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Abstract

Decoding algorithms for Reed–Solomon (RS) codes are of great interest for both practical and

theoretical reasons. In this paper, an efficient algorithm, called the modular approach (MA), is devised

for solving the Welch–Berlekamp (WB) key equation. By taking the MA as the key equation solver,

we propose a new decoding algorithm for systematic RS codes. For (n, k) RS codes, where n is the

code length and k is the code dimension, the proposed decoding algorithm has both the best asymptotic

computational complexity O(n log(n−k)+(n−k) log2(n−k)) and the smallest constant factor achieved

to date. By comparing the number of field operations required, we show that when decoding practical

RS codes, the new algorithm is significantly superior to the existing methods in terms of computational

complexity. When decoding the (4096, 3584) RS code defined over F212 , the new algorithm is 10

times faster than a conventional syndrome-based method. Furthermore, the new algorithm has a regular

architecture and is thus suitable for hardware implementation.

Index Terms

Modular approach, Reed–Solomon codes, fast Fourier transform, decoding algorithm

I. INTRODUCTION

Reed–Solomon (RS) codes, first proposed in [1], are the most commonly used error correcting

codes and have been widely applied in a variety of communication systems, including storage

devices, digital television, and data transmission. Research into the decoding of RS codes is

therefore of both practical and theoretical importance. Among the algorithms currently available

for decoding RS codes, the most widely known is syndrome-based RS decoding, in which the

key equation is solved using either the Berlekamp–Massey (BM) algorithm or the Euclidean
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algorithm. For an (n, k) RS code, where n is the code length and k is the code dimension,

the computational complexity of syndrome-based decoding is O(n(n− k) + (n− k)2) (see [2]–

[4] for more details). Here, the computational complexity of an algorithm is expressed using

the asymptotic notation O, where O(p(ε)) denotes the set of functions O(p(ε)) = {q(ε) :

there exist positive constants c and ε0 such that 0 ≤ q(ε) ≤ cp(ε) for all ε > ε0} in which c is

called the constant factor. Note that q(ε) ∈ O(p(ε)) represents the real computational complexity

of the algorithm or an upper bound on it. Another decoding algorithm with complexity O(n(n−

k) + (n − k)2) was presented in [5], where the syndrome and the error locator polynomial are

related by the Welch–Berlekamp (WB) key equation, and the WB algorithm is used for solving

this equation.

Much effort has been devoted to designing decoding algorithms with lower complexity by

using the fast Fourier transform (FFT) over finite fields. Fedorenko and Trifonov [6] proposed

an algorithm for finding roots of polynomials over finite fields that exploits a specific polynomial

called the p-polynomial. Based on this algorithm, Lin et al. [7] then presented a fast algorithm

for the syndrome calculation. Wu et al. [8] used the partial composite cyclotomic Fourier

transform (CFT) to derive fast syndrome-based decoders. Bellini et al. [9] proposed a method

to reduce the number of additions required in the CFT, and Fedorenko [10] further reduced the

multiplicative complexity of the partial inverse CFT. Gao and Mateer [11] devised an additive

FFT algorithm based on a Taylor expansion. Based on the well-known subspace polynomials, Lin

et al. [12] proposed an efficient additive FFT and devised a decoding algorithm with complexity

O(n log(n − k) + (n − k) log2(n − k)) for (n, k) RS codes, which is the best asymptotic

computational complexity achieved to date.

After the breakthrough work of Guruswami and Sudan [13], decoding RS codes beyond half

of the minimum distance has drawn much attentions. Interpolation algorithms for solving the key

equation of the Guruswami-Sudan (GS) algorithm were proposed in [14]–[18]. On the other hand,

one-pass Chase decoding algorithms were proposed in [19] and [20], which share computations

among the hard-decision decodings of the different test error patterns.

In this paper, we devise an efficient algorithm, the modular approach (MA), for solving the

WB key equation. We then show that this approach can be applied to solve the key equation

proposed in [12], and we derive a new decoding algorithm for the (n, k) RS codes. Two versions

of the MA are presented. The first, the frequency-domain modular approach (FDMA), updates

only two polynomials in the frequency domain with complexity O((n− k)2). It is suitable for
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decoding short codes. The second, the fast modular approach (FMA), processes in a divide-

and-conquer style and has a complexity O((n − k) log2(n − k)) for arbitrary n − k. We show

that the new decoding algorithm has both the best asymptotic computational complexity and the

smallest constant factor achieved to date. We compare the proposed decoding algorithm with

the existing methods by counting the number of field operations. The results show that the new

algorithm is significantly superior to these other techniques. More precisely, for a (4096, 3584)

RS code, the new algorithm is 10 times faster than conventional syndrome-based RS decoding.

Furthermore, this new algorithm has a regular architecture and it is therefore suitable for practical

implementation.

The remainder of this paper is organized as follows. Section II provides a detailed discussion

of the MA. A new decoding algorithm for RS codes is then proposed in Section III. Next, we

compare the new algorithm with other methods from the literature in Section IV. Finally, we

conclude the paper in Section V.

II. MODULAR APPROACH

In this section, we describe the MA, which is capable of solving the WB key equation. The

WB key equation problem can be expressed as follows: Find polynomials W (x) and N(x) with

deg(N(x)) < deg(W (x)) satisfying

N(xi) =W (xi)yi, i = 1, 2, . . . , ρ (1)

for a given set of nonzero points (xi, yi), i = 1, 2, . . . , ρ, over a field F2m , where W (x), N(x) ∈

F2m [x]. Note that for decoding RS codes, we have ρ = 2t, where t is the error correction

capability. Without loss of generality, we assume that the xi are distinct.

Definition 1: The rank of an ordered polynomial pair (W (x), N(x)) is defined as

rank[W (x), N(x)] = max{2 deg(W (x)), 1 + 2 deg(N(x))}.

Note that the rank of a polynomial pair containing a zero polynomial is dominated by its

nonzero component, and we then define rank[0, 0] = 0. It has been shown that there exist two

complementary solutions (W (x), N(x)) and (V (x),M(x)) of problem (1) such that

rank[W (x), N(x)] + rank[V (x),M(x)] = 2ρ+ 1 and W (x)M(x)− V (x)N(x) = c

ρ
∏

i=1

(x− xi)

for some nonzero scalar c ∈ F2m . We definitely have rank[W (x), N(x)] 6= rank[V (x),M(x)],

since 2ρ + 1 is odd. Among the two complementary solutions, the one with lower rank is

July 25, 2022 DRAFT
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desired for decoding RS codes. It should be mentioned that the definition of rank presented

here uses a different polynomial order from the original definition in [5] (more precisely, it uses

(W (x), N(x)) instead of (N(x),W (x))), since it is convenient to have the same order as the

basis matrix defined below. More detailed discussions can be found in [2], [5], [21].

By characterizing the solution set of the WB key equation as an F2m [x]-module, the so-

called modular approach provides an efficient algorithm for constructing the desired solution.

Before presenting the MA, we first review some essential concepts regarding modules and

homomorphisms.

Definition 2: For the polynomial ring F2m [x], an F2m [x]-module Q is an abelian group with a

law of composition, written as +, together with a scalar multiplication F2m [x]×Q → Q, written

as a, v → av, that satisfies the axioms

1v = v, (ab)v = a(bv), (a+ b)v = av + bv, a(v + v′) = av + av′ (2)

for all a, b ∈ F2m [x], v, v
′ ∈ Q and such that the results of the operations in (2) are still in Q.

Notice that these are precisely the axioms for a linear space except that the scalars come

from a ring rather than a field. Thus, modules are natural generalizations of linear spaces to

rings. Hence, the concepts of basis and independence can be carried over from linear spaces to

modules. However, the number of elements of a basis for a module is called the rank, instead

of the dimension.

Definition 3: An F2m [x]-module Q is called a free F2m [x]-module of rank 2 if there exist

independent elements v, v′ ∈ Q such that any w ∈ Q can be represented as a linear combination

of v and v′, i.e., w = av + bv′ for a, b ∈ F2m [x]. The set {v, v′} is called a basis of Q.

Next, the concept of a module homomorphism is introduced so that the solution set to the

WB key equation can be described as the kernel of a specific module homomorphism.

Definition 4: For two F2m [x]-modules Q and Q′, a module homomorphism ϕ : Q → Q′ is a

map that is compatible with the laws of composition: ϕ(v+ v′) = ϕ(v)+ϕ(v′) and ϕ(av) =

aϕ(v) for all v, v′ ∈ Q and a ∈ F2m [x]. The kernel of ϕ, denoted by ker(ϕ), is the set of elements

of Q that are mapped to the additive identity 0 in Q′, i.e., ker(ϕ) = {v ∈ Q | ϕ(v) = 0}.

Detailed discussions of modules and homomorphisms can be found in a variety of modern

algebra books; see, for example, [22].

We rewrite the WB key equation (1) in a more general form as

diW (x) + giN(x) ≡ 0 (mod x− xi), i = 1, 2, . . . , ρ, (3)

DRAFT July 25, 2022



5

by setting di = yi and gi = 1. For each i, we define a module homomorphism φi : F2m [x]
2 → F2m

on the corresponding equation in (3) by

φi(W (x), N(x)) = diW (x) + giN(x) mod (x− xi) = (W (xi), N(xi))





di

gi



 .

Note that F2m [x]
2 represents the module of F2m [x]-vectors, i.e., row vectors with entries in F2m[x].

Clearly, F2m [x]
2 is a free F2m [x]-module of rank 2 with a basis {(1, 0), (0, 1)}. The kernel of

φi characterizes the solution to the ith equation of (3), and the intersection ker(φ1) ∩ ker(φ2) ∩

· · · ∩ ker(φρ) is the solution to the set of congruences in (3). Next, as x−xi, i = 1, 2, . . . , ρ, are

pairwise relatively prime, if we define the homomorphism φ : F2m [x]
2 → F2m [x] by

φ(W (x), N(x)) = D(x)W (x) +G(x)N(x) mod Π(x), (4)

where D(xi) = di, G(xi) = gi and Π(x) =
∏ρ

i=1(x−xi), then it follows that ker(φ) = ker(φ1)∩

ker(φ2)∩· · ·∩ker(φρ) by the Chinese remainder theorem. Note that we can make the assumption

that the greatest common divisor gcd(D(x), G(x)) is relatively prime to Π(x).

From the above discussion, the solution set to the WB key equation (1) is exactly the kernel

of φ. Next, we demonstrate that ker(φ) is a free F2m [x]-module of rank 2 and that an irreducible

basis matrix, which is desired for decoding RS codes, exists in ker(φ). Before describing ker(φ),

we first develop the concept of a basis matrix. Hereinafter, the notation Q represents a free

F2m [x]-module of rank 2 satisfying Q ⊆ F2m [x]
2.

Definition 5: Ψ is called a basis matrix of Q if its rows form a basis of Q.

Theorem 1 ( [23]): ker(φ) is a free F2m [x]-module of rank 2 and the followings hold:

1) For any basis matrix Ψ of ker(φ), we have det(Ψ) = cΠ(x) for some nonzero c ∈ F2m .

