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Abstract—Visible light communication (VLC) provides an
alternative underwater wireless connectivity solution with its low
latency and high data rates albeit at relatively shorter distances
in the order of tens of meters. In the context of underwater sensor
networks (USNs), VLC is particularly suitable to establish con-
nectivity between “data mule” autonomous underwater vehicles
(AUVs) and sensor nodes since communications is enabled only
when the sensor node and mule AUV are in close proximity. In
this paper, we consider a USN scenario where a solar-powered
AUV gathers data from the sensor nodes using VLC signaling.
We formulate a three-dimensional trajectory optimization for
solar-powered AUVs with the goal of maximizing the harvested
energy under constraints imposed by the data transmission. The
optimization constraints include the minimum required data
transfer rate, therefore a corresponding transmission distance,
between the sensors and the AUV. We formulate the problem as
a bilevel optimization problem. The lower-level objective function
is in the form of traveling salesman problem which determines
the optimum sequence order of the sensor nodes to be visited
while the upper-level objective function is the optimization of
the trajectory between each pair of adjacent nodes for the given
order of node visits. Our numerical results demonstrate that
the proposed trajectory significantly prolongs the mission time
and autonomous operation of the AUV without the need to
return to home base. Furthermore, since the proposed trajectory
optimization is reactive to ocean currents, it brings reductions in
the energy consumption of the AUVs.

Index Terms—Visible light communication, underwater sensor
networks, trajectory optimization.

I. INTRODUCTION

Underwater sensor networks (USNs) have been increasingly
deployed in various maritime applications including pollution
monitoring, tsunami warnings, underwater oil field detection,
and valuable minerals explorations among others [1]. Conven-
tional USNs typically involve static sensor nodes distributed
in a large-scale marine environment. After the sensor data is
collected at a gateway node, e.g., a buoy or support vessel, it
can be transmitted to a remote location via wireless or optical
links [2]–[5]. Based on the distance between underwater sensor
nodes and the gateway node, underwater data collection can be
made either via a single hop or multiple hops. The multi-hop
transmission has the problem of unbalanced energy consump-
tion., e.g., sensors that are close to the gateway node deplete
their energies faster, leading to what is known as “energy
holes” [6] around the gate node. Furthermore, individual node
failures may result in disruption or degradation of the end-to-
end communication.
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The increasing adoption of autonomous underwater vehicles
(AUVs) provides novel approaches to tackle underwater data
collection in USNs. For example, AUVs can be efficiently
deployed as “data mules” to retrieve data from sensor nodes
via a wireless link [7]. In an AUV-assisted USN, AUV travels
around and gathers data from static sensor nodes. This helps
decrease the energy consumption of sensor nodes since they
are no longer responsible for data relaying and routing to
transfer the aggregated data to the gateway node [8]. The
required energy of the sensor nodes to send their own data
is also reduced due to shorter transmission distance.

For underwater wireless transmission, acoustic signaling
is commonly used and particularly appealing with its long
range in the order of kilometers [9]. However, acoustic
communication suffers from low data rates (in the order of
tens of kb/s) and low propagation speed (1500 m/s) [8]. An
alternative underwater wireless connectivity solution is visible
light communication (VLC) offering low latency and high data
rates in the order of Gb/s, albeit at relatively shorter distances
(in the order of tens of meters) [10]. VLC is particularly
suitable for data mule AUVs since communications is enabled
only when the sensor node and mule AUV are in close prox-
imity. Underwater VLC systems can be implemented using
either light emitting diodes (LEDs) or laser diodes (LDs) as
wireless transmitters [11]–[13]. LED-based underwater VLC
systems provide lower data rates as compared to LD-based
counterparts, however are more robust to pointing errors.

In this paper, we consider a USN scenario where an AUV
gathers data from the sensor nodes using VLC signaling.
While such an AUV-assisted USN offers significant advantages
in network operations such as data collection and localization,
the introduction of mobile nodes presents challenges such as
sophisticated trajectory planning and energy-efficient opera-
tion of AUVs whose mission time are mainly limited with
battery capacity. Energy consumption is also related to the
type of deployed AUVs. Propelled AUVs can reach higher
speeds, but their power consumption can be large due to the
continuous use of propeller engine [14]. In contrary, non-
propelled AUVs (gliders) use little to no power, but operate at
much lower speeds [15]. Floating up and diving in operations
in non-propelled AUVs is also possible by changing their
buoyancy with little power consumption [16]. Hybrid versions
[17] use their buoyancy engine for floating up and diving and
use their propeller engine for going forward. In the operation
of AUVs, the main power consumption source is therefore
propeller engine. The choice of trajectories therefore directly
impacts the mission time and energy consumption.

Since the energy efficiency of predefined trajectories [18]–
[22] remains low in particular for large mission areas with
randomly distributed sensor nodes, recent efforts on trajectory
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optimization have focused on reactive trajectories [23]–[27]
where the AUV path is corrected in real-time and refined to
cope the sudden changes during the operation. In [23]–[26],
assuming acoustic signaling for data transmission, trajectory
planning of the data mule AUVs is formulated as a traveling
salesman problem (TSP) to minimize the AUV travel time
[23], [24], or to maximize the value of information (VoI)
from the sensors [25], [26]. In [27], assuming VLC for data
transmission, the trajectory finding problem of the AUV is
solved using a greedy algorithm under VoI constraints. While
the works in [23]–[27] simply assume that the AUV follows
a straight path between each two sensor nodes, our previous
work [28] further considers the effect of ocean currents and
optimizes the trajectory between each two nodes.

