
ar
X

iv
:2

20
6.

12
15

0v
3

 [
cs

.I
T

]
 2

5
N

ov
 2

02
2

1

Decoding Short LDPC Codes via BP-RNN

Diversity and Reliability-Based Post-Processing
Joachim Rosseel∗†, Valérian Mannoni∗, Inbar Fijalkow†, Valentin Savin∗

∗Université Grenoble Alpes, CEA-Leti, F-38054 Grenoble, France
†ETIS, CY Cergy Paris Univ., ENSEA, CNRS, F-95000 Cergy-Pontoise, France

{Joachim.Rosseel, Valerian.Mannoni, Valentin.Savin}@cea.fr, Inbar.Fijalkow@ensea.fr

Abstract—This paper investigates decoder diversity architec-
tures for short low-density parity-check (LDPC) codes, based on
recurrent neural network (RNN) models of the belief-propagation
(BP) algorithm. We propose a new approach to achieve decoder
diversity in the waterfall region, by specializing BP-RNN de-
coders to specific classes of errors, with absorbing set support.
We further combine our approach with an ordered statistics
decoding (OSD) post-processing step, which effectively leverages
the bit-error rate optimization deriving from the use of the binary
cross-entropy loss function. We show that a single specialized
BP-RNN decoder combines better than BP with the OSD post-
processing step. Moreover, combining OSD post-processing with
the diversity brought by the use of multiple BP-RNN decoders,
provides an efficient way to bridge the gap to maximum likelihood
decoding.

Index Terms—LDPC, short LDPC, neural network aided
decoding, belief propagation, ordered statistics decoding post-
processing

I. INTRODUCTION

LAST years have witnessed an increased interest in re-

search and practice of efficient error correcting codes

for messages ranging from a few tens up to a few hundred

bits, revived for instance by short-packet machine-to-machine

communications, central to the emerging Internet of Things

technology. While important progress has been made in un-

derstanding the limits of coding at short block lengths [1], the

design of efficient short codes and decoding algorithms still

raises many challenges [2].

Low-density parity-check (LDPC) codes [3] are a class of

error correcting codes defined by sparse bipartite graphs [4].

They are well-known for their excellent error correction

performance at suitably large blocklengths, achieving near

Shannon channel capacity performance under iterative belief

propagation (BP) decoding [5]. For codes defined by cycle-free

bipartite graphs, BP decoding outputs maximum a posteriori

estimates of the coded bits [6]. However, good codes are

actually defined by graphs with cycles, in which case BP

decoding is known to be sub-optimal.

First works on improving the iterative BP decoding perfor-

mance actually focused on so-called high-density parity-check

(HDPC) codes [7]–[10]. These codes are defined by higher

density bipartite graphs – e.g., Bose-Chaudhuri-Hocquenghem

(BCH) codes, Reed-Muller codes, binary Golay codes, etc. –

This work was supported by the French Agence Nationale de la Recherche
(ANR), under grant number ANR-21-CE25-0006 (AI4CODE project).

for which the standard iterative BP decoding usually yields

very poor error correction performance. In [7], an adaptive BP

decoding approach was proposed, in which the decoding graph

used by BP is updated at each iteration, according to the output

of a reliability-based decoding algorithm, such as the ordered

statistics decoding (OSD) [11]. The random recurrent decoding

in [8], [9] and the multiple-bases BP decoding in [10] exploit

a decoding diversity approach, in the form of different graph

representations of the code, implying several BP decoders

working either in serial or in parallel.

More recently, deep neural networks have received sig-

nificant interest for improving the decoding performance of

short codes [12]–[17]. A weighted BP decoding has been

introduced in [12], where the weights are optimized using a

neural network (NN). The topology of the NN mimics the

BP decoding process, with unwrapped decoding iterations.

The approach can be used with either a feedforward (FF)

or a recurrent NN (RNN), the corresponding decoders being

termed as BP-FF or BP-RNN. It has been shown in [13] that

the BP-RNN is able to outperform the standard BP decoder

for short BCH codes, belonging to the class of HDPC codes.

Subsequently, several variants of NN-based BP decoding have

been proposed in the literature. In [16], a pruning method

of irrelevant check-nodes in a neural BP model has been

proposed, aimed at jointly optimizing the code construction

and the decoding. The design of new decoding rules for finite-

alphabet iterative decoders (FAIDs), based on a quantized NN

model, was proposed in [14]. Moreover, a new training method

of the quantized NN model was introduced in [15], where

training sets are constructed by sampling errors with trapping

set support, to achieve decoding diversity for FAIDs on the

binary symmetric channel. Resolving decoding failures due to

trapping sets, by means of deep learning techniques, has also

been recently investigated in [18].

In this paper, we consider the BP-RNN decoding of short

LDPC codes. One critical difficulty faced by BP decoding

in the finite blocklength regime is the presence of particular

structures in the bipartite graph, which prevent the decoding

algorithm from converging. Examples of such structures are

trapping sets [19] and absorbing sets [20], and they are closely

related to the pseudo-codewords [21] and near-codewords [22]

concepts. Here, we shall focus on the absorbing set concept,

introduced in [20] as a combinatorial object associated with

the bipartite graph, and defined independently of the particular

message-passing decoding or channel noise model. For long

http://arxiv.org/abs/2206.12150v3

2

LDPC codes, such structures are known to be responsible of

the so-called error floor phenomenon, since their size may be

relatively small with respect to the length of the code [20].

However, for short codes, their size may be comparable to the

number of errors that the code must correct, therefore possibly

inducing a significant degradation of the error correction

performance in the waterfall region. To address this issue,

we take a decoding diversity approach, implying several BP-

RNN decoders working either in serial or in parallel, where

each BP-RNN is trained to decode errors corresponding to

absorbing sets of a specific type. We used a similar approach

in our previous work [23], where several BP-RNN decoders

working in parallel were trained by exhaustively enumerating

and classifying (according to the structure of the induced sub-

graph) all patterns of two and three errors. The work in [23]

was relevant to high coding rate LDPC codes, correcting a

small number of errors. Here, we extend our previous work

to lower rate codes, correcting a higher number of errors,

by concentrating our attention to errors with absorbing set

support. We further combine our approach with a low-order

OSD post-processing step, providing an efficient way to bridge

the gap to maximum likelihood (ML) decoding. The main

contributions of the paper are summarized below.

Absorbing set classification and specialization of BP-

RNN decoding: We first propose a graph-search based al-

gorithm, combining backtracking and a deep-first search like

procedure, to enumerate, in an efficient way, all the absorbing

sets of a given size in the bipartite graph. We then perform a

fine classification of the enumerated absorbing sets, according

to the degree profile of the check-nodes in the induced sub-

graph, and train a specific BP-RNN decoder for each absorbing

set class.

BP-RNNs selection and decoding architectures: To re-

duce the number of the BP-RNN decoders, we propose a

selection procedure, where the selected decoders are the most

complementary in terms of the errors they can decode. We

then consider two decoding architectures, in which the selected

BP-RNN decoders are executed in an either parallel or serial

manner, and define the appropriate metrics to assess their

computational complexity and decoding latency.

OSD post-processing: We further combine our approach

with an OSD post-processing step, applied in case none of

the selected BP-RNN decoders outputs a codeword. There are

two motivations behind the use of such a post-processing step.

First, for short LDPC codes, the OSD complexity is limited,

compatible with practical applications, especially when the

OSD order is small. Here, we restrict the order of the OSD

post-processing step to either 0 or 1. Second, it may benefit

from the diversity brought by the use of multiple BP-RNN

decoders. Indeed, we show that the coding gain brought by

the use of multiple BP-RNN decoders is actually amplified by

the use of the OSD post-processing, resulting in a significant

improvement of the error correction performance.

The paper is organized as follow. Section II introduces

the notation and the BP-RNN decoding algorithm. Absorbing

sets, as well as the tree-search based algorithm to enumerate

them, their classification, and the training method used to

specialize the BP-RNNs to absorbing set classes, are presented

in Section III. The BP-RNNs selection, together with the

parallel and serial and decoding architectures are presented in

Section IV. Section V provides the details of the OSD post-

processing step. Finally, Section VI presents the numerical

results, and Section VII concludes the paper.

II. PRELIMINARIES

A. Neural BP decoding

We consider an LDPC code defined by a Tanner (bipartite)

graph [4] with N variable-nodes and M check-nodes, denoted

respectively by n ∈ {1, . . . , N} and m ∈ {1, . . . ,M}. We

further denote by N (m) the set of variable-nodes connected

to a check-node m, and by M(n) the set of check-nodes

connected to a variable-node n.

