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Completion Delay of Random Linear Network

Coding in Full-Duplex Relay Networks

Rina Su†, Qifu Tyler Sun†∗, Zhongshan Zhang‡, Zongpeng Li§

Abstract

As the next-generation wireless networks thrive, full-duplex and relay techniques are combined to

improve the network performance. Random linear network coding (RLNC) is another popular technique

to enhance the efficiency and reliability of wireless communications. In this paper, in order to explore the

potential of RLNC in full-duplex relay networks, we investigate two fundamental perfect RLNC schemes

and theoretically analyze their completion delay performance. The first scheme is a straightforward

application of conventional perfect RLNC studied in wireless broadcast, so it involves no additional

process at the relay. Its performance serves as an upper bound for all perfect RLNC schemes. The

other scheme allows sufficiently large buffer and unconstrained linear coding at the relay. It attains the

optimal performance and serves as a lower bound for all RLNC schemes. For both schemes, closed-form

formulae to characterize the expected completion delay at a single receiver as well as for the whole

system are derived. Numerical results are also demonstrated to validate the theoretical characterizations,

and compare the two fundamental schemes with the existing one.

Index Terms

Full-duplex, relaying, random linear network coding (RLNC), completion delay, throughput

I. INTRODUCTION

Among the emerging techniques for promoting evolution of the next generation (5G) wireless

networks, relay techniques [2] is widely considered for the purpose of catering to the ever-

growing demand for throughput and coverage. As an up-and-coming paradigm, network coding

(NC) and particularly random linear network coding (RLNC) [3] has shown great capabilities
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are with University of Science and Technology Beijing, Z. Zhang is with Beijing Institute of Technology, and Z. Li is with
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to realize higher transmission efficiency and throughput in wireless communications. Different

NC schemes have shown significant gains in a multitude of wireless transmission scenarios,

from wireless broadcast [4]–[9] and wireless sensor networks [10], to D2D [11] and Wi-Fi

direct transmission [12]. A considerable amount of research (e.g., [13]–[17]) has investigated

the combination of relay techniques with RLNC for the two-hop relay networks, which are the

network model proposed in IEEE 802.16j and 3GPP LTE-Advanced [18], [19] for the sake of

simplicity and explicitness of system design. In particular, in the two-hop relay network depicted

in Fig. 1 with the relay station operating in the half-duplex mode, Ref. [17] proposed an RLNC

scheme with online scheduling that can achieve near-optimal completion delay performance, a

key metric for transmission efficiency (e.g., [9], [13]–[17], [20], [21]).

Compared with the traditional half-duplex relay, the full-duplex relay can potentially double

the throughput by simultaneously fetching and forwarding data [22], [23]. Moreover, with recent

developments in the self-interference cancellation technology [24], the full-duplex relay has been

considered as a key component to construct versatile networks in 5G. In the literature, there

have been studies on combining full-duplex relaying with NC for performance enhancement

over broadcast networks. For example, physical-layer NC has been applied in full-duplex relay

networks with multiple receivers [25]. An NC-based Automatic Repeat Request (ARQ) scheme

[26] was proposed to enhance the downlink throughput for a two-way full-duplex relay network.

When the relay station in Fig. 1 operates in the full-duplex mode, the recent work [27] proposed

an RLNC scheme with scheduling, known as FBPF (Fewest Broadcast Packet First), which

demonstrated a better throughput (equivalently, completion delay) performance than the ARQ.

FBPF assumes full linear independence among the packets generated by the source, so it belongs

to perfect RLNC, which is always considered in analyzing the optimal performance RLNC can

achieve (e.g., [4], [13], [17], [28], [29]). Even though FBPF is a type of perfect RLNC, it

does not shed light on the best possible completion delay performance that RLNC can achieve

because it does not fully utilize the packets buffered in the relay, i.e., it does not invoke coding

while stores and forwards packets via an unnecessarily large buffer at the relay. In this paper,

in order to further explore the potential of RLNC in the full-duplex relay network in Fig. 1, we

are inspired to investigate two fundamental perfect RLNC schemes and study their completion

delay performance. The main contributions of this paper are summarized as follows.

• We first investigate perfect RLNC without buffer, which does not involve any buffer or

additional process at the relay. As a result, this scheme provides a fundamental performance
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Fig. 1. The system model of the relay network, in which the relay station is considered to be half-duplex in [17], and to be

full-duplex in [27] as well as in this paper.

guarantee among all possible perfect RLNC schemes. For this scheme, explicit formulae of

expected completion delay at a single receiver as well as for the system are deduced.

• We then investigate perfect RLNC with buffer, which allows sufficiently large buffer and

unconstrained linear coding at the relay. It turns out that it attains the best completion delay

performance among all RLNC schemes. For this scheme, by modeling the transmission

process as a Markov chain, we deduce a closed-form formula of the expected completion

delay at a single receiver, which involves combinatorial numbers related to Schroeder paths.

In order to compute the expected completion delay at a single receiver in a more handy

manner, we further derive a recursive formula for it.

• For perfect RLNC with buffer, we also model such a Markov chain that the expected

system completion delay can be calculated by a formula built upon its 1-step transition

probability matrix, whose size grows exponentially with the increasing number of receivers.

Furthermore, we characterize a non-trivial closed-form lower bound, which is the maximum

of two individual ones that can be explicitly and recursively computed. The first stems from

the expected system completion delay in wireless broadcast, and the other is selected to be

the expected completion delay at a single receiver with the worst channel condition.

For full-duplex relay networks, the formulae of the expected completion delay of perfect RLNC

without buffer obtained in this paper serve as upper bounds for the completion delay performance

of all perfect RLNC schemes, including FBPF [27], the relay-centered RLNC schemes [13], and

the one adapted from [17]. The formulae of the expected completion delay of perfect RLNC

with buffer obtained in this paper serves as lower bounds for the completion delay performance

of all RLNC schemes, including Fulcrum codes [30], DSEP Fulcrum codes [31], Sparse RLNC

[32], Telescopic codes [33]. The study of this paper provides a theoretical guideline for future

works on the detailed design of RLNC-based transmission.
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We would like to remark that when the RS in the system operates in the half-duplex mode,

the completion delay performance of perfect RLNC was analyzed in [17], but it does not shed

light on the completion delay analyses in this paper, because its focus is to determine whether

to fetch a packet from the BS or to broadcast a packet to the receivers at every timeslot at the

RS.

