different approach based on BP
decoders uses a Genetic Algorithm (GA) to optimize LDPC
codes from existing distributions with promising results [21].

In a previous work [11], a low-complexity, generic, NN-
based BP decoder called Gated Neural Belief Propagation
(GNBP) that learns to decode a LBC without prior knowledge
of the coding scheme used at the transmitter was proposed.
In this paper, an interpretable AE system able to jointly
design a LBC and its associated GNBP decoder offering
a competitive level of performance with low computational
complexity is proposed. Instead of using ML techniques to
improve the performance of decoders (e.g. BP) on codes from
the literature that are flawed w.r.t. the latters (e.g. BCH codes),
this paper proposes to jointly design short codes performing
well w.r.t. the targeted BP decoder. This approach is to some
extent comparable to that of [20] which uses ML to design
performing Polar codes w.r.t. a differentiable BP decoder. The
main objectives of the study are to propose a low-complexity
structured approach that offers good performance, scalability
and interpretability while making no assumptions about the
code structure.

The reader is referred to [16] for detailed explanations
on NN models and related optimization algorithms based on
Gradient Descent (GD) used in this publication.

This paper uses the following notations: scalars are denoted
as s, line vectors as v and matrices as M. M™™ is a matrix
of size n by m. M7 is the transpose of M. F5 is the binary
finite field.

II. THEORETICAL BACKGROUND

A. Linear Block Codes and Associated Graphical Represen-
tations

LBC are a class of FECs for which the information to
be transmitted is split into blocks of fixed size & named

1 11 0100
H=(|0 11 1 0 1 0

1101 001
Fig. 1. Example of a standard form PC matrix and associated TG. The red

dotted lines illustrate a cycle of length 4.

words. Words are encoded using linear combinations to form
code-words of size n with n > k. Let C(n, k) be a binary
LBC of length n and rank k that will be referred to as an
“(n, k) code” throughout this paper. Let G €]F;”L be the
associated generator matrix of size k£ by m describing the
encoding relations. Let H €]Fg"_k)’" be the corresponding
Parity-Check (PC) matrix of size (n — k) by n constructed
such that GHT = 0 ¢ Fg’("fk). The encoding process
to obtain a code-word ¢ € F} from a word x € F% is
defined as ¢ = xG. Using linear combinations of the rows
and columns permutations, a standard form of the generator
matrix Ggq = (I®F|RF("~F) can be obtained, where I*:*
and R¥ (%) are respectively an identity matrix and a redun-
dancy matrix. Using the standard form results in a simplified
encoding process with code-words of the form ¢ = (x|r)
where x is the raw information word and r the computed
redundancy. The code is then said to be systematic. When G
is in the standard form, the corresponding PC can simply be
obtained as Hyg = ([Rk’(”*k)]T |I("’k)*(”*k) .

A bipartite graphical representation called a Tanner Graph
(TG) [22] can be used to describe any PC matrix (Fig. 1).
The check nodes connections represent the rows of the matrix
and the variable nodes connections the columns. Following
notations from [23], a convenient way to describe LBC en-
sembles and particularly LDPC ensembles is to use degree
distribution pairs (A, P). Let the degree of a node be its
number of edges. Let A; be the number of variable nodes with
degree ¢ and P; be the number of check nodes with degree j.
From these notations, one can define the variable and check
degree distribution from node perspective polynomials:

Ax) =) A’
P(z) = Z Pz’ M
J

The normalized degree distributions from node perspective are
written as:

2)

where A(1) and P(1) are respectively the total number of
variable and check nodes. In other words, L; and R; are

IEEE TRANSACTIONS ON COMMUNICATIONS

respectively the probability that a variable and a check node
chosen uniformly at random among the n and (n — k) nodes
has a degree 7 and j.

B. Belief Propagation Decoders and Variants

1) Belief Propagation Decoder': TG representations en-
able efficient iterative decoding based on message-passing
algorithms such as the BP. In the context of communication
systems, messages exchanged at the decoder between the
nodes of the TG are usually related to the Log-Likelihood Ratio
(LLR) of transmitted bits. The Sum-Product (SP) update rule
can be applied iteratively to the nodes of a code graph using
equations (3), (4) and (5) (see [24] for the detailed derivations).
Message from the variable node i toward the check node j is
computed using:

/'I”L)i_>t:‘j = AZ + Z ILLCZ_>’Ui (3)
I#j

where)\; is the a priori LLR received by variable node ¢ and
Mhe,—sv; are the other messages received by variable node %
from neighboring check nodes .

Similarly, message from the check node j toward the
variable node i is defined as:

Pe;—v; = 2 artanh Htanh (%) (@)
I#i

where (1, —, are the messages received by check node j from
neighboring variable nodes .

Finally, the a posteriori LLR can be computed at the
variable node i as:

X=X Y o=, 5)
l

BP is generally exact for tree structures (meaning that it
always converges to the true posterior in one pass) but only
approximate for graphs with cycles. The presence of such
loops in the inference graph can induce undesirable feedback
effects (see Fig. 1). The TG of codes are generally not cycle-
free and the BP inference not exact, hence the necessity to
apply iterative decoding by passing messages back and forth
between variable and check nodes, using equations (3) and
(4), before hopefully converging to a satisfying solution. In
practice, the BP has proven to be effective in the decoding of
high girth (the shortest cycle of a TG) codes, such as large
LDPC, offering both high performance and reasonable com-
plexity. For shorter and higher density codes, the presence of
short cycles is usually detrimental to the decoding performance
[25]. Depending on the received error vector, permutations of
the decoding graphs (belonging to its automorphism group)
can lead to different decoding performance. Exploiting this
property, parallel BP decoders have been proposed such as
modified Random Redundant Decoder (mRRD) [26].

I'This sub-section adopts with minor changes the same explanations as in
a previous publication [11].

[GN BP RNN Cell

Binary Gating Weights H
Arrange

ﬁ::

WouT

]

) P
: (O-1T :
1 T

1 E

&F 7
Py Legend: (Trainable) (Non-trainable)

Fig. 2. GNBP RNN cell [11] - The proposed cell is a generic representation of

one iteration of BP. The RNN allows to sequentially execute several iterations
of the decoder while sharing the decoding parameters. N.B.: ® and & denote
element-wise multiplication and addition.

2) Neural Belief Propagation Decoder: NBP algorithm [4]
proposes to represent the BP algorithm using a NN and learn
how to weight BP equations to reduce the negative influence
of the short cycles on the decoding performance. In the form
described in [4], the NBP modifies equations (3) and (5) by
ad(ding four sets of trainable weights (w™) w) W™ and
w ﬁ)) .

ooy =600+ Yl ©
I#j

NS D . y
l

The interested reader can refer to the original publication
for the detailed derivations of NBP equations [4]. With the
growing number of 10T use-cases and associated needs of low-
complexity decoding and performing short codes, this type
of decoders are of interest and several publications discussed
improvements of NBP using pruning [6], weights sharing [7]
or active sampling [8]. Parallel variants of NBP have also been
proposed in the original paper (mMRRD-RNN) [4] and further
improved in a second publication (perm-RNN) [27]. The latter
drastically improves the performance of the decoder and bring
it closer to that of Maximum Likelihood Decoding (MLD), at
the cost of much higher complexity. Nonetheless, all these
decoders have been, to the best of the authors’ knowledge,
designed to decode existing codes such as BCH codes.

3) Gated Neural Belief Propagation Decoder: In a previous
paper, a fully trainable, interpretable and low complexity
version of the NBP has been proposed in the form of an RNN
cell (see Fig. 2 and the original publication [11]). The main
advantage of this generic model was to be able to learn to
decode (n, k) LBC by finding a valid PC matrix and construct
the associated TG without prior knowledge of the code using
gating weights. Similarly to the NBP, edges weights were used
to improve the decoding performance in the presence of short
cycles. To reduce the complexity, the NBP equations were

IEEE TRANSACTIONS ON COMMUNICATIONS

simplified to:

foi—ve; = N+ D W pre, s,)
l#5
X o=\ +Zw5‘ cr—sv; ©)

This form is more compact than standard NBP as there are
no weights for the inputs LLR and the message weights of
equation (8) do not depend on the destination check nodes
anymore. These modifications reduce the complexity, poten-
tially at the cost of a slight reduction in model expressiveness,
although no significant performance degradation was observed
w.r.t NBP. This generic architecture is a significant enabler for
code exploration as will follow in this paper.