BP decoding consists of an iterative exchange of messages

along the edges of the Tanner graph, where each message

provides an estimation of the incident variable-node [24]. BP-

RNN and BP-FF decoding algorithms are weighted variants

of the BP decoding. Exchanged messages are multiplied by

weights which are learned through an either RNN or FF-

NN approach, respectively. The underlying NN contains three

types of neural layers, each one corresponding to a step of the

BP algorithm. The check-pass layer and the data-pass layer

carry out the computation of messages outgoing from check-

nodes and variable-nodes, respectively. Each one of them

contains a number of neurons equal to the number of edges of

the Tanner graph. In addition, the a posteriori layer consists of

N neurons, computing the a posteriori Log Likelihood Ratio

(LLR) values of the N variable-nodes. The three layers of the

NN are connected such that a check pass layer, followed by

a data pass layer and an a posteriori LLR layer model one

iteration of the BP decoding. In particular, it should be noted

that neurons in the check-pass and data-pass layers of the NN

correspond to directed edges of the Tanner graph, m → n
and n → m, respectively. NN edges between these layers

connect two neurons sharing either a common variable-node

(i.e., m → n and n → m′, with m 6= m′) or a common

check-node (i.e., n → m and m → n′, with n 6= n′). For

more details, we refer to [12].

The formulas below detail the calculation of messages

within each layer. We denote by βm→n and αn→m the

messages computed by the check-pass and data-pass layers,

respectively, and by L̃n the messages computed by the a pos-

teriori LLR layer. The observed (channel) LLR values are

denoted by Lch,n, and are used to initialize αn→m messages

prior to the first iteration.

βm→n = 2 tanh−1





∏

n′∈N (m)\{n}

tanh
(αn′→m

2

)



 (1)

αn→m = Lch,n +
∑

m′∈M(n)\{m}

wm′→n→mβm′→n (2)

L̃n = Lch,n +
∑

m∈M(n)

w̃m→nβm→n (3)

It can be observed that weights (w, w̃) are applied only on the

NN edges incoming to the data-pass (2) and a posteriori LLR

(3) layers. Each weight corresponds to one specific edge of

3

the NN. In (2) the weights are denoted by wm′→n→m, where

the subscript indicates both the corresponding neuron n→ m
in the data-pass layer, and the incoming NN edge from neuron

m′ → n in the check-pass layer. In (3), the weights are denoted

by w̃m→n, where the subscript indicates the corresponding

neuron n in the a posteriori LLR layer, and the incoming NN

edge from neuron m→ n in the check-pass layer. For the BP-

RNN, the weights only depend on the corresponding edges of

the NN, while for the BP-FF they also depend on the iteration

number (note that, to simplify notation, we have not indicated

the iteration number on the above formulas).

It is worth noticing that despite a lower number of trainable

weights, the BP-RNN achieves similar performance to the BP-

FF [13]. Therefore, we will only consider the BP-RNN model,

although our work can be readily adapted to the BP-FF model.

Moreover, to further reduce the number of trainable weights,

we use the approach suggested in [13], with the data-pass layer

computation modified as,

αn→m = Lch,n + wn→m

∑

m′∈M(n)\m

βm′→n, (4)

where the applied weight wn→m only depends on the data-

pass neuron n → m. This simplification reduces the training

complexity and makes it possible to reuse conventional BP de-

coding architectures for an efficient hardware implementation.

B. Loss function

The goal of BP-RNN decoding is to map the received signal

to a valid codeword. This process can be interpreted as a clas-

sification task, with one class corresponding to one codeword

of the code. However, this is practically unrealistic due to the

high number of classes [25]. A generally accepted method

to avoid this problem is to replace the initial classification

task by a simpler binary classification task for each bit. To do

so, the use of the average binary cross-entropy loss function

was suggested in [12], [13]. When both the channel and the

decoder are symmetric – e.g., the additive white Gaussian

noise (AWGN) channel and BP-RNN decoder considered in

this work – training (as well as testing) may be performed by

assuming the transmitted codeword is the all-zero one. In this

case, the average binary cross-entropy loss function simply

writes as (see [13] for details),

Loss(L̃) = −
1

N

N
∑

n=1

log(σ(L̃n)), (5)

where the a posteriori LLR value L̃n is taken at the last

decoding iteration, and σ(z) = (1+exp(−z))−1 is the sigmoid

function, converting the LLR value into the probability that

the decoded bit is equal to zero. The loss function (5) is

then minimized during the NN training, thus minimizing the

average bit error probability.

Multi-loss functions have also been considered in [12],

[13] (see also [25]), which take into account the a posteriori

LLR values after each decoding iteration. This allows ampli-

fying the contribution of earlier iterations to the computed

gradient. In [13], multi-loss optimization has been shown to

produce effective gains for high-density BCH codes, with both

BP-RNN and BP-FF models. However, when sparser, cycle

reduced parity check matrices where chosen for the same

codes, the gain was observed to significantly reduce, or even

completely vanish. The same observation was made for check-

node regular matrices. In this work we consider short LDPC

codes, whose parity-check matrices are both cycle-reduced and

check-node regular. In our experiments, we did not observe

any gain brought by multi-loss optimization compared to (5).

We therefore consider the loss function in (5) to train our BP-

RNN decoders.

C. Number of decoding iterations

The standard approach for NN-based BP is to both train

and test the decoder for a same maximum number of decoding

iterations, usually small, such as 5 or 10 iterations (e.g., [12],

[13], [25]). For the BP-FF model, increasing the number of

decoding iterations for training also increases the number

of trainable weights, which may become computationally

intractable. For the BP-RNN model, this is no longer an issue.

Yet, assuming that we want to test the BP-RNN decoder for

an increased number of decoding iterations, a natural question

is whether it is optimal to use the same number of decoding

iterations for training. At first sight, this might be the case.

However, when the BP decoder does not converge, it may

exhibit erratic behavior, especially during the last decoding

iterations. Increasing the number of decoding iterations for

training may amplify this behavior, and impair the optimiza-

tion result. We will provide numerical evidence for this in

Section VI-B. For the moment, this motivates us to introduce

two parameters, denoted Itrain and Itest, corresponding to the

maximum number of decoding iterations during the training

and the testing phases, respectively.

III. ABSORBING SET CLASSIFICATION AND

SPECIALIZATION OF BP-RNN DECODING

A. Absorbing sets

We consider the definition of absorbing sets from [20], [26],

given below for the reader’s convenience.

Let A ⊂ {1, . . . , N} be a set of variable-nodes. We consider

the set of check-nodes connected to A at least once, which

we partition in two disjoint subsets O(A) and E(A), denoting

the sets of check-nodes connected to A either an odd or an

even number of times, respectively. The set A is said to be

an absorbing set, if any variable-node in A has strictly more

neighbors in E(A) than in O(A).
According to the above definition, if the variable-nodes in

error form as absorbing set, then each of them is connected

to a higher number of satisfied check-nodes (not detecting

the error) than unsatisfied check-nodes (detecting the error).

Such errors are likely to mislead the BP decoder, yielding a

decoding failure with high probability.

We say that an absorbing set A is of type ν-(ω, ε), where

ν := |A|, ω := |O(D)| and ε := |E(D)|, and |S| denotes

the number of elements in the set S (see also Fig. 1). Thus,

the subgraph induced by A comprises ν variable-nodes and

ω + ε check-nodes, of which ω are of odd degree and ε are

of even degree. Note that absorbing sets of the same type do

4

(a) Pc = (2, 5) (b) Pc = (0, 5, 2)

Fig. 1. Examples of absorbing sets of type 4-(2, 5)

not necessarily induce the same subgraph. This is illustrated in

Fig. 1, where two absorbing sets of type 4-(2, 5) have different

induced subgraphs. To further characterize the structure of the

induced subgraph, we define the check-node degree profile (of

the subgraph induced by A) as Pc = (m1,m2, . . .), where

md is the number of check-nodes connected to exactly d
variable-nodes in A (note that the sequence md is actually

finite, of length equal to the maximum check-node degree in

the subgraph induced by A). Finally, we define the extended

type of A as ν-(ω, ε, Pc).

B. Graph-search based algorithm

A brute-force search algorithm to enumerate all the trap-

ping/absorbing sets of a given size ν would have to explore

all the
(

N

ν

)

candidates, which may become computationally

intractable even for relatively small values of N and ν. Several

exhaustive/non-exhaustive enumeration algorithms have been

proposed in the literature, to enumerate elementary trapping

sets (i.e., whose induced subgraphs contain only degree-1 and

degree-2 check nodes) [27]–[29], trapping or absorbing sets

for specific classes of LDPC codes [26], [30] or only small

or dominant such structures [31], [32], and fully absorbing

sets (i.e., where the absorbing condition is satisfied by all

the variable-nodes in the graph) [33], [34]. Several of these

algorithms rely on a linear programming based branch-and-

bound approach, e.g., [29], [33], [34].

Here, we propose a graph search based algorithm, which, to

the best of our knowledge, is the first specifically developed

for the exhaustive enumeration of absorbing sets, without any

restriction on the structure of the Tanner graph of the absorbing

sets to be enumerated. The proposed algorithm is essentially a

backtracking algorithm that incrementally builds absorbing set

candidates, and abandons a candidate as soon as it determines

that it cannot possibly be completed to an absorbing set.

Candidates are built incrementally by traversing the bipartite

graph in a depth-first search (DFS) manner, that is, starting

from a variable-node chosen as root, and exploring as deeply

as possible before backtracking. The main difference with the

standard depth-first search is that our algorithm does not visit

only one, but a subset of variable-nodes at each depth level,

which are chosen to increment the candidate solution.