The remainder of this paper is organized as follows. Section II introduces the system

model and two fundamental perfect RLNC schemes. Section III theoretically analyzes the

expected completion delay of two fundamental schemes. Section IV provides extensive numerical

analyses to justify the theoretical characterizations and compare the two fundamental schemes’

performance with FBPF. Section V concludes the paper.

Throughout the paper, we shall use I and 1 to respectively represent an identity matrix and

an all-1 matrix, where the matrix size, if not explained, can be inferred in the context.

II. SYSTEM MODEL AND TWO FUNDAMENTAL PERFECT RLNC SCHEMES

A. System Model

We consider the two-hop full-duplex relay network depicted in Fig. 1, where a base station

(BS) attempts to deliver P packets to a set of R receivers via a full-duplex relay station (RS) with

a limited buffer size. The network transmission is considered to be time-slotted, that is, at every

timeslot, the BS can deliver one packet to the RS, while the full-duplex RS can simultaneously

fetch a coded packet from the BS and broadcast a coded packet to all receivers. The memoryless

channel between the BS and the RS, together with the channel between the RS and every

receiver r, are subject to independent random packet erasures with erasure probability 1 − p0

and 1−pr , respectively. Every receiver is interested in recovering all P original packets. Herein,

the completion delay refers to the total number of packets transmitted by the BS before every

receiver is able to recover all P original packets. Notice that the definition of completion delay

is the same as the one in [13] [27], which takes the initial P packets transmitted by the BS into

account, so it is slightly different from the one in [13] [6]. The packet number P divided by the

completion delay is set as a measurement of throughput in [27].

In practice, at every timeslot, even though the BS and the RS transmit simultaneously, the RS

obtains what the BS transmits at the end of the timeslot. Thus, for the RS, the broadcast process

is always one timeslot behind the reception process, i.e., what the RS broadcasts at timeslot j

has nothing to do with what it receives at timeslot j. Same as the consideration in [13], in this
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paper, we shall also ignore this constant timeslot lag at the RS and this assumption does not

affect the analysis on the completion delay performance.

For the full-duplex relay network, Ref. [27] has proposed the FBPF scheduling scheme, in

which if the RS buffer is not empty, the RS selects a packet that has been broadcast the fewest

number of times from the unlimited buffer, and broadcasts the selected packets to the receivers.

Since perfect RLNC is adopted in the design of the FBPF scheme, any P different packets

received by a receiver are assumed to be linearly independent.

B. Two Fundamental Perfect RLNC Schemes

Since the FBPF perfect RLNC scheme permits unlimited buffer at the RS for additional

scheduling procedures, it is not a perfect RLNC scheme with the simplest setting at the RS.

Thus, it does not reflect a fundamental performance guarantee provided by perfect RLNC in the

full-duplex relay network, that is, there exist other perfect RLNC schemes with simpler settings

at the RS and their completion delay performance is not as good as that of the FBPF scheme.

On the other hand, the FBPF perfect RLNC scheme cannot yield the best performance gain in

terms of completion delay as it does not involve NC at the RS.

In order to study the fundamental completion delay performance of perfect RLNC in the full-

duplex relay network, we consider two basic perfect RLNC schemes, one without buffering at

the RS and the other with buffering and recoding at the RS.

The first scheme, called perfect RLNC without buffer, does not require buffer and thus there

is no recoding at the RS. The role of the RS is just to directly forward the received packets. At

every timeslot, the BS delivers one coded packet, which is a random linear combination of P

original packets, to the RS. If the RS successfully receives the coded packet, then it will broadcast

it to all receivers. Otherwise, the RS will not transmit anything. Notice that the full-duplex RS

can simultaneously fetch the coded packet from the BS and broadcast it to all receivers. As

perfect RLNC is considered, any P coded packets generated by the BS are assumed linearly

independent and sufficient to recover the P original packets. As a result, once every receiver

obtains P packets, the transmission completes. Since this scheme does not involve any extra

operation at the RS, it is the most straightforward and simplest application of perfect RLNC in

the full-duplex relay network. As a result, it provides a fundamental performance guarantee for

all perfect RLNC schemes designed for the full-duplex relay network in terms of completion

delay.
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The other scheme, called perfect RLNC with buffer, assumes buffer size P and no coding

constraints at the RS. At each timeslot, the BS transmits a coded packet to the RS, and if

the RS receives the packet and its buffer is not full, then it stores the received packet in its

buffer. Meanwhile, no matter whether the RS successfully receives the packet from the BS or

not, it broadcasts a packet which is a random linear combination of all the packets stored in the

buffer. Due to the causality at the RS to firstly buffer received packets and then broadcast a linear

combination of buffered packets to receivers, the number of linearly independent packets obtained

at a receiver is always no larger than the number of packets buffered at the RS. Once every

receiver obtains P linearly independent packets, the transmission completes. As perfect RLNC

is considered, the P original packets can be recovered from any P coded packets generated

by the BS. Moreover, there is no coding constraint at the RS in this scheme. As a result, as

long as the RS stores P coded packets transmitted from the BS, the P original packets can be

recovered from any P randomly generated coded packets at the RS. This justifies why setting

the buffer size to P is sufficient, and actually, when the RS successfully stores P coded packets

transmitted from the BS in the buffer, there is no need for the BS to transmit new coded packets

to the RS at all. To sum up, the scheme perfect RLNC with buffer attains the best completion

delay performance among all perfect RLNC schemes in the full-duplex relay network.

III. COMPLETION DELAY ANALYSIS

One of the main contributions in this paper is to theoretically analyze the expected completion

delay of the benchmark schemes introduced in Sec. II-B, that is, the perfect RLNC scheme

without buffer and with buffer, respectively.

A. Perfect RLNC without Buffer

In perfect RLNC without buffer, the completion delay at a single receiver r, denoted by D0,r,

is defined to be the number of packets the BS transmits till receiver r is able to recover all P

original packets, and the completion delay for the system, denoted by D0, is defined as

D0 = max{D0,1, D0,2, . . . , D0,R}.

The completion delay D0,r at a single receiver r follows the negative binomial distribution

with the probability mass function Pr(D0,r = P + d) =
(

P+d−1
P−1

)

(p0pr)
P (1 − p0pr)

d, d ≥ 0, so

that the expectation of D0,r is equal to

E[D0,r] = P/(p0pr). (1)
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Proposition 1. The expected completion delay of the perfect RLNC scheme without buffer is

E[D0] =
1

p0
(P +

∑

d≥0
(1−

∏

1≤r≤R
Ipr(P, d+ 1))), (2)

where Ipr(P, d+ 1) =
∑d

j=0

(

P+j−1
P−1

)

pPr (1− pr)
j is the regularized incomplete beta function.