III. GENERIC LINEAR BLOCK CODE NEURAL BELIEF
PROPAGATION AUTO-ENCODER

This work focuses on the joint design of short to medium
sized LBC matrices and associated weighted BP decoding
structures using ML techniques. The idea is to guide the design
of code matrices based on the decoder structure rather than
optimizing the decoding of a potentially flawed code w.r.t. the
decoder. An AE model is proposed to represent this problem.

A. System Model

Emltter Recelver

Code C(n, k)

Fig. 3. System model of the considered communication scheme.

The communication scheme of Fig. 3 is considered. Inputs
words are encoded based on the generator matrix G. A Binary
Phase-Shift Keying (BPSK) modulation is applied and the
symbols are sent through an Additive White Gaussian Noise
(AWGN) channel with real noise power Ny/2. LLRs of the
received samples are decoded based on the PC matrix H.

The next sections describe the main identified challenges
to learn short to medium size coding and decoding schemes
using ML techniques and propose an AE structure to address
them.

B. Learning to Code: Main Challenges

1) Differentiability of the Models: Gradient based ML tech-
niques require the differentiability of the models to be trained.
Proposed AE models in the domain of PHY layer can present
several non differentiability issues related to the channel, the
digital modulation, and when considering channel coding, the
extensive use of finite field (e.g. Fo) and associated modulo
arithmetic based on eXclusive OR (XOR). The trainability of

the model can also be impacted by many other optimization
issues such as non-convexity, non-smoothness and non-linear
separability of the loss function. Differentiable structures and
approximations must be defined to circumvent such issues,
thus allowing the back-propagation of gradients during the
model training.

2) Scalability - the “Curse of Code Dimensionality”: A key
factor for the adoption of AI/ML-based (de)coding methods is
the scalability of the proposed models and their associated
training schemes. As the number of possible words in an
(n, k) code is 2¥, even for relatively small codes it becomes
impossible to use exhaustive training data-sets that include all
words. It is therefore necessary to find structured architectures
and learning procedures that allow the training on a subset of
the possible data-words while ensuring the generalization to
the remaining words during execution of the coding scheme
in real operation conditions.

C. Linear Block Code Neural Encoder

The first block of the proposed AE is the LBC encoder. The
objective of this block is to encode binary words of size &
into coded representation of size n based on a set of trainable
parameters representing the code’s generator matrix G pro-
vided, in the present work, by an external “bridge” model. The
proposed encoder block describes linear combination in Fs by

l Binary Inputs

Encode\

= &)
= 41| -1 - 2
T ®
— Broadcast 35
/[—1 1 E
AT g
— |+ 8
=
& —1| -1 =)
= +1[-1
= 7
-
— +1|-1] - —
7 o1
2
‘1] o
— of-1
=
= 1] -1
= +1| 0
= 7
- —
- +1|-1] ~ =
p /[=t
1
C1] 41
— +1[-1
< Tk !
= +1 |+
- - 4
— 1 s
i B e Product
Reduction
& Y
&

Binary Outputs

Fig. 4. Proposed encoder model. Toy example of a (n=3, k=2) encoding. The
proposed block works only for binary inputs and weights G. To represent the
F2 XOR as a differentiable operation a product reduction of binary inputs
in their bipolar form is used. N.B.: The last conversion step from bipolar to
binary notation is not necessary when the up-coming modulation is a BPSK.

IEEE TRANSACTIONS ON COMMUNICATIONS

representing the XOR function as a differentiable product of
bipolar symbols (Fig. 4):
o Binary words of size k are converted into bipolar form
(i.e. {0;1} are mapped to {+1;—1}).
o Inputs are broadcasted and multiplied by trainable ex-
ternal binary weights, i.e. the code’s generator matrix
G, thus selecting the bits participating in each of the
n encoding equations.
e For the variables that were not selected the neutral
element of the product (41) is added.
« Finally, a product reduction is performed for each of the
n encoding equations.

The proposed architecture works if the weights G and inputs
are indeed binary. Since the encoder inputs are also those of
the AE model, it is not difficult to guarantee this condition
for the latter. However, this is more difficult in the case of the
trainable weights fed to the encoder which require the loss
function to remain differentiable w.r.t. them. Several solutions
could be thought of, such as sigmoidal activation applied to
the weights, regularization methods, sampling techniques [28],
discrete functions trained using REINFORCE algorithm [29],
Straight-Through Estimator [30] or a stochastic binarizer [31]
as used in [20]. In this work, a differentiable approximation
of the step function, inspired by the idea of differentiable
bypass [32], is used. The idea is to apply a non-differentiable
step function on a forward pass of the NN and approximate
the gradient by a differentiable approximation of the step, a
sigmoid in the present case, during the backward pass. This
functional block will be referred to as a Differentiable Step
Function (DSF):

f(z) =step(x)
df(x) do(x) (10)
iy = de = o(x)o(l —x)

where o () denotes the sigmoid function.
The DSF is applied to the weights G before being used by
the encoder as will be further detailed in Section III-E.

D. Gated Neural Belief Propagation Decoder

The decoder is based on the GNBP RNN Cell introduced
in Section II-B3 and inspired from a previous publication [11]
although with two minor modifications:

o The trainable binary gating weights defining the decoding
TG architecture are now provided by an external “bridge
model”. These weights represent the PC matrix of the
code, H.

o The refine gate mechanism that was used in [11] to ensure
saturated sigmoid functions is now replaced by the DSF
which is applied directly inside the aforementioned bridge
model.

E. Proposed Auto-Encoder Architecture

The proposed AE architecture for the joint design of a
LBC and associated GNBP decoder consists of the proposed
encoder and decoder models at the transmitter and receiver
sides (Fig. 5). The encoder weights and corresponding decoder

w

Bridge Model

Concatenate
Ik, k ‘W

(Encoder) <

v

(BPSK Modulation)

Y

<— N(0,Ny/2)

AWGN

(LLR Computation J

|5

Iteration Broadcast

A *A e *A *)\

(Iteration Normalization & Weighting)

)

Concatenate
WT‘I(n—k).(n—k')

Residual Connection

<

Legend:
Iteration Output Normalization & Weighting -

L5
(Systcmatic Bits Selection)

) . .

Fig. 5. Proposed AE architecture (with njter = 5 BP iterations) - The
GNBP RNN cells are the same as described in [11] (although with external
gating weights). The binary encoder’s generator and decoder’s PC matrices
are provided by a third model that will be referred to as “Bridge Model”.

gating weights that represent the code matrices are provided
by a third “bridge model” to ensure that they are continuously
matched. The use of such a weight sharing procedure makes
the training easier and thus reduces training time. A simple
way to implement this procedure is to restrict the learned code
to generator and parity-check matrices in standard forms. It
enables a direct and differentiable conversion between G and
H, as described in Section II-A. The standard form offers the
advantage of a reduced number of trainable code parameters.
In addition, it reduces the complexity of the encoding and
possibly avoids costly decoding in the absence of errors,
e.g. by computing a Cyclic Redundancy Check (CRC) of
the complete data-frame before checking the syndromes of
it’s constituent code-words and eventually initiating decoding
procedures. However, the standard form can be detrimental to
the performance of a BP-based decoder as it generally leads
to denser PC matrices. How to circumvent this problem is left
for future work.

Input words are encoded, according to the trainable matrix
G provided by the bridge model, using the encoder introduced
in Section III-C. The resulting code-words are modulated using
a BPSK and sent over an AWGN channel. On reception, the
LLR of the code-words are computed and normalized by their
per-codeword mean absolute value. The normalized LLR are
broadcasted and weighted on a per-iteration basis and provided

IEEE TRANSACTIONS ON COMMUNICATIONS

to the GNBP RNN decoder as follows:

(1)

H) niter.}
After GNBP decoding based on the trainable matrix H pro-
vided by the bridge model, the iterations results and the resid-

ual connection are normalized and weighted for recombination
as follows:

X = w(residual) + Z (out) MAT (12)
Z IAI SNl

The systematic bits are selected as the first & LLR of the
decoded code-words and are fed to a sigmoid function to
assign them binary-like values. In an AE learning scheme,
the inputs are identical to the associated labels. Hence, the
loss function is computed as the Binary Cross-Entropy (BCE)
between the input and decoded binary words:

{(x,%) = BCE(x, %) = BCE <x, o(=N)[0: k]) (13)
Unless otherwise specified, the RNN decoder is configured
to execute the equivalent of 5 BP iterations. The use of a
residual connection bypassing the decoder and the iterations
results recombination mechanism are design choices deemed
to facilitate gradient back-propagation during training. The to-
tal number of trainable parameters of the proposed architecture
is defined as follows:

k(n—k) +2n(n— k) + 2njer. + 1
———

Systematic code

(14)

Nparam. =

GNBP decoder

The use of shared parameters and a structured architecture
allow for a controlled number of trainable parameters (Tab. I).
Furthermore, for a fixed code-rate, the number of parameters
of the AE evolves in O(n?) ensuring the scalability of the
proposed architecture on that matter, at least in the short-to-
medium block size regime of interest to the present study.
Thanks to the definition of matched G and H matrices in
standard form, the bridge model ensures an efficient training
phase. The interpretable structure of the model allows the
learned code to be extracted and used with other LBC decod-
ing schemes, possibly within legacy, non-Al based systems.
The enhanced weighted decoding procedure based on the
RNN GNBP cell is jointly trained with the coding scheme. In
conclusion, the proposed differentiable AE architecture allows
the efficient training of performing LBC suitable for a BP-
based decoding.