The underlying assumption in above works [18]–[28] is
that the AUV is battery powered. Battery-powered AUVs are
required to return to the shore or the support vessel after a
certain period in order to get recharged whether or not their
mission is complete. Solar-powered AUVs have been further
proposed for long term deployments to address the energy
limitations of battery-powered counterparts [29]. They can
harvest power from the sun light and use the harvested power
to perform the mission or to store it for later use. In the current
literature [29], [30], it is commonly assumed that the solar-
powered AUV resurfaces in the daylight hours and recharges
its batteries using the solar energy on the water surface while
conducting its assigned mission during the night time hours.
However, the recent progress of solar cell technology enables
to efficiently harvest sunlight for submerged nodes [31]. This
therefore makes possible the solar-powered AUVs to harvest
energy during its mission.

In previous works where battery-powered AUVs are con-
sidered [18]–[28], the energy consumption is mainly related
to the mission trajectory defined to cover a given area of
interest. Energy harvesting (EH) aware trajectory optimization
for solar-powered AUVs might indicate a conflicting trajectory
to maximize the harvested energy, e.g., being closer to sea
surface. In this paper, we formulate three-dimensional (3D)
trajectory optimization for solar-powered AUVs with the goal
of maximizing the harvested energy under constraints imposed
by the data transmission. The optimization constraints include
a fixed amount of data to be retrieved by the AUV from
each node, therefore a corresponding transmission spectral
efficiency and time duration. We formulate the problem as
a bilevel optimization problem. The lower-level objective
function is TSP which determines the optimum sequence
order of the sensor nodes to be visited while the upper-
level objective function is the optimization of the trajectory
between each pair of adjacent nodes for the given order
of node visits. Our numerical results demonstrate that the
proposed trajectory significantly prolongs the mission time and
autonomous operation of solar-powered AUV without the need
to return to home base.

The rest of the paper is organized as follows: In Section
II, we present the system model including energy harvesting,
energy consumption, and optical communication models. In
Section III, we formulate and solve the trajectory optimization
problem. In Section IV, we provide numerical results and

Fig. 1. Underwater sensor network under consideration.

discussions on the performance in representative geographical
locations. We finally conclude in Section V.

II. SYSTEM MODEL

As illustrated in Fig.1, we consider a three-dimensional
USN scenario that covers a marine area of X (km)×Y (km)×
Z (km). It consists of a total of F randomly distributed
sensor nodes, Si i = 1, 2, ..., F , with position vector pSi

=
(xSi

, ySi
, zSi

) anchored to the bottom of the sea with different
heights. It is assumed that the three-dimensional underwater
space map and the sensors’ locations are readily available at
the AUV1.

A. Motion Model
We assume the deployment of a hybrid AUV [17] which has

both propeller engine and buoyancy engine. It uses propeller
engine to operate at relatively high speeds while it uses
buoyancy engine to glide (i.e., float up and dive in) [16]. As
illustrated in Fig. 2, the AUV is assumed to operate in four
different modes, namely communication, floating, thrust, and
diving, modes which are elaborated below:

• Communication mode: When the AUV visits a sensor
node for data gathering, it switches to the communication
mode during which it maintains a certain distance with
the sensor node during the data transfer. In this mode, the
buoyancy of the vehicle is made equal to the buoyancy of
the water at the desired depth [16], known as “neutrally
buoyant” position to keep the AUV (nearly) motionless.

• Floating mode: After the communication link is termi-
nated, the AUV uses buoyancy engine to climb up. For
this purpose, the vehicle’s buoyancy is made less than
that of the sea water so that the vehicle can float up to
reach a desired depth [16].

• Thrust mode: In the thrust mode, the AUV uses its
propeller engine to go forward. During this mode, it
possesses a high maneuverability capability but at the cost
of consuming more power for the operation [14].

1Commercially available solutions are available, see e.g., [32], [33] for
underwater positioning and navigation.
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Fig. 2. Operation modes of AUV.

• Diving mode: To visit the next sensor node, the AUV
stops the propeller engine and uses the buoyancy engine
for diving. For this purpose, the vehicle’s buoyancy is
made greater than that of the sea water so that the vehicle
can dive down to reach a desired depth [16].

Assume that the AUV starts from the node S1, which is
the closest node to its home base (i.e., support vessel, port,
etc). Let S = (S1,1,S2,i, ...,Sk,i, ...,SF,i) i ∈ {2, ..., F}
denote the vector that describes the optimal sequence order of
sensor node visits (see Section III for the related optimization).
For example, Sk,i indicates that the sensor Si was visited
in the kth order. Let T =

∑F
k=1 Tk denote the mission

time of AUV where Tk is the travel time from the sensor
Sk,i to the sensor Sk+1,j , k = 1, 2, ..., F , j ̸= i, j =
1, 2, ..., F . This is divided into N equal-length time slots
each with a duration of δtk [n] = Tk/N . If δtk is chosen
sufficiently small, the location of the AUV can be assumed
to be fixed during each time slot. The position of the AUV
during its travel from Sk,i to Sk+1,j can be therefore de-
scribed by the vector pA,k [n] = (xA,k [n] , yA,k [n] , zA,k[n]),
n = 1, 2, .., q1, .., q2, .., q3, .., N where q1, q2, q3, andN de-
note switching times between different modes of operation
(see Fig.2). Let νM [n] = (vM,x [n] , vM,y [n] , vM,z [n]) denote
the velocity of the AUV for a given operation mode M ∈
{M1,M2,M3,M4} where M1, M2, M3, and M4 respectively
denote communication, floating, thrust, and diving modes. It
can be noted that the vehicle remains nearly motionless in the
communication mode, i.e., νM1 [n] = (0, 0, 0) 2. Therefore,
we can formulate the AUV state as

pA,k [n] =
pA,k [n− 1] ,n = 1, 2, ..., q1
pA,k [n− 1] + (νo [n] + νM2 [n]) δtk [n] , n = q1, ..., q2
pA,k [n− 1] + (νo [n] + νM3