Proof: Let D̂P denote the number of packets broadcast from the RS till every receiver is able

to decode all P original packets. Since the considered perfect RLNC scheme does not have any

buffer at the RS, any P out of the D̂P packets broadcast from the RS are linearly independent.

Thus, D̂P can be regarded as the completion delay for the wireless broadcast system with P

original packets, R receivers and independent erasure probability 1− pr. By Theorem 1 in [6],

E[D̂P ] = P +
∑

d≥0
(1−

∏

1≤r≤R
Ipr(P, d+ 1)) (3)

On the other hand, as the RS immediately broadcasts a packet it successfully receives from the

BS, D̂P also represents the number of successfully received packets from the BS at the RS, and

D0 just represents the number of transmissions from the BS till the RS successfully receives

D̂P packets. As it takes on average 1/p0 transmissions to successfully receive one packet at the

RS from the BS, E[D0] = E[D̂P ]/p0, which implies (2) based on (3).

For the special case that the channel from the RS to every receiver r is perfect, i.e., pr = 1,

the full-duplex relay network becomes essentially the same as a point-to-point transmission,

so the system completion delay of both perfect RLNC schemes considered herein follows the

negative binomial distribution with the expected value P
p0

. For the other special case p0 = 1, the

full-duplex relay network degenerates to the wireless broadcast with erasure probability 1− pr,

so E[D0] is given by P +
∑

d≥0(1−
∏

1≤r≤R Ipr(P, d+ 1)), same as the one obtained in [6].

B. Perfect RLNC with Buffer, Single Receiver Case

In perfect RLNC with buffer, the completion delay at receiver r is denoted by DP,r, where

P means the number of original packets generated by the source and to be recovered at every

receiver. The system completion delay, denoted by DP , is defined as

DP = max{DP,1, DP,2, . . . , DP,R}.

In order to characterize the expected completion delay E[DP,r], we first recall the following

combinatorial number

Ti,j =
1

j + 1

(

i+ j

i

)(

i

j

)

, 0 ≤ j ≤ i (4)
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The Schroeder path (see, e.g., [34]) from (0, 0) to (i, i) is a path with possible movement (+1, 0),

(0,+1), (+1,+1) in every step transition and with x ≥ y for every point (x, y) in the path. Then,

Ti,j represents the number of Schroeder paths from (0, 0) to (i, i) with i+ j step transitions.

Theorem 2. At a single receiver r, the expected completion delay of the perfect RLNC scheme

with buffer is

E[DP,r] =
P

p0
+

P

pr
− 1 +

P−2
∑

i=0

i
∑

j=0

(P − i− 1)Ti,j(p0pr)
i

(p0pr − p0 − pr)i+j+1
. (5)

Proof: Model the transmission process as a Markov chain MP consisting of
(P+1)(P+2)

2

states. Every state, labeled as (i, j), represents the scenario that the RS and the receiver have

respectively obtained i and j packets. Due to the causality at the RS to firstly buffer received

packets (from the BS) and then broadcast a random linear combination of the buffered packets

to receivers, all states (i, j) in MP have 0 ≤ j ≤ i ≤ P , and the only absorbing state in MP

is (P, P ) (assuming p0, p1, . . . , pR 6= 0). The 1-step transition probability pij,i′j′ from a transient

state (i, j) to another state (i′, j′) is given by

• for 0 ≤ j = i < P , pij,ij = 1− p0, pij,(i+1)j = p0(1− pr), pij,(i+1)(j+1) = p0pr;

• for 0 ≤ j < i < P , pij,ij = (1 − p0)(1 − pr),pij,(i+1)j = p0(1 − pr),pij,i(j+1) = (1 −

p0)pr,pij,(i+1)(j+1) = p0pr.

• for 0 ≤ j < i = P , pij,ij = 1− pr,pij,i(j+1) = pr.

Let P denote the matrix of 1-step transition probabilities among all
(P+1)(P+2)

2
− 1 transient

states. Assume the states are ordered lexicographically, so that the first row/column in P is

indexed by the state (0, 0, . . . , 0). By the standard technique to calculate the expected transition

times from a transient state to an absorbing one (see, e.g., Sec. 4.6 in [35]), the expected

completion delay E[DP,r] can be formulated as

E[DP,r] = (1, 0, . . . , 0)(I−P)−1
1, (6)

where (1, 0, . . . , 0) represents the
(

(P+1)(P+2)
2

− 1
)

-dimensional row unit vector with the first

entry equal to 1. The details to derive (5) based on (6) is provided in Appendix-A.

Remark. In the literature, Ref. [9], [13], [30], [36], [37] also studied the completion delay

performance from a Markov chain approach in different network settings. For example, [9]

characterized the system completion delay for wireless broadcast with feedback by means of

a moment generating function. For wireless broadcast with 2 receivers, Ref. [36] characterized
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the cumulative distribution function of the system completion delay of RLNC by means of a

Markov chain model. For the relay-centered network with a single receiver, Ref. [13] established

a Markov chain model to obtain an implicit recursive formula for the expected completion delay

of perfect RLNC. However, in the above references, there is no explicit expression for the

completion delay studied. In comparison, we also adopt the Markov chain approach to model

the transmission process in full-duplex relay networks, and by deliberate analysis we obtain a

closed-form formula of the completion delay at a single receiver. �

With P increasing, the calculation of E[DP,r] according to (5) becomes tedious because it

involves the combinatorial number Ti,j , which can be extremely large. Stemming from (5), we

next deduce an equivalent recurrence expression for E[DP,r].

For i ≥ 0, define

B(i) =
∑i

j=0

Ti,j(p0pr)
i

(p0pr − p0 − pr)i+j+1
. (7)

Thus, (5) can be rewritten as

E[DP,r] =
P

p0
+

P

pr
− 1 +

P−2
∑

i=0

(P − i− 1)B(i). (8)

Moreover, one can readily see

E[DP+1,r]− E[DP,r] =
1

p0
+

1

pr
+

P−1
∑

i=0

B(i). (9)

Corollary 3. B(i) can be recursively expressed as

B(i) = −
p0pr
∆

(

B(i− 1) +
i−1
∑

j=0

B(j)B(i− j − 1)

)

. (10)

with the initial value B(0) = − 1
p0+pr−p0pr

.