TABLE I
AE NUMBER OF PARAMETERS

n k Nparam.
128 64 20491
36 4385
63 25308
11 1471
31 16 1181
8 4 91

IV. DATA-SETS, TRAINING & AND EVALUATION
PROCEDURES

In a naive approach, learning a code of size (n, k) would
require to use a training data-set including all the 2* words.
This number grows exponentially with the code size and
can become prohibitively large. In the case of LBC and
under symmetric assumption on the channel and the decoder
(implying in the case of NN based decoders the use of
symmetric activations, absence of biased units, etc.), it is
common to train or evaluate a decoder only with the zero
code-word while guaranteeing performance on the complete
code [23]. Nevertheless, the training of the encoder is also
considered in this work, thus requiring the use of different
words. The proposed encoder ensures that all code-words are
linear combinations of the basis of the vector subspace of the
code. Hence, the model can be trained using only the basis
vectors of the words thus reducing the training data-set size
from an exhaustive data-set of 2¢ words to only & words.

It should also be noted that since the XOR function used
in the encoder is a non-linearly separable operator, optimizing
the weights upstream this function can be challenging for a
high input cardinality. Indeed, the non-linear separability of the
operator prevents from identifying the individual contributions
of each input in the final results as for a linearly separable
operator such as the sum. Still, one way to ensure that the
individual contributions are identifiable in the final results is
to ensure that there is only one non-zero input contributing
to the XOR in each dataset entry e.g. by considering only
standard basis vectors as inputs, hence the adopted data-
set. Similarly, the decoder uses product operators, particularly
challenging w.r.t. the optimization of the model for similar
reasons. Following the same intuition as before, one should
carefully choose the channel noise level ensuring a controlled
amount of bit flips per code-word. Gaussian noise sampled
by the NN model with a fixed E,/Ny of 4 dB has shown
empirically to provide good results.

The model is trained with RMSProp optimizer [33] using
batch-size of 64 words and 25 steps per epochs until an early
stopping criterion is met (200 epochs without improvement)
or the maximum number of epochs, set to 1 000, is reached
(a significant margin is used as it has been experimentally
observed that the AE usually converges to its best level
of performance within the first 100 epochs). The Learning
Rate (LR) is initially set at 10~! and follows a decaying
schedule on plateau: when the model does not improve for
50 epochs the LR is reduced by 20%. The validation data-set
is randomly sampled from the 2¥ possible words in batches of
size 64 which are used to monitor the model progress on the
real encoding/decoding task, i.e. transmitting and recovering
any of the possible words with as few errors as possible.
A BCE loss function, particularly suited for binary error
evaluation, is used. The model weights representing the code,
W, are initialized uniformly at random on the [—0.01; +0.01]
range. The GNBP decoder weights are initialized at *1’. After
training, the model is evaluated on randomly sampled words
from the 2% possible words with Ej /N, ranging from 0 dB
to 6 dB. To ensure a reliable Bit Error Rate (BER) evaluation

IEEE TRANSACTIONS ON COMMUNICATIONS

at each Ep/Ny level, new words are sampled and provided
to the model until the 95% confidence interval, computed
using Agresti-Coul method [34], on the estimated model BER
performance is within the estimated BER +/-5% interval, i.e.
there is a 95% probability that the true value of the BER lies
in-between +/- 5% of the estimated BER?.

V. RESULTS

The following sections describe the results obtained with
the proposed model in various experiments. At first, (8,4)
codes will be used to illustrate the approach and to formulate
hypotheses as to why it is likely to produce successful results.
A second experiment will study in depth the training of the
AE on a (31,16) code size and compare its performance with
those of a standard BCH code in standard and non-standard
forms. The observed performance gain will be investigated in
a short ablation study on a (31,11) code size. Scalability of
the approach will then be evaluated on (63,36) and (63,45)
code sizes and compared to some existing results, notably
with the NBP approach [4]. In addition, a comparison of the
complexity of the different decoders will be proposed. Finally,
the approach will be tested against other state-of-the-art codes
with sizes up to 128 bits, including LDPC codes better suited
for BP decoding than BCH codes.

A. (8,4) Code: Illustration of the Proposed Concept

The model is first tested on a (8,4) code size and compared
with a classic hand-crafted code: Extended Hamming (8,4)
(Fig. 6). The performance of the AE model (—8) is compared
to those of MLD? (- --) and BP (- ®-) decoders applied to
the Hamming code. MLD is also applied, after training, on the
code matrix designed by the AE (—). This allows to evaluate
the proposed code’s raw algebraic performance independently
of the decoder target.

As demonstrated by the MLD performance curves, the
learned code is not as good as the Hamming code in terms
of algebraic properties. Nonetheless, the proposed AE outper-
forms, by a significant margin, a standard BP decoder applied
to Hamming code. Fig. 7 represents the PC matrices as well
as the corresponding TG for both Hamming code and the best
AE designed code out of 5 trials. Several interesting algebraic
properties are to be noted when comparing both codes. As
one can see the learned coding scheme is an irregular coding
scheme.

The minimum distance of the learned code is equal to 3
while the minimum distance of the Hamming (8,4) code is
equal to 4. This explains why the proposed coding scheme is
less efficient in terms of MLD performance. Still, the average
Hamming distance is of 4.26 for both codes. As one can see,
while the density of the PC matrix is reduced, the girth of
the TG is augmented in the case of the learned code. Indeed,

2In this publication, results are presented, unless otherwise specified, in
BER versus Fj/No [dB] where No/2 is the variance of the (real) AWGN
noise. When the proposed model is compared with other algorithms such as
standard BP or NBP algorithms, 5 decoding iterations are considered, unless
expressly stated otherwise.

3Unless otherwise specified, the MLD decoders considered in this paper
are based on an exhaustive minimal distance algorithm.

Performance of (8,4) Codes

[[[

10! E
I e |
1072 | £
a7 = .
jaa) - N 8
M - (N i
—3 || AE ‘®
10 {| —— GNBP .
i MLD]

H Hamming (8,4) D)
| - ®- BP J
Lo -- MID | | | | |
0 1 2 3 4 5 6

Ey/No[dB]

Fig. 6. Performance comparison of the proposed AE with that of a Hamming
(8,4) code. The later not being designed for BP decoder performs poorly with
it, although its MLD performance are good. On the contrary, a code designed
for a BP-like decoder offers higher performance.

L 1 1 lo] lelele)
ool [1ol lee
| leje] lele] @,
o] Jo] 10lee]

00000000
L 4 ol o] 0@
L Jo] 1 lele] le)
0000000 ®

V4

co

U1

Fig. 7. (a) Left: Extended Hamming (b) Right: Auto-Encoder. -
(8,4) PC matrices and their associated TG representation. A non bipartite
representation has been used to easily exhibit the cycles present in both graphs.

the Hamming code presents a density of 6 = 16/32 = 0.500
and a girth of 4 with 6 associated cycles, whereas the learned
code has a density 6 = 13/32 = 0.406 and a girth of 6 with 3
associated cycles. These properties are key in the performance
of a BP decoder and can explain the performance gain of the
proposed code when associated to a GNBP decoder.

These results are a good illustration of the proposed concept:
instead of trying to find a code with good properties such as
minimum distance, the model proposes a code that improves
the performance w.r.t. the targeted BP-like decoder. In the case
of such a short code, it is worth noting that even a naive
MLD is not complex and is eventually more efficient than
5 iterations of a BP-like approach. However, this statement
quickly becomes untrue as the code size increases.