2) Conversely, if the rows of Φ ∈ F2m [x]
2×2 are in ker(φ) and det(Φ) = cΠ(x) for some

nonzero c ∈ F2m , then Φ is a basis matrix of ker(φ).

Although ker(φ) can be described by an arbitrary basis matrix, the one with the lowest

complexity is desired for decoding RS codes. The complexity of a basis matrix is characterized

by a property called irreducibility.

Definition 6: A basis matrix





W (x) N(x)

V (x) M(x)



 of ker(φ) is said to be irreducible if, for any

basis matrix





W
′

(x) N
′

(x)

V
′

(x) M
′

(x)



, we have

rank[W (x), N(x)] + rank[V (x),M(x)] ≤ rank[W
′

(x), N
′

(x)] + rank[V
′

(x),M
′

(x)].

July 25, 2022 DRAFT
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Lemma 1 ( [2]): A basis matrix





W (x) N(x)

V (x) M(x)



 of ker(φ) is irreducible if rank[W (x), N(x)]+

rank[V (x),M(x)] = 2ρ+ 1.

According to Lemma 1, if we find a basis matrix which satisfies the rank constraint in Lemma

1, then its rows are solutions to the WB key equation with the lowest complexity. Hence, the

WB key equation problem is converted to constructing a basis matrix of ker(φ) which satisfies

the rank constraint. We now turn to describe the MA, which is an efficient algorithm for finding

such a matrix. The main idea behind the MA, roughly speaking, is to find a module chain step by

step. For example, if we want to solve ker(φ1)∩ ker(φ2), the MA first constructs an irreducible

basis matrix of ker(φ1). Next, the homomorphism φ2 is updated and restricted to ker(φ1) so that

a desired solution can be found. As ker(φ1) ∩ ker(φ2) is a free F2m[x]-module of rank 2, by

Theorem 1, ker(φ1) ∩ ker(φ2) ⊆ ker(φ1), which forms a module chain. Before describing the

MA precisely, we introduce the concept of a projection of a module.

Definition 7: A homomorphism ψ : F2m [x]
2 → Q is called a projection of Q if and only if

the image of F2m [x]
2 under ψ is equal to Q, i.e., Im(ψ) = Q.

Remarks: Let Ψ be any basis matrix of Q. Then the homomorphism ψ : F2m [x]
2 → Q defined

by ψ(W (x), N(x)) = (W (x), N(x))Ψ is a projection of Q.

The following lemma provides a powerful tool for finding the module chain.

Lemma 2: Let ψ be a projection of Q and let ϕ be a homomorphism that maps F2m [x]
2 to

F2m [x]
2. Then Q∩ ker(ϕ) = ψ(ker(ϕ ◦ ψ)), where ϕ ◦ ψ denotes composition of maps, with ψ

being applied first, followed by ϕ.

Proof: Note that ψ(ker(ϕ ◦ ψ)) ⊆ Im(ψ) = Q. Since ϕ is a module homomorphism, by

definition, ϕ(ψ(ker(ϕ ◦ ψ))) = 0 such that ψ(ker(ϕ ◦ ψ)) ⊆ ker(ϕ). Then ψ(ker(ϕ ◦ ψ)) ⊆

Q ∩ ker(ϕ).

Conversely, ϕ ◦ ψ(ψ−1(Q ∩ ker(ϕ)))) = 0, which implies ψ−1(Q ∩ ker(ϕ)) ⊆ ker(ϕ ◦ ψ). It

follows that Q∩ker(ϕ) ⊆ ψ(ker(ϕ ◦ψ)). Hence, one must have Q∩ker(ϕ) = ψ(ker(ϕ ◦ψ)). �

We are now ready to describe the MA. For i ∈ {1, 2, . . . , ρ} and j ∈ {0, 1, . . . , ρ}, recursively

define the homomorphisms φj
i : F2m [x]

2 → F2m by

φj
i (W (x), N(x)) = φi((W (x), N(x))Ψj

1),

DRAFT July 25, 2022
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where

Ψj
1 =











identity matrix I2×2, j = 0,

ΨjΨj−1 · · ·Ψ1, j > 0,

and Ψj is a basis matrix of ker(φj−1
j ) for j > 0. For any matrix Ψ ∈ F2m[x]

2×2, Ψ(xi) denotes

the matrix whose terms are the evaluations of the corresponding terms of Ψ at xi.

Lemma 3: φj
i , Ψ

j
1, and Ψj are well-defined.

Proof: Because Ψ0
1 is an identity matrix, we have φ0

1 = φ1, which implies that Ψ1 exists

according to Theorem 1. Now suppose that Ψ1,Ψ2, . . . ,Ψj−1 exist. Then Ψj−1
1 must exist, which

means that

φj−1
j (W (x), N(x)) = φj((W (x), N(x))Ψj−1

1 ) = (W (xj), N(xj))Ψ
j−1
1 (xj)





dj

gj





Since φj−1
j is a special case of φ, by a similar proof to that of Theorem 1, we have that ker(φj−1

j )

is a free F2m [x]-module of rank 2. Hence, Ψj exists by Theorem 1.

Since Ψj exists for j = 1, 2, . . . , ρ, Ψj
1 is well-defined, which also implies that φj

i is well-

defined for all i = 1, 2, . . . , ρ and j = 0, 1, . . . , ρ. �

For i ∈ {1, 2, . . . , ρ} and j ∈ {0, 1, . . . , ρ}, we rewrite the homomorphism φj
i as

φj
i (W (x), N(x)) = (W (xi), N(xi))Ψ

j
1(xi)





di

gi



 = (W (xi), N(xi))





dji

gji





and define the homomorphisms ψj , ψ
j
1 : F2m [x]

2 → F2m [x]
2 by

ψj(W (x), N(x)) = (W (x), N(x))Ψj and ψj
1(W (x), N(x)) = (W (x), N(x))Ψj

1.

It is easy to see that ψj
1 = ψj−1

1 ◦ ψj and φj
i = φi ◦ ψ

j
1.

Lemma 4: φj−1
j is nontrivial1 for j = 1, 2, . . . , ρ.

Proof: The proof is by induction on j. As φ0
1 = φ1, the claim is true for j = 1 by the

assumption that φ1 is nontrivial. Next, suppose that for l = 1, 2, . . . , j − 1, φl−1
l are nontrivial.

It follows that det(Ψl) = cl(x − xl) and that det(Ψj−1
1 ) =

∏j−1
l=1 cl(x − xl) for nonzero scalars

cl. If φj−1
j is trivial, one must have det(Ψj−1

1 (xj)) = 0, which is impossible since x1, . . . , xj are

distinct. Hence, we can conclude that φj−1
j is nontrivial for j = 1, 2, . . . , ρ. �

1A trivial homomorphism maps all elements to the additive identity.
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As φj−1
j is nontrivial, either dj−1

j or gj−1
j is nonzero. Next, we show that, by suitably choosing Ψj ,

Ψj
1 is an irreducible basis matrix of ker(φ1)∩· · ·∩ker(φj). Define the map R : F2m [x]

2×2 → {0, 1}

as

R(Ψj
1) =











1 if the first row of Ψj
1 has a larger rank than its second row,

0 otherwise.

Lemma 5: Let the basis matrix Ψj be equal to





−gj−1
j dj−1

j

x− xj 0



 if gj−1
j = 0 or (dj−1

j 6= 0 and R(Ψj−1
1 ) = 0) (5)

and to





−gj−1
j dj−1

j

0 x− xj



 otherwise. (6)

Then Ψj
1 =





W (x) N(x)

V (x) M(x)



 satisfies rank[W (x), N(x)]+ rank[V (x),M(x)] = 2j+1, and Ψj
1

is an irreducible basis matrix of ker(φ1) ∩ ker(φ2) ∩ · · · ∩ ker(φj).

Proof: The proof is by induction on j. For j = 1, we have φ0
1 = φ1. Since Ψ0

1 = I , R(Ψ0
1) = 0.

When g01 = 0 or (d01 6= 0 and R(Ψ0
1) = 0), Ψ1 is equal to the matrix in (5). It is straightforward

to see that (−g01, d
0
1) and (x − x1, 0) are included in ker(φ1) by applying φ1 to them. Thus,

Ψ1 is a basis matrix of ker(φ1) by Theorem 1, since det(Ψ1) = d01(x − x1). Next, we have

rank[−g01 , d
0
1] + rank[x−x1, 0] = 1+2 = 3. Therefore, by Lemma 1, Ψ1

1 = Ψ1 is an irreducible

basis matrix of ker(φ1).

On the other hand, it is straightforward to verify the claims for the case in which Ψ1 is equal

to the matrix in (6) by repeating the above proof.

We have proved the claims for j = 1. Next, suppose that the claims are true for 1, 2, . . . , j−1.

For all cases, it is easy to verify that Ψj is a basis matrix of ker(φj−1
j ) by repeating the above

proof. By induction, Ψj−1
1 is an irreducible basis matrix of ker(φ1) ∩ · · · ∩ ker(φj−1). So, ψj−1

1

is a projection of ker(φ1) ∩ · · · ∩ ker(φj−1). According to Lemma 2, we have

ker(φ1) ∩ · · · ∩ ker(φj−1) ∩ ker(φj) = ψj−1
1 (ker(φj ◦ ψ

j−1
1 )) = ψj−1

1 (ker(φj−1
j )) = ψj

1(F2m [x]
2),

where the last equality follows because ψj is a projection of ker(φj−1
j ). Then the polynomial

pairs ψj
1(1, 0) and ψj

1(0, 1), which are exactly the two rows of Ψj
1, are contained in ker(φ1) ∩
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· · ·∩ker(φj). Furthermore, as det(Ψj
1) = det(Ψj) det(Ψ

j−1
1 ) = c

∏j
l=1(x−xl) for some nonzero

c ∈ F2m , Ψj
1 is a basis matrix of ker(φ1) ∩ · · · ∩ ker(φj) by Theorem 1.

It remains to show that Ψj
1 is irreducible. We write Ψj−1

1 as





W ′(x) N ′(x)

V ′(x) M ′(x)



 . Recall that

rank[W ′(x), N ′(x)] + rank[V ′(x),M ′(x)] = 2(j − 1).

When gj−1
j = 0 or (dj−1

j 6= 0 and R(Ψj−1
1 ) = 0),

Ψj
1 =





W (x) N(x)

V (x) M(x)



 =





−gj−1
j dj−1

j

x− xj 0









W ′(x) N ′(x)

V ′(x) M ′(x)



 .

If gj−1
j = 0 or R(Ψj−1

1 ) = 0, then it is easy to verify that

rank[W (x), N(x)] = rank[−gj−1
j W ′(x) + dj−1

j V ′(x),−gj−1
j N ′(x) + dj−1

j M ′(x)]

= rank[V ′(x),M ′(x)].