Proof: Same as in the proof of Theorem 2, write ∆ = p0+pr−p0pr = 1− (1−p0)(1−p1)

for short. Thus, B(i) can be expressed as

B(i) = −
1

∆

∑i

j=0
Ti,j

(

−
p0pr
∆

)i−j (p0pr
∆2

)j

. (11)

First, it is trivial to see B(0) = −1/∆.

Recall that Ti,j represents the number of Schroeder paths from (0, 0) to (i, i) with exactly

i+ j step transitions. Moreover, for every Schroeder path in Ti,j , the number of step transitions

that are in the form of from (i′, j′) to (i′+1, j′+1), from (i′, j′) to (i′+1, j′) and from (i′, j′) to

(i′, j′ + 1) are respectively equal to i− j, j and j. Now assign a weight to every step transition
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as follows. If the step transition is from (i′, j′) to (i′ + 1, j′ + 1), then its weight is −p0pr
∆

; if

the step transition is from (i′, j′) to (i′ + 1, j′) or from (i′, j′) to (i′, j′ + 1), then its weight is
√
p0pr
∆

. For every Schroeder path, define its weight as the product of all the weights for the step

transitions in the path. Thus, based on (11), −∆B(i) can be regarded as the sum of weights of

all Schroeder paths from (0, 0) to (i, i).

All Schroeder paths from (0, 0) to (i, i) can be partitioned into i + 1 categories. The first

category consists of all those Schroeder paths that contain the step transition from (0, 0) to

(1, 1), which has weight −p0pr
∆

. Thus, the sum of weights of all Schroeder paths in the first

category is equal to −p0pr
∆

(−∆B(i − 1)) = p0prB(i − 1). For 0 ≤ j ≤ i − 1, the (j + 1)st

category consists of all those Schroeder paths that satisfy the followings:

• the step transitions from (0, 0) to (1, 0) and from (j + 1, j) to (j + 1, j + 1) are contained;

• the step transitions from (1, 0) to (j+1, j) is equivalent to a Schroeder path from (0, 0) to

(j, j);

• the step transitions from (j+1, j+1) to (i, i) is equivalent to a Schroeder path from (0, 0)

to (i− j − 1, i− j − 1).

As a result, the sum of weights of all Schroeder paths in category j + 1 equals to

p0pr
∆2 (−∆B(j))(−∆B(i−j−1)) = p0prB(j)B(i−j−1). To add up the weights of all Schroeder

paths in all i+ 1 categories, we obtain

−∆B(i) = p0prB(i− 1) +
∑i−1

j=0
p0prB(j)B(i− j − 1),

that is, (10) holds.

Based on (9) and (10), E[DP+1,r] can be recursively computed for arbitrarily large P . It is

also interesting to observe from Eq. (1), (5), (9) and (10) that the parameters p0 and pr have

the same impact on the expected completion delay at a single receiver r for both perfect RLNC

without buffer and perfect RLNC with buffer.

C. Perfect RLNC with Buffer, Multiple-Receiver Case

The transmission process of the perfect RLNC scheme with buffer for multiple receivers on

the full-duplex relay network can be modeled as a Markov chain, denoted by MP,R, in the

following way. Every state in MP,R can be labeled by an (R+1)-tuple s = (s0, s1, s2, . . . , sR),

where s0 represents the number of packets successfully received by the RS, and sr represents the
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Fig. 2. An illustration of the 1-step transition diagram for the Markov chain MP,R with R = P = 2. There are 12+22+32 = 14

states, all states except for (2, 2, 2) are transient, and there is a state transition from every transient state to itself. For brevity,

every state (s0, s1, s2) is labeled as s0s1s2, the transition from every transient state to itself is not depicted, and the edge

direction is not marked. Specifically, whenever there is an edge between s = (s0, s1, s2) and s
′ = (s′0, s

′

1, s
′

2) with sj ≤ s′j for

all 0 ≤ j ≤ 2, it represents a transition from s to s
′.

number of packets successfully received by receiver r. Notice that 0 ≤ sr ≤ s0 ≤ P for every

receiver r. Thus, by conditioning on s0, we can compute the number of states in the Markov

chain MP,R as
∑P

s0=0(s0 + 1)R states. Except for the state (P, P, . . . , P ), which is absorbing,

all other
∑P

s0=0(s0+1)R−1 states are transient (assuming p0, p1, . . . , pR 6= 0). There is a 1-step

transition in the Markov chain once the BS broadcasts a new packet in a timeslot. An illustration

of the 1-step transition diagram for the case R = P = 2 is given in Fig. 2. We next define the

1-step transition probability from state s = (s0, s1, s2, . . . , sR) to state s
′ = (s′0, s

′
1, s

′
2, . . . , s

′
R)

for the Markov chain.

Let R denote the set of receivers who have not obtained s0 packets at state s yet, that is,

R = {1 ≤ r ≤ R : sr < s0}. In addition, denote by R′ the set of receivers who have obtained

a new packet after the 1-step transition from s to s
′, that is, R′ = {r ∈ R : s′r = sr + 1}. The

1-step transition probability from s to s
′ can be formulated by the following 3 different cases

depending on the value of s0 and s′0.

• Case 1: s′0 = s0 < P . In this case R′ ⊆ R. We have

ps,s′ = (1− p0)
(

∏

r∈R′

pr

)

(

∏

r∈R\R′

(1− pr)

)

. (12)

• Case 2: s′0 = s0 = P . In this case R′ ⊆ R. We have

ps,s′ =
(

∏

r∈R′

pr

)

(

∏

r∈R\R′

(1− pr)

)

. (13)
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• Case 3: s′0 = s0+1. Notice that R′ is not necessarily contained in R in this case. We have

ps,s′ = p0

(

∏

r∈R′

pr

)(

∏

r /∈R′

(1− pr)
)

. (14)

Analogous to (6), the expected completion delay for the system can be expressed as

E[DP ] = (1, 0, . . . , 0)(I−P)−1
1, (15)

where P denotes the matrix of 1-step transition probabilities among all transient states, with the

first row/column indexed by the state (0, . . . , 0).