[n]) δtk [n] , n = q2, ..., q3
pA,k [n− 1] + (νo [n] + νM4

[n]) δtk [n] , n = q3, ..., N

,

(1)

where νo [n] = [νo,x [n] , νo,y [n] , νo,z [n]] is the random vector
quantifying the ocean current speed [17]. Specifically, νo,x [n]
and νo,y [n] are modeled as independent Gaussian random

2The AUV may be subject to sways due to ocean currents and other distur-
bances in underwater environments which cannot be completely compensated
by the buoyant engine. This may result in pointing errors as a result of
misalignment between transmitter and receiver. Pointing-acquisition-tracking
(PAT) methods can be used [13], [34] to handle such residual pointing errors.

variables with mean value of α and variance of β. Since the
velocity of the ocean currents in the ZE direction is negligible,
νo,z [n] is assumed to be zero [35].

B. Energy Consumption Model

The power consumption is calculated as the summation of
power consumed for the movement of the vehicle and the
power consumed by all other subsystems (i.e., communication,
control, lighting, etc.) other than movement. The latter is called
“hotel load” and is a negligible amount compared to the
power consumption of the propeller engine [36]. Therefore,
we assume the consumed power during communication mode
is zero, i.e., Φout [n] = 0 for n = 1, 2, ..., q1. In floating
and diving modes, the power consumption for the vehicle’s
movement in the gliding process is the power used to pump
the water in and out of the density control chamber to change
the buoyancy and can be assumed negligible3. Therefore, we
have Φout [n] = 0 for n = q1, ..., q2 and n = q3, ..., N . In the
thrust mode, assuming that the AUV moves with a constant
speed [14], the consumed power is constant during each time
slot and is given by

Φout =
ρ

2ηp
CDAs∥νM3

∥3 , (2)

where ∥.∥ denotes the Euclidean vector norm, ηp is the
efficiency of the propulsion system, ρ is the density of the
water, and CD is the drag resistance coefficient. In (2), As is
the wetted surface area of the AUV and is given by [38]

As = 2πDs
2

4

(
1 + L

Ds

√
1−Ds

2/L2
sin−1

(√
1−Ds

2/L2

))
+Awings,

(3)

where Ds =
√
6m/ρπL, m is the mass, L is the length of

the AUV, and Awings is the surface area of its wings.
The energy consumption in each time slot is

Eout,k [n] = Φoutδtk [n] · (4)

The total energy consumption of the AUV to complete the
mission (i.e., visiting F sensors in the mission area) is then
calculated as Eout =

∑F
k=1

∑q3
n=q2

Eout,k [n].

C. Energy Harvesting Model

As depicted in Fig.3.a, the overall solar intensity above
the water includes direct and diffuse irradiances. A portion
of direct and diffuse irradiances reflects from the air-water
interface and a portion of it is refracted through the surface to
the water [39]. The refracted portion will then pass through
the water while facing attenuation in its way to reach the AUV.
Thus, the received solar energy at a specific depth is affected
by many factors including attenuation of the light intensity due
to absorption and scattering, active surface area of the solar
panel attached to the vehicle, and the solar panel’s efficiency.

3In [37], assuming a velocity of νM2
= νM4

= 0.4m/s during
floating and diving modes and a depth of zA = 200m, the average energy
consumption is reported to be less than 20 kJ. This is magnitudes of orders
smaller than the energy consumption in the thrust mode (which is in the order
of tens of MJ) and can be safely neglected in the analysis
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Mathematically speaking, the harvested power by the AUV
during the nth time slot is given by [40]

Φin,k [n] = ξκΨ0,water [n] exp (−czA,k[n]) . cos (Ω [n]) , (5)

where zA,k[n] is the depth of the AUV, c is the extinction
coefficient of the water, ξ is the solar panel efficiency, κ is the
equivalent area of the solar panel, and Ω is the panel tilt. In
(5), Ψ0,water is the light intensity right after passing through
the water and given by

Ψ0,water [n] = (1−Υtot)Ψ0,air [n] , (6)

where Ψ0,air [n] is the total intensity before entering the water
(see Appendix I) and Υtot is the overall reflection of the solar
direct irradiance from the ocean surface [40]. Assuming that
the light is unpolarized and the water surface is flat, it can be
calculated as the average of the reflectivity of the s-polarized
and p-polarized light, i.e., Υtot = 0.5 (Υs [n] + Υp [n]) where
Υs [n], and Υp [n] are respectively given by

Υs [n] =

[
n1 cos (ς [n])− n2g [n]

n1 cos (ς [n]) + n2g [n]

]2
· (7)

Υp [n] =

[
n1g [n]− n2 cos (ς [n])

n1g [n] + n2 cos (ς [n])

]2
· (8)

In the above, g [n] =
√
1− [(n1/n2) sin (ς [n])]

2, and ς [n] is
the solar zenith at time slot n (see Fig.3.b), n1 and n2 are the
indexes of refraction for air and water respectively.

The harvested energy for a given time slot is

Ein,k [n] = Φin,k [n] δtk [n] · (9)

The total harvested energy by the AUV during its mission is

then given by Ein =
F∑

k=1

N∑
n=1

Ein,k [n].

D. Communication Model

Either LEDs or LDs can be used as transmitters in under-
water VLC systems [11]. LEDs can provide relatively lower
data rates as compared to LD-based systems. However, their
divergence angle can relax the pointing-acquisition-tracking
(PAT) requirements [13]. Based on the intended data rate and
the level of PAT sub-system complexity that can be afforded,
both light sources can be used. While the location information
of sensor nodes are available at the AUV based on a three-
dimensional underwater space map, it still needs to scan an
uncertainty region centered about this initial position estimate
[41] before the optical communication link can be established.
After the sensor node is located, the AUV points its aperture
towards the node and initiates the data transfer.