As rank[V (x),M(x)] = rank[(x−xj)W
′(x), (x−xj)N

′(x)] = rank[W ′(x), N ′(x)]+2, it follows

that rank[W (x), N(x)] + rank[V (x),M(x)] = 2(j − 1) + 2 = 2j + 1. Then Ψj
1 is an irreducible

basis matrix of ker(φ1) ∩ · · · ∩ ker(φj) by Lemma 1.

On the other hand, if

Ψj
1 =





W (x) N(x)

V (x) M(x)



 =





−gj−1
j dj−1

j

0 x− xj









W ′(x) N ′(x)

V ′(x) M ′(x)



 ,

then, by preceding as before, one can verify that rank[W (x), N(x)]+rank[V (x),M(x)] = 2j+1.

By Lemma 1, Ψj
1 is irreducible in ker(φ1) ∩ · · · ∩ ker(φj). This completes the proof. �

A detailed description of the MA is presented in Algorithm 1, in which rj1 and rj2 denote the

ranks of the two rows of Ψj
1. Since Ψ0

1 = I2×2, we have r01 = 0, r02 = 1 at the beginning. At the

jth iteration, the MA first identifies the basis matrix Ψj of ker(φj−1
j ) by checking the conditions

gj−1
j 6= 0, dj−1

j 6= 0, and rj−1
1 < rj−1

2 . Then Ψj(xi) can be obtained by simply substituting xi

into Ψj . Next, dji , g
j
i , and the basis matrix Ψj

1 are updated in parallel. Finally, the MA returns

an irreducible basis matrix Ψt
1 for decoding RS codes.

Algorithm 1 Modular Approach

Input: {xi, di, gi}, i = 1, 2, . . . , ρ.

Output: An irreducible basis matrix Ψρ
1 of ker(φ1) ∩ ker(φ2) ∩ · · · ∩ ker(φρ), r

ρ
1, r

ρ
2 , where

φi, i = 1, 2, . . . , ρ are homomorphisms defined by φi(W (x), N(x)) = diW (xi) + giN(xi).

1: Initialization: d0i = di, g
0
i = gi for i = 1, 2, . . . , ρ, Ψ0

1 = I2×2, r01 = 0, r02 = 1.

July 25, 2022 DRAFT
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2: for j = 1, 2, . . . , ρ do

3: if gj−1
j = 0 or (dj−1

j 6= 0 and rj−1
1 < rj−1

2 ) then

4: Let

Ψj =





−gj−1
j dj−1

j

x− xj 0



 and Ψj(xi) =





−gj−1
j dj−1

j

xi − xj 0



 for i = 1, 2, . . . , ρ

5: rj1 = rj−1
2 , rj2 = rj−1

1 + 2.

6: else

7: Let

Ψj =





−gj−1
j dj−1

j

0 x− xj



 and Ψj(xi) =





−gj−1
j dj−1

j

0 xi − xj



 for i = 1, 2, . . . , ρ

8: rj1 = rj−1
1 , rj2 = rj−1

2 + 2.

9: end if

10: for i = j + 1, j + 2, . . . , ρ do

11:




dji

gji



 = Ψj(xi)





dj−1
i

gj−1
i





12: end for

13: Ψj
1 = ΨjΨ

j−1
1 .

14: end for

15: return Ψρ
1, r

ρ
1, r

ρ
2 .

The original MA was first proposed in [23]. However, there exist many differences between

the original approach and the new one presented here. First, we define an irreducible basis

matrix here and prove its existence for the desired kernel. Second, a more efficient algorithm is

proposed for finding such an irreducible basis matrix. The original method in [23] needs to find

a homomorphism with nonzero dj−1
j during each iteration, which significantly limits its speed,

especially in hardware implementation. However, our new method here eliminates the need for

such a procedure, thereby enabling the development of a high-speed architecture, which is a

prerequisite for real applications. Finally, the new method tracks the ranks during each iteration,

which is essential for identifying uncorrectable errors.
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It is well known that both the WB algorithm and the Euclidean algorithm are capable of solving

the WB key equation (10). However, the WB algorithm executes the polynomial evaluations and

the polynomial updates in sequence during each iteration. This means that the operations in each

iteration of the WB algorithm cannot be done in parallel. Therefore, its hardware implementation

has a long critical path. More details about the WB algorithm can be found in [5]. On the other

hand, the Euclidean algorithm fails to provide an efficient method for decoding RS codes based

on the FFT, and for that reason we do not discuss it here.

There are several algorithms which find specific elements of a module. Fitzpatrick [24]

presented a method for finding a low-weight element of the solution to the key equation z(x) ≡

λ(x) mod x2t. Algorithms for solving the rational interpolation problem in the GS algorithm

were proposed in [14]–[18]. Compared with these algorithms, an advantage of the proposed

method is that the operations in each iteration can be done in parallel, which is an important

feature in implementation. Furthermore, the coming section proves that the fast modular approach

is superior in terms of complexity.

III. DECODING REED–SOLOMON CODES BASED ON FFT

In this section, a new algorithm is presented for decoding RS codes based on the FFT, which

takes the MA as the key equation solver. Two versions of the MA are presented. The first,

the frequency-domain modular approach (FDMA), is suitable for decoding short RS codes. The

second, the fast modular approach (FMA), is suitable for decoding medium or long RS codes.

We shall see that the new decoding algorithm has the smallest constant factor achieved to date,

while also reaching the best known asymptotic computational complexity.

A. FFT Algorithm

Let (v0, v1, . . . , vm−1) be a basis of F2m over F2. The elements in F2m can be represented by

ωl = l0v0 + l1v1 + · · ·+ lm−1vm−1, 0 ≤ l < 2m,

where l0, . . . , lm−1 ∈ {0, 1} is the binary representation of l. The subspace polynomial is defined

as sτ (x) =
∏2τ−1

l=0 (x− ωl) for τ = 0, 1, . . . , m. Obviously, we have deg(sτ (x)) = 2τ . Then the

polynomial given by

X̄l(x) =
s0(x)

l0s1(x)
l1 · · · sm−1(x)

lm−1

s0(v0)l0s1(v1)l1 · · · sm−1(vm−1)lm−1
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has degree l for l = 0, 1, . . . , 2m − 1. Therefore, the set X̄ = {X̄0(x), X̄1(x), . . . , X̄2m−1(x)}

is a basis of the linear space F2m [x]/(x
2m − x), which implies that any polynomial f(x) in

this space can be represented as a linear combination: f(x) =
∑2m−1

l=0 f̄lX̄l(x). The vector

f̄ = (f̄0, f̄1, . . . , f̄2m−1) is the coordinate vector of f(x) with respect to the basis X̄.

Given that deg(f(x)) < 2τ , the fast Fourier transform (FFT), denoted by FFTX̄, evaluates

f(x) at points {ωl + β | l = 0, 1, . . . , 2τ − 1}:

FFTX̄(f̄ , τ, β) = F = (f(ω0 + β), f(ω1 + β), . . . , f(ω2τ−1 + β)),

for any β ∈ F2m and τ = 0, 1, . . . , m, which involves τ2τ/2 field multiplications and τ2τ field

additions [25]. The inverse FFT, denoted by IFFTX̄, calculates f̄ given F, which also involves

τ2τ/2 field multiplications and τ2τ field additions in a direct implementation. Algorithms 2 and

3 present the details of FFTX̄ and IFFTX̄, respectively.

Algorithm 2 FFTX̄ [25]

Input: f̄ = (f̄0, f̄1, . . . , f̄2τ−1), τ , β.

Output: (f(ω0 + β), f(ω1 + β), . . . , f(ω2τ−1 + β)).

1: if τ = 0 then

2: return f̄0

3: end if

4: for l = 0, 1, . . . , 2τ−1 − 1 do

5: a
(0)
l = f̄l +

sτ−1(β)

sτ−1(vτ−1)
f̄l+2τ−1

6: a
(1)
l = a

(0)
l + f̄l+2τ−1

7: end for

8: a
(0) = (a

(0)
0 , . . . , a

(0)

2τ−1−1), a
(1) = (a

(1)
0 , . . . , a

(1)

2τ−1−1)

9: Calculate A0 = FFTX̄(a
(0), τ − 1, β), A1 = FFTX̄(a

(1), τ − 1, vτ−1 + β)

10: return (A0,A1)

For µ ∈ {0, 1, . . . , τ}, if we let F = (F1,F2, . . . ,F2τ−µ) and f̄ = (f̄1, f̄2, . . . , f̄2τ−µ), where

Fi = (f(ω(i−1)2µ+β), f(ω(i−1)2µ+1+β), . . . , f(ωi2µ−1+β)), f̄i = (f̄(i−1)2µ , f̄(i−1)2µ+1, . . . , f̄i2µ−1),

then [12, Lemma 10] and [26, Lemma 1]

IFFTX̄(F1, µ, β) + IFFTX̄(F2, µ, ω2µ + β) + · · ·+ IFFTX̄(F2τ−µ , µ, ω2τ−2µ + β) = f̄2τ−µ .

As we shall see later, this important property is crucial for encoding and decoding RS codes.
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Algorithm 3 Inverse Transform of the Basis X̄ [25]

Input: F = (f(ω0 + β), f(ω1 + β), . . . , f(ω2τ−1 + β)), τ, β

Output: f̄ such that F = FFTX̄(f̄ , τ, β)

1: if τ = 0 then

2: return f(ω0 + β)

3: end if

4: A0 = (f(ω0 + β), . . . , f(ω2τ−1−1 + β)),A1 = (f(ω2τ−1 + β)), . . . , f(ω2τ−1 + β))

5: a
(0) = IFFTX̄(A0, τ − 1, β) , a(1) = IFFTX̄(A1, τ − 1, vτ−1 + β)

6: for l = 0, 1, . . . , 2τ−1 − 1 do

7: f̄l+2τ−1 = a
(0)
l + a

(1)
l

8: f̄l = a
(0)
l +

sτ−1(β)

sτ−1(vτ−1)
f̄l+2τ−1

9: end for

10: return f̄

B. Encoding Reed–Solomon Codes

For an (n, k) RS code where n = 2m, k = 2m− 2µ and µ ∈ {0, 1, . . . , m− 1}, the codewords

are given by FFTX̄(f̄ , m, 0) = F = (f(ω0), f(ω1), . . . , f(ω2m−1)) for all polynomials f(x) of

degree less than 2m − 2µ. It follows that

IFFTX̄(F1, µ, 0) + IFFTX̄(F2, µ, ω2µ) + · · ·+ IFFTX̄(F2m−µ , µ, ω2m−2µ) = f̄2m−µ = 0.

If we let F1 be the check locations and F2,F3, . . . ,F2m−µ be the message locations, then

the encoding process is FFTX̄(IFFTX̄(F2, µ, ω2µ) + · · ·+ IFFTX̄(F2m−µ , µ, ω2m−2µ), µ, 0). The

computational complexity of the encoding algorithm is O(n log(n− k)).