Since the number of states in the Markov chain MP,R increases exponentially with increasing

R, it may not be convenient to compute E[DP ] based on (15). We next provide an alternative

way to analyze E[DP ] by exploring its connection with E[D̂P ], which is given by (3) and denotes

the expected system completion delay for the special case p0 = 1, or equivalently, the expected

system completion delay in wireless broadcast. For this purpose, we first focus on a single

receiver r and compare E[DP,r] with E[D̂P,r] = P/pr, which represents the expected completion

delay at receiver r for the special case p0 = 1. For 1 ≤ j ≤ P , let Sj and Tj,r respectively

denote the number of timeslots that the RS and receiver r take to receive the jth packet. Thus,

S1 < . . . < SP , T1,r < . . . < TP,r, and Sj ≤ Tj,r for all 1 ≤ j ≤ P . By conditioning on the

relation between SP+1 and TP,r, we can deduce the followings.

• SP+1 ≤ TP,r, which means the RS has received the (P + 1)st packet upon the reception of

the P th packet by receiver r. In this case, it takes on average 1
pr

timeslots for receiver r to

further obtain the (P +1)st packet so that E[DP+1,r]−E[DP,r ] =
1
pr

= E[D̂P+1,r]−E[D̂P,r];

• SP+1 > TP,r, which means upon the reception of the (P+1)st packet at the RS, receiver r has

only received fewer than P packets. In this case, it takes on average 1
p0

additional timeslots

for the RS to receive the (P +1)st packet, and 1
pr
−1 timeslots for receiver r to receive the

(P +1)st packet. Thus, E[DP+1,r]−E[DP,r] =
1
p0
+ 1

pr
− 1 = E[D̂P+1,r]−E[D̂P,r] +

1
p0
− 1.

In all, we have

E[DP+1,r]− E[DP,r] = E[D̂P+1,r]− E[D̂P,r] + Pr(SP+1 > TP,r)(
1

p0
− 1). (16)

Since E[D1,r] =
1
p0

+ 1
pr

− 1 and E[D̂1,r] =
1
pr

, we have

E[DP,r] = E[D̂P,r] + (
1

p0
− 1)

(

1 +
∑P−1

j=1
Pr(Sj+1 > Tj,r)

)

(17)

Moreover, due to (9), (16) and E[D̂P+1,r]−E[D̂P,r] =
1
pr

, the following lemma can be obtained.
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Lemma 4. When p0 < 1, Pr(SP+1 > TP,r) =
1

1−p0
+ p0

1−p0

∑P−1
i=0 B(i).

We next make a connection between E[DP ] and E[D̂P ] similar to that between E[DP,r]

and E[D̂P,r] in (17). For R independent geometrically distributed random variables N1, . . . , NR

(starting from 1) with respective parameters p1, . . . , pR, define

Emax = E[max{N1, . . . , NR}]. (18)

Emax can be explicitly computed by the min-max identity (see, e.g., [35]). Based on Emax,

E[D1] = 1/p0 + Emax − 1, E[D̂1] = Emax, E[D1] = E[D̂1] + 1/p0 − 1. (19)

For P ≥ 2, the connection between E[DP ] and E[D̂P ] can be analyzed by conditioning on the

relation among SP+1, TP+1,r and TP,r, 1 ≤ r ≤ R. To ease the following presentation, we first

elaborate the case of R = 2, and then give a general conclusion for R ≥ 2.

Lemma 5. For the case R = 2,

E[DP+1]− E[DP ]

=Pr(TP+1,1 ≤ TP,2)
1

p2
+ Pr(TP+1,2 ≤ TP,1)

1

p1
+ Pr(TP+1,1 > TP,2, TP+1,2 > TP,1)Emax+

Pr(SP+1 > max{TP,1, TP,2})(
1

p0
− 1).

(20)

Proof: We analyze E[DP+1]− E[DP ] by conditioning on the following 4 different cases:

• Let A represent the case TP+1,1 ≤ TP,2 and TP+1,2 > TP,1, which is equivalent to TP+1,1 ≤

TP,2. In this case, when both receivers have obtained P packets, receiver 1 has obtained

(P+1)st packet as well. Thus, it only takes additional 1/p2 timeslots on average for receiver

2 to get the (P + 1)st packet, that is, E[DP+1 −DP | A] = 1/p2.

• Let B represent the case TP+1,2 ≤ TP,1 and TP+1,1 > TP,2, which is equivalent to TP+1,2 ≤

TP,1. In a similar argument to case A, we have E[DP+1 −DP | B] = 1/p1.

• Let C represent the case TP+1,2 > TP,1 and TP+1,1 > TP,2. We further divide C into two

subcases, that is, SP+1 > max{TP,1, TP,2} and SP+1 ≤ max{TP,1, TP,2}. In the first subcase

SP+1 > max{TP,1, TP,2}, when both receivers have obtained P packets, it takes extra 1/p0

timeslots on average for the RS to get the (P +1)st packet and then Emax − 1 timeslots on

average to make both receivers obtain the (P + 1)st packets, that is,

E[DP+1 −DP | C, SP+1 > max{TP,1, TP,2}] = 1/p0 + Emax − 1.
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In the second subcase SP+1 ≤ max{TP,1, TP,2}, when both receivers have obtained P

packets, the RS has already received the (P + 1)st packet, so it takes extra Emax timeslots

on average to make both receivers obtain the (P + 1)st packets, that is,

E[DP+1 −DP | C, SP+1 ≤ max{TP,1, TP,2}] = Emax.

In all,

E[DP+1 −DP | C]

=(1/p0 + Emax − 1)Pr(SP+1 > max{TP,1, TP,2} | C) + EmaxPr(SP+1 ≤ max{TP,1, TP,2} | C)

=Emax + (1/p0 − 1)Pr(SP+1 > max{TP,1, TP,2} | C),

and consequently

E[DP+1 −DP | C]Pr(C)

=EmaxPr(C) + (1/p0 − 1)Pr(SP+1 > max{TP,1, TP,2} | C)Pr(C)

=EmaxPr(C) + (1/p0 − 1)Pr(SP+1 > max{TP,1, TP,2})

• The last case TP+1,1 ≤ TP,2 and TP+1,2 ≤ TP,1 has probability 0 to occur.

Eq. (20) can now be proved to be correct due to E[DP+1−DP ] = E[DP+1−DP | A]Pr(A)+

E[DP+1 −DP | B]Pr(B) + E[DP+1 −DP | C]Pr(C).