The spectral efficiency of VLC link (in bits/sec per unit
bandwidth) is given by [42]

R
k
[n] ≥ 1

2
log2

(
1 +

e(rhk [n]P )
2

2πσ2

)
, (10)

where r is the detector responsivity, P is the transmit power,
and σ2 is the noise variance. In (10), hk [n] is the path loss
between the AUV and the sensor node Sk,i and is given by
[43]

hk [n] = exp (−cdA,k [n]) , (11)

where dA,k [n] =
∥∥pA,k [n]− pSk,i

∥∥ is the link distance be-
tween the AUV and the sensor node Sk,i. The communication
mode spans a total of tM1,k =

∑q1
n=1 δtk [n] seconds during

which the AUV stops and extracts data from the node. Given
the link bandwidth of B, the retrieved data (in terms of bits)
for this duration is

ℑk = BRktM1,k· (12)

Let ℑsc denote the storage capacity of each sensor node. The
link parameters (tM1,k and Rk) need to be selected to support
this data retrieval, i.e., ℑk = ℑsc.

III. OPTIMAL TRAJECTORY

As described in the previous section, the AUV visits F
sensor nodes and returns to the initial point after completing
the mission. It takes N time slots to visit from one sensor
node to the other. Therefore, the AUV’s trajectory is defined
by (13), as shown at the bottom of this page.

Let Qb denote the initial battery energy (i.e., energy level
at the start of the mission). The overall available energy in
each time slot is Ec,k [n] = Qb +Ein,k [n]. We define the net
energy at each time slot as

Enet,k [n] = Ec,k [n]− Eout,k [n] · (14)

In our work, we aim to maximize the net energy defined
as Enet =

∑F
k=1

∑N
n=1 Enet,k [n]. It is obvious that Enet is

directly affected by the visit sequence of sensor nodes and the
path followed between two consecutive nodes. We formulate
the problem as a bilevel optimization problem. The lower-level
objective function is the minimization of the mission length
dtot. It is defined as

dtot =

F∑
i=1

F∑
j ̸=i,j=1

dijbij , (15)

where dij =
∥∥pSi

− pSj

∥∥ is the distance between sensor
nodes Si and Sj j ̸= i, j = 1, 2, ..., F . bij is set as 1 when
there is a path between sensor Si to sensor Sj , otherwise set
as bij = 0. The upper-level objective function is maximization

PA =

pA,1 [1] ...pA,1 [N ]︸ ︷︷ ︸
Firstnode

...pA,k [1] ...pA,k [N ]︸ ︷︷ ︸
kthnode

..... .pA,F [1] ...pA,F [N ]︸ ︷︷ ︸
F thnode

pA,1 [1] ...pA,1 [N ]︸ ︷︷ ︸
Firstnode

 · (13)
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(a)

(b)
Fig. 3. (a) Solar irradiance and various effects on them in their way of
reaching the destination, (b) Geometry of solar panel with respect to sun.

of the net energy, Enet, during the mission for the optimized
sequence order of node visits obtained from the lower-level
optimization. Mathematically speaking, we have

max
p
A

Enet

s.t. C1 : ℑk = ℑsc, ∀ k = 1, ..., F
C2 : Φin,k [n] ≥ Φth, ∀n = q2, ..., q3

, (16)

where the optimal visit sequence of sensor nodes is obtained
from
min
b

dtot

s.t. C3 :
F∑

j=1,j ̸=i

F∑
i=1

bij = 1 ,
F∑

i=1,i̸=j

F∑
j=1

bij = 1

C4 :
∑
i∈Ξ

∑
j ̸=i,j∈Ξ

bij ≤ |Ξ| − 1, ∀Ξ ⊆ {1, 2, ..., F}

·

(17)

The constraint C1 imposes that the full amount of data
stored on each sensor node is completely retrieved during
the period of communication mode. The transmission time
duration (tM1,k) and transmission spectral efficiency (Rth)
should be selected to support this data retrieval. For a fixed
value for Rth, the required time duration for data transfer can
be obtained using (12). To achieve the selected value of Rth,

the AUV needs to maintain a certain distance of dth from the
sensor nodes, i.e.,

∥∥pA,k − pSk,i

∥∥ = dth during these tM1,k

seconds. Based on (10) and (11), we can write

dth ≤
1

2c
ln

[(
2πσ2

er2P

(
22Rth − 1

))−1
]
· (18)

Accordingly, the operation depth of the AUV during the
communication mode must satisfy zA,k ≥ ∆min,k where
∆min,k is given by

∆min,k = zSk,i
− dth· (19)

The constraint C2 imposes a minimum required power
(denoted by Φth), which dictates a maximum operation depth
∆max for the AUV in the thrust mode, i.e., q2 ≤ n ≤ q3,
which is obtained from (5) as

∆max =
1

c
ln

(
Φth

ξκΨ0,water cos (Ω)

)−1

· (20)

Constraint C3 implies that each sensor is visited exactly
once. In constraint C4, Ξ is any sequence of sensor nodes
that can form a sub-tour instead of one single tour. It enforces
that there is only a single tour covering all sensor nodes, and
not multiple disjointed tours.

The lower level objective function is in the form of a trav-
eling salesman problem (TSP), which is an NP-hard problem
[44]. It can be solved using nearest neighbor (or greedy)
algorithms [21], [27] or evolutionary algorithms such as the
genetic algorithm [45], particle swarm optimization [46], and
ant colony algorithm [7]. Here, we use genetic algorithm due
to the fact that the crossover feature of genetic algorithm
makes it more powerful than other evolutionary algorithms in
solving TSP [47]. The genetic algorithm relies on a population
of individuals that simultaneously explores the search space
and generates new solutions by recombining individuals of
the current population. The output of lower-level optimization
is a matrix with zero and one entries from which we extract
the sequence order of sensor nodes to be visited and therefore
construct the vector (see Appendix II).