C. Decoding Reed–Solomon Codes

The received vector can be represented by

r = F+ e = (f(ω0), f(ω1), . . . , f(ω2m−1)) + (e0, e1, . . . , e2m−1),

where e is the error pattern. If we write E = {ωl | el 6= 0 for 0 ≤ l ≤ 2m − 1}, then the error

locator polynomial can be defined as λ(x) =
∏

a∈E(x− a). Note that there exists a polynomial

r(x) ∈ F2m [x] with degree less than 2m satisfying r(ωl) = f(ωl) + el for l = 0, 1, . . . , 2m −

July 25, 2022 DRAFT



14

1, which implies that f(ωl)λ(ωl) = r(ωl)λ(ωl). Thus, the congruence f(x)λ(x) ≡ r(x)λ(x)

(mod sm(x)) holds. Therefore, there exists q(x) ∈ F2m [x] such that

f(x)λ(x) = r(x)λ(x) + q(x)sm(x). (7)

Clearly, we have deg(f(x)) < 2m − 2µ, deg(λ(x)) ≤ 2µ−1, deg(r(x)) < 2m and deg(sm(x)) =

2m. Then the equation (7) implies that deg(q(x)) < deg(λ(x)). Dividing sm(x), f(x)λ(x), and

r(x) by p2m−2µX̄2m−2µ(x), where

p2m−2µ = s0(v0)
l0s1(v1)

l1 · · · sm−1(vm−1)
lm−1

and (l0, l1, . . . , lm−1) is the binary representation of 2m − 2µ, it follows that

sm(x) = p2m−2µX̄2m−2µ(x)(sµ(x) + sµ(vµ)) + ηs(x),

f(x)λ(x) = p2m−2µX̄2m−2µ(x)z
′

(x) + ηf (x), r(x) = p2m−2µX̄2m−2µ(x)u(x) + ηr(x),

where deg(ηs(x)), deg(ηf(x)), deg(ηr(x)) are less than deg(p2m−2µX̄2m−2µ(x)). When we divide

both sides of (7) by p2m−2µX̄2m−2µ(x) and keep the quotients, it becomes

z
′

(x) = u(x)λ(x) + q(x)sµ(x) + sµ(vµ)q(x).

As deg(f(x)λ(x)) < 2m − 2µ + deg(λ(x)), one can conclude that deg(z
′

(x)) < deg(λ(x)). Let

z(x) = z
′

(x)− sµ(vµ)q(x). We can then obtain the key equation:

z(x) = u(x)λ(x) + q(x)sµ(x), (8)

where deg(z(x)) < deg(λ(x)). Note that if the received vector r is a codeword, the degree

of r(x) is less than 2m − 2µ, which implies that u(x) = 0. Hence, u(x) can be treated as the

syndrome polynomial. Given r, the coordinate vector of u(x) with respect to X̄ can be computed

by
2m−µ−1
∑

i=0

IFFTX̄(ri, µ, ωi·2µ)/p2m−2µ , (9)

where ri = (ri·2µ , ri·2µ+1, . . . , ri·2µ+2µ−1) is the sub-vector of r. Details are given in [12], [26].

The key equation (8) can be rewritten as

z(x) = u(x)λ(x) mod

2µ−1
∏

i=0

(x− ωi), (10)

where deg(z(x)) < deg(λ(x)). This is in the WB form and hence can be solved by the MA.
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Once the error locator polynomial λ(x) has been obtained, its roots can be calculated by the

FFT algorithm:

FFTX̄(λ̄, µ, ωl·2µ), l = 0, 1, . . . , 2m−µ − 1, (11)

where λ̄ is the coordinate vector of λ(x) with respect to X̄.

It remains to compute the error values. The formal derivative of (7) is

f ′(x)λ(x) + f(x)λ′(x) = r′(x)λ(x) + r(x)λ′(x) + q′(x)sm(x) + q(x).

For an error locator ωl ∈ E, we have f(ωl)λ
′(ωl) = r(ωl)λ

′(ωl) + q(ωl). It follows that f(ωl)−

r(ωl) = q(ωl)/λ
′(ωl). If ωl is a message location, then, by (8), we have q(ωl) = z(ωl)/sµ(ωl).

Hence, Forney’s formula for solving the error value is

f(ωl)− r(ωl) =
z(ωl)

sµ(ωl)λ′(ωl)
. (12)

Note that there is no need to correct the errors in check locations.

Detecting uncorrectable errors is crucial in real applications. In the above decoding algorithm,

a correctable error occurs if and only if

deg(λ(x)) ≤ 2µ−1, (13)

deg(z(x)) < deg(λ(x)), (14)

|{ωl | λ(ωl) = 0, l = 0, 1, . . . , 2m − 1}| = deg(λ(x)). (15)

Note that the MA always ensures that deg(λ(x)) ≤ 2µ−1, since rank[λ(x), z(x)] ≤ 2µ. In

addition, if deg(z(x)) ≥ deg(λ(x)), then rank[λ(x), z(x)] must be odd. Hence, tracking the

ranks is enough to check the condition (14). Finally, the condition (15) can be checked by the

FFT algorithm (11). As a result, all of the uncorrectable errors can be detected.

The computational complexities of computing the syndrome, finding roots of λ(x), and For-

ney’s formula are O(n log(n− k)). More detailed discussions can be found in [12], [26].

D. Frequency-Domain Modular Approach

We now turn to solving the key equation (10) using the MA. Clearly, if we set xi = ωi−1,

di = u(ωi−1), and gi = 1 for i = 1, 2, . . . , 2µ, then Algorithm 1 provides two polynomial pairs

satisfying the key equation, and the one with lower rank is exactly the desired solution. However,

the FFT algorithm given in (11) requires that the polynomials to be evaluated be represented

with respect to X̄, and therefore basis transformations are needed if the polynomials obtained are
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represented with respect to the monomial basis. To avoid the need for these basis transformations,

we devise the FDMA. The FDMA updates Ψj
1(ωi) instead of Ψj

1. Note that as deg(z(x)) ≤ 2µ−1

and deg(λ(x)) ≤ 2µ−1, 2µ−1 + 1 points in the frequency domain are enough for determining

λ(x) or z(x), which implies that we need to update only Ψj
1(ωi), i = 0, 1, . . . , 2µ−1. Furthermore,

because (λ(x), z(x)) satisfies the key equation (10), we must have z(ωi) = u(ωi)λ(ωi) for

i = 0, 1, . . . , 2µ−1. Thus, the evaluations of z(x) can be performed immediately once λ(ωi)

are available. To sum up, the FDMA computes only the first column of Ψj
1(ωi) during the

iterations and then identifies λ(ωi) by the rank. Next, it computes z(ωi) once the iterations have

been done. Finally, extended IFFTX̄ algorithms are used to obtain the coordinate vectors of

λ(x), z(x) with respect to X̄. Algorithm 4 shows the details of the FDMA. Note that we set

xi = ωi−1 here. Compared with Algorithm 1, the FDMA computes only two polynomials in

the frequency domain, rather than four. This further reduces the computational complexity and

makes the FDMA suitable for hardware implementation.

Algorithm 4 Frequency-Domain Modular Approach (FDMA)

Input: {ωi−1, u(ωi−1)}, i = 1, 2, . . . , 2µ.

Output: (λ(x), z(x)) that are represented with respect to X̄ and rank[λ(x), z(x)].

1: Initialization: d0i = u(ωi−1), g
0
i = 1 for i = 1, 2, . . . , 2µ.

W (ωi) = 1, V (ωi) = 0 for i = 0, 1, . . . , 2µ−1, r01 = 0, r02 = 1.

2: for j = 1, 2, . . . , 2µ do

3: if gj−1
j = 0 or (dj−1

j 6= 0 and rj−1
1 < rj−1

2 ) then

4: Let

Ψj(ωi) =





−gj−1
j dj−1

j

ωi − ωj−1 0



 for i ∈ {0, 1, . . . , 2µ − 1}

5: rj1 = rj−1
2 , rj2 = rj−1

1 + 2.

6: else

7: Let

Ψj(ωi) =





−gj−1
j dj−1

j

0 ωi − ωj−1



 for i ∈ {0, 1, . . . , 2µ − 1}

8: rj1 = rj−1
1 , rj2 = rj−1

2 + 2.

9: end if

10: for i = j + 1, j + 2, . . . , 2µ do
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11:




dji

gji



 = Ψj(ωi−1)





dj−1
i

gj−1
i





12: end for

13: for i = 0, 1, . . . , 2µ−1 do

14:




W (ωi)

V (ωi)



 = Ψj(ωi)





W (ωi)

V (ωi)





15: end for

16: end for

17: if r2
µ

1 > r2
µ

2 then

18: λ(ωi) = V (ωi), i = 0, 1, . . . , 2µ−1.

19: else

20: λ(ωi) = W (ωi), i = 0, 1, . . . , 2µ−1.

21: end if

22: z(ωi) = λ(ωi)d
0
i+1, i = 0, 1, . . . , 2µ−1.

23: Call Algorithm 5 to obtain λ(x) and z(x).

24: return (λ(x), z(x)) and rank[λ(x), z(x)] = min(r2
µ

1 , r
2µ

2 ).

Algorithm 5 Extended IFFTX̄

Input: f(ωi + β), i = 0, 1, . . . , 2µ; µ, β.

Output: f(x) represented in X̄.

1: Call Algorithm 3 with input (f(ω0 + β), f(ω1 + β), . . . , f(ω2µ−1 + β)), µ, β to obtain f̂(x)

2: Evaluate f̂(x) at ω2µ + β to obtain f̂(ω2µ + β)

3: Let

f(x) =(f(ω2µ + β)− f̂(ω2µ + β))

(

X̄2µ(x)−
sµ(β)

sµ(vµ)

)

+ f̂(x)

=(f(ω2µ + β)− f̂(ω2µ + β))X̄2µ(x) + f̂(x)

−
sµ(β)

sµ(vµ)
(f(ω2µ + β)− f̂(ω2µ + β))X̄0(x)

4: return f(x)
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Lemma 6: Given f(ωi + β), i = 0, 1, . . . , 2µ, µ, and any β ∈ F2m , Algorithm 5 outputs the

corresponding f(x), and its complexity is O(µ2µ).

Proof: Since f̂(x) is obtained by calling Algorithm 3, it follows that f̂(ωi + β) = f(ωi + β)

for i = 0, 1, . . . , 2µ − 1 and that deg(f̂(x)) < 2µ. Because X̄2µ(x) = sµ(x)/sµ(vµ), we have

X̄2µ(ωi + β) = sµ(ωi)/sµ(vµ) + sµ(β)/sµ(vµ). Recall that sµ(x) =
∏2µ−1

l=0 (x − ωl). So, for

i = 0, 1, . . . , 2µ − 1, we have X̄2µ(ωi + β) = sµ(β)/sµ(vµ). Hence, for i = 0, 1, . . . , 2µ − 1,

(f(ω2µ + β)− f̂(ω2µ + β))

(

X̄2µ(ωi + β)−
sµ(β)

sµ(vµ)

)

+ f̂(ωi + β) = f(ωi + β). (16)

Furthermore, if i = ω2µ , we have

(f(ω2µ + β)− f̂(ω2µ + β))

(

X̄2µ(ω2µ + β)−
sµ(β)

sµ(vµ)

)

+ f̂(ω2µ + β)

= (f(ω2µ + β)− f̂(ω2µ + β))sµ(vµ)/sµ(vµ) + f̂(ω2µ + β)

= f(ω2µ + β).