Let T̂j,r denote the number of timeslots receiver r takes to receive the jth packet in the special

case p0 = 1. Thus, (20) implies

E[D̂P+1]− E[D̂P ]

=Pr(T̂P+1,1 ≤ T̂P,2)
1

p2
+ Pr(T̂P+1,2 ≤ T̂P,1)

1

p1
+ Pr(T̂P+1,1 > T̂P,2, T̂P+1,2 > T̂P,1)Emax.

(21)

Let εP denote the following identity

εP =(Pr(TP,1 = TP,2)− Pr(T̂P,1 = T̂P,2))
(1− p1)(1− p2)(p1 + p2)

p1p2(p1 + p2 − p1p2)
+

(Pr(T̂P,1 > T̂P,2)− Pr(TP,1 > TP,2))
p1(1− p2)

p2(p1 + p2 − p1p2)
+

(Pr(T̂P,2 > T̂P,1)− Pr(TP,2 > TP,1))
(1− p1)p2

p1(p1 + p2 − p1p2)

(22)

Theorem 6. For the case R = 2,

E[DP+1]− E[DP ] = E[D̂P+1]− E[D̂P ] + εP+1 + Pr(SP+1 > max{TP,1, TP,2})(
1

p0
− 1). (23)

14



Proof: Please refer to Appendix-B.

Eq. (23) in Theorem 6 extends (16) from the single receiver case to the case R = 2. It implies

an approximation, which can also serve as a lower bound, for E[DP ] based on E[D̂P ]. First,

because Pr(SP+1 > TP,1|SP+1 > TP,2) ≥ Pr(SP+1 > TP,1), we have

Pr(SP+1 > max{TP,1, TP,2}) ≥ Pr(SP+1 > TP,1)Pr(SP+1 > TP,2). (24)

Since Pr(SP+1 > TP,1) and Pr(SP+1 > TP,2) can be explicitly computed based on Lemma 4

together with the recursive formula (10), we shall adopt Pr(SP+1 > TP,1)Pr(SP+1 > TP,2) as an

explicitly computable lower bound on Pr(SP+1 > max{TP,1, TP,2}). Second, we shall omit εP+1

in the approximation whose performance will be justified below. For brevity, let D̃P denote

D̃P = (
1

p0
− 1)

(

1 +
∑P−1

j=1
Pr(Sj+1 > Tj,1)Pr(Sj+1 > Tj,2)

)

. (25)

Theorem 7. For the case R = 2 and P ≥ 2,

E[DP ] =E[D̂P ] +
∑P

j=2
εj + (

1

p0
− 1)(1 +

∑P−1

j=1
Pr(Sj+1 > max{Tj,1, Tj,2}))

≥E[D̂P ] + D̃P . (26)

Proof: The first equation is a direct consequence of (23) and (19). By (24),

E[DP ] ≥ E[D̂P ] +
∑P

j=2
εj + D̃P .

It remains to prove
∑P

j=2 εj ≥ 0, which can be found in Appendix-C.

We can now consider E[D̂P ] + D̃P as an approximation as well as a lower bound for E[DP ]

when R = 2 and P ≥ 2. Notice that E[D̂P ] and D̃P can be explicitly computed by (3) and by

Lemma 4 together with the recursive formula (10), respectively.

Before proceeding to generalize the approximation E[D̂P ] + D̃P of E[DP ] to the case R > 2,

we briefly discuss the approximation accuracy, which depends on how close D̃P approximates

the difference E[DP ] − E[D̂P ]. In the process of obtaining the approximation value D̃P in

Theorem 7, we neglect the term
∑P

j=2 εj ≥ 0, approximate
∑P−1

j=1 Pr(Sj+1 > max{Tj,1, Tj,2})

as
∑P−1

j=1 Pr(Sj+1 > Tj,1)Pr(Sj+1 > Tj,2), and add 1 − 1/p0, which represents the expected

number of timeslots the RS takes to obtain the first packet. Observe that with increasing P ,

both Pr(SP+1 > TP,1) and Pr(SP+1 > TP,2) decrease by Lemma 4, and so does Pr(SP+1 >
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max{TP,1, TP,2}). Without loss of generality, we next analyze the loss by approximating E[DP ]−

E[D̂P ] as D̃P via the following 3 cases.

• Case 1: p0 > max{p1, p2}, so that Pr(SP+1 > TP,1), Pr(SP+1 > TP,2) and

Pr(SP+1 > max{TP,1, TP,2}) are small. Thus, Pr(SP+1 > max{TP,1, TP,2}) − Pr(SP+1 >

TP,1)Pr(SP+1 > TP,2) tends to zero fast with increasing P . Moreover, εP also converges

to 0 fast with increasing P . Actually, with increasing j, when a receiver obtains the jth

new packet, there is a higher probability that the RS has obtained at least j + 1 packets

from the BS. It turns out that the approximation of the transmission scenario from the RS

to receivers as a wireless broadcast is accurate, that is, D̃P/P is a close approximation of

(E[DP ]− E[D̂P ])/P .

• Case 2: p1 < p0 ≤ p2, so that both Pr(SP+1 > TP,1) and Pr(SP+1 > max{TP,1, TP,2})

are relatively small. The gap between Pr(SP+1 > max{TP,1, TP,2}) and Pr(SP+1 >

TP,1)Pr(SP+1 > TP,2) is negligible for small P . However, for larger P , the approximation

of Pr(SP+1 > max{TP,1, TP,2}) as Pr(SP+1 > TP,1)Pr(SP+1 > TP,2) becomes less accurate

than that in Case 1. Moreover, εP tends to 0 with P increasing (but not as fast as in Case

1). Hence, the approximation of (E[DP ]−E[D̂P ])/P by D̃P/P in this case performs a little

less accurate than that in Case 1 (with the same p1, p2).

• Case 3: p0 ≤ min{p1, p2}. In this case, with increasing P , Pr(SP+1 > TP,1), Pr(SP+1 >

TP,2) and Pr(SP+1 > max{TP,1, TP,2}) decrease slower than those in Case 1 and 2 (which

have the same p1, p2 but larger p0). Consequently, Pr(SP+1 > max{TP,1, TP,2})−Pr(SP+1 >

TP,1)Pr(SP+1 > TP,2) is not negligible even for large P . Similarly, εP does not converge

to 0 with P increasing. As a result, for large P , the approximation of (E[DP ]−E[D̂P ])/P

by D̃P/P is not as accurate as in Case 1 and 2 (with the same p1, p2).