Having the optimum sequence order of the sensor nodes, we
solve the upper-level objective function of (16) numerically
using fmincon function [48] of the MATLAB optimization
toolbox. This function is based on the trust-region algorithm
and is defined to carry out the optimization by using the
present information and then repeat the process over and over
until it reaches a convergence. Accordingly, with knowledge
of the start and the end points of the movement and the
underwater current speed in each time slot, the best trajectory
between the two sensor nodes is determined.

The flowchart of the proposed algorithm for trajectory
planning is provided in Table I. The inputs of the upper-level
optimization problem include the number of sensor nodes (F ),
the number of time slots (N ), the minimum required depth
(∆min,k) to satisfy the data rate constraint, the maximum depth
(∆max) to satisfy the minimum levels of harvested power, the
storage capacity of sensor nodes (ℑsc), the velocity of the AUV
(∥νM∥) in addition to the optimum sequence order of sensors
to be visited. The optimum sequence order of sensor nodes
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TABLE I
FLOWCHART FOR THE PROPOSED EH-AWARE TRAJECTORY PLANNING

ALGORITHM

1: Initialization:
2: Set F , N , ∆min,k , ∆max, ∥νM∥, ℑsc

S ←
(
S1,1, S2,i, ..., Sk,i, ..., SF,i

)
, i ∈ {2, ..., F}

3: Update and finding the optimal solution:
4: for k = 1 to F
5: if zA,k [n] ≥ ∆min,k

6: M← M1 (switch to communication mode), n← 1
7: end if
8: if ℑk = ℑsc (number of received bits)
9: M← M2 (switch to floating mode), n← q1
10: end if
11: if zA,k [n] ≤ ∆max

12: M← M3 (switch to thrust mode), n← q2
13: end if
14: for n = q2 to n = q3
15: Update and interpolate the ocean current vector fields νo [n]

16: δtk [n]← ∥pA,k[n]−pA,k[n−1]∥
∥νo[n]+νM[n]∥

17: Update the upper-level optimization problem of (16)
18: Maximize Enet

19: pA,k [n]←
(
xA,k [n] , yA,k [n] , zA,k[n]

)
20: end for
21: if zA,k+1 ≤ ∆min,k+1

22: M← M4 (switch to diving mode), n← q3
23: else if
24: M← M1, n← N
25: end if
26: end for
27: Output: PA

(denoted by S) is the output of the lower-level optimization
problem and is stored on the AUV before the mission start.
During the mission, the AUV executes the solution of upper-
level optimization problem in real time which deals with the
optimization of the path between each two adjacent sensors.
The AUV starts from sensor S1,1 which is the closest node
to the base station. Driven by buoyancy engine, the AUV
adaptively adjusts its depth until it satisfies the threshold data
rate (zA,k ≥ ∆min,k). It then switches to the communication
mode (M ← M1). The AUV sends a wake-up signal for the
sensor to establish the link and start transferring the data. After
it retrieves ℑk = ℑsc bits, the node goes to sleep and the
AUV switches to floating mode (M← M2) at n = q1. Using
buoyancy engine, it floats up until it reaches a suitable depth
near the water surface (zA,k ≤ ∆max). At time slot n = q2, it
switches to thrust mode (M← M3) during which the AUV is
driven by the propeller engine until time slot n = q3. It then
switches to diving mode (M ← M4) and gets close to the
next sensor node using buoyancy engine. During this mode, it
adjusts its depth taking into account the required transmission
distance for data transfer. At time slot n = N (when its
distance to the next sensor node is close enough to satisfy
the threshold data rate), it switches to communication mode
again, and the same process will be repeated until it visits all
the sensor nodes.

IV. NUMERICAL RESULTS

In this section, we first present the potential levels of
underwater harvested energy for a given operation depth,
water type, and geographical location. Then we present our
numerical results for the trajectory optimization and discuss

the improvement in net energy made possible through this
optimization. Unless otherwise stated, system and channel
parameters are provided in Table II while AUV specifications
are further provided in Table III. The populations and the
number of iterations in the genetic algorithm are set as 100
and 10000, respectively. The storage capacity of each sensor
node is ℑsc = 256Mbits [49]. Therefore, the total data
to be collected from F = 18 sensor nodes is equal to
ℑsc = 4.608Gbits.

The amount of harvested energy is obviously dependent on
the time of the day and geographical location. We assume
four representative days of the year, namely January 1st (i.e.,
Θ = 1), March 30th (Θ = 90), June 28th (Θ = 180), and
September 26th (Θ = 270). In addition, we consider three
climate types including tropical (also known as equatorial,
which is close to the equator), mid-latitude (between the
latitudes of ϑ = 23◦ and ϑ = 66◦ in the north and between the
latitudes of ϑ = −23◦ and ϑ = −66◦ in the south polar region
of earth), and subarctic (region in the northern hemisphere near
the arctic ocean). As examples, we consider

• Indian Ocean with latitude of ϑ = 0.06° and longitude
of θ = 63.72° (representative of tropical climate type),

• Arctic Ocean with latitude of ϑ = 65.24° and longitude
of θ = −60.46° (representative of subarctic climate type),
and

• Black Sea with latitude of ϑ = 41.8° and longitude of
θ = 37.6° (representative of mid-latitude climate type).