Let n ∈ {1, . . . , N} be a fixed variable-node, which we

will refer to as root node. Our algorithm enumerates all the

absorbing sets A ⊂ {1, . . . , N} containing n, of size |A| = ν.

To avoid enumerating a same absorbing set multiple times (i.e.,

starting with different root nodes), we will further require n
to be the smallest element of A, that is, A ⊂ {n, . . . , N}.

We first expand the bipartite graph starting from the root

node n, and incrementally adding check and variable nodes

at an increasing distance1 from n, until the most distant node

in the bipartite graph is reached. This expansion produces a

rooted bipartite graph, which we will denote by H. For ℓ ≥ 0,

we denote by Vℓ the set of variable-nodes at distance 2ℓ from n
(thus, V0 = {n}), and by Cℓ the set of check-nodes at distance

2ℓ+1 from n. Let A be any set of variable-nodes, containing

n, and let C be the set of check-nodes connected to A at least

once. For ℓ ≥ 0, we define Aℓ := A∩Vℓ and Cℓ := C∩Cℓ. We

say that Aℓ satisfies the absorbing set condition, and we write

AS check(Aℓ) = true, if any variable-node in Aℓ has strictly

more neighbors in E(A) than in O(A). Now, the neighbors of

the variable-nodes in Aℓ are check-nodes that belong to either

Cℓ−1 or Cℓ, and whose degrees, in the subgraph induced by

A, only depend on Aℓ−1 (for ℓ > 0), Aℓ, and Aℓ+1 (for ℓ
less than the maximum depth of A). Hence, one may check

the absorbing set condition for A in an incremental manner,

by checking it for each subset Aℓ, which however requires the

knowledge of the next level subset Aℓ+1 (except for the last

level).

The proposed algorithm incrementally builds an absorbing

set A, by choosing subsets Aℓ, for ℓ ≥ 0, and checking the ab-

sorbing set condition to determine whether the current choice

could possibly be completed to a valid absorbing set. For

ℓ = 0, we have A0 = {n}. Consider some choice of subsets

A0, . . . , Aℓ, with ℓ ≥ 0, such that ν̄ℓ :=
∑ℓ

t=0 |At| ≤ ν.

We define the set of possible completions C(A0, . . . , Aℓ), as

follows:

• if ν̄ℓ = ν, then C(A0, . . . , Aℓ) = ∅ (absorbing set size ν
already reached, thus, no completion needed).

• if ν̄ℓ < ν, then

(1) determine the subset Nℓ+1 ⊂ Vℓ+1 containing the

descendants of the variable-nodes in Aℓ.

(2) set N
(≥n)
ℓ+1 := Nℓ+1 ∩ {n, . . . , N}, and

C(A0, . . . , Aℓ) :=
{

Aℓ+1 ⊆ N
(≥n)
ℓ+1

∣

∣

∣ |Aℓ+1| ≤ ν − ν̄ℓ

}

. (6)

Note that C(A0, . . . , Aℓ) is a set of subsets Aℓ+1 (which may

be empty, if either ν̄ℓ = ν or N
(≥n)
ℓ+1 = ∅), and which we

may iterate through in any convenient order, e.g., according to

increasing size of subsets Aℓ+1.

The procedure 1 AS DFS provides a recursive implemen-

tation of the proposed algorithm. Given a variable-node n, the

procedure is simply called from the main program with inputs

AS DFS(H, ℓ = 0, A0 = {n}).
To illustrate the capability of the proposed algorithm, we

consider the following two codes, both of rate 1/2, which

will be subsequently used throughout this paper.

Code-1 is a regular LDPC code, of length 64 bits, with

variable-nodes of degree 3 and check-nodes of degree 6,

constructed by using the progressive edge growth (PEG)

algorithm [35]. It has girth g = 6, with multiplicity 164
(i.e., number of cycles of length g).

1The distance between two nodes is the length (i.e., number of edges) of
a shortest path connecting them.

5

Procedure 1 AS DFS(H, ℓ, A0, . . . , Aℓ)

if ℓ > 0 and AS check(Aℓ−1) = false then

return // backtrack

end if

ν̄ℓ ← |A0|+ · · ·+ |Aℓ|
if ν̄ℓ = ν then

if AS check(Aℓ) = true then

Add A := A0 ∪ · · ·∪Aℓ to the list of absorbing sets

end if

return // backtrack

end if

C(A0, . . . , Aℓ)← set of possible completions

for all Aℓ+1 in C(A0, . . . , Aℓ) do

AS DFS(H, ℓ+ 1, A0, . . . , Aℓ, Aℓ+1) // recursive call

end for

TABLE I
NUMBER OF EXTENDED-TYPES (ET) AND ABSORBING SETS (AS)

Code-1 Code-2

ν ET-Number AS-Number ET-Number AS-Number

3 1 164 1 32
4 2 1 452 6 944
5 3 9 413 12 11 504
6 9 64 813∗ 32 152 824
7 16 450 340 69 2 124 928
8 24 2 994 834∗ 157 28 670 736

∗Code-1 contains one codeword of weight 6, and 37 codewords
of weight 8, corresponding to absorbing sets with ω = 0

Code-2 is the LDPC code from [36], known as the CCSDS

LDPC code. It is of length 128 bits, with half of variable-

nodes of degree 3 and the other half of degree 5, and

check-nodes of degree 8. It has girth g = 6, with

multiplicity 2336.

In Table I, we provide the total number of different

extended-type (ET) values and the total number of absorbing

sets, for both Code-1 and Code-2, and absorbing set size values

ν ≤ 8. We note that for Code-2 and ν = 8, a brute-force search

algorithm would require exploring a number of
(

128
8

)

≈ 240

candidates. Our algorithm enumerated all the absorbing sets of

size ν = 8 in 38 minutes (Intel Xeon @2.20GHz processor).

C. Training specialized BP-RNN decoders

Having at our disposal an efficient algorithm to enumerate

absorbing sets of a given size, we perform a fine classification

of the found absorbing sets, by grouping into a same class

absorbing sets with the same extended type. The goal is to train

a specific BR-RNN decoder for each class. The approach bears

similarity to, and is motivated by [15], [37], where decoding

rules for FAIDs have been either designed or learned to correct

specific trapping sets for the binary symmetric channel.

We consider a binary-input AWGN channel, with BPSK

alphabet (±1) inputs, and fixed noise variance σ2. Assuming

the all-zero codeword is transmitted (see Section II-B), corre-

sponding to the +1 input of the channel, the received word is

given by

yn = 1 + zn, zn ∼ N (0, σ2), n = 1, . . . , N, (7)

0 50 100 150 200
Edge indexes sorted according to

increasing weight values

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

W
ei
gh

t v
al
ue
s

BP-RNN [13]
BP-RNN trained on class
7− (5, 8, (5, 8))
BP-RNN trained on class
7− (1, 9, (0, 9, 1))
BP-RNN trained on class
4− (2, 5, (2, 5))

(a) Data pass layer

0 50 100 150 200
Edge indexes sorted according to

increasing weight values

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

(b) A posteriori layer

Fig. 2. Weight profiles of various BP-RNN decoders (Code-1, SNR = 5 dB)

where N (0, σ2) denotes a normal distribution, with mean 0
and variance σ2. The signal-to-noise ratio (SNR) is defined as

SNR = −10 log10(σ
2) dB.

Given a received word y := (y1, . . . , yN), we define its

error set as E(y) := {n | yn ≤ 0} ⊂ {1, . . . , N}. Our goal

is to construct a specific training set, containing only words

y, such that E(y) is an absorbing set of a given extended

type ν-(ω, ε, Pc). As a neural network specializes to trends

embedded in the training set [31], we expect the trained

BP-RNN to specialize in decoding words y, such that E(y)
is, or possibly contains, an absorbing set of extended type

ν-(ω, ε, Pc).

One way to generate such a training set is to randomly gen-

erate words y according to (7), and to select those for which

E(y) is an absorbing set of extended type ν-(ω, ε, Pc). This

would be rather tedious and time consuming. A more efficient

way is to use our knowledge of absorbing sets (determined by

the algorithm from Section III-B), and generate Gaussian noise

by means of a truncated Gaussian distribution, to produce

errors only on desired locations. Precisely, we proceed as

follows. We first chose an absorbing set A at random, from

those having the desired extended type ν-(ω, ε, Pc). Then we

generate a random word y = (yn = 1 + zn)n=1,...,N , with

zn ∼

{

N (0, σ2,−∞,−1), if n ∈ A
N (0, σ2,−1,∞), otherwise

(8)

where N (0, σ2, a, b) denotes the truncated normal distribution

with mean 0 and variance σ2, taking values in the interval

(a, b). Clearly, we have E(y) = A. The training set is

obtained by repeating the above procedure (including the

random choice of A) multiple times. This way, the training set

is representative of the error class (identified by the extended

type of the absorbing error set), and thus the trained BP-RNN

decoder becomes specialized in decoding the errors of the

class.