Notice that for every receiver r, the expected completion delay E[DP,r], which has been

explicitly characterized in Theorem 2 and can be efficiently computed according to (9), is

naturally a lower bound of E[DP ]. When p1 is much smaller than p2, or p1 ≤ p2 with large

enough P , the probability that the completion delay at receiver 2 is no larger than that at receiver

1, that is, Pr(DP,2 ≤ DP,1) is high. As a result, the following simple lower bound for E[DP ]

E[DP ] ≥ max{E[DP,1],E[DP,2]} (27)

may provide a better approximation compared with (26) when the difference of p1 and p2 is

large or P is relatively large, particularly for Case 2 and 3 discussed above.
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Corollary 8. For the case R = 2 and P ≥ 2,

E[DP ] ≥ max{E[DP,1],E[DP,2],E[D̂P ] + D̃P}. (28)

We now generalize the approximation of E[DP ] as E[D̂P ] + D̃P from R = 2 to R ≥ 2. Write

Ψ̂P+1 = E[D̂P+1]− E[D̂P ]. (29)

Because E[DP+1 −DP |SP+1 > max1≤r≤R TP,r] =
1
p0

− 1, we can express

E[DP+1]− E[DP ] = ΨP+1 + Pr(SP+1 > max1≤r≤R TP,r)(
1

p0
− 1), (30)

where ΨP+1 = E[DP+1 − DP |SP+1 ≤ max1≤r≤R TP,r]Pr(SP+1 ≤ max1≤r≤R TP,r). Based on

(29), (30) and (19), we have

E[DP ] = E[D̂P ] +
∑P

j=2
(Ψj − Ψ̂j) + (

1

p0
− 1)(1 +

∑P−1

j=1
Pr(Sj+1 > max1≤r≤R Tj,r)) (31)

For R = 2, it has been proved in Theorem 7 that
∑P

j=2(Ψj − Ψ̂j) =
∑P

j=2 εj ≥ 0. For R > 2,

further analysis of
∑P

j=2(Ψj − Ψ̂j) involves much more details which are beyond the scope

of this paper, so we directly ignore this term in our approximation. Because Similar to (24),

Pr(SP+1 > max1≤r≤R TP,r) ≥
∏

1≤r≤R Pr(SP+1 > TP,r). Consequently, we obtain the following

approximation of E[DP ]

E[DP ] ≈ E[D̂P ] + (
1

p0
− 1)(1 +

∑P−1

j=1
Pr(Sj+1 > max1≤r≤R Tj,r)) ≥ E[D̂P ] + D̃P , (32)

where D̃P is generalized from (25) to denote D̃P = ( 1
p0
−1)

(

1 +
∑P−1

j=1

∏R
r=1Pr(Sj+1 > Tj,r)

)

.

Recall that E[D̂P ] represents the expected system completion delay for the special case p0 = 1,

which degenerates to the wireless broadcast, and according to (3), we have the following explicit

expression

E[D̂P ] = P +
∑

d≥0

(

1−
∏

1≤r≤R

∑d

j=0

(

P + j − 1

P − 1

)

pPr (1− pr)
j

)

. (33)

Based on Lemma 4 and the definition of B(i) in (7), we can also express D̃P in the following

closed-form, which is a function of p0 and pr

D̃P =(
1

p0
− 1)

(

1 +

P−1
∑

j=1

R
∏

r=1

Pr(Sj+1 > Tj,r)

)

=(
1

p0
− 1)

(

1 +

P−1
∑

j=1

R
∏

r=1

(
1

1− p0
+

p0
1− p0

∑j−1

i=0

∑i

k=0

1
k+1

(

i+k
i

)(

i
k

)

(p0pr)
i

(p0pr − p0 − pr)i+k+1
)

)

.

(34)
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Moreover, notice that D̃P can be explicitly computed by the following recursive procedure:

• D̃1 = E[D1]− E[D̂1] = 1/p0 − 1.

• For P ≥ 1, D̃P+1 = D̃P +
∏R

r=1Pr(SP+1 > TP,r)(
1
p0
−1) = D̃P +

∏R
r=1(

1
p0
+
∑P−1

i=0 Br(i)),

where Br(i) denotes B(i) in (7) for given pr and it can be recursively computed by (10).

For fixed pr, E[D̂P ] keeps the same so that the accuracy for the approximation E[D̂P ] + D̃P

of E[DP ] depends on D̃P . In particular, both 1
p0

− 1 and Pr(SP+1 > TP,r) in D̃P decrease

with increasing p0, and D̃P converges to 0 when p0 increases to 1, which represents the case

E[DP ] = E[D̂P ]. Moreover, as Pr(SP+1 > TP,r) can be explicitly computed by Lemma 4,

the use of
∏R

r=1 Pr(SP+1 > TP,r) in D̃P is to approximate the joint probability Pr(SP+1 >

max1≤r≤R TP,r), which is a key component in characterizing E[DP ] in (31). Analogous to the

discussion above Corollary 8 for the case R = 2, we further argue that for sufficiently large

P , when p0 > max1≤r≤R pr,
∏R

r=1 Pr(SP+1 > TP,r) is a closer approximation of Pr(SP+1 >

max1≤r≤R TP,r) compared with the case p0 ≤ max1≤r≤R pr, while the approximation performs

the worst for the case p0 ≤ min1≤r≤R pr.

In (32), we use the sign “≈” instead of “≥” because we did not prove the term
∑P

j=2(Ψj−Ψ̂j)

in the explicit characterization of E[DP ] in (31) to be non-negative for R > 2, which we

conjecture to be correct. By further taking the simple lower bound E[DP ] ≥ max1≤r≤R E[DP,r]

into account, we obtain the following approximation of E[DP ] for R ≥ 2,

E[DP ] & max{max1≤r≤R E[DP,r],E[D̂P ] + D̃P}, (35)

where & is rigorously proved to be ≥ in Theorem 7 and Corollary 8 for R = 2. The tightness

of the above approximation will be numerically analyzed in the next section.

It is worthwhile noting that in the case that R is relatively small and there is a receiver whose

successful receiving probability pr is much smaller than others’, E[DP,r] is a better lower bound

of E[DP ] compared with E[D̂P ] + D̃P . Otherwise, E[D̂P ] + D̃P will be a better approximation

of E[DP ], because it is built upon the expected system completion delay of wireless broadcast,

which has already taken all receivers into consideration. In the full-duplex relay network modeled

in this paper, as E[DP ] is a lower bound for the expected system completion delay of an arbitrary

RLNC scheme, so is max{max1≤r≤R E[DP,r],E[D̂P ] + D̃P}.