Recall that X̄0(x) = 1. Therefore, Algorithm 5 outputs the desired polynomial with respect

to X̄. Clearly, the computational complexity of Algorithm 3 is O(µ2µ), and the evaluation

of f̂(x) at a single point needs O(2µ) operations. Finally, according to the properties of the

subspace polynomial sµ(x), the evaluation sµ(β) or sµ(vµ) has the same complexity as a field

multiplication. Hence, the total computational complexity of Algorithm 5 is O(µ2µ). �

Since n − k = 2µ, the complexity of calling Algorithm 5 twice in Algorithm 4 is O((n −

k) log(n− k)). It follows that the computational complexity of the FDMA is O((n− k)2).

E. Fast Modular Approach

In this subsection, we present the FMA for solving (10). The idea behind the FMA is that φj
i

and Ψj
1 need not to be computed at each iteration until enough information has been collected.

Define the notation Ψl
j = ΨlΨl−1 · · ·Ψj for any 1 ≤ j ≤ l ≤ 2µ. Recall that

φj
i (W (x), N(x)) = φi ◦ ψ

j
1(W (x), N(x)) = φi((W (x), N(x))Ψj

1)

= (W (ωi−1), N(ωi−1)Ψ
j
1(ωi−1)





di

gi





and Ψj
1 = ΨjΨj−1 · · ·Ψ1 = Ψj

j/2+1Ψ
j/2
1 if j is even. Hence, if we first compute the irreducible

basis matrix Ψ2µ−1

1 in ker(φ1)∩ ker(φ2)∩ · · · ∩ ker(φ2µ−1), which is a subproblem of (10), then

Algorithm 2 can be used to obtain Ψ2µ−1

1 (ωi−1) for i = 1, 2, . . . , 2µ by setting β = 0. Next,
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we update φ2µ−1

i for i = 2µ−1 + 1, 2µ−1 + 2, . . . , 2µ. Given φ2µ−1

i for i = 2µ−1 + 1, 2µ−1 +

2, . . . , 2µ, we then compute Ψ2µ

2µ−1+1, which can be obtained in a similar way. Finally, we obtain

the product Ψ2µ

1 = Ψ2µ

2µ−1+1Ψ
2µ−1

1 by the well-known convolution theorem. More precisely, if

Ψ2µ−1

1 (ωi−1),Ψ
2µ

2µ−1+1(ωi−1) for i = 1, 2, . . . , 2µ + 1 are available, Ψ2µ

1 (ωi−1) can be computed

by simple matrix multiplication. Then Algorithm 5 can be used to obtain Ψ2µ

1 . Obviously,

Ψ2µ

2µ−1+1(ωi−1) can also be obtained using Algorithm 2.

We can generalize the above idea. In general, if ωi−1 = ωi−j + ωj−1 for i = j, j + 1, . . . , j +

2µ − 1, then we have (ωj−1, ωj, . . . , ωj+2µ−2) = (ω0 + ωj−1, ω1 + ωj−1, . . . , ω2µ−1 + ωj−1).

Thus, Algorithm 2 can be used for evaluating a polynomial at points ωj−1, ωj, . . . , ωj+2µ−2

by setting β = ωj−1. Hence, if we want to obtain Ψj+2µ−1
j with input φj−1

j , φj−1
j+1, . . . , φ

j−1
j+2µ−1,

we first compute Ψj+2µ−1−1
j . Then we update φj+2µ−1−1

i for i = j + 2µ−1, . . . , j + 2µ − 1. Next,

based on these updated homomorphisms, we compute Ψj+2µ−1
j+2µ−1 by induction. Finally, we obtain

Ψj+2µ−1
j = Ψj+2µ−1

j+2µ−1 Ψ
j+2µ−1−1
j . A detailed description of this procedure is given in Algorithm 6.

Note that since X̄0(x) = 1, we use 1 instead of X̄0(x) for clarity.

Algorithm 6 Fast Modular Approach (FMA)

Input: {ωi−1, d
j−1
i , gj−1

i }, i = j, j + 1, . . . , j + 2µ − 1, which satisfies ωi−1 = ωi−j + ωj−1 and

rj−1
1 , rj−1

2 .

Output: Ψj+2µ−1
j , rj+2µ−1

1 , rj+2µ−1
2 , where the polynomials are represented with respect to X̄;

1: if µ = 0 then

2: if gj−1
j = 0 or (dj−1

j 6= 0 and rj−1
1 < rj−1

2 ) then

3:

Ψj+2µ−1
j =





−gj−1
j dj−1

j

ω1X̄1(x)− ωj−1 0





4: rj+2µ−1
1 = rj−1

2 , rj+2µ−1
2 = rj−1

1 + 2

5: else

6:

Ψj+2µ−1
j =





−gj−1
j dj−1

j

0 ω1X̄1(x)− ωj−1





7: rj+2µ−1
1 = rj−1

1 , rj+2µ−1
2 = rj−1

2 + 2

8: end if
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9: else

10: Call FMA({ωi−1, d
j−1
i , gj−1

i }, i = j, j + 1, . . . , j + 2µ−1 − 1, rj−1
1 , rj−1

2 ) to obtain

(Ψj+2µ−1−1
j , rj+2µ−1−1

1 , rj+2µ−1−1
2 )

11: Call Algorithm 2 to obtain Ψj+2µ−1−1
j (ωj−1), . . . ,Ψ

j+2µ−1−1
j (ωj+2µ−2)

and compute Ψj+2µ−1−1
j (ωj+2µ−1).

12: for i = j + 2µ−1, j + 2µ−1 + 1, . . . , j + 2µ − 1 do

13:




dj+2µ−1−1
i

gj+2µ−1−1
i



 = Ψj+2µ−1−1
j (ωi−1)





dj−1
i

gj−1
i



 .

14: end for

15: Let l = j + 2µ−1.

16: Call FMA({ωh−1, d
l−1
h , gl−1

h }, h = l, . . . , l + 2µ−1 − 1, rl−1
1 , rl−1

2 ) to obtain

(Ψl+2µ−1−1
l , rl+2µ−1−1

1 , rl+2µ−1−1
2 )

17: Call Algorithm 2 to obtain Ψl+2µ−1−1
l (ωj−1), . . . ,Ψ

l+2µ−1−1
l (ωj+2µ−2)

and compute Ψl+2µ−1−1
l (ωj+2µ−1).

18: for i = j, j + 1, . . . , j + 2µ do

19: Ψj+2µ−1
j (ωi−1) = Ψl+2µ−1−1

l (ωi−1)Ψ
j+2µ−1−1
j (ωi−1).

20: end for

21: Call Algorithm 5 to obtain each component of Ψj+2µ−1
j .

22: end if

23: return Ψj+2µ−1
j , rj+2µ−1

1 , rj+2µ−1
2 .

Lemma 7: Given the input {ωi−1, d
j−1
i , gj−1

i }, i = j, j + 1, . . . , j + 2µ − 1, which satisfies

ωi−1 = ωi−j + ωj−1 and rj−1
1 , rj−1

2 , Algorithm 6 outputs Ψj+2µ−1
j , rj+2µ−1

1 , rj+2µ−1
2 .

Proof: The proof is by induction on µ. If µ = 0, since we have x = ω1X̄1(x) and X̄0(x) = 1,

then according to the proof of Lemma 5, Algorithm 6 outputs the desired answer Ψj
j = Ψj , rj1,

rj2 for any j. Therefore, the claim holds for µ = 0.

Suppose that the claim holds for 0, 1, . . . , µ−1. Then Ψj+2µ−1−1
j , rj+2µ−1−1

1 , rj+2µ−1−1
2 can be

obtained by the recursive call of the FMA in line 10 by induction. Since ωi−1 = ωi−j + ωj−1,
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it follows that (ωj−1, ωj, . . . , ωj+2µ−2) = (ω0 + ωj−1, ω1 + ωj−1, . . . , ω2µ−1 + ωj−1). Therefore,

Algorithm 2 can be called for evaluating the matrix Ψj+2µ−1−1
j at points ωj−1, . . . , ωj+2µ−2 by

setting τ = µ and β = ωj−1. The evaluation Ψj+2µ−1−1
j (ωj+2µ−1) can be computed immediately.

Because Ψj+2µ−1−1
1 (ωi−1) = Ψj+2µ−1−1

j (ωi−1)Ψ
j−1
1 (ωi−1), we have





dj+2µ−1−1
i

gj+2µ−1−1
i



 = Ψj+2µ−1−1
1 (ωi−1)





di

gi



 = Ψj+2µ−1−1
j (ωi−1)





dj−1
i

gj−1
i





for i = j+2µ−1, j+2µ−1+1, . . . , j+2µ−1. Let l = j+2µ−1. For h = l, l+1, . . . , l+2µ−1−1,

we have ωh−1 = ωh−j + ωj−1 = ωh−l + ωl−j + ωj−1 = ωh−l + ωl−1, where the first and the

last equalities hold by induction and the second equality is true because h − l < 2µ−1 and

ωl−j = ω2µ−1 . Hence, the recursive call of the FMA in line 16 outputs the desired Ψl+2µ−1−1
l ,

rl1, r
l+2µ−1−1
2 by induction.

Next, we show that the degrees of the components of Ψj+2µ−1
j are less than or equal to 2µ,

which implies that Ψj+2µ−1
j is determined uniquely by Ψj+2µ−1

j (ωi−1), i = j, j+1, . . . , j+2µ. It

is clear that this conclusion is true for µ = 0. Suppose that it is also true for 1, 2, . . . , µ−1. Then

the degrees of the components of Ψj+2µ−1
j must be less than or equal to 2µ, since the degrees of

the components of Ψl+2µ−1−1
l and Ψj+2µ−1−1

j are less than or equal to 2µ−1 by induction. Hence,

we can determine Ψj+2µ−1
j by Algorithm 5 once Ψj+2µ−1

j (ωi−1), i = j, j + 1, . . . , j + 2µ, have

been obtained. This completes the proof. �

Theorem 2: Given {ωi−1, d
0
i , g

0
i }, i = 1, 2, . . . , 2µ, r01, r02, Algorithm 6 outputs Ψ2µ

1 , r2
µ

1 , r2
µ

2 .

Proof: Since ω0 is the additive identity in F2m , we have ωi−1 = ωi−j+ωj−1 for i = 1, 2, . . . , 2µ

and j = 1. The theorem then follows by Lemma 7. �

For solving (10), we set d0i = u(ωi−1), g
0
i = 1 for i = 1, 2, . . . , 2µ, r01 = 0, r02 = 1.