The panel tilt is assumed to be zero, i.e., Ω [n] = 0 ∀n,
and the solar powered AUV is assumed to be located on
the sea surface, i.e., zA = 0 . Fig.4 illustrates the hourly
variations of the harvested power using (5) in tropical, sub-
arctic, and mid-latitude climate types under consideration
for different seasons. Comparison of these figures reveals
that there might be significant differences in the amount of
harvested energy depending on the time of the day, specific
season and geographical location. For geographical locations
and the representative days under consideration, the maximum
harvested power is obtained around wmax = 12 (when the
zenith angle is at a minimum level) except in the mid-latitude
climate type and on Θ = 180th day of the year where it is
obtained at wmax = 11. The determination of wmax is critical
to achieve the best performance in terms of energy harvesting
while planning the mission. If the AUV’s mission time takes
T hours, the AUV should start its mission T/2 hours before
wmax so it can hit wmax just in the middle of the mission. The
best start time is then determined as tstart = |wmax − T/2|.

It should also be noted that the daylight hours are different
for these locations. For example, in subarctic climate type, the
maximum and minimum daylight duration is 19 and 5 hours,
respectively, in Θ = 180th and Θ = 1st day of the year. In
tropical climate, the daylight duration is the same (14 hours)
for all the representative days. Morover, there is not much
difference between the amount of harvested power in different
days of the year for this location, while for subarctic and mid-
latitude locations, the specific season has a significant effect.
For example, maximum and minimum levels of harvested
power are obtained as Φin,max = 222.1W and Φin,min =
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Fig. 4. Hourly variation of harvested power on the sea surface for different days in climate type of (a) Tropical, (b) Subarctic, (c) Mid-latitude.
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Fig. 5. Average amount of harvested power with respect to depth for different
water types on (a) 1st day, (b) 90th day, (c) 180th day, (d) 270th day of the
year.

202.7W respectively for Θ = 1st and Θ = 270th day of
the year for tropical climate type. These significantly decrease
for the representative subarctic location where maximum and
minimum levels are observed as Φin,max = 108.1W and
Φin,min = 29.31W respectively for Θ = 180th and Θ = 1st

day of the year.
In the following, we assume the mid-latitude climate type

(Black Sea location) as an example. Fig.5 illustrates the
average amount of harvested power (averaged over daytime
hours) with respect to operation depth for different water
types. For example, on the Θ = 180th day of the year, when
the AUV is close to the sea surface (i.e., zA ≤ 1m), it is
capable of harvesting an average amount of Φin ≥ 161W,
Φin ≥ 146.5W, Φin ≥ 125.5W, and Φin ≥ 19.4W in pure
sea, clear water, coastal water, and harbor water, respectively.

TABLE II
SYSTEM AND CHANNEL PARAMETERS

Parameter Variable Value
Mission area X×Y ×Z 20×20×0.03 km3

Number of sensor nodes F 18
Number of time slots N 1000
Mean of ocean current speed α 0.6m/s
Variance of ocean current speed β 0.01
Transmit power Pt 0.01W
Detector responsivity r 0.5
Noise variance σ2 10−11W
Bandwidth of the channel B 100 MHz
Storage capacity of sensor nodes ℑsc 256 Mbits
Minimum required spectral efficiency Rth 8 bits/sec/Hz
Minimum level of harvested power Φth 80W
Refractive index of air n1 1
Refractive index of water n2 1.33
Extinction coefficient for pure sea c 0.056 m−1

Extinction coefficient for clear ocean c 0.015 m−1

Extinction coefficient for coastal water c 0.305 m−1

Extinction coefficient for harbor water c 2.17 m−1

Latitude of the location of interest ϑ 41.8°
Longitude of the location of interest θ 37.6°
Day of the year Θ 180
Solar constant Ψ 1366 W/m2

As the depth increases, the harvested energy diminishes. For
example, in pure sea, when the depth is less than 70 m, the
harvested energy becomes negligible. As turbidity increases,
the required depth further decreases. The harvested energy
becomes zero for zA ≥ 70m, zA ≥ 35m, zA ≥ 15m, and
zA ≥ 2m, respectively, for clear water, coastal water, and
harbor water. These results indicate that the AUV is indeed
capable of harvesting power even when operating underwater.
However, the amount of harvested energy is significantly
dependent on the water type as well as the operation depth.
This shows the importance of EH-aware three-dimensional
(3D) trajectory optimization taking into account the operation
depth.

To demonstrate the benefits of trajectory optimization,
we consider a coastal marine area with a size of
X × Y × Z = 20Km × 20Km × 30m as an example
with F = 18 sensors with location vectors provided in
Table IV. We assume that the mission is done in Black Sea
with latitude of ϑ = 41.8° and longitude of θ = 37.6°,
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TABLE III
SPECIFICATIONS OF THE SOLAR-POWERED AUV

Parameter Variable Value
Length of the solar-powered AUV L 1.8 m [50]
Mass of the solar-powered AUV m 75.5 Kg [50]
Diameter of the solar-powered AUV Ds 0.14 m [50]
Surface area of the solar panel κ 1m× 1m [51]
Wing area Awings 0.127m2 [17]
Drag coefficient CD 0.0064 [50]
Efficiency of the propulsion system ηp 73% [50]
Efficiency of the solar panel ξ 20% [51]
Velocity of the AUV (thrust mode)

∥∥νM3

∥∥ 2 m/s [17]
Velocity of the AUV (floating mode)

∥∥νM2

∥∥ 0.4 m/s [17]
Velocity of the AUV (diving mode)

∥∥νM4

∥∥ 0.4 m/s [17]
Initial battery storage size Qb 36MJ [50]
Water density ρ 997Kg/m3 [17]
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Fig. 6. (a) Optimal 3D EH-aware trajectory, (b) Benchmarking 2D trajectory.