IV. NUMERICAL ANALYSIS

In this section, we numerically analyze the average completion delay of the two fundamental

perfect RLNC schemes and compare the numerical results with the theoretical characterizations
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Fig. 3. Average completion delay per packet of different schemes with: (a) fixed P = 10, R = 10, p0 = 0.75 and varying pr;

(b) fixed P = 10, R = 10, pr = 0.75 and varying p0.

obtained in the previous section. Moreover, we compare the performance of the two fundamental

schemes with the one proposed in [27] — from the perspective of the average completion delay

and the average buffer size taken at the RS, both of which are normalized by P . We adopt

the following abbreviations in the figure legends. The FBPF perfect RLNC scheme, the perfect

RLNC scheme without buffer, and the perfect RLNC scheme with buffer are respectively labeled

as “FBPF”, “PRLNC w/t buffer”, and “PRLNC w/ buffer”. The results obtained by simulation

are labeled with “simu”, and the theoretical results from Proposition 1 and Theorem 2 are labeled

with “th”. The performance for the single receiver and for the system is respectively labeled as

“single r” and “system”. Under the settings P = 10, R = 10 and p0 = 0.75, Fig. 3(a) depicts the

average completion delay per packet at a single receiver as well as for the system with varying pr.

One may observe the followings. First, the average completion delay of every scheme decreases

with increasing pr, and converges to 1/p0 = 1.33. Second, the average completion delay of FBPF

is upper bounded by that of perfect RLNC without buffer and lower bounded by that of perfect

RLNC with buffer. Most importantly, the simulation results numerically verify the theoretical

derivations in Proposition 1 and Theorem 2, as well as validate the lower bound (35) for the

expected system completion delay for perfect RLNC with buffer.

Under the settings P = 10, R = 10 and pr = 0.75, Fig. 3(b) depicts the average

completion delay per packet at a single receiver as well as for the system with increasing

p0. In addition to similar observations to Fig. 3(a), one may further conclude the followings.
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Fig. 4. Average system completion delay per packet and its lower bounds for perfect RLNC with buffer with fixed R = 2, p1 =

0.75, p2 = 0.85 and different p0, P .

TABLE I

THE AVERAGE BUFFER SIZE PER PACKET OF THE FBPF SCHEME WITH FIXED P = 10, R = 10, pr = 0.75 AND VARYING p0

p0 0.5 0.6 0.7 0.8 0.9 1

Buffer Size 1.293 1.383 1.474 1.559 1.63 1.698

The average completion delay for the system of all three schemes converges to 1+ 1
P

∑

d≥0(1−
∏

1≤r≤R Ipr(P, d+ 1)) = 1.69. Moreover, the plots for the average completion delay at a single

receiver in Fig. 3(a) and Fig. 3(b) are almost identical, which infers that for all three schemes,

the exchange of the values of p0 and pr does not affect the completion delay performance at

a single receiver. Theoretically, (1) and (5) justify this observation for perfect RLNC without

buffer and with buffer, respectively. Lastly, with increasing p0, the lower bound (35) becomes

tighter, which is in line with the discussion in the previous section.

Table I lists the average buffer size per packet needed at the RS for the FBPF scheme with the

settings P = 10, R = 10, pr = 0.75 and different p0. It is interesting to notice that the required

buffer size increases with increasing p0. In comparison, the perfect RLNC scheme without buffer

demands no buffer, and the buffer size per packet of the perfect RLNC scheme with buffer is

always 1, which is 34% smaller than that of the FBPF scheme when p0 = pr = 0.75.

Fig. 3 has demonstrated the tightness of the lower bound (35) for the expected system
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completion delay E[DP ] for perfect RLNC with buffer. Recall that the bound (35) consists of two

parts, both of which can be explicitly computed. One is (D̃P+E[D̂P ])/P , which is a lower bound

deduced from the perspective of wireless broadcast, and the other is max1≤r≤R E[DP,r]/P , which

is the expected completion delay at the single receiver with the worst channel condition. Above

Corollary 8, we have discussed, for R = 2, the accuracy of the lower bound (D̃P + E[D̂P ])/P

and conclude that max1≤r≤R E[DP,r]/P is necessary to form the better lower bound (28). In the

remaining part of this section, we shall further numerically compare the accuracy of the two

lower bounds (D̃P + E[D̂P ])/P and max1≤r≤R E[DP,r]/P .

Under the settings R = 2, p1 = 0.75, p2 = 0.85, Fig. 4 compares the average system

completion delay per packet with the two lower bounds (D̃P + E[D̂P ])/P (labeled as “lower

bound 1: Eq. (26)”) and E[DP,1]/P (labeled as “lower bound 2: Eq. (27)”). The comparison is

conducted under 3 different choices of p0, that is, p0 ∈ {0.95, 0.8, 0.65}. We can conclude the

following observations from Fig. 4 about the two lower bounds.

• First, the average system completion delay per packet as well as its two lower bounds

decrease with fixed P and increasing p0. They also decrease and converge to some values

with fixed p0 and increasing P .

• Second, for all 3 choices of p0, (D̃P + E[D̂P ])/P is tighter than E[DP,1]/P for small P .

This is because (D̃P + E[D̂P ])/P is obtained from the perspective of wireless broadcast

so it takes all receivers’ completion delay into account. In particular, the approximation

of E[DP ] − E[D̂P ] by D̃P is relatively accurate for small P and when P = 1, the bound

(D̃P + E[D̂P ]) is exactly equal to E[DP ], that is, D̃P = E[DP ]− E[D̂P ] = 0.

• Moreover, in the two cases with p0 > max{p1, p2}, (D̃P + E[D̂P ])/P is always better

than E[DP,1]/P . When p0 = 0.95, (D̃P + E[D̂P ])/P converges to the average system

completion delay E[DP ] with increasing P . However, when p0 ≤ max{p1, p2}, (D̃P +

E[D̂P ])/P decreases faster with increasing P , so that E[DP,1]/P outperforms. This justifies

the usefulness to supplement E[DP,1]/P in the tighter lower bound (28).

• Last, by comparing the three curves related to (D̃P + E[D̂P ])/P , we can find that

approximating E[DP ]/P by merely E[D̂P ]/P will be much looser with decreasing p0

because it does not take p0 into consideration. Therefore, the additional term D̃P