We now analyze the computational complexity of Algorithm 6. Denote the complexity of

Algorithm 6 by T (2µ). If µ = 0, the algorithm outputs the solution in a straightforward manner

with complexity O(1). Assume that µ > 1. Two recursive calls take 2T (2µ−1). The complexity

of calling Algorithm 2 twice for evaluating Ψl+2µ−1−1
l and Ψj+2µ−1−1

j at points ωj−1, . . . , ωj+2µ−2

is O(µ2µ), and the complexity of evaluating Ψl+2µ−1−1
l and Ψj+2µ−1−1

j at a single point ωj+2µ−1

is O(2µ). In addition, computing φj+2µ−1−1
i for i = j + 2µ−1, . . . , j + 2µ − 1 involves O(2µ−1)

operations, while the matrix multiplication between Ψl+2µ−1−1
l and Ψj+2µ−1−1

j in the frequency

domain involves O(2µ) operations. Finally, the complexity of calling Algorithm 5 four times is
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O(µ2µ). It follows that T (2µ) = 2T (2µ−1)+O(µ2µ) and T (2µ) = O(2µ log2(2µ)). As n−k = 2µ,

we have T (n− k) = O((n− k) log2(n− k)).

Evidently, the computational complexity of this new decoding algorithm is O(n log(n− k) +

(n−k) log2(n−k)). In the next section, we show that the FMA has a smaller constant factor than

the Half-GCD algorithm proposed in [12]. This implies that the new algorithm has the smallest

constant factor to date. It should be mentioned that although the complexity of the FDMA is

O((n−k)2), it is more efficient for decoding short codes, which we shall see in the next section.

The complete decoding algorithm is presented in Algorithm 7. Note that this method can be

generalized to arbitrary code length n and code dimension k and its complexity remains to be

O(n log(n− k) + (n− k) log2(n− k)). Detailed discussion is provided in Appendix A.

Algorithm 7 Decoding Algorithm

Input: Received vector r = F+ e.

Output: The codeword F.

1: Compute the syndrome polynomial u(x) according to (9).

2: Evaluate u(x) at points ω0, ω1, . . . , ω2µ−1 by Algorithm 2.

3: Given φi(W (x), N(x)) = u(ωi−1)W (ωi−1) + N(ωi−1), i = 1, 2, . . . , 2µ, compute the error

locator polynomial λ(x) and the error evaluator polynomial z(x) by Algorithms 4 or 6.

4: Find the error locations by (11).

5: Compute the error pattern e by (12).

6: return r+ e.

IV. COMPARISON AND ANALYSIS

In this section, we compare the proposed algorithm with other methods.

A. Comparison with Conventional Syndrome-Based Decoding

The most commonly used decoding algorithm for RS codes is syndrome-based decoding,

which is based on Horner’s rule. Here, we compare the algorithm described in Section III

with syndrome-based decoding. Three RS codes, namely, the (255, 223) RS code over F28 , the

(1023, 895) RS code over F210 , and the (4095, 3583) RS code over F212 , are selected, and the

comparisons are done by counting the numbers of field multiplications, additions, and divisions

required by the two decoding algorithms. Since there is no field inversion in the FDMA or FMA,
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a modified BM algorithm that involves no field inversion, called the reformulated inversionless

BM algorithm (RiBM), is chosen for comparison. Further discussion of the RiBM algorithm

can be found in [27]. Tables I, II, and III present the comparisons in detail. According to these

tables, the proposed algorithm saves 68%, 74%, and 90% multiplications and 60%, 74%, and

84% additions over F28 , F210 , and F212 , respectively. Evidently, the proposed algorithm is 10

times faster than conventional decoding on a given machine when decoding (4095, 3583) RS

codes. Note that the FMA is suitable for RS codes with a medium or long length, while the

FDMA is more efficient when decoding short RS codes.2 It can be seen from Table III that the

complexity of the FMA is significantly better than that of the RiBM algorithm for medium or

long RS codes.

TABLE I

COMPLEXITY COMPARISON BETWEEN SYNDROME-BASED DECODING (RIBM) FOR THE (255, 223) RS CODE AND THE

NEW DECODING (FDMA) FOR THE (256, 224) RS CODE OVER F28

Components
Syndrome-based decoding (RiBM) New decoding (FDMA)

Mul. Add. Div. Mul. Add. Div.

Syndrome 8,160 8,160 0 752 1,696 0

Key equation 3,136 1,568 0 3,233 2,244 0

Chien search 4,335 4,335 0 640 1,280 0

Formal derivative 0 0 0 80 80 0

Forney’s formula 544 528 16 544 528 16

Total 16,175 14,591 16 5,249 5,828 16

B. Comparison with Other RS Algorithms Based on FFT

There are many other efficient RS algorithms based on various FFT methods [7]–[10]. Note

that it has been shown in [28] that the additive FFT based on the Taylor expansion is worse than

the FFT used here in terms of additive complexity. Thus, we do not consider the algorithm in [11]

for comparison. Table IV compares the new decoding algorithm with the methods in [7]–[10]

by counting the field operations in the syndrome computation. The result shows that the new

algorithm has the lowest additive complexity and a medium multiplicative complexity. It should

2The reason that the FMA performs worse than the FDMA for short codes is due to the hidden cost for dividing the problem

and merging the solutions obtained from the subproblems when performing the divide and conquer approach (FMA).
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TABLE II

COMPLEXITY COMPARISON BETWEEN SYNDROME-BASED DECODING (RIBM) FOR THE (1023, 895) RS CODE AND THE

NEW DECODING (FDMA) FOR THE (1024, 896) RS CODE OVER F210

Components
Syndrome-based decoding (RiBM) New decoding (FDMA)

Mul. Add. Div. Mul. Add. Div.

Syndrome 130,944 130,944 0 4,160 9,088 0

Key equation 49,408 24,704 0 49,921 33,796 0

Chien search 66,495 66,495 0 3,584 7,168 0

Formal derivative 0 0 0 448 448 0

Forney’s formula 8,320 8,256 64 8,320 8,256 64

Total 255,167 230,399 64 66,433 58,756 64

TABLE III

COMPLEXITY COMPARISON BETWEEN SYNDROME-BASED DECODING (RIBM) FOR THE (4095, 3583) RS CODE AND THE

NEW DECODING (FMA) FOR THE (4096, 3584) RS CODE OVER F212

Components
Syndrome-based decoding (RiBM) New decoding (FMA)

Mul. Add. Div. Mul. Add. Div.

Syndrome 2,096,640 2,096,640 0 21,248 45,568 0

Key equation 787,456 393,728 0 239,616 357,372 0

Chien search 1,052,415 1,052,415 0 18,432 36,864 0

Formal derivative 0 0 0 2,304 2,304 0

Forney’s formula 131,584 131,328 256 131,584 131,328 256

Total 4,068,095 3,674,111 256 413,184 573,436 256

be mentioned that although some existing algorithms have a lower multiplicative complexity,

they sacrifice a regular structure, which is vital in hardware implementation. The new decoding

algorithm uses a FFT algorithm in which a butterfly structure is present; see [12] for details.

This makes the new algorithm suitable for hardware implementation. Furthermore, the existing

decoding algorithms have no fast key equation solver. Hence, the new algorithm is significantly

better than them for decoding medium or long RS codes, as we have seen in Table III.

C. Comparison with the Half-GCD Algorithm and the Guruswami-Sudan Algorithm

The Half-GCD algorithm, proposed in [12], is able to solve (10) with complexity O((n −

k) log2(n− k)). Although the FMA algorithm has the same complexity order as the Half-GCD
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TABLE IV

COMPLEXITY OF SYNDROME COMPUTATION FOR RS CODES OVER F2m

Field Code
Method in [7] Method in [8] Method in [9] Method in [10] Proposed algorithm

Mul. Add. Mul. Add. Mul. Add. Mul. Add. Mul. Add.

F28 (255, 223) 3,060 4,998 252 3,064 149 2,931 138 3,064 752 1,696

F210 (1023, 895) 33,620 73,185 2,868 19,339 824 36,981 / / 4,160 9,088

algorithm, it has a smaller constant factor and a regular structure. It is clear that Algorithm 6

involves two recursive calls, matrix multiplications, eight times 2µ-point FFTX̄, and four times

Algorithm 5. As a 2µ-point FFTX̄ involves 1
2
µ2µ multiplications and µ2µ additions, if we assume

that the multiplication and addition have the same complexity, the constant factor of FFTX̄ is

1.5. In other words, a 2µ-point FFTX̄ costs 1.5µ2µ field operations. Furthermore, the constant

factor of Algorithm 5 is also 1.5. Hence, as the matrix multiplications involve O(2µ) operations,

we have

T (2µ) = 2T (2µ/2) + (8 + 4)× 1.5µ2µ + o(2µ log(2µ)) < 2T (2µ/2) + 19µ2µ.

This implies that the constant factor of Algorithm 6 is less than 9.5. For comparison, the Half-

GCD algorithm involves two recursive calls, at least 15 times 2µ-point FFTX̄, and 15 times

2µ-point IFFTX̄. This means that the constant factor of Half-GCD is at least 22.5. Hence, the

FMA has a significantly improved decoding complexity compared with Half-GCD. Moreover,

with some effort, one can show that the FMA does not require that n − k be a power of two.

Therefore, the FMA is more flexible than Half-GCD in real applications.

Let the list size κ = 1 and the multiplicity υ = 1. The GS algorithm is equivalent to bounded

distance decoding. By taking the fast polynomial multiplication into account, fast interpolation

algorithms were proposed in [16], [17] and [18] for solving the key equation of the GS algorithm.

Their complexities are O(n log2 n log log n). Compared with these interpolation algorithms, the

method proposed here is faster since there is no factor log logn.

V. CONCLUSION

We have presented the MA, which is an efficient algorithm for solving the WB key equation.

Based on the MA, a new decoding algorithm for RS codes has been proposed that has the

best asymptotic computational complexity and the smallest constant factor achieved to date.
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The results of comparisons show that the new decoding algorithm is significantly better than the

existing methods in terms of complexity when decoding practical RS codes. Since the complexity

of the new algorithm is O(n log(n−k)+(n−k) log2(n−k)), this makes it possible to use long RS

codes in real applications. One potential route for future work is to transfer this new algorithm

into a circuit design. Another interesting issue is to devise a fast list decoding algorithm based

on the techniques presented here. Finally, whether the proposed algorithm can be used in the

one-pass Chase decoding presented in [20] is open yet.

APPENDIX A

In this section, we first demonstrates that the FFT/IFFT transforms exist for arbitrary ǫ-points

and their complexities are O(ǫ log ǫ). Then we present the encoding and decoding algorithm for

arbitrary (n, k) RS codes. Let f(x) =
∑ǫ−1

l=0 f̄lX̄l(x) and µ be the smallest integer such that

2µ ≥ ǫ. Obviously, we have ǫ > 2µ−1.