the date is June 28th (Θ = 180th ), the water is coastal
type, and wmax = 11 am. As discussed in the previous

TABLE IV
SENSOR LOCATIONS

Sensor Si pSi
(Km,Km,m) Sensor Si pSi

(Km,Km,m)
S1 (9, 1, 25) S10 (11, 16, 23)
S2 (4, 5, 19.5) S11 (12, 9, 19)
S3 (3, 17, 21) S12 (16, 8, 19.4)
S4 (6, 3, 22) S13 (6, 10, 20)
S5 (1, 15, 19.3) S14 (10, 11, 20)
S6 (2, 9, 20) S15 (10, 5, 24)
S7 (19, 12, 25) S16 (14, 11, 19.8)
S8 (17, 16, 20.1) S17 (7, 19, 22)
S9 (8, 13, 27) S18 (13, 14, 19.4)

section, we first solve (17) using genetic algorithm and
obtain the optimum sequence order of sensor nodes as S =
(S1,1,S2,4,S3,2,S4,6,S5,5,S6,3,S7,17,S8,9,S9,10,S10,18,S11,8,
S12,7,S13,12,S14,16,S15,11,S16,14,S17,13,S18,15). For the
given order, we then solve (16) to yield the optimal trajectory
illustrated in Fig. 6.a. The optimal operation depth at each
sensor node is the minimum required depth for the AUV to
satisfy the constraint C1 and is obtained in accordance with
each sensor’s height using (19).

As a benchmark (see Fig.6.b), we consider a
two-dimensional (2D) trajectory where the AUV
works at a fixed operation depth and follows a
straight path between sensor nodes. In this case, the
sequence order of sensor nodes is determined by
the nearest neighbor algorithm and is given by S =
(S1,1,S2,4,S3,2,S4,6,S5,5,S6,3,S7,17,S8,10,S9,18,S10,16,S11,11
,S12,14,S13,9,S14,13,S15,15,S16,12,S17,8,S18,7). The selection
of fixed operation depth is made such that it guarantees
a reliable transmission between the AUV and each of the
nodes. For this example, the fixed operation depth is found
as zA = 9.5m4. For the given bandwidth of B = 100MHz
and required spectral efficiency of Rth = 8bits/sec/Hz,
it can be calculated from (12) that the required data of
ℑsc = 256Mbits can be gathered in tM1,k = 0.32 seconds.
Moreover, to satisfy Rth = 8bits/sec/Hz, the distance
between the AUV and the sensor node needs to be equal to
dth based on (18). In the 2D benchmarking case, since the
operation depth is fixed, the distance between the AUV and
each node to satisfy Rth = 8bits/sec/Hz is less than dth in
most cases. The communication duration takes values in the
range of tM1,k = 0.19− 0.3 seconds. The difference between
two cases is obviously negligible given the mission time in
terms of hours.

In Fig.7.a, we illustrate the consumed and harvested energy
levels as well as the net energy over the mission duration
for the EH-aware 3D optimum trajectory. We assume that the
initial battery energy is Qb = 36MJ [50], so the net energy
level at the start of the mission is Enet = 36MJ. Under the as-
sumptions of ∥νM3∥ = 2m/s, ∥νM2∥ = ∥νM4∥ = 0.4m/s, and
∥νM1∥ = 0m/s, the required mission time is T = 9.59 hours,

4In the USN scenario under consideration, the depth that guarantees the
reliable transmission between the AUV and all the nodes (to satisfy the
spectral efficiency of Rk [n] ≥ Rth) is zA ≥ 9.4m which is dictated by the
node with the highest depth amongst all. Therefore, in the benchmarking case
with a fixed depth trajectory, we assume that the AUV swims at the depth of
zA = 9.5m.
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Fig. 7. Consumed, harvested and net energy levels over the mission duration (a) optimal 3D trajectory, (b) benchmark 2D trajectory.

and the corresponding mission length is dtot = 73.44Km.
Assuming that the mission is initiated at the best start time
of tstart = 6 : 13 : 00, the total harvested energy during the
mission is Ein = 6.28MJ while the total consumed energy
is Eout = 36.8MJ. Therefore, at the end of the mission, the
remaining net energy is Enet = Qb +Ein −Eout = 5.43MJ.
This indicates that the AUV does not run out of battery and, by
the time the mission is completed, it has an additional amount
of 5.43MJ remaining in its battery.

In Fig.7.b, we illustrate the consumed, harvested and net
energy levels for the benchmarking 2D trajectory. In this case,
it takes T = 12.29 hours to complete the mission, and the
corresponding mission length is dtot = 89.28Km. The total
consumed energy is Eout = 44MJ. Assuming that the mission
starts at tstart = 4 : 51 : 00 (i.e., the best start time for this
case), the total harvested energy is Ein = 0.6MJ. It can be
readily seen that the AUV runs out of battery before w =
15 : 00 : 00 . The net energy at the end of the mission is
Enet = −7.42MJ, which indicates that the AUV would need
this additional amount to complete the mission.

Fig.8 illustrates the effect of thrust mode’s velocity on the
AUV performance. It is observed that energy consumption in-
creases proportional to the cube of velocity based on (2). It has
also an indirect effect on the energy harvesting. According to
(9), with the increase in the velocity, the time taken to go from
one sensor to the next decreases and therefore less power can
be harvested from the sun. Therefore, the net energy effectively
decreases. For instance, assume a velocity of ∥νM3 [n]∥ =
3m/s. The required mission time is T = 6.4 hours. The total
harvested energy during the mission is Ein = 4.2MJ while
the total consumed energy is Eout = 91.7MJ. Therefore, at
the end of the mission, there is an energy shortage in the
amount of Enet = Qb + Ein − Eout = −51.46MJ. On the
other hand, if we decrease the velocity to ∥νM3 [n]∥ = 1m/s,
the required mission time is T = 19.4 hours. The total
harvested energy during the mission is Ein = 12.74MJ while
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Fig. 8. Effect of velocity on the harvested energy, consumed energy, and net
energy.

the total consumed energy is Eout = 6.7MJ. Therefore, at
the end of the mission, the remaining net energy is Enet =
Qb + Ein − Eout = 42MJ. However, the operation time
(T = 19.4 hours) significantly increases from 6.4 hours to
19.4 hours. This indicates the importance of properly selecting
the velocity value to find the best trade-off between the net
energy and operation time.