B. (31,16) Codes: Statistical Study of Model Training

1) Model Performance During Training: The proposed
model’s BER metric is measured during training to assess the

IEEE TRANSACTIONS ON COMMUNICATIONS

Learning Curve on a (31,16) Code

[[[‘ Train ' ‘ H
BER
[=== BER (Exp. Smoothing) ||
— Validation
o B BER I
5 BER (Exp. Smoothing)
8 1072 | 7
/M - f N
o - i [(-
<t | il “ ‘\H‘\\“ ‘“‘ o "‘“ | ‘l‘ J H‘\‘ | il \ m I]
® I FRET A “(ﬂ*\ ‘M‘\‘ Wf i ;\”ﬁm
-7 ! | ‘
& | Il
m
10_3 | | | | | |
0 50 100 150 200 250
Epoch

Fig. 8. BER evolution during a training of the AE model. The noisy curves
can partly be explained by the relatively small batch sizes considered here.
The best validation BER of 3 x 103, attained around the 150th epoch, is
consistent with the performance of the AE displayed on Fig. 9.

existence of a learning process on a (31,16) code. Fig. 8 shows
the BER at the selected training E,/N, of 4dB evaluated
at each epoch for the training (—) and validation ()
data-sets. Although noisy, these curves show a clear decrease
in BER during training as supported by the corresponding
smoothed metrics (== /). During training the BER
is roughly divided by a factor 10, from ~ 2.5 x 1072 to a
minimum of ~ 2.5 x 1073,

2) Training Repeatability: The design of an AI/ML-based
error correction scheme can usually be performed offline and
only the best learned coding scheme selected for implemen-
tation in the final communication system. Nevertheless, it
is interesting to study the performance consistency of the
learned codes as an empirical assessment of the model training
reliability. Furthermore, in future work, such model could be
integrated into E2E communication systems relying on the
joint learning of equalization, (de)modulation and (de)coding,
etc. Such scenario would require an efficient and reliable
online learning process.

The min-max interval of BER performance of the proposed
AE (——) across 50 independent trainings (Fig. 9) demon-
strates the model’s ability to learn a larger code size of (31,16)
and shows a reliable and repeatable training process with
relatively small variations between runs. Indeed, Fig. 9 shows
approximately 0.5 dB between the worst and best model in
the asymptotic regime. The repeatability of model training
being demonstrated, the following results of this paper will
present only the best training out of 5 trials as an estimate
of the achievable performance of the AE and thus reduce the
effective simulation time.

Additionally, Fig. 9 shows the performance of a non-
systematic BCH code (31,16) from the literature [35], eval-
vated on MLD (-----) and BP (-®--) decoders. A systematic
version of the BCH code obtained by the Gauss-Jordan