A. ǫ-points FFT transform

The ǫ-points FFT transform evaluates f(x) at points ω0 + β, ω1 + β, . . . , ωǫ−1 + β. Since

f(x) =
∑2µ−1

l=0 f̄lX̄l(x) where f̄ǫ, . . . , f̄2µ−1 = 0, then Algorithm 2 can be taken to evaluate f(x)

at points ω0 + β, ω1 + β, . . . , ω2µ−1 + β. Furthermore, as ǫ > 2µ−1, then 2ǫ > 2µ. Thus, the

complexity of the ǫ-points FFT transform is at most O(2µ log 2µ) = O(ǫ log ǫ).

B. ǫ-points IFFT transform

Given f(ω0 + β), f(ω1 + β), . . . , f(ωǫ−1 + β), the ǫ-points IFFT transform computes the

coordinate vector of f(x) with respect to X̄, where ǫ ≥ 1 and deg(f(x)) < ǫ. An algorithm for

this task has been presented in [26, Algorithm 3]. However, for this paper to be self-contained,

we again present this algorithm here.

For the ǫ-points IFFT transform where ǫ ≤ 2µ, only f(ω0 + β), f(ω1 + β), . . . , f(ωǫ−1 + β)

are given. Hence, Algorithm 3 fails to accomplish such a transform. However, Lemma 1 given

in [26] provides a tool for deriving the ǫ-points IFFT transform. Hereafter, we write

F = (F0, F1, . . . , F2µ−1) = (f(ω0 + β), f(ω1 + β), . . . , f(ω2µ−1 + β)),

and write the coordinate vector of f(x) with respect to X̄ as

f̄ = (f̄0, f̄1, . . . , f̄2µ−1).
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Furthermore, for any integer 0 ≤ γ ≤ µ, we write

Fl,γ = (Fl·2γ , Fl·2γ+1, . . . , F(l+1)·2γ−1), f̄l,γ = (f̄l·2γ , f̄l·2γ+1, . . . , f̄(l+1)·2γ−1)

for 0 ≤ ℓ ≤ 2µ−γ − 1.

Lemma 8 ( [26], Lemma 1): For any integer 0 ≤ γ ≤ µ, we have

2µ−γ−1
∑

l=0

IFFTX̄(Fl,γ, γ, ωl·2γ + β) = f̄2µ−γ−1,γ .

Based on the above lemma, Algorithm 8 presents the ǫ-points IFFT transform. Note that we

remove the constraint ǫ > 2µ−1 in Algorithm 8.

Algorithm 8 ǫ-points IFFT Transform [26, Algorithm 3]

Input: {(F0, F1, . . . , Fǫ−1), ǫ, µ, β}, where ǫ ≤ 2µ.

Output: {f̄ ,F} such that f̄ǫ, . . . , f̄2µ−1 = 0 and FFTX̄(f̄ , µ, β) = F.

1: if µ = 0 then

2: return {f̄ = (F0),F = (F0)}.

3: end if

4: if ǫ ≤ 2µ−1 then

5: Call Algorithm 8 with input {(F0, F1, . . . , Fǫ−1), ǫ, µ− 1, β} to obtain {f̄0,µ−1,F0,µ−1}.

6: Call Algorithm 2 to obtain F1,µ−1 = FFTX̄(f̄0,µ−1, µ− 1, ω2µ−1 + β).

7: Set f̄1,µ−1 = 0.

8: else

9: Call Algorithm 3 to obtain w = IFFTX̄(F0,µ−1, µ− 1, β).

10: Call Algorithm 2 to obtain w
′

= FFTX̄(w, µ− 1, ω2µ−1 + β).

11: Let the input be {(F2µ−1 , . . . , Fǫ−1)+(w
′

0, . . . , w
′

ǫ−1−2µ−1), ǫ−2µ−1, µ−1, ω2µ−1+β}. Call

Algorithm 8 to get {f̄1,µ−1,F
′

1,µ−1}.

12: Set f̄0,µ−1 = w +
sµ−1(β)

sµ−1(vµ−1)
f̄1,µ−1 and F1,µ−1 = F

′

1,µ−1 +w
′

.

13: end if

14: return {f̄ ,F}.

The following we present a lemma that has been mentioned in [26] and provide a more

comprehensive proof here.

Lemma 9 ( [26], Lemma 2): Algorithm 8 outputs {f̄ ,F} such that FFTX̄(f̄ , µ, β) = F, and

its complexity is O(ǫ log ǫ).

Proof: We prove this conclusion by induction on µ.
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If µ = 0, then ǫ = 1. It is easy to check that {f̄ = (F0),F = (F0)} is the desired result.

Now assume that, for 0, 1, . . . , µ − 1, Algorithm 8 outputs the desired solution. If ǫ ≤

2µ−1, then by induction, calling Algorithm 8 with input {(F0, F1, . . . , Fǫ−1), ǫ, µ− 1, β} outputs

{f̄0,µ−1,F0,µ−1} which satisfies FFTX̄(f̄0,µ−1, µ−1, β) = F0,µ−1. Furthermore, as f̄ǫ, . . . , f̄2µ−1 =

0, then the transform FFTX̄(f̄0,µ−1, µ− 1, ω2µ−1 + β) = F1,µ−1. The claim holds.

On the other hand, if ǫ > 2µ−1, according to Lemma 8, we have

IFFTX̄(F0,µ−1, µ− 1, β) + IFFTX̄(F1,µ−1, µ− 1, ω2µ−1 + β) = f̄1,µ−1.

Let w = IFFTX̄(F0,µ−1, µ− 1, β) and w
′

= FFTX̄(w, µ− 1, ω2µ−1 + β). It follows that

w + IFFTX̄(F1,µ−1, µ− 1, ω2µ−1 + β) = f̄1,µ−1,

⇒ IFFTX̄(F1,µ−1 +w
′

, µ− 1, ω2µ−1 + β) = f̄1,µ−1,

⇒FFTX̄(f̄1,µ−1, µ− 1, ω2µ−1 + β) = F1,µ−1 +w
′

, (17)

where the second identity holds since the transform IFFTX̄ is linear. Note that since F0,µ−1 is

known, then w and w
′

are also known. As f̄2µ−1 , . . . , f̄ǫ−1, F2µ−1 , . . . , Fǫ−1 are known and

f̄ǫ, . . . , f̄2µ−1 = 0, the equation (17) can be solved by Algorithm 8 inductively such that

FFTX̄(f̄1,µ−1, µ−1, ω2µ−1+β) = F
′

1,µ−1 = F1,µ−1+w
′

. Furthermore, one has F1,µ−1 = F
′

1,µ−1+

w
′

. According to the recursive structure of Algorithm 2, one has w = f̄0,µ−1 +
sµ−1(β)

sµ−1(vµ−1)
f̄1,µ−1.

Then we obtain that f̄0,µ−1 = w +
sµ−1(β)

sµ−1(vµ−1)
f̄1,µ−1. Now we have proven the correctness of

Algorithm 8.

It remains to discuss the complexity. Denote the complexity of Algorithm 8 by T (2µ). If

µ = 0, the complexity is O(1). Now assume that µ > 1. If ǫ ≤ 2µ−1, we have T (2µ) =

T (2µ−1)+O(2µ log 2µ). Conversely, if ǫ > 2µ−1, we also have T (2µ) = T (2µ−1)+O(2µ log 2µ).

Hence, we have T (2µ) = O(2µ log 2µ). Finally, if we let the µ be the smallest integer such that

2µ ≥ ǫ, the complexity of Algorithm 8 is O(ǫ log ǫ).

�

Algorithm 8 presents a general method for the ǫ-points IFFT transform. However, it should

be mentioned that, for a specific ǫ, a further complexity reduction is possible. For example,

Algorithm 5 is a special IFFT transform whose input size is not a power of 2.
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C. Encoding Algorithm for Arbitrary (n, k) RS Codes

Now we turn to present the encoding algorithms for arbitrary n, k. Let ǫ = n−k and let µ be

the smallest integer such that 2µ ≥ ǫ. A RS code over finite field F2m of length n and dimension

k is defined as

{(f(ω0), f(ω1), . . . , f(ωn−1)) | deg(f(x)) < 2m − ǫ, f(ωl) = 0, l = n, n+ 1, . . . , 2m − 1}.

Note that this is different from the classical definition in which an (n, k) RS code is defined as

{(f(α0), f(α1), . . . , f(αn−1)) | deg(f(x)) < k}.

The reason is that we can derive fast encoding and decoding algorithm based on the new

definition.

Let ω0, . . . , ωǫ−1 be check locations and ωǫ, . . . , ωn−1 be message locations. We write F =

(f(ω0), f(ω1), . . . , f(ω2m−1)). According to Lemma 8, we then have

IFFTX̄(F0,µ, µ, 0) + IFFTX̄(F1,µ, µ, ω2µ) + · · ·+ IFFTX̄(F2m−µ−1,µ, µ, ω2m−2µ) = f̄2m−µ−1,µ.

(18)

Since f(ωǫ), . . . , f(ωn−1) are the message symbols, so F1,µ, . . . ,F2m−µ−1,µ in (18) are known in

advance. Note that if Fl,µ is a zero vector, the corresponding IFFT transform in (18) is no need

to perform. Let

w = IFFTX̄(F1,µ, µ, ω2µ) + · · ·+ IFFTX̄(F2m−µ−1,µ, µ, ω2m−2µ).

Then we have

FFTX̄(f̄2m−µ−1,µ, µ, 0) = F0,µ + FFTX̄(w, µ, 0).

Since deg(f(x)) < 2m − ǫ, there are at least ǫ zeros in f̄2m−µ−1,µ. Hence, there are total 2µ

unknowns in both side of the above equation and it can be solved uniquely. A method for

solving this equation is presented in Algorithm 9 and its complexity is O((2µ − ǫ) log(2µ − ǫ)).

Since its proof is similar to that of Algorithm 8, so we omit it here.

A complete encoding algorithm is provided in Algorithm 10. Clearly, the encoding complexity

is O(n log(n− k)).

Algorithm 9 Special ǫ-points IFFT Transform

Input: {(Fǫ, Fǫ+1, . . . , F2µ−1), 2
µ − ǫ, µ, β}, where ǫ ≤ 2µ.

Output: {f̄ ,F} such that f̄2µ−ǫ, . . . , f̄2µ−1 = 0 and FFTX̄(f̄ , µ, β) = F.

1: if µ = 0 then
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2: return {f̄ = (F0),F = (F0)}.

3: end if

4: if 2µ − ǫ ≤ 2µ−1 then

5: Call Algorithm 9 with input {(Fǫ, Fǫ+1, . . . , F2µ−1), 2
µ − ǫ, µ − 1, ω2µ−1 + β} to obtain

{f̄0,µ−1,F1,µ−1}.

6: Call Algorithm 2 to obtain F0,µ−1 = FFTX̄(f̄0,µ−1, µ− 1, β).

7: Set f̄1,µ−1 = 0.

8: else

9: Call Algorithm 3 to obtain w = IFFTX̄(F1,µ−1, µ− 1, ω2µ−1 + β).

10: Call Algorithm 2 to obtain w
′

= FFTX̄(w, µ− 1, β).