To illustrate the specialization of the trained decoder, Fig. 2

shows the weight values for three BP-RNN decoders, trained

for three different error classes, with corresponding extended

types shown in the legend. The (unspecialized) BP-RNN

decoder trained as in [13] is also shown. To avoid clutter,

weight values are sorted in increasing order, and an ordered

6

set of weight values is referred to as weight profile2. We

consider the Code-1 and show the weight profiles for the

both data pass and a posteriori layers. The data pass layer

is implemented as in (4), with a same weight applied on all

the incoming edges to each neuron (see Section VI for a

complete list of training parameters). Hence, the number of

weights is the same for both the data pass and the a posteriori

layers, equal to the number of edges of the Tanner graph (192
for Code-1). The weight profiles in Fig. 2 clearly indicate

that weight optimization responds differently to training sets

corresponding to different error classes. We exploit in the next

section the diversity induced by the BP-RNN specialization.

IV. BP-RNNS SELECTION AND DECODING

ARCHITECTURES

A. BP-RNN diversity selection

Using the procedure from Section III-C, we train one spe-

cialized BP-RNN decoder for each error class, i.e., extended

type3 ν-(ω, ε, Pc), with absorbing error set size ν ≤ νmax (the

choice of νmax is discussed in Section VI). Let J denote the

total number of specialized BP-RNN decoders.

Here, we propose a selection procedure to reduce the num-

ber of BP-RNN decoders, as well as to avoid similar training

effects (which may arise, for instance, due to absorbing sets

of a given size containing absorbing sets of smaller sizes). To

do so, we assess the complementarity of the trained decoders,

in terms of the errors they can decode.

We first generate a common test set, T , containing random

words y defined as in (7), which is then used to assess the

individual error correction performance of each of the trained

decoders. We denote by Fj ⊂ T the susbset of words on which

the BP-RNN decoder Dj failed, where j = 1, . . . , J . Then,

we recursively construct an ordered list of decoder indexes,

denoted J, as follows. We start by initializing J as the empty

list, J = ∅. To add a new index, jnew to J, we use the following

rule,

jnew = argmin
j∈{1,...,J}\J

|FJ ∩ Fj | , (9)

where FJ := T , if J = ∅, and FJ := ∩i∈JFi, otherwise. The

above rule is applied recursively J times, until J contains all

the decoder indexes j = 1, . . . , J , in a sorted order. In case

the argmin in (9) is not unique, an arbitrary one is chosen.

Note that when J = ∅, the rule (9) rewrites as jnew =
argminj∈{1,...,J} |Fj |. Hence, the first decoder (index) added

to the list is the one minimizing the word error rate. Subse-

quently, when J 6= ∅, the new decoder added to the list is the

most complementary with those already in J, in the sens that

it minimizes the number of words on which all the decoders

indexed by J ∪ {jnew} fail.

For Z ≤ J , let J(1:Z) ⊂ J be the sublist defined by the

first Z indexes in J. We define

DZ := {Dj | j ∈ J(1:Z)} (10)

2Note that different weight profiles indicate different sets of weight values,
while similar weight profiles indicate similar sets of weight values. However,
in the latter case, similar weights may apply to different edges.

3We take off extended types for which ω = 0, as they correspond to the
support of non-zero codewords. Such errors cannot be detected or corrected.

Note that DZ is an ordered list of decoders4, which we

will refer to as BP-RNN diversity of size Z (using a similar

terminology to the one in [15], [37]). The Z BP-RNN decoders

in DZ may then be used with either a parallel or a serial

decoding architecture, as discussed in the next section. The

value of Z may be dictated by complexity reasons, or, as

illustrated in Section VI-C, chosen to ensure small (negligible)

degradation of the error correction performance, with respect

to the case when all J BP-RNN decoders are used.

B. BP-RNN diversity decoding architectures

We consider a BP-RNN diversity DZ , comprising Z BP-

RNN decoders. For simplicity, we index the BP-RNN decoders

in DZ from 1 to Z , thus DZ = {D1, . . . , DZ}. Fig. 3 shows

the proposed parallel and serial architectures, using the Z BP-

RNN decoders in DZ .

In the parallel architecture, each decoder outputs an estimate

ĉj = (cj,1, . . . , cj,N) ∈ {0, 1}N of the transmitted codeword

c, according to the sign of the corresponding LLR values at the

last decoding iteration. The output of the parallel architecture

is determined as the maximum likelihood (ML) codeword,

among the codewords outputted by the constituent BP-RNN

decoders (if any, see below). For the binary-input AWGN

channel (with ±1 inputs), the ML criterion simply writes as

ĉ = argmax
ĉj∈S

P (ĉj |y) = argmin
ĉj∈S

N
∑

n=1

ynĉj,n, (11)

where S := {ĉj | syndrome(ĉj) = 0} denotes the set of

ĉj’s verifying the syndrome. Decoding is then successful if

ĉ is equal to the transmitted codeword. If none of the BP-

RNN decoders outputs a codeword, the decoding fails. In such

a case, the ML criterion – or a similar bitwise maximum a

posteriori criterion – may still be applied to select one of the

ĉj outputs, if desired, e.g., in order to minimize the bit error

rate of the decoder (however, we will only be concerned with

word error rate results in this paper).

In the serial architecture, the constituent BP-RNN decoders

are run sequentially according to the order given by the sorting

procedure from Section IV-A. Decoding stops as soon as a BP-

RNN decoder Dj outputs a codeword ĉj (syndrome(ĉj) = 0),

which becomes the output ĉ of the serial architecture. Decod-

ing is then successful if ĉ is equal to the transmitted codeword.

If none of the BP-RNN decoders outputs a codeword, decoding

fails. For simplicity, in Fig. 3b, we take ĉZ as the output of

the serial architecture in this case.

The parallel architecture yields a reduced maximum decod-

ing latency, compared to the serial one. This comes however

at the cost of an increased complexity, from the both computa-

tional and hardware perspectives, since Z BP-RNN decoders

must be instantiated in hardware. For the serial architecture,

only one decoder may be instantiated in hardware, which may

then be reused to perform sequentially the Z BP-RNNs (while

updating the corresponding set of weights). The average-

case computational complexity, as well as the average-case

4As a matter of fact, the three BP-RNN decoders in Fig. 2, specialized on
absorbing set error classes, correspond to DZ=3.

7

(a) Parallel architecture (b) Serial architecture

Fig. 3. BP-RNN diversity decoding architectures

decoding latency, for the both parallel and serial architectures

are discussed in the next section.

C. Average-case complexity and decoding latency metrics

We consider a BP-RNN diversity DZ , where all the con-

stituent decoders are set with a maximum number of decoding

iterations Itest (see Section II-C). For a BP-RNN decoder Dj ,

we denote by IDj ,y ≤ Itest the number of iterations performed

by Dj to decode y, and define IDj
:= Ey(IDj ,y), where

E denotes the expected value operator. In practice, IDj
is

estimated by averaging over the decoded words y. We further

define the average number of decoding iterations of a decoding

(parallel or serial) architecture using DZ , as

I(DZ) =
∑

Dj∈DZ

IDj
. (12)

Note that for the serial architecture, IDj ,y may be equal to

zero, in case the decoding process stops before reaching Dj .

Thus, IDj
may be close to 0, if Dj is rarely used (unlike

the parallel architecture, which uses all decoders). Since the

computational complexity scales linearly with the number of

decoding iterations performed by the decoder, we use the

average number of decoding iterations IDZ
as a measure of

the average-case computational complexity of the BP-RNN

diversity architecture.

For the serial architecture, IDj
may also be seen as a

measure of the average-case decoding latency, since decoding

iterations are performed sequentially within each constituent

decoder, while the constituent decoders are also run sequen-

tially. However, this is no longer the case for the parallel

architecture. Hence, we define the decoding latency of the

parallel architecture, for decoding a given word y, as

LDZ,y = max
Dj∈DZ

IDj ,y, (13)

corresponding to the maximum number of iterations performed

by the constituent decoders to decode y. Finally, the average-

case decoding latency of the parallel architecture is defined

as

L̄(DZ) := Ey(LDZ ,y), (14)

and is estimated by averaging over the decoded words y.

V. OSD POST-PROCESSING FOR BP-RNN DECODERS

OSD was first proposed in [11], as a decoding method capa-

ble to approach the ML decoding performance, for moderate-

length linear block codes, with polynomial complexity. It can

be used as a stand-alone decoding algorithm, exploiting the

soft-output of the channel (Lch,n), or as a post-processing

step, exploiting the output of a soft-decision decoder (L̃n, see

Section II-A, for the notation).

In OSD, variable-nodes are first sorted according to their

reliability (that is the absolute value of the corresponding

soft decision). The parity-check matrix of the code is then

brought to a systematic form5, H = [A | I], where A is a

matrix of size M × (N − M) and I is the identity matrix

of size M ×M , and so that the K := N −M columns of

A correspond to the most possible6 reliable variable-nodes.