Training Repeatability on (31,16) Codes

10~ B =
~~~~~~~~ o-_ i
o TTe ]
. TTe
-2 L S
N L Ot
i § Sh—
B 1073
m i AE
[| —— GNBP (Mean)
[l BP (Mean)
104 | —— MLD (Mean)
H BCH Sys.
l| - @ BP
_5 || BCH Non Sys. |
10 | -®-- BP =
Lo MLD \ \ \ ]
0 1 2 3 4 5 6
By /No[dB]
Fig. 9. Repeatability of the AE training. At each Ej /Ny level, the error

bars describe the min-max interval of the BER performance across the 50
independent trainings. Performance of systematic and non-systematic BCH
codes, decoded using standard BP, are provided for comparison.

elimination method is also evaluated with a BP decoder (- ®-).
Finally, the code learned by the AE is extracted and evaluated
on these same MLD (—) and BP ( ) decoders. Similarly
to what has been observed previously with the extended
Hamming code, the learned (31,16) code has slightly worse
MLD performance than the BCH code (yet almost equivalent
in the case of the best model) but is significantly more
competitive when using the BP or GNBP decoders compared
to the standard BP decoder applied to both systematic and non-
systematic BCH codes. It can also be noted that a systematic
form is generally detrimental to the performance of a BP
decoder. Indeed, it artificially increases the density of the PC
matrix in its redundant part which in turn can reduce the girth
of the code.

3) Correlation Between Decoders Types and their Perfor-
mances: Fig. 9 showed the span of the BER performance of
the 50 learned codes with different decoders. One question
is whether good code performance with one decoder type is
generally associated with good performance with the other de-
coders. To answer this question, the performance correlations
of a given learned code between GNBP and BP (Fig. 10) or
MLD decoders (Fig. 11) and between BP and MLD decoders
(Fig. 12) are provided. For each decoder and E} /Ny, the BER
performance of the 50 learned codes are normalized on the
[-1;4+1] range and aggregated on a single plot. As one can
see, the performance of the learned code evaluated on BP
decoder are correlated with their performance on the GNBP
decoder. This was foreseeable since the GNBP decoder is
derived from the BP decoder. On the contrary, the performance
of the learned code evaluated on the GNBP or BP decoders are
not correlated with those of the corresponding MLD decoder.

4) Degree Distributions of Learned Codes: In an attempt to
explain the observed performance from a code design perspec-



IEEE TRANSACTIONS ON COMMUNICATIONS

Correlation between GNBP and BP BER

m’m

Correlation between GNBP and MLD BER

mﬂ

Correlation between BP and MLD BER

AT T

15 1.5

1.5
Pearson R: 0.08

1.0

0.5

Normalized MLD BER
o
o

Pearson R: 0.60 Pearson R: 0.07
o 1.0 . £ 1.0
o £ =
a 05 = 05
g s
-g 0.0 § 0.0
f_D =
g —-05 © —-0.5
:
Z-10 S-10
12157020500 05 10 15 -2
Normalized GNBP BER
Fig. 10.  Correlogram of the performance of Fig. 11.
the 50 learned codes evaluated on GNBP and BP
decoders. decoders.
Normalized Variable Node Degree Distribution
T T T T T
] B Learned Codes
Initialization
04} ]
&
S~ 0.2 a
11e
. 1
0k o) » | H LI |
| I | | | | | | |

0 2 4 6 8§ 10 12 14 16
Variable Node Degree

Fig. 13. Variable node degree distribution before and after training, averaged
over the 50 runs. Note that the peak observed for a degree of 1 is explained
by the standard form of the codes considered.

tive, and even though only small codes are considered here, the
normalized variable and check node degree distributions are
computed for each of the 50 learned PC matrices and averaged
over all the trainings (Fig. 13 and 14). These distributions
( m ) are compared with those at model initialization ( ).
In addition to demonstrating consistent results across trainings
and showing that the learning procedure does indeed have
an impact on the choice of specific, non-random structures,
the learned matrices exhibit unexpected check node degree
distributions. The learning procedure seems to encourage
overall lower density of the matrices, which was something to
be expected given the targeted BP decoder structure. On the
other hand, it also seems to promote the definition of a few
high degree check nodes. This behavior is not yet explained
but is of interest for future studies.

C. (31,11) Codes: Auto-encoder Training Procedure and Ab-
lation Study

Several questions arise from observations of previous sec-
tion. What is the origin of the AE performance gain? Is it
due mainly to the use of a weighted decoding procedure such
as GNBP, the design of a more efficient coding scheme or a
combination of both? Is it preferable to first train the coding

-1.5-1.0-0.5 0.0 05 1.0 15
Normalized GNBP BER

Correlogram of the performance of the
50 learned codes evaluated on GNBP and MLD

_1'21.5—1.0—0.5 0.0 05 1.0 15

Normalized BP BER

Fig. 12.  Correlogram of the performance of
the 50 learned codes evaluated on BP and MLD
decoders.

Normalized Check Node Degree Distribution

‘ . ‘ B Learned Codes
Initialization
0.2 | s
=
So0af .
0k m T » | H T "agp ot ' T N
| | | I

0 5 10 15
Check Node Degree

Fig. 14. Check node degree distribution before and after training, averaged
over the 50 runs. Unexpectedly, some check nodes take on high degrees,
leading to all-1 (or almost all-1) rows in the redundant part of the PC matrix.

scheme and then adapt the GNBP decoder to proposed code
or learn jointly both codes and decoders as it was done in
previous sections? To try to answer these questions, the AE
is applied to a (31,11) code and compared to a BCH code
from [35]. The influence of the different elements of the AE
and their training schedules is studied to better understand
the origin of the performance gain. Different schemes are
compared (Fig. 15):

o The full AE model as described in III-E to study the in-
fluence of both the learned code and the GNBP decoding
scheme (—8—).

e The code learned by the aforementioned AE model
evaluated on a standard BP decoder to study the influence
of the sole learned code (—e—).

o A slightly different AE trained with a differentiable
standard BP decoder i.e. without any GNBP decoder
weights, inputs LLR weightings, residual connection or
weighted outputs sum (only the result of the last iteration
is selected as in standard BP decoders). This scheme is
referred as “AE BP” on the Fig. 15 ( ).

o The code learned by this AE BP model used to train
a GNBP decoder to study the impact of the training
schedule ( ).



IEEE TRANSACTIONS ON COMMUNICATIONS

o The MLD performance of the codes learned by both AE
(GNBP) (—) and AE BP (----*) models.

o A reference BCH (31,11) code [35] in both systematic
and non-systematic forms evaluated with MLD (-----),
standard BP (-®-- / - ®-) and trainable GNBP decoders
(-m--/-m-)

Even though a different code rate is considered, similar
statements can be made on the performance of the (31,11)
code to that of the (31,16) code: the MLD performance of the
BCH (31,11) code is better than that of the learned coding
schemes. Yet, all the proposed coding scheme outperforms by
a significant margin the standard BP decoder applied to both
systematic and non-systematic BCH (31,11) codes.

It appears that the design of an effective coding scheme and
the use of a weighted GNBP decoding procedure can both
contribute to the final performance of the AE. However, the
training schedule has an impact on their relative contributions
to the final performance (Fig. 15). Indeed, after learning both
the code and the GNBP decoder weights, regardless of the
training schedule of the different blocks involved, the AE
achieves similar performance. Yet, the code learned directly
with a BP decoder achieves better performance than the code
learned with a GNBP decoder and subsequently evaluated on
a BP decoder. Therefore, if the final goal is to run a GNBP
decoder, it is more interesting to train the model directly with
such a decoder rather than first training the code on a BP
decoder and then learn the GNBP weights, which would take
twice as much training time for a similar outcome. On the
contrary, if the aim is to use a standard BP decoder, it is more
interesting to train the model with such a decoder from the
beginning, as this may lead to better overall results compared
to a code learned on a GNBP decoder and then evaluated on
a BP decoder. It is also worth noting that the performance of
the AE model trained and evaluated only on a BP decoder
is close to that of the AE model using a GNBP decoder.

Performance of (31,11) Codes

1072
r 1073 &
@ i
m =
_ AE (GNBP)
1074 | —@— GNBP
| —e—BP
5| ——MLD
1072 || AEBP
H BP
I GNBP
1076 § MLD
0 1 2 3 4 5 6

Ey/No[dB]

Fig. 15. Study of the joint encoder/decoder training procedure and evaluation
of the relative contributions of the code and decoder design to the final
performance.

This suggests that when the coding scheme is well constructed
and suffers from few defects w.r.t. a BP decoder, e.g. a small
number of short cycles, the benefit of a weighted decoding
procedure such as GNBP might be reduced and a simpler
BP decoder could be sufficient. Nevertheless, as shown by
the GNBP performance curve of the BCH code, the use of
a weighted decoder can bring a significant performance gain
for codes that exhibit defects w.r.t. the targeted BP decoding
procedure, e.g. BCH codes, confirming results from previous
works [4], [11]. However, the observed performance gain is
not up to the level of the AE joint code and decoder design.

D. (63,36) & (63,45) Codes: Scalability and Algorithmic
Complexity

1) Scalability to (63,36) & (63,45) Codes: To illustrate the
flexibility and scalability of the proposed approach, the AE
model is evaluated on higher sizes (63,36) and (63,45) codes.