In Fig. 9, we compare the net energy levels for three climate
types under consideration and the representative operation
days. We consider the parameters provided in Table II and
Table III. In the case of benchmarking 2D scheme, the
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Fig. 9. Comparison of net energy levels for different operation days under consideration in (a) Tropical, (b) Subarctic, and (c) Mid-latitude climate types.

harvested energy remains very low values in all the climate
types and, regardless of the operation day, this trajectory yields
negative values for net energy indicating that the battery runs
out before the mission time for the given size of area and the
number of sensor nodes to be visited. In general, optimized
trajectory yields much better performance in comparison to the
2D benchmarking scheme. The net energy level changes with
the operation day since it is highly dependent on harvested
energy level. For all operation days under consideration except
the Θ = 1st day of the year for the subarctic location,
net energy levels always take positive values indicating that
mission is successfully completed as a result of the adopted
optimal EH-aware trajectory.

V. CONCLUSION

In this paper, we considered a USN network where the solar-
powered AUV visits sensor nodes for data retrieval through
a VLC link. We presented the potential levels of underwater
harvested energy for different operation depths, water types on
representative days and geographical locations. We formulated
the design of 3D optimal solar-powered AUV trajectory as an
optimization problem to maximize the harvested energy while
minimizing its energy consumption. The optimization problem
was numerically solved under data rate constraints imposed
by the VLC link and in the presence of ocean currents.
We investigated the amount of harvested power levels and
consumed power levels as well as the net energy remaining
in the battery for the optimal case as well as a benchmarking
case where the solar-powered AUV swims at a fixed depth and
the selection of sequence order of sensor nodes to be visited
is not optimal. In the benchmarking case, it was observed that
the AUV runs out of battery before the mission is complete
resulting in a failure of autonomous operation. The results
of the proposed EH-aware optimum trajectory demonstrated
that the autonomous operation can last for longer durations
without the need for the AUV to go back to the home base
for recharging its batteries.

APPENDIX I
When the AUV is on the surface, the solar intensity normal

to the panel’s surface is dependent on the panel tilt (Ω) and
solar zenith angle (ς), i.e., the angle between the sun’s rays and
the vertical direction, as shown in Fig.3. b. In an underwater
scenario, it can be assumed that all of the solar intensity
is vertical [40]. The amount of total intensity right before
entering the water Ψ0,air [n] can be obtained by [48]

Ψ0,air [n] = Ψ

(
1 + 0.033 cos

360Θ

365

)
.τ. cos (ς [n]) , (21)

where Ψ is the solar constant and Θ is the specific day of the
year. Here, τ = 0.6174 [48] is the atmospheric transmittance.
In (21), ς is the solar zenith angle and is calculated as

ς [n] = 90◦

−
[
sin−1 (sin (ϑ [n]) sin (δ) + cos (ϑ [n]) cos (δ) cos (O))

]
,

(22)

where ϑ [n] is the latitude of the location of interest at time slot
n. Here, δ denotes the solar declination (i.e., the angle between
sun light’s rays and the earth’s equator) and is calculated as

δ = 23.45 sin

(
360

(248 + Θ)

365

)
· (23)

In (22), O is the hour angle (i.e., the number of degrees in
which the sun moves across the sky) and calculated as

O [n] =
(U [n]− 720)

5
, (24)

where U is the solar time (i.e., the local time based on the
position of the sun in the sky). It is calculated as

U [n] = 60w + [4 (l − θ [n]) +E], (25)

where w is hour of the day, l is the local standard time
meridian for the time zone of the location of interest, and
θ [n] is the longitude of the location of interest at time slot
n. In (25), E is the equation of time which represents the
difference between clock time and solar time and is given by

E = 9.87 sin (2γ)− 7.53 cos (γ)− 1.5 sin (γ), (26)

where γ = 360 (Θ + 81)/365.
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APPENDIX II

Let b denote a matrix containing the information on the
sequence order of sensor nodes to be visited. It is given by

b =


b11 · · · b1j · · · b1F

...
...

...
...

...
bi1 · · · bij · · · biF
...

...
...

...
...

bF1 · · · bFj · · · bFF


F×F

, (27)

where bij is set as 1 when the there is a path between sensor
Si to sensor Sj , and set as bij = 0 otherwise. As an example,
to obtain components of S , (i.e., S k,i, k = 1, 2, ..., F , i =
1, 2, ..., F ), we sort the non-zero entries of matrix b as follows

b =


0 1 0 · · · 0 0
0 0 0 · · · 1 0
...

...
...

...
...

...
0 0 0 . . . 0 1
0 0 1 · · · 0 0


F×F

From the information given in the matrix b, we ex-
tract the sequence order of nodes to be visited as S =
(S1,1,S2,2,S3,F−1, ..., SF−1,F ,SF,3. For instance, b12 = 1
means that the AUV’s optimum route is from sensor S1 to
the sensor S2 (S1,1 → S2,2) and, b2F−1 = 1 means the AUV
should go from sensor S2 to the sensor SF−1 (S2,2 → S3,F−1)
and so on.
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