By a slight abuse of language, we simply refer to variable-

nodes corresponding to the columns of A as the most reliable

ones, and to the remaining variable-nodes as the least-reliable

ones. In OSD-0, hard-decision is made on the most reliable

variable-nodes, and the least reliable ones are determined by

solving the linear system given by H . Hence, decoding is

successful if and only if the most reliable variable-nodes are

error-free. To address the case where these variable-nodes

contain errors, OSD-w considers all the possible choices of

at most w errors among them. For each choice, the initial

hard-decision of the corresponding variable-nodes is flipped,

and the least reliable variable-nodes are determined again by

solving the linear system given by H . This procedure produces

a list of
∑w

i=0

(

K
i

)

codewords, from which the most likely one

is selected, according to an ML rule, such as (11). OSD-w may

closely approach the ML decoding performance, assuming the

w value (referred to as OSD order) is suitably large.

To bridge the error correction performance gap between

suboptimal BP decoding and ML decoding, [38] suggested

combining BP decoding with a low-order OSD (w ≤ 1),

where an OSD step is performed at the end of each iteration

of the BP decoding. Here, we propose the use of OSD as

a post-processing step, applied only in case that none of the

constituent BP-RNN decoders (of the BP-RNN diversity DZ)

outputs a codeword. In such a case, we process one OSD

using the soft-decision (a posteriori LLRs) delivered by each

of the constituent BP-RNN decoders. This produces a list of

Z codewords (one for the OSD post-processing of each BP-

RNN decoder), and the ML rule (11) is used to determine

the most-likely one, which becomes the outputted codeword

ĉ. Note that the above description applies to the both parallel

and serial architectures, since OSD post-processing is only

performed when all the constituent BP-RNN decoders failed

5For simplicity, we assume here that the parity check-matrix is of rank M .
6Taking into account that column swaps may be needed, in case the M

least reliable columns of H are not linear independent.

8

−40 −30 −20 −10 0 10 20 30 40
A poste io i LLR values

10−5

10−4

10−3

10−2

10−1

100

CD
F

BP (Itest =25)
BP-RNN t ained on class
7− (5, 8, (5, 8)) (Itest =25)

Fig. 4. CDF of the a posteriori LLR values when decoding fails (Code-1,
SNR = 4 dB, maximum number of decoding iterations Itest = 25)

to find a codeword. To reduce the complexity of the post-

processing step, we also limit the order of the OSD to w ≤ 1.

There are two main motivations behind the use of the OSD

post-processing step. First, the complexity of the low-order

OSD is dominated by the Gaussian elimination step, needed to

bring the parity check-matrix to a systematic form. However,

for LDPC codes, the sparsity of the parity-check matrix

can be advantageously exploited to significantly reduce the

complexity of this step. See for instance the method proposed

in [39] for solving sparse linear systems, which has been

adapted in [40] to derive an efficient encoding technique for

LDPC codes, and in [41] to derive an efficient ML decoding

algorithm for LDPC codes over erasure channels (the situation

is similar for OSD, where the least reliable variable-nodes

can be seen as being erased). Second, we use OSD to post-

process the soft-output of BP-RNN decoders. Since the loss

function (5) used to train these decoders penalizes negative

LLR values, corresponding to variable-nodes in error7, we

expect such negative LLR values to have a reduced amplitude,

thus reducing the probability of error on the most reliable

variable-nodes. This is illustrated in Fig. 4, where we plot

the cumulative distribution function (CDF) of the a-posterori

LLR values for the BP decoder, and for the BP-RNN decoder

trained on the error class 7-(5, 8, (5, 8)). Moreover, we also

expect OSD post-processing to benefit from the diversity

brought by the use of multiple BP-RNN decoders, increasing

the probability that at least one of these decoders has at most

w errors among the most-reliable variable-nodes.

VI. NUMERICAL RESULTS

A. Training settings

We consider the two LDPC codes of rate 1/2 and length

either 64 (Code-1) or 128 (Code-2) bits, detailed in Sec-

tion III-B. We train one specialized BP-RNN decoder for each

absorbing set error class, with error set size ν ≤ νmax.

• For Code-1, we choose νmax = 8, which gives a total

number of J = 52 error classes (see Table I 8).

• For Code-2, we choose νmax = 7, which gives a total

number of J = 120 error classes (see Table I).

7Recall the all-zero codeword assumption from Section II-B.
8Note that the total number of error classes (ET-Number) in Table I is 55,

three of which correspond to the support of non-zero codewords of size either
ν = 6 or ν = 8, for which training is not performed.

TABLE II
KERAS PARAMETERS

Parameters Parameters values

Optimizer RMSprop [42]

(Gradient descent) (initialized at a learning rate of 10−3)

Epoch number 10

Training batch size 8192

Number of batches 37 to 122 (depending on the SNR)

For Code-2, the choice of νmax = 7 is due to complexity

reasons (to limit the number of trained decoders). However,

we note that for an SNR = 4 dB, in the waterfall region of

Code-2, the average number of errors is Npe = 7.2, where

N = 128 is the code-length, pe = Q(1/σ) = 0.0565 is the

error probability of the binary-input AWGN channel, σ is the

standard deviation of the Gaussian noise, and Q denotes the

Q-function. For Code-1, for the same SNR = 4 dB, the size of

a random error set is less than or equal to the chosen νmax = 8,

with probability slightly greater than 0.99.

All the numerical results presented in this section use the

BP-RNN model from Section II-A, with the data-pass layer

defined in (4). Each specialized BP-RNN is trained indepen-

dently, using the training set construction method presented in

Section III-C. In addition, we also train an unspecialized BP-

RNN decoder, according to the procedure described in [13],

to provide a benchmark for the presented numerical results.

We use the same SNR for training and testing, thus, all BP-

RNNs are trained for each SNR value ranging from 1 dB to

6 dB, with a step of either 0.5 dB or 1 dB. The choice of the

maximum number of decoding iterations during the training

and the testing phases, Itrain and Itest (see Section II-C), will

be discussed in the next section. Finally, we mention that we

used the Keras library for training, with training parameters

shown in Table II.

B. Maximum number of decoding iterations for training and

testing

To illustrate the discussion from Section II-C, we fix the

maximum number of decoding iterations for testing our BP-

RNN decoders to Itest = 25 iterations, and investigate here the

impact of the maximum number of decoding iterations used

at the training phase, Itrain.

We consider the Code-1, and train all the BP-RNN decoders

for Itrain ∈ {5, 10, 20, 25}. Fig. 5 shows the frame error rate

(FER) results, using Itest = 25 iterations, for (a) the BP-

RNN decoder specialized on the error class 7-(5, 8, (5, 8)),
indicated as D1 in the legend9, (b) the unspecialized BP-

RNN decoder [13], and (c) the serial architecture using the

52 specialized BP-RNN decoders. We observe no noticeable

difference on the FER performance, except in Fig. 5a, where

the FER performance for Itrain = 5 is slightly degraded with

respect to Itrain ∈ {10, 20, 25}. In the following, we choose

Itrain = 10, which allows for faster training. We can note that

similar observations hold for Code-2 (not shown here).

9

3.5 4.0 4.5 5.0 5.5
SNR (dB)

10−4

10−3

10−2

FE
R

D1 (Itrain = 5)
D1 (Itrain = 10)
D1 (Itrain = 20)
D1 (Itrain = 25)

(a) BP-RNN D1, trained on class 7− (5, 8, (5, 8))

3.5 4.0 4.5 5.0 5.5
SNR (dB)

10−4

10−3

10−2

FE
R

BP-RNN [13] (Itrain = 5)
BP-RNN [13] (Itrain = 10)
BP-RNN [13] (Itrain = 20)
BP-RNN [13] (Itrain = 25)

(b) BP-RNN [13]

3.5 4.0 4.5 5.0 5.5
SNR (dB)

10−4

10−3

10−2

FE
R

Serial 52 (Itrain = 5)
Serial 52 (Itrain = 10)
Serial 52 (Itrain = 20)
Serial 52 (Itrain = 25)

(c) All specialized BP-RNNs, serial architecture

Fig. 5. Impact of training parameter Itrain on the FER performance, for BP-RNN decoders using Itest = 25 (Code-1)

1 3 5 7 9 11 13 15 17 19
Number of decoders (Z)

5.2

5.3

5.4

5.5

5.6

SN
R
fo
r a
 F
ER
 o
f 1
0

4

SNR vs Number of decoders
SNR loss of 0.1 dB
SNR loss of 0.01 dB

Fig. 6. SNR for target FER = 10−4, as function of Z (Code-1)

C. BP-RNN diversity selection

We apply now the BP-RNN diversity selection procedure

from Section IV-A, to both Code-1 and Code-2. We proceed

as follows. First, we fix SNR = 5 dB, and we train J BP-

RNN decoders specialized on the J error classes (J = 52
for Code-1, J = 120 for Code-2). We order these decoders

according to the procedure described in Section IV-A, where

we use a common test set T containing 108 noisy codewords

(SNR = 5 dB) to assess their individual error correction

performance. Then we select a diversity DZ of BP-RNN

decoders according to (10), corresponding to Z different error

classes. Subsequently, we only consider BP-RNN decoders

specialized on the selected error classes, but we train them

again for each SNR value used for testing10.