With such sizes the code-books include too many code-words
to be included in an exhaustive data-set (Tab. II). Additionally,
the trainable part of the systematic matrices include many
configurations of 0’ and ’1’.

TABLE II
“THE CURSE OF CODE DIMENSIONALITY”
Code (n, k) (63, 36) (63,45)
# Code-words 2k ~ 1010  ~1013
# Basis code-words k 36 45
# Different sys. PC matrices 2k(n—F) 10292 ~ 10243

The performance of the AE (—#—) is compared to that of
the BP (-®-- / -®-), NBP (-4-- / -4-) and MLD (---)
(Ordered Statistics Decoder (OSD) [36]) decoders applied
to the (63,36) and the (63,45) BCH codes as described in
the original Nachmani et al. publication [4]. AE BP scheme
results, evaluated with both BP ( ) and GNBP ( ), are
also provided for the (63,45) code. In contrast to Section V-C,
this scheme is here not on par with the AE GNBP. The
performance of mRRD-RNN (--+--) and Perm-RNN (-+*--)
parallel BP decoders from [4], [27] are also provided as
examples of close to MLD decoders, although at a much higher
complexity (Fig. 16 and 17). In addition, the GNBP decoder
is applied on BCH (63,36) codes (-#-- / - M- ), demonstrating
similar performance to that of the NBP. For both sizes, the
AE outperforms BP and NBP decoders with different BCH PC
matrices forms. Even the code learned by the AE evaluated
with a BP decoder (—e—) outperforms GNBP decoder applied
on the BCH codes, at least in the considered Ej,/N, regime.
Again, these curves show that the design of a code tailored
to the decoder provides substantial performance gain at no
significant complexity cost.

2) Complexity Study: To further illustrate the advantageous
performance to complexity ratio of the proposed approach, the
number of decoding operations is computed for the different
codes and associated decoders, as summarized in Tab. III. The
coding gain (dB) w.r.t. an uncoded BPSK is then computed
for each code and decoder and normalized by the number of



IEEE TRANSACTIONS ON COMMUNICATIONS

Performance of (63,36) Codes

1072 £
| AE
1073 §
& [ BCH Non Sys.
m 19—4|/ -e- BP
10 || - M- GNBP
|| - - NBP [4]
105 f ==~ MLD (OSD) [4]
| BCH Cycle Reduced
|| -®--BP
106 { -m-- GNBP
-- NBP [4]
- mRRD-RNN 5 [4]
T T L
1 2 3 4 ) 6

Ey/No[dB]

Fig. 16. Performance comparison between (63,36) BCH and AE-based codes
with various decoders. NBP, mRRD-RNN and MLD (OSD) performances
are from Nachmani et al. [4]. BP results are consistent with those from [4].
The performance of GNBP decoder demonstrate the equivalence with NBP
decoders.

(63,36) Codes
Performance/Complexity Trade-off

: : T T T
AE

—i— GNBP

—&— BP

BCH Non Sys.

- H- GNBP

- A- NBP [4]

BCH Cycle Reduced

- ®- BP

- l- GNBP

- A- NBP [4]

- % - mRRD-RNN 5 [4]

J

10~4

¢ s e e e e

T

1075

T T T

Coding Gain /Nops[dB]|

T

10-6

O T
_
[\

Ey/Ny[dB]

Fig. 18. Performance to complexity ratios of the different (63,36) codes and
decoders highlighted by the normalized coding gain per decoding operations.
Higher is better.

operations®. The AE is able to design codes that offer a good
performance to complexity trade-off based on GNBP or BP
decoding (Fig. 18 and 19).

Final complexity is also dependent of specific hardware
implementations which is not taken into account in the present
analysis. Regardless of this point, one should also consider
that, during training, the AE requires a higher number of

4More precisely, the coding gain is normalized based on the number of
multiplications. Such operations are usually considered to be more costly
than additions. Moreover, the number of additions is unchanged between BP,
GNBP and NBP decoders.

Performance of (63,45) Codes

-1
10 T —
S — e
Ry :-,5.:11-
1072 fAE N D
—8— GNBP RN S
—@— BP \ \.s. ~SA ~<
AE BP . N
& 103 BP e PR
0 GNBP 52 '\‘3 3
s NS R—
BCH Non Sys. A s
_4||-@- BP[4] . .
10 - A- NBP [4] s
- - - MLD (OSD) [4] s,
_g || BCH Cycle Reduced :’\‘*
10 -@®--BP %
--A-- NBP [4]
=%+ Perm-RNN 1 50 2 [4]
1076 | | |
0 1 2 3 4 5 6
Ey/No[dB]
Fig. 17. Performance comparison between (63,45) BCH and AE-based

codes with various decoders. All results, except the AE results and the cycle
reduced BP, are from Nachmani et al. [4]. Unlike the case of (63,36) BCH,
the BP and NBP results from [4] were not successfully reproduced for the
non-systematic code.

(63,45) Codes
Performance/Complexity Trade-off

{ AE ‘ ‘ ‘
{| —— GNBP
—@— BP
BCH Non Sys.
- A- NBP [4]
BCH Cycle Reduced
| - ®- BP

- A- NBP [4]
- %= Perm-RNN
1502 [4]

10~4

e m

10~5

TTTTT

T

T
N

10-¢

Coding Gain /Nops[dB]

T T 111717
[N

T

o
—_
(V)
w
=
ot
=)

Ey/No[dB]

Fig. 19. Performance to complexity ratios of the different (63,45) codes and
decoders highlighted by the normalized coding gain per decoding operations.
Higher is better.

operations as the code’s matrices are not yet fixed. Lower
complexity BP-like decoders from the literature such as MS,
OMS or Neural Offset Min-Sum (NOMS) [5] are not included
to the comparison, but there is no strong evidence suggesting
that such approaches could not be applied to the proposed AE
and further improve the performance to complexity ratio.

The densities § of the learned codes are lower than those
of the BCH codes (Tab. III). This was to be expected as
BP decoders are supposed to perform well on low density
codes, e.g. LDPC codes. A regularization technique could



IEEE TRANSACTIONS ON COMMUNICATIONS

TABLE III
ESTIMATED NUMBER OF OPERATIONS FOR EACH CODE AND DECODER5
# Operations
n k Code 4 Decoder —#SUM_ #MULT
. BP - 5 iter. 11,775 21,475
AE (systematic) 018 GNBP - 5 iter. 11775 24525
BP - 5 iter. 23,620 38,880
BCH (non systematic) 0.29  GNBP - 5 iter. 23,620 43,740
36 NBP - 5 iter. 23,620 65,245
BP - 5 iter. 16,490 27,840
GNBP - 5 iter. 16,490 31,980
BCH (cycle reduced) 024 \pp_ 5 ey, 16490 46715
63 mRRD-RNN(5) 989,400 2,802,900
. BP - 5 iter. 4910 11,290
AE (systematic) 019 GNBP - 5 iter. 4910 13450
BP - 5 iter. 17,500 47,520
BCH (non systematic)  0.38  GNBP - 5 iter. 17,500 51,840
45 NBP - 5 iter. 17,500 67,495
BP - 5 iter. 8,680 24,720
GNBP - 5 iter 8,680 27,840
BCH (cycle reduced) 0.28 NBP - 5 iter 8,680 35275
perm-RNN(1,50,2) 173,600 494,400

be used in future work to further enhance this interesting
property that can both reduce the decoding complexity and
potentially improve the performance. Still, this would be a
strong inductive bias towards the already known solution that
BP decoders perform well on low density codes and could
potentially conceal innovative code designs that has not yet
been thought of and that could be revealed by an AI/ML
system.

E. Comparison with LDPC and other SotA Codes

1) Comparison with Short (64,k) LDPC Codes - Impact of
the Rate: To ensure a fairer study of the proposed system,
and since BP decoders were originally engineered to decode
such codes, a comparison with LDPC codes of size 64 and
with various rates is made (Fig. 20). The different regular
and irregular LDPC codes are generated by the Progressive
Edge Growth (PEG) algorithm [37] and decoded using BP
(-o- / ) and GNBP (-#--) decoders. Said codes are
compared with the proposed AE model trained with a GNBP
decoder and evaluated with both BP (—e—) and GNBP (—#)
decoders. When considering a GNBP decoder, and despite the
standard form constraint, the AE shows decent performances
compared to the LDPC codes. AE performs significantly better
than regular LDPC codes and is not far from the irregular
codes (half a dB difference in the worst case). For the g—i
code rate, the GNBP AE even reaches the performance of the
irregular LDPC code under BP decoding and is close to the
performance of the same code under GNBP decoding. Under
BP decoding, the AE code is not as good as before, especially
for the lower code-rates, where the systematic part of the PC
matrix becomes prominent.

2) Comparison with State-of-the-Art (128,64) Codes - Im-
pact of the Number of Iterations: Finally, the AE is compared
at the challenging (128,64) size to binary codes and theoretical
bounds from [38] (Fig. 21). The model is trained and evaluated
with a number of decoding iterations ranging from 3 to 10 to

5As described by Nachmani et al., Perm-RNN (1,50,2) denotes a decoder
with one branch, 50 permutations per branch and two NBP iterations between
two consecutive permutations. Although it is not a parallel decoder, it requires
a total number of up to 100 NBP iterations. Similarly, mRRD-RNN (5) denotes
a 5 branch parallel decoder each constituted of 30 blocks of two NBP iterations
leading to a total number of up to 300 NBP iterations

Performance Comparison with (64, k) LDPC Codes

T T T T T T i
101 E 4
1072 ¢ 5
B (64, 46) |
% 1073 E R l e
/M F ) ]
H AE |
—4 || —— GNBP -\
10 f —e— BP
{{ Irregular LDPC
[l -®:- BP . R
10~° § -m-- GNBP s .
f| Regular LDPC (64,18) u 3
I BP ! ‘ (64,‘32) 5
—6 —4 -2 0 2 4
SNR[dB]

Fig. 20. Performance comparison between various (64, k) LDPC codes and
the proposed AE, for different decoders. For better readability, and in contrast
to the other graphs of this publication, the SNR [dB] is used for the x-axis.

study the impact of the latter on the performance. When the
number of iterations at evaluation is different from the one
used during training, the GNBP decoder is re-trained while
keeping the previously learned code fixed. AR3A (-0--) and
CCSDS (- 0-) LDPC codes [38] display better performance

is also higher with up to 200 decoding iterations. For a
fairer comparison the CCSDS code [35] is decoded with 3
(-*-), 5 (-®-) and 10 (- o-) BP iterations, thus reducing
the performance gap to half a dB, similar to the one observed
between the AE and the LDPC codes of Section V-El. As
expected the performance of the standard and the AE codes