11: Let the input be {(Fǫ, . . . , F2µ−1−1)+(w
′

ǫ, . . . , w
′

2µ−1−1), 2
µ−1−ǫ, µ−1, β}. Call Algorithm

8 to get {f̄1,µ−1,F
′

0,µ−1}.

12: Set f̄0,µ−1 = w +
sµ−1(β)

sµ−1(vµ−1)
f̄1,µ−1 + f̄1,µ−1 and F0,µ−1 = F

′

0,µ−1 +w
′

.

13: end if

14: return {f̄ ,F}.

Algorithm 10 Encoding Algorithm for Arbitrary (n, k) RS Codes

Input: The message symbols f(ωǫ), . . . , f(ωn−1) and ǫ.

Output: The parity symbols f(ω0), . . . , f(ωǫ−1).

1: Find the smallest µ such that 2µ ≥ ǫ.

2: Compute the transforms

IFFTX̄(Fl,µ, µ, ωl·2µ), l = 1, 2, . . . , ⌈n/2µ⌉ − 1.

3: Compute w =
∑⌈n/2µ⌉−1

l=1 IFFTX̄(Fl,µ, µ, ωl·2µ).

4: Compute w
′

= FFTX̄(w, µ, 0).

5: Let the input be {f(ωǫ) + w
′

ǫ, . . . , f(ω2µ−1) + w
′

2µ−1, 2
µ − ǫ, µ, 0} and call Algorithm 9 to

get {f̄2m−µ−1,F
′

0,µ}, where F
′

0,µ = (f(ω0) + w
′

0, . . . , f(ω2µ−1) + w
′

2µ−1).

6: Compute F0,µ = F
′

0,µ +w
′

, where F0,µ = (f(ω0), . . . , f(ω2µ−1)).

7: return f(ω0), . . . , f(ωǫ−1).

DRAFT July 25, 2022



31

D. Decoding Algorithm for Arbitrary (n, k) RS Codes

We write the received vector as

r = F+ e = (f(ω0), f(ω1), . . . , f(ω2m−1)) + (e0, e1, . . . , e2m−1)

= (r0, r1, . . . , r2m−1),

where e is the error pattern. Notice that only f(ω0), . . . , f(ωn−1) are sent such that en, . . . , e2m−1 =

0 and f(ωn), . . . , f(ω2m−1) are equal to 0. Thus, rn, . . . , r2m−1 = 0. Let

E = {ωl|el 6= 0 for 0 ≤ l < n}.

The error locator polynomial is then defined by

λ(x) =
∏

a∈E

(x− a).

There exists a polynomial r(x) ∈ F2m [x] satisfying

deg(r(x)) < 2m, r(ωl) = f(ωl) + el, l = 0, 1, . . . , 2m − 1.

It follows that

f(ωl)λ(ωl) = r(ωl)λ(ωl) for l = 0, 1, . . . , 2m − 1.

Hence, the congruence

f(x)λ(x) ≡ r(x)λ(x) mod sm(x)

holds and we have

f(x)λ(x) = r(x)λ(x) + q(x)sm(x) (19)

for some q(x). According to our definition of an (n, k) RS code, the degree of f(x) is less than

2m − ǫ, where ǫ = n− k. Furthermore, deg(λ(x)) ≤ ⌊ǫ/2⌋. As deg(sm(x)) = 2m > deg(r(x)),

one must have deg(q(x)) < deg(λ(x)).

Let µ be the smallest integer such that 2µ ≥ ǫ. Dividing f(x)λ(x), r(x), and sm(x) by

p2m−2µX̄2m−2µ(x) (which is a monic polynomial), we have

f(x)λ(x) = p2m−2µX̄2m−2µ(x)z
′

(x) + ηf (x),

r(x) = p2m−2µX̄2m−2µ(x)u(x) + ηr(x), (20)

sm(x) = p2m−2µX̄2m−2µ(x)(sµ(x) + sµ(vµ)) + ηs(x),
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where the degrees of ηf(x), ηr(x), ηs(x) are less than deg(p2m−2µX̄2m−2µ(x)) = 2m− 2µ. Recall

that

deg(f(x)λ(x)) < 2m − ǫ+ deg(λ(x)) and deg(r(x)) < 2m.

This implies that

deg(z
′

(x)) < 2µ − ǫ+ deg(λ(x)) and deg(u(x)) < 2µ.

When we dividing both sides of (19) by p2m−2µX̄2m−2µ(x) and keeping the quotients, it becomes

z
′

(x) = u(x)λ(x) + q(x)(sµ(x) + sµ(vµ)).

Let z(x) = z
′

(x)− sµ(vµ)q(x). We obtain the equation

z(x) = u(x)λ(x) + q(x)sµ(x), (21)

where deg(z(x)) < 2µ − ǫ+ deg(λ(x)) as deg(q(x)) < deg(λ(x)).

Dividing z(x), u(x), and sµ(x) by
∏2µ−1

l=ǫ (x− ωl), it follows that

z(x) =
2µ−1
∏

l=ǫ

(x− ωl)z1(x) + ηz(x),

u(x) =
2µ−1
∏

l=ǫ

(x− ωl)u1(x) + ηu(x),

sµ(x) =

2µ−1
∏

l=ǫ

(x− ωl)

ǫ−1
∏

j=0

(x− ωj),

where deg(ηz(x)), deg(ηu(x)) are less than deg(
∏2µ−1

l=ǫ (x− ωl)) = 2µ − ǫ. Evidently, one has

deg(z1(x)) = deg(z(x))− (2µ − ǫ) < deg(λ(x)),

deg(u1(x)) = deg(u(x))− (2µ − ǫ) < ǫ.

Dividing
∏2µ−1

l=ǫ (x− ωl) on both side of (21) and keeping the quotients, it becomes

z1(x) = u1(x)λ(x) + q(x)

ǫ−1
∏

l=0

(x− ωl), (22)

where deg(z1(x)) < deg(λ(x)). Note that if r is a codeword, then deg(r(x)) < 2m − ǫ and thus

deg(u(x)) < 2µ− ǫ. This implies that u1(x) = 0. Hence, u1(x) is the syndrome polynomial and

(22) is the key equation.

Note that for solving the key equation, we only need u1(ω0), . . . , u1(ωǫ−1). Now we present

how to compute u1(ω0), . . . , u1(ωǫ−1).
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The polynomial r(x) can be written as

r(x) =
2m−1
∑

l=0

r̄lX̄l(x) =
2m−2µ−1
∑

l=0

r̄lX̄l(x) +
2m−1
∑

j=2m−2µ

r̄jX̄j(x)

=
2m−2µ−1
∑

l=0

r̄lX̄l(x) + p2m−2µX̄2m−2µ(x)
2µ−1
∑

j=0

r̄j+2m−2µ

p2m−2µ
X̄j(x),

where the second identity holds since

X̄j+2m−2µ(x) = X̄2m−2µ(x)X̄j(x) for j < 2µ.

Because deg(X̄l(x)) < 2m − 2µ for l = 0, 1, . . . , 2m − 2µ − 1, by (20), we have

u(x) =
2µ−1
∑

j=0

r̄j+2m−2µ

p2m−2µ
X̄j(x).

According to Lemma 8, the coefficient (r2m−2µ , . . . , r2m−1) can be computed by

⌈n/2µ⌉−1
∑

l=0

IFFTX̄(rl,µ, µ, ωl·2µ).

Therefore, the coefficients of u(x) with respect to X̄ are obtained by

⌈n/2µ⌉−1
∑

l=0

IFFTX̄(rl,µ, µ, ωl·2µ)/p2m−2µ . (23)

Since

u(x) = u1(x)

2µ−1
∏

l=ǫ

(x− ωl) + ηu(x), (24)

where deg(ηu(x)) < deg(
∏2µ−1

l=ǫ (x − ωl)), it follows that ηu(ωl) = u(ωl) for l = ǫ, . . . , 2µ − 1.

So ηu(x) can be computed by Algorithm 9 once u(ωl), l = ǫ, . . . , 2µ − 1 are obtained. Next, we

evaluate ηu at ω0, ω1, . . . , ωǫ−1 by ǫ-points FFT. Then u1(ωl), l = 0, 1, . . . , ǫ−1 can be computed

in a straightforward way according to (24).

Once u1(ωl), l = 0, 1, . . . , ǫ− 1 are obtained. The key equation can be solved by the FDMA

or FMA. Since FFT/IFFT transforms exist for any input size, it is easy to show the complexities

of the FDMA and FMA are O((n− k)2) and O((n− k) log2(n− k)), respectively. For example,

let ǫ = 30 and we solve the key equation by the FMA. The original problem is divided into two

sub-problems of dimension 16 and 14. Solving the first sub-problem is straightforward since its

size 16 is equal to 24. Next, we evaluate the solution to the first sub-problem at ω0, ω1, . . . , ωǫ and

update the second sub-problem. Then we can solve the updated second sub-problem inductively
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and evaluate its solution at ω0, ω1, . . . , ωǫ. Finally, we multiply these two solutions in frequency

domain and do (ǫ+ 1)-input IFFT transform to get the desired result.

After the error locator polynomial is obtained, finding the error locations can be done by

FFTX̄(λ̄, µ, ωl·2µ), l = 0, 1, . . . , ⌈n/2µ⌉ − 1. (25)

According to the content in Subsection C, we have f(ωl) − r(ωl) = q(ωl)/λ
′

(ωl). If ωl is a

message location, then q(ωl) = z1(ωl)/
∏ǫ−1

j=0(ωl − ωj). Hence, Forney’s formula for solving the

error value is

f(ωl)− r(ωl) =
z1(ωl)

∏ǫ−1
j=0(ωl − ωj)λ

′(ωl)
. (26)

Note that
∏ǫ−1

j=0(ωl − ωj) can be computed in advance and stored for l = ǫ, . . . , n− 1.

Algorithm 11 Decoding Algorithm for Arbitrary (n, k) RS Codes

Input: Received vector r = F+ e.

Output: The codeword F.

1: Compute the syndrome polynomial u(x) according to (23).

2: Evaluate u(x) at points ω0, ω1, . . . , ω2µ−1 by Algorithm 2.

3: Given ηu(ωl) = u(ωl) for l = ǫ, . . . , 2µ − 1, call Algorithm 9 to get ηu(x).

4: Evaluate ηu(x) at ω0, . . . , ωǫ by ǫ-points FFT and compute u1(ωl) for l = 0, 1, . . . , ǫ − 1

according to (24);

5: Given φi(W (x), N(x)) = u1(ωi−1)W (ωi−1) + N(ωi−1), i = 1, 2, . . . , ǫ, compute the error

locator polynomial λ(x) and the error evaluator polynomial z1(x) by Algorithms 4 or 6.

6: Find the error locations by (25).

7: Compute the error pattern e by (26).

8: return r+ e.

A complete description of decoding algorithm for arbitrary (n, k) RS codes is shown in

Algorithm 11. Obviously, the decoding complexity for an arbitrary (n, k) RS code is O(n log(n−

k) + (n− k) log2(n− k)).
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