For Code-1, Fig. 6 shows the SNR required for achieving

a target FER = 10−4, as a function of the number of selected

BP-RNN decoders Z (only results for Z = 1, . . . , 20 are

shown, since we observe no further improvement of the FER

for higher Z values). We choose Z = 10, corresponding to

an SNR loss of less than 0.1 dB, with respect to the case

when all the J BP-RNN decoders are used. We use the same

9See also Table III and the corresponding discussion from Section VI-C.
10We have also performed simulations using the BP-RNN decoders trained

for SNR = 5 dB only, and testing them on different SNR values. Our
simulation results were very similar to those obtained by training again the
BP-RNN decoders for the actual SNR value used for testing. We chose to show
simulation results for the case where the training and testing SNR values are
equal, simply for consistency reasons.

TABLE III
EXTENDED TYPES (ET) FOR THE SELECTED ERROR CLASSES

Code-1 Code-2

Dec. Error-Class (ET) Dec. Error-Class (ET)

D1 7-(5, 8, (5, 8)) D1 7-(7, 11, (6, 11, 1))
D2 7-(1, 9, (0, 9, 1)) D2 5-(7, 9, (7, 9))
D3 4-(2, 5, (2, 5)) D3 6-(4, 10, (4, 10))
D4 7-(3, 7, (1, 7, 2)) D4 7-(5, 9, (5, 9))
D5 8-(2, 9, (1, 8, 1, 1)) D5 6-(8, 10, (8, 10))
D6 6-(2, 7, (2, 6, 0, 1)) D6 7-(5, 11, (4, 11, 1))
D7 5-(1, 7, (1, 7)) D7 7-(5, 8, (5, 8))
D8 6-(2, 7, (1, 7, 1)) D8 7-(7, 7, (7, 7))
D9 7-(1, 9, (1, 8, 0, 1)) D9 7-(3, 11, (3, 11))
D10 3-(3, 3, (3, 3)) D10 7-(7, 13, (7, 13))

procedure to select a number of BP-RNN decoders for Code-

2, which yields the same value Z = 10, for which the SNR

loss is again less than 0.1 dB. Finally, in Table III, we show

the extended types for the Z = 10 error classes, corresponding

to the selected decoders.

D. FER results, complexity and decoding latency evaluations

We consider the BP-RNN diversity D10 composed of the

Z = 10 BR-RNN decoders selected in the previous section,

and evaluate the FER performance, as well as the average-case

complexity and decoding latency, for both parallel and serial

architectures from Section IV-B.

Fig. 7 shows the FER results for (a) Code-1, and (b)

Code-2. For comparison purposes, we also show the FER

performance of the BP decoder and the BP-RNN decoder

from [13], with either Itest = 25, or Itest = 250. The latter

Itest value corresponds to the cumulative maximum number

of iterations performed by the BP-RNN decoders in the

diversity D10. First, we observe that the parallel and serial

architectures exhibit virtually the same FER performance, the

corresponding curves being practically superimposed one on

another. Compared to the conventional BP decoding, the BP-

RNN diversity D10 produces an SNR gain of approximately

0.4 dB with respect to BP(Itest = 25). This comparison is

relevant to applications with strict latency requirements, since

both the BP(Itest = 25) and the parallel BP-RNN diversity have

the same worst-case decoding latency. By way of comparison,

for Code-2, a similar gain over the conventional BP has been

recently reported in [43, Fig. 6], by using an automorphism

10

3.5 4.0 4.5 5.0 5.5
SNR (dB)

10−4

10−3

10−2

FE
R

BP (Itest = 25)
BP (Itest = 250)
BP-RNN [13] (Itest = 25)
BP-RNN [13] (Itest = 250)
Serial 10 (Itest = 25)
Parallel 10 (Itest = 25)

(a) FER results for Code-1

3.5 4.0 4.5 5.0 5.5
SNR (dB)

10−4

10−3

10−2

FE
R

BP (Itest = 25)
BP (Itest = 250)
BP-RNN [13] (Itest = 25)
BP-RNN [13] (Itest = 250)
Serial 10 (Itest = 25)
Parallel 10 (Itest = 25)

(b) FER results for Code-2

3.50 3.75 4.00 4.25 4.50 4.75 5.00
SNR (dB)

0

5

10

15

20

25

30

35

Nu
m
be

r o
f d

ec
od

in
g
ite

ra
tio

n

̄I(BP̄ Itest =250)
̄I(10̄ Itest =25̄ erial)
̄I(10̄ Itest =25̄ parallel)
̄L(10̄ Itest =25̄ parallel)

(c) Complexity/decoding latency for Code-2

Fig. 7. FER results, complexity and decoding latency evaluations (without OSD post-processing)

ensemble decoding (AED) approach, with 16 BP decoders

working in parallel11. If the worst-case latency constraint is

relaxed, it can be observed from Fig. 7 that BP(Itest = 250)

achieves similar FER performance to the BP-RNN diversity

D10. Similar considerations hold for the comparison between

the (unspecialized) BP-RNN [13] and the BP-RNN diversity

D10, with one noticeable exception for Code-1, for which

it can be observe that increasing the number of iterations

from Itest = 25 to Itest = 250 does not improve the FER

performance of the BP-RNN [13] decoder (or only slightly

in the low FER region). Finally, we note that using only the

first decoder (D1) of our specialized BP-RNN decoders yields

similar FER performance to the unspecialized BP-RNN [13].

While this is not shown in the figure (to avoid clutter), it can be

observed for Code-1 by comparing the FER results in Figs. 5a

and 5b.

Fig. 7c shows the average-case computational complexity

and the average-case decoding latency results (Code-2 only),

evaluated using (12) and (14) respectively. We compare the

BP(Itest = 250) and the BP-RNN diversity D10 with either

the serial or the parallel architecture, as they achieve similar

FER performance. For the BP decoder and the serial D10,

the average number of decoding iterations (Ī) is a measure

of both average-case computational complexity and average-

case decoding latency. For the parallel D10, Ī only measures

the average-case computational complexity, while the average-

case decoding latency is measured by L̄. While the parallel

D10 has the lower worst-case latency, it can be observed that

it also exhibits a reduced average-case latency in the first part

of the waterfall (up to 4 dB). The serial D10 may be seen as

an alternative to BP(Itest = 250), providing not only similar

decoding performance, but also similar worst- and average-

case computational complexity and decoding latency. Yet, both

the parallel and the serial D10 retain the advantage of decoding

diversity, which can be conveniently exploited by the proposed

OSD post-processing step, as illustrated in the next section.

E. FER results using OSD post-processing

We consider low-order (w = 0, 1) OSD post-processing ap-

plied to the BP(Itest = 250), the unspecialized BP-RNN(Itest =

11We did not include the AED-16 curve from [43] in Fig. 7b, to avoid
clutter. The gain reported in [43] was observed using 32 decoding iterations.

250) decoder [13], and the BP-RNN diversity D10(Itest = 25).
Since the parallel and the serial D10 exhibit similar FER

performance, and OSD post-processing is only applied in

case all the BP-RNN decoders composing D10 fail to find

a codeword, it follows that the OSD post-processing step

yields similar performance when applied to either one of

the parallel or serial architecture. We simply refer to the

corresponding decoder as D10-OSD, without mention of the

diversity architecture.

Simulation results are presented in Fig. 8 for (a) Code-1,

and (b) Code-2. For Code-1, first we note that the BP-OSD-1

provides better performance than the unspecialized BP-RNN-

OSD-1. Using only the first decoder of our BP-RNN diversity

(D1-OSD-1) outperforms the BP-OSD-1 by about 0.31 dB at

FER = 10−4. Using all the BP-RNN diversity (D10-OSD-

1) provides an extra gain of 0.12 dB, i.e., a total gain of

about 0.43 dB with respect to BP-OSD-1. Furthermore, we

observe that D10-OSD-1 virtually achieves the ML decoding

performance, where the latter is estimated according to [11]

(we also note that the OSD-3 decoder provides an accurate

approximation of the ML decoding performance). Finally, a

gain of 0.52 dB can be observed for D10-OSD-0 with respect

to BP-OSD-0.

For Code-2, we note that the unspecialized BP-RNN-OSD-

1 provides slightly better performance than the BP-OSD-1.

D10-OSD-w outperforms BP-OSD-w, by 0.32 dB, for w = 0,

and 0.72 dB, for w = 1, at FER = 10−4. Using only

the first decoder of our BP-RNN diversity, we observe that

D1-OSD-1 outperforms BP-OSD-1 by about 0.11 dB. For

comparison purposes, we have also included in Fig. 8b the

FER performance of the Pruning Based Neural BP (PB-NBP)

decoder from [16]. Several PB-NBP variants are presented in

[16], we consider here the PB-NBP decoder D1 (see Fig. 6 in

loc. cit.). It can be observed that D10-OSD-1 outperforms the

PB-NBP decoder by 0.84 dB, our decoder achieving a FER

performance at only 0.63 dB from the ML decoding.