improves with the number of iterations. The number of training
iterations of the AE also seems to have an impact on the final
performance. Fig. 21 shows that it seems better to train the AE

instead of training it with 10 iterations from the start (--@--).
Another ML-based approach relying on a GA is proposed as
an additional comparison, although it uses 20 iterations ( )
[21]. The latter performs well both against standard LDPC and
the AE. However, the GA approach is fundamentally different
from the one adopted in this paper because it attempts to
optimize LDPC codes based on existing distributions while
the AE learns ex nihilo. Although their decoding complexity
is not easily comparable to that of the AE, the performance of
a Polar code (--4-+) and a TB-CC ( ) with their respective
decoders are also provided [38]. Finally, the performance of
an extended BCH is provided, showing poor BP performance
(--0--) even though its MLD performance (-----) is close to
the optimum. As before, the AE outperforms the BCH with
a significantly reduced complexity. These results demonstrate
that a systematic LBC of significant size can be learned by
a ML procedure, with performance relatively close to that of
LDPC codes and a controlled complexity.



IEEE TRANSACTIONS ON COMMUNICATIONS

BLER

Fig. 21.

Comparison with State-of-the-Art (128,64) Codes

Ey/Ny[dB]

Theoretical Bounds [38]
Sphere Packing
= = Normal Approximation
-+ + » Random Coding Union
Extended BCH Non Sys.
--O-- BP (200 iter.)
-.=-- MLD (OSD) [38]
LDPC Codes

GA - BP (20 iter.) [21]
- - CCSDS - BP (3 iter.)

AE (train @ 3 iter.)

@« GNBP (3 iter.)

---l--- GNBP (5 iter.)

-«[--- GNBP (10 iter.)

AE (train @ 5 iter.)

—l— GNBP (5 iter.)

—0— GNBP (10 iter.)

AE (train @ 10 iter.)

--O-- GNBP (10 iter.)
TB-Convolutional Codes [38]
- @- CCSDS - BP (5 iter.) TB-CC m=8 - WA Vitterbi
- O- CCSDS - BP (10 iter.) Polar Codes [38]

- O- CCSDS - BP (200 iter.) [38] - -A-- SC Decoding

=O-- AR3A - BP (200 iter.) [38]

Comparison of different (128,64) codes and their respective decoders from [21], [38]. For the BP decoders, a study of the impact of the number

of decoding iterations is conducted, both for the proposed schemes and the conventional ones. For comparison with [21], [38], BLER is used on the y-axis
instead of BER.

VI. Di1scUSSION, CONCLUSION & PERSPECTIVES

The AE architecture proposed in this paper is a performing,

low

complexity, Al-based approach for the joint design of

small-to-medium size LBC and associated weighted decoders.
Instead of improving the decoding procedure of codes that
otherwise suffers from defects w.r.t. the targeted decoder, the
proposed model supports the joint design of a LBC tailored

to a

BP-like decoding allowing significant performance gain.

The main advantages of the approach are:

Code agnostic: The proposed approach does not require
the knowledge of any LBC scheme from the literature,
which allows to build codes of arbitrary size and rate.
Repeatable: The proposed architecture offers a repeatable
training procedure. The study showed results within a 0.5
dB margin over 50 runs for a (31,16) code in Section V-B.
Adaptable: The AE model can be trained with various
decoders, e.g BP or GNBP. While GNBP has been shown
to improve decoding performance on some codes, this
study pointed out in Section V-C that the AE trained with
a BP decoder can have performance close to that of the
AE trained with the GNBP. Although it has not been
confirmed in Section V-D, a well designed code might
thus not necessarily need a weighted decoding procedure.
Interpretable & Low complexity: The tightly structured
architecture ensures a controlled number of parameters,
tractable training procedure and high interpretability com-
pared to black-box ML-based approaches. After training,
the code’s matrices can be extracted and eventually
used within a standard LBC decoder ensuring retro-
compatibility with legacy, non Al-based, communication
systems, with satisfying level of performance.

Scalable & Differentiable: As explained in Section V-D,
the structured design of both encoder and decoder is a key
enabler for the scalability of the approach. The model
is able to jointly learn a code and associated decoder

only using the k basis vectors of the information space,
while generalizing well to the many other unseen words
even on relativity important code size. Moreover, the
different structures presented throughout the paper ensure
the differentiability of the complete architecture.
Efficient: The study of Section V-D showed improvement
in terms of performance to complexity ratios when com-
pared to other approaches, e.g. NBP or high performance
but high complexity parallel decoders applied to (63,45)
and (63,36) BCH codes. As shown in Section V-E,
the performance of the learned codes with size up to
(128,64) are close to those of LDPC codes, which
are reference codes for BP decoding procedure. This
emphasizes the ability of an Al-based system to design
competitive LBC.

Still, several perspectives of future works can be outlined from
the current proposition:

o The current architecture does not exploit the blind prop-

erty of the decoder as described in [11]. Instead, a
bridge model is used to keep the encoder and decoder
matched during training, which makes distributed online
learning procedures complex in addition to limiting the
codes to standard forms only. The latter usually leads to
denser PC matrices which can be a limitation in terms of
performance and decoding complexity when considering
BP decoders. As such, it would be interesting to further
study a non systematic AE architecture.

The GNBP RNN cell uses a low complexity static decod-
ing strategy which repeat a certain number of time the BP
operations under the same set of shared parameters. The
decoding performance could be improved by dynamically
computing the decoding graph at each decoding iterations
of the RNN, based on the inputs and states of the decoder
as it is often the case in standard RNN-based approaches.
One could learn codes permutations to be applied during



IEEE TRANSACTIONS ON COMMUNICATIONS

the decoding procedure, or inhibit certain parts of the
graph, which has been shown to improve significantly
decoding performance in parallel decoders [26], [27],
[39].

o A (GN)BP decoder was considered in this paper but lower
complexity decoders from the literature e.g. MS, OMS
or NOMS, could probably be used within the proposed
system to further reduce the complexity of the system
while maintaining competitive performance.

e As shown in Section V-B4, the learned codes have un-
expected degree distributions with high degrees. Further
studies are needed to understand the performance of these
distributions.

ACKNOWLEDGMENTS

Thanks to E. Nachmani for the additional details on their
results awsell as for providing us with the the codes matrices
from their experimentations, used in Section V-D. Thanks also
to V. Savin for providing us with the reference short LDPC
codes used in Sections V-E.

This work has been partly funded by the European Com-
mission through the H2020 project Hexa-X (Grant Agreement
no. 101015956).

SOURCE CODE

All the material necessary to reproduce the listed

experiments is available in open access at:
https://github.com/Orange-OpenSource/GNBP

REFERENCES

[1] 3GPP, “TSG RANI1 86 and 87 Meetings - Finale Minutes Reports,”
2016.

[2] M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced Complexity Iter-
ative Decoding of Low-Density Parity Check Codes Based on Belief
Propagation,” IEEE Transactions on Communications, vol. 47, pp. 673
- 680, 1999.

[3] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, and X.-Y. Hu,
“Reduced-Complexity Decoding of LDPC Codes,” IEEE Transactions
on Communications, vol. 53, no. 8, pp. 1288-1299, 2005.

[4] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and
Y. Be’ery, “Deep Learning Methods for Improved Decoding of Linear
Codes,” IEEE Journal of Selected Topics in Signal Processing, vol. 12,
no. 1, pp. 119-131, 2018.

[5] L. Lugosch and W. J. Gross, “Neural Offset Min-Sum Decoding,” in
Proc. IEEE International Symposium on Information Theory, 2017, pp.
1361-1365.

[6] A. Buchberger, C. Hidger, H. Pfister, L. Schmalen, and A. Graell i
Amat, “Pruning Neural Belief Propagation Decoders,” in Proc. IEEE
International Symposium on Information Theory, 2020, pp. 338-342.

[7]1 M. Lian, F. Carpi, C. Héger, and H. D. Pfister, “Learned Belief-
Propagation Decoding with Simple Scaling and Snr Adaptation,” in
Proc. IEEE International Symposium on Information Theory, 2019, pp.
161-165.

[8] I Be’Ery, N. Raviv, T. Raviv, and Y. Be’Ery, “Active Deep Decoding of
Linear Codes,” IEEE Transactions on Communications, vol. 68, no. 2,
pp. 728-736, 2020.

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

S. Ali et al, “6G White Paper on Machine Learning in Wireless
Communication Networks,” arXiv, 2004.13875, 2020. [Online].
Available: https://arxiv.org/abs/2004.13875

F. Miltiadis et al., “Pervasive Artificial Intelligence in Next Generation
Wireless: The Hexa-X Project Perspective,” in Proc. International Work-
shop on Artificial Intelligence in Beyond 5G and 6G Wireless Networks,
2022.

G. Larue, L.-A. Dufrene, Q. Lampin, P. Chollet, H. Ghauch, and
G. Rekaya, “Blind Neural Belief Propagation Decoder for Linear Block
Codes,” in Proc. IEEE Joint European Conference on Networks and
Communications - 6G Summit, 2021, pp. 106-111.

T. O’Shea and J. Hoydis, “An Introduction to Deep Learning for the
Physical Layer,” IEEE Transactions on Cognitive Communications and
Networking, vol. 3, no. 4, pp. 563-575, 2017.

T. Gruber, S. Cammerer, J. Hoydis, and S. t. Brink, “On Deep Learning-