To further analyze the diversity obtained by D10-OSD-w,

we compare it with a decoding diversity combining BP and

OSD, where the latter is applied periodically throughout the

BP decoding iterations [38]. Precisely, we consider BP(Itest =
250), and record the a-posteriori LLR values after every 25

decoding iterations. In case a codeword is not found after

11

3.0 3.5 4.0 4.5 5.0 5.5
SNR (dB)

10−4

10−3

10−2

FE
R

BP (Itest = 250)
BP-OSD-0 (Itest = 250)
BP-OSD-1 (Itest = 250)
BP-RNN[13]-OSD-1
(Itest = 250)
10, (Itest = 25)
10-OSD-0, (Itest = 25)
10-OSD-1, (Itest = 25)
D1-OSD-1 (Itest = 25)
ML

(a) Code-1

2.5 3.0 3.5 4.0 4.5 5.0
SNR (dB)

10−4

10−3

10−2

FE
R

BP (Itest = 250)
BP-OSD-0 (Itest = 250)
BP-OSD-1 (Itest = 250)
BP-RNN[13]-OSD-1
(Itest = 250)
10, (Itest = 25)
10-OSD-0, (Itest = 25)
10-OSD-1, (Itest = 25)
D1-OSD-1 (Itest = 25)
PB-NBP D1 [16]
ML [44]

(b) Code-2

Fig. 8. FER results using OSD post-processing

2.5 3.0 3.5 4.0 4.5 5.0
SNR (dB)

10−4

10−3

10−2

FE
R

BP (Itest = 250)
BP-OSD-1 (Itest=250)
BP-OSD-2 (Itest=250)
BP-OSD-1 (Itest=250), OSD-1
applied after all 25 iterations
BP-OSD-2 (Itest=250), OSD-2
applied after all 25 iterations
10, (Itest=25)
10-OSD-1, (Itest=25)
10-OSD-2, (Itest=25)
ML [44]

Fig. 9. FER results using OSD post-processing of order w = 1 and w = 2
for Code-2

250 decoding iterations (BP fails), we apply one OSD-w on

each recorded set of a-posteriori values. Hence, the OSD-w
is carried out ten times in case of a decoding failure, as with

D10-OSD-w. The ML rule (11) is used afterwards to determine

the final codeword.

We restrict our attention to Code-2 and, in order to further

narrow the gap to ML decoding performance, we consider

OSD of order w = 1 and w = 2. The corresponding FER

results are shown in Fig. 9. We observe that the proposed

D10-OSD-w performs better than BP(Itest = 250) with OSD-

w every 25 iterations, especially for w = 2, where it achieves

a FER performance within 0.2 dB from the ML decoding.

Moreover, it should be noticed that using the parallel decoding

architecture from Section IV.B, the worst case latency of the

D10 diversity corresponds to 25 decoding iterations, while the

worst case latency of BP(Itest = 250) is equal to 250 decoding

iterations. Finally, we note that D10-OSD-2 exhibits a gain of

1 dB with respect to BP(Itest = 250)-OSD-2.

VII. CONCLUSION

We addressed the problem of enhancing the BP-RNN per-

formance at short code length, by exploring two complemen-

tary approaches: (1) decoding diversity, derived by special-

izing BP-RNN decoders to specific classes of errors, and (2)

reliability-based post-processing. We showed that the proposed

BP-RNN diversity coupled with a parallel decoding architec-

ture allows increasing the error correction capability, without

increasing the worst-case latency. Moreover, we showed that

the proposed OSD post-processing step advantageously lever-

age the bit-error rate optimization induced by the use of the

cross-entropy loss function, as well as the diversity brought

by the use of multiple BP-RNN decoders. The proposed

approach, combining decoding diversity and low-order OSD

post-processing, provides an efficient way to bridge the gap to

ML decoding. It also opens new perspectives for the emerging

domain of NN-based decoders. Indeed, we believe that new

approaches may be considered for the optimization of NN-

based decoders, not to deliver the best possible bit or frame

error rate performance, but merely an output that best suits

the reliability-based post-processing step.

AVAILABILITY OF DATA

Parity check-matrices of Code-1 and Code-2, as well as

the complete list of absorbing sets of size ν ≤ 8, are openly

available at https://ai4code.projects.labsticc.fr/software/.

APPENDIX

EXTENDED COMPLEXITY DISCUSSION

In this appendix, we extend the complexity discussion of

Section VI-D. First, we compare BP-RNN and BP in terms

of memory requirements and number of operations. Since

our BP-RNN decoders use the data-pass layer defined in (4),

they can be implemented using conventional BP decoding

architectures. In this case, the extra memory cost for a single

BP-RNN decoder with respect to the BP decoder comes

from the weights storage only, and the BP-RNN decoder also

requires an extra multiplication for each weight in (3) and (4).

Since the check-node updates are the most computationally

intensive operations in BP decoding, counting their num-

ber is also relevant to evaluate the complexity of a BP-

based decoder [45]. In [16], the worst case complexity of

the proposed PB-NBP decoder is evaluated by counting the

https://ai4code.projects.labsticc.fr/software/

12

TABLE IV
DECODING COMPLEXITY (IN TERMS OF THE NUMBER OF CHECK-NODE UPDATES) FOR CODE-2

Decoding Decoding complexity (number of check-node updates [45]) Number
architecture Worst-case Best-case Average-case(∗) of weights

BP(Itest = 25) 12800 512 983 0

BP(Itest = 250) 128000 512 1044 0

PB-NBP D1 [16] 25920 5120 N/A 28416

Serial D10 128000 512 1044 10240
(∗) Average-case decoding complexity is evaluated at SNR = 4.5 dB.

number of check-node updates when all decoding iterations

are performed. In our case, the number of check-node updates

is simply given by the number of edges of the Tanner graph,

multiplied by the number of decoding iterations. We can then

evaluate the worst-case decoding complexity (corresponding

to the maximum number of decoding iterations), the best-case

complexity (corresponding to one decoding iteration only),

and the average-case complexity (corresponding to the average

number of decoding iterations). The corresponding results for

the BP, the PB-NBPD1 [16], and the serial D10 decoders are

given in Table IV. In the worst-case scenario, we observe that

the serial D10 has the same decoding complexity as BP(Itest =
250), which is 4.85 times higher than that of PB-NBPD1. In

the best-case scenario, the PB-NBPD1 decoder is penalized

by the fact that it uses a high number of check-nodes during

the first iteration (some of which may be punctured during

subsequent iterations). Precisely, its first iteration comprises

640 check nodes of degree at least 8 (see [16, Fig. 4b]), giving

a number of check-node updates greater than or equal to 5120.

This amounts to 10 times the best-case decoding complexity

(or equivalently, the complexity of 10 decoding iterations) of

the serial D10 or the BP decoder. In Fig. 7c, we notice that

the average number of decoding iterations Ī is equal to 10

for an SNR = 3.37 dB for both BP and serial D10. As a

result, we conclude the serial D10 or BP is less complex than

PB-NBPD1 in the waterfall region. To further illustrate this,

we observe in Table IV that the serial D10 decoder has an

average decoding complexity at SNR = 4.5 dB that is 5 times

lower than the best-case decoding complexity of PB-NBPD1.

Finally, we note that PB-NBPD1 has 2.75 times more weights

than D10, due to its neural network architecture, requiring

therefore a higher weight storage cost.

REFERENCES

[1] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the
finite blocklength regime,” IEEE Transactions on Information Theory,
vol. 56, no. 5, pp. 2307–2359, 2010.

[2] M. C. Coşkun, G. Durisi, T. Jerkovits, G. Liva, W. Ryan, B. Stein,
and F. Steiner, “Efficient error-correcting codes in the short blocklength
regime,” Physical Communication, vol. 34, pp. 66–79, 2019.

[3] R. G. Gallager, “Low density parity check codes,” MIT Press, Cam-
bridge, 1963, research Monograph series.

[4] R. Tanner, “A recursive approach to low complexity codes,” IEEE

Transactions on Information Theory, vol. 27, no. 5, pp. 533–547, 1981.

[5] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” IEEE Transac-

tions on Information Theory, vol. 47, no. 2, pp. 619–637, 2001.

[6] N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation,
Department of Electrical Engineering, Linköping University, Sweden,
1996.

[7] A. Kothiyal, O. Y. Takeshita, W. Jin, and M. Fossorier, “Iterative
reliability-based decoding of linear block codes with adaptive belief
propagation,” IEEE Communications Letters, vol. 9, no. 12, pp. 1067–
1069, 2005.

[8] T. R. Halford and K. M. Chugg, “Random redundant soft-in soft-out
decoding of linear block codes,” in IEEE International Symposium on

Information Theory, 2006, pp. 2230–2234.

[9] I. Dimnik and Y. Be’ery, “Improved random redundant iterative HDPC
decoding,” IEEE Transactions on Communications, vol. 57, no. 7, pp.
1982–1985, 2009.

[10] T. Hehn, J. B. Huber, O. Milenkovic, and S. Laendner, “Multiple-
bases belief-propagation decoding of high-density cyclic codes,” IEEE

Transactions on Communications, vol. 58, no. 1, pp. 1–8, 2010.