Based Channel Decoding,” in Proc. Conference on Information Sciences
and Systems, 2017, pp. 1-6.

A. Makkuva, X. Liu, M. V. Jamali, H. Mahdavifar, S. Oh, and
P. Viswanath, “KO Codes: Inventing Nonlinear Encoding and Decoding
for Reliable Wireless Communication via Deep-learning,” arXiv,
2108.12920, 2021. [Online]. Available: https://arxiv.org/abs/2108.12920
G. Larue et al., “Low-Complexity Neural Networks for Baseband Signal
Processing,” in Proc. IEEE GlobeCom Workshops, 2020, pp. 1-6.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, www.deeplearningbook.org.

H. Ye, L. Liang, and G. Y. Li, “Circular Convolutional Auto-Encoder
for Channel Coding,” in Proc. IEEE International Workshop on Signal
Processing Advances in Wireless Communications, 2019, pp. 1-5.

Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, and P. Viswanath,
“LEARN Codes: Inventing Low-Latency Codes via Recurrent Neural
Networks,” in Proc. IEEE International Conference on Communications,
2019, pp. 1-7.

——, “Turbo Autoencoder: Deep Learning Based Channel Codes for
Point-to-Point Communication Channels,” in Proc. IEEE Conference on
Neural Information Processing Systems, 2019, p. 11.

M. Ebada, S. Cammerer, A. Elkelesh, and S. ten Brink, “Deep Learning-
Based Polar Code Design,” in Proc. Allerton Conference on Communi-
cation, Control, and Computing, 2019, pp. 177-183.

A. Elkelesh, M. Ebada, S. Cammerer, L. Schmalen, and S. ten Brink,
“Decoder-in-the-Loop: Genetic Optimization-Based LDPC Code De-
sign,” IEEE Access, vol. 7, pp. 141 161-141 170, 2019.

R. Tanner, “A Recursive Approach to Low Complexity Codes,” IEEE
Transactions on Information Theory, vol. 27, no. 5, pp. 533-547, 1981.
T. Richardson and R. Urbanke, Modern Coding Theory. ~Cambridge
University Press, 2007.

J. G. Proakis and M. Salehi, Digital Communications, 5th edition.
McGraw-Hill, 2008, pp. 558-571.

L. Lan, Y. Tai, L. Chen, S. Lin, and K. Abdel-Ghaffar, “A Trellis-Based
Method for Removing Cycles from Bipartite Graphs and Construction
of Low Density Parity Check Codes,” IEEE Communications Letters,
vol. 8, no. 7, pp. 443-445, 2004.

I. Dimnik and Y. Be’ery, “Improved Random Redundant Iterative HDPC
Decoding,” IEEE Transactions on Communications, vol. 57, no. 7, pp.
1982-1985, 2009.

E. Nachmani, Y. Bachar, E. Marciano, D. Burshtein, and Y. Be’ery,
“Near Maximum Likelihood Decoding with Deep Learning,” arXiv,
1801.02726, 2018. [Online]. Available: http://arxiv.org/abs/1801.02726


https://github.com/Orange-OpenSource/GNBP
https://arxiv.org/abs/2004.13875
https://arxiv.org/abs/2108.12920
www.deeplearningbook.org
http://arxiv.org/abs/1801.02726

IEEE TRANSACTIONS ON COMMUNICATIONS

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

E. Jang, S. Gu, and B. Poole, “Categorical Reparameterization with
Gumbel-Softmax,” in Proc. International Conference on Learning Rep-
resentations, 2017.

R. J. Williams, “Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning,” Machine Learning, vol. 8, no.
3-4, p. 229-256, 1992.

Y. Bengio, N. Léonard, and A. C. Courville, “Estimating or
Propagating Gradients Through Stochastic Neurons for Conditional
Computation.” arXiv, 1308.3432, 2013. [Online]. Available: http:
/larxiv.org/abs/1308.3432

M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“BinaryNet: Training Deep Neural Networks with Weights and
Activations constrained to +1 or -1,” arXiv, 1602.02830, 2016. [Online].
Available: http://arxiv.org/abs/1602.02830

J. Ramapuram and R. Webb, “Improving Discrete Latent Represen-
tations with Differentiable Approximation Bridges,” in Proc. IEEE
International Joint Conference on Neural Networks, 2020, pp. 1-10.
G. Hinton, N. Srivastava, and K. Swersky, “Neural Networks
for Machine Learning - Lecture 6.” [Online]. Available: https:
/Iwww.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

A. Agresti and B. Coull, “Approximate is Better than “Exact” for Interval
Estimation of Binomial Proportions,” The American Statistician, vol. 52,
no. 2, pp. 119-126, 1998.

M. Helmling et al., “Database of Channel Codes and ML Simulation
Results,” 2019. [Online]. Available: www.uni-kl.de/channel-codes

M. Fossorier and S. Lin, “Soft-Decision Decoding of Linear Block
Codes Based on Ordered Statistics,” IEEE Transactions on Information
Theory, vol. 41, no. 5, pp. 1379-1396, 1995.

H. Xiao-Yu, E. Eleftheriou, and D. Arnold, “Regular and Irregular
Progressive Edge-Growth Tanner Graphs,” IEEE Transactions on In-

formation Theory, vol. 51, no. 1, pp. 386-398, 2005.

G. Liva, L. Gaudio, and T. Ninacs, “Code Design for Short Blocks: A
Survey,” in Proc. IEEE European Conference on Networks Communi-
cations, Athens, Greece, 2016.

N. Raviv, A. Caciularu, T. Raviv, J. Goldberger, and Y. Be’ery,
“Perm2Vec: Graph Permutation Selection for Decoding of Error Cor-
rection Codes using Self-Attention,” IEEE Transactions on Communi-
cations, vol. 39, no. 1, pp. 79-88, 2021.

Guillaume Larue graduated from CentraleSupélec
engineering program at Paris Saclay University with
a specialization in embedded systems and telecom-
munication in 2019. He is currently pursuing a Ph.D.
at the Institut Polytechnique de Paris focusing on
AI/ML-based signal processing at the Physical layer
of IoT systems in future 6G networks. Since 2016,
his work at Orange Grenoble and Warsaw focuses
on the design of end-to-end IoT systems, associated
HW and SW testbeds as well as the integration of
Al functions at different levels of the network.

Louis-Adrien Dufrene received his Master of en-
gineering from IMT Atlantique-Brest in 2014 and
his Ph.D. degree in telecommunications from the
National Institute of Applied Sciences (INSA) in
Rennes in 2017. At Orange since 2014, his work
is focused on cellular connectivity solutions for IoT
use cases. In particular, he has worked on the energy
saving and coverage extension features in the LTE-
M standard. His current field of interest is the use
of artificial intelligence for digital signal processing
in IoT devices.

Quentin Lampin received an engineering degree
in telecommunication systems from INSA in Lyon
in 2009 and his Ph.D. degree in computer sciences
in 2014 from INSA de Lyon. He holds a full-time
researcher position at Orange and is a member of
the Orange Expert community. His research activity
focuses on connectivity technologies for IoT use
cases and covers the physical and link layers, with a
particular interest in neural networks and machine-
learning-based digital signal processing.

Hadi Ghauch received the Ph.D. degree in electrical
engineering from the KTH Royal Institute of Tech-
nology, Stockholm, Sweden, in 2017. Since 2018,
he has been an Assistant Professor with the Depart-
ment of Digital Communications of Télécom Paris,
Institut Polytechnique de Paris. His research interests
include optimization for large-scale learning, opti-
mization for millimeter-wave communication, and
the distributed optimization of wireless networks.

Ghaya Rekaya-Ben Othman is professor at
Télécom Paris of the Institut Polytechnique de Paris,
and CEO and co-founder of MIMOPT Technol-
ogy. Her research work focuses on advanced topics
in telecommunications, including MIMO/Massive
MIMO systems, Coding and Security Physical Layer
Network Coding, and Coding for massive spatial
multiplexing (SDM) optical fiber communications.
She has reference results as the Golden code and
also important contributions in the technological
convergence between Wireless and Optical Commu-
nications. Her research work has led to more than a hundred publications
in international journals and conferences and to the filing of more than forty
patents. Technology innovation is at the heart of her activities, both in teaching
and research, she is a trainer in “technology innovation” for engineering and
doctoral training. She was awarded the City of Paris prize for the best young
female scientist in 2007. She is the recipient of the International conference on
communication and networking (COMNET) Best Paper Award in 2018. She
was nominated “Chevalier dans 1’ordre des Palmes Académiques” in January
2020.



http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1602.02830
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
www.uni-kl.de/channel-codes

	Introduction
	Theoretical Background
	Linear Block Codes and Associated Graphical Representations
	Belief Propagation Decoders and Variants
	Belief Propagation Decoder
	Neural Belief Propagation Decoder
	Gated Neural Belief Propagation Decoder


	Generic Linear Block Code Neural Belief Propagation Auto-Encoder
	System Model
	Learning to Code: Main Challenges
	Differentiability of the Models
	Scalability - the ``Curse of Code Dimensionality''

	Linear Block Code Neural Encoder
	Gated Neural Belief Propagation Decoder
	Proposed Auto-Encoder Architecture

	Data-sets, Training & and Evaluation Procedures
	Results
	(8,4) Code: Illustration of the Proposed Concept
	(31,16) Codes: Statistical Study of Model Training
	Model Performance During Training
	Training Repeatability
	Correlation Between Decoders Types and their Performances
	Degree Distributions of Learned Codes

	(31,11) Codes: Auto-encoder Training Procedure and Ablation Study
	(63,36) & (63,45) Codes: Scalability and Algorithmic Complexity
	Scalability to (63,36) & (63,45) Codes
	Complexity Study

	Comparison with LDPC and other SotA Codes
	Comparison with Short (64,k) LDPC Codes - Impact of the Rate
	Comparison with State-of-the-Art (128,64) Codes - Impact of the Number of Iterations


	Discussion, Conclusion & Perspectives
	References
	Biographies
	Guillaume Larue
	Louis-Adrien Dufrene
	Quentin Lampin
	Hadi Ghauch
	Ghaya Rekaya-Ben Othman