[11] M. Fossorier and S. Lin, “Soft-decision decoding of linear block codes
based on ordered statistics,” IEEE Transactions on Information Theory,
vol. 41, no. 5, pp. 1379–1396, 1995.

[12] E. Nachmani, Y. Be’ery, and D. Burshtein, “Learning to decode linear
codes using deep learning,” in 54th Annual Allerton Conference on

Communication, Control, and Computing (Allerton), 2016, pp. 341–346.

[13] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and
Y. Be’ery, “Deep learning methods for improved decoding of linear
codes,” IEEE Journal of Selected Topics in Signal Processing, vol. 12,
no. 1, pp. 119–131, 2018.

[14] X. Xiao, B. Vasić, R. Tandon, and S. Lin, “Designing finite alphabet iter-
ative decoders of LDPC codes via recurrent quantized neural networks,”
IEEE Transactions on Communications, vol. 68, no. 7, pp. 3963–3974,
2020.

[15] X. Xiao, N. Raveendran, B. Vasić, S. Lin, and R. Tandon, “FAID
diversity via neural networks,” in 11th International Symposium on

Topics in Coding (ISTC), 2021, pp. 1–5.

[16] A. Buchberger, C. Häger, H. D. Pfister, L. Schmalen, and A. G. i Amat,
“Pruning and quantizing neural belief propagation decoders,” IEEE

Journal on Selected Areas in Communications, vol. 39, no. 7, pp. 1957–
1966, 2020.

[17] N. Doan, S. A. Hashemi, E. N. Mambou, T. Tonnellier, and W. J. Gross,
“Neural belief propagation decoding of CRC-polar concatenated codes,”
in IEEE International Conference on Communications (ICC), 2019, pp.
1–6.

[18] S. Han, J. Oh, K. Oh, and J. Ha, “Deep-learning for breaking the
trapping sets in low-density parity-check codes,” IEEE Transactions on

Communications, 2022.

[19] T. Richardson, “Error floors of LDPC codes,” in Proceedings of the

Annual Allerton Conference on Communication Control and Computing,
vol. 41, no. 3, 2003, pp. 1426–1435.

[20] L. Dolecek, P. Lee, Z. Zhang, V. Anantharam, B. Nikolic, and M. Wain-
wright, “Predicting error floors of structured LDPC codes: Deterministic
bounds and estimates,” IEEE Journal on Selected Areas in Communi-

cations, vol. 27, no. 6, pp. 908–917, 2009.

[21] B. J. Frey, R. Kotter, and A. Vardy, “Skewness and pseudocodewords
in iterative decoding,” in IEEE International Symposium on Information

Theory, 1998, p. 148.

[22] D. J. MacKay and M. S. Postol, “Weaknesses of Margulis and
Ramanujan-Margulis low-density parity-check codes,” Electronic Notes

in Theoretical Computer Science, vol. 74, pp. 97–104, 2003.

[23] J. Rosseel, V. Mannoni, V. Savin, and I. Fijalkow, “Error structure aware
parallel BP-RNN decoders for short LDPC codes,” 11th International

Symposium on Topics in Coding (ISTC), pp. 1–5, 2021.

[24] V. Savin, “LDPC decoders,” in Channel coding: Theory, algorithms, and

applications, D. Declercq, M. Fossorier, and E. Biglieri, Eds. Elsevier,
2014, pp. 211–260.

[25] M. Lian, F. Carpi, C. Häger, and H. D. Pfister, “Learned belief-
propagation decoding with simple scaling and SNR adaptation,” in IEEE

13

International Symposium on Information Theory (ISIT), 2019, pp. 161–
165.

[26] L. Dolecek, Z. Zhang, V. Anantharam, M. J. Wainwright, and B. Nikolic,
“Analysis of absorbing sets and fully absorbing sets of array-based
LDPC codes,” IEEE Transactions on Information Theory, vol. 56, no. 1,
pp. 181–201, 2010.

[27] M. Karimi and A. H. Banihashemi, “On characterization of elementary
trapping sets of variable-regular LDPC codes,” IEEE Transactions on

Information Theory, vol. 60, no. 9, pp. 5188–5203, 2014.
[28] Y. Hashemi and A. H. Banihashemi, “On characterization and efficient

exhaustive search of elementary trapping sets of variable-regular LDPC
codes,” IEEE Communications Letters, vol. 19, no. 3, pp. 323–326, 2015.

[29] H. Falsafain and S. R. Mousavi, “Exhaustive enumeration of elementary
trapping sets of an arbitrary Tanner graph,” IEEE Communications

Letters, vol. 20, no. 9, pp. 1713–1716, 2016.
[30] S. Abu-Surra, D. DeClercq, D. Divsalar, and W. E. Ryan, “Trapping set

enumerators for specific LDPC codes,” in IEEE Information Theory and

Applications Workshop (ITA). IEEE, 2010, pp. 1–5.
[31] S.-C. Wang, “Artificial neural network,” in Interdisciplinary computing

in Java programming. Springer, 2003, pp. 81–100.
[32] M. Karimi and A. H. Banihashemi, “Efficient algorithm for finding dom-

inant trapping sets of LDPC codes,” IEEE Transactions on Information

Theory, vol. 58, no. 11, pp. 6942–6958, 2012.
[33] G. B. Kyung and C.-C. Wang, “Exhaustive search for small fully

absorbing sets and the corresponding low error-floor decoder,” in IEEE

International Symposium on Information Theory (ISIT). IEEE, 2010,
pp. 739–743.

[34] X. Zhang and P. H. Siegel, “Efficient algorithms to find all small error-
prone substructures in LDPC codes,” in IEEE Global Telecommunica-

tions Conference (GLOBECOM). IEEE, 2011, pp. 1–6.
[35] X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, “Regular and irregular pro-

gressive edge-growth Tanner graphs,” IEEE Transactions on Information

Theory, vol. 52, no. 51, pp. 386–398, 2005.
[36] “Short block length LDPC codes for TC synchronization and channel

codding (CCSDS 231.1-O-1),” Consultative Committee for Space Data
Systems (CCSDS), Techical Report, April 2015.

[37] D. Declercq, B. Vasic, S. K. Planjery, and E. Li, “Finite alphabet iterative
decoders – Part II: Towards guaranteed error correction of LDPC codes
via iterative decoder diversity,” IEEE Transactions on Communications,
vol. 61, no. 10, pp. 4046–4057, 2013.

[38] M. P. Fossorier, “Iterative reliability-based decoding of low-density par-
ity check codes,” IEEE Journal on Selected Areas in Communications,
vol. 19, no. 5, pp. 908–917, 2001.

[39] B. A. LaMacchia and A. M. Odlyzko, “Solving large sparse linear
systems over finite fields,” in Proc. of Annual Int. Cryptology Conf.

on Advances in Cryptology (CRYPT0’90), 1990, pp. 109–133.
[40] T. Richardson and R. Urbanke, “Efficient encoding of low-density parity-

check codes,” IEEE Transactions on Information Theory, vol. 47, no. 2,
pp. 638–656, 2001.

[41] D. Burshtein and G. Miller, “Efficient maximum-likelihood decoding
of LDPC codes over the binary erasure channel,” IEEE Trans. on

Information Theory, vol. 50, no. 11, pp. 2837–2844, 2004.
[42] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient

by a running average of its recent magnitude,” COURSERA: Neural

networks for machine learning, vol. 4, no. 2, pp. 26–31, 2012.
[43] M. Geiselhart, M. Ebada, A. Elkelesh, J. Clausius, and S. Ten Brink,

“Automorphism ensemble decoding of quasi-cyclic LDPC codes by
breaking graph symmetries,” IEEE Communications Letters, 2022.

[44] M. Helmling, S. Scholl, F. Gensheimer, T. Dietz, K. Kraft, S. Ruzika,
and N. Wehn, “Database of channel codes and ML simulation results,”
www.uni-kl.de/channel-codes, 2019.

[45] B. Smith, M. Ardakani, W. Yu, and F. R. Kschischang, “Design of
irregular LDPC codes with optimized performance-complexity tradeoff,”
IEEE Transactions on Communications, vol. 58, no. 2, pp. 489–499,
2010.

www.uni-kl.de/channel-codes

	I Introduction
	II Preliminaries
	II-A Neural BP decoding
	II-B Loss function
	II-C Number of decoding iterations

	III Absorbing Set Classification and Specialization of BP-RNN Decoding
	III-A Absorbing sets
	III-B Graph-search based algorithm
	III-C Training specialized BP-RNN decoders

	IV BP-RNNs Selection and Decoding Architectures
	IV-A BP-RNN diversity selection
	IV-B BP-RNN diversity decoding architectures
	IV-C Average-case complexity and decoding latency metrics

	V OSD Post-Processing for BP-RNN Decoders
	VI Numerical results
	VI-A Training settings
	VI-B Maximum number of decoding iterations for training and testing
	VI-C BP-RNN diversity selection
	VI-D FER results, complexity and decoding latency evaluations
	VI-E FER results using OSD post-processing

	VII Conclusion
	Appendix
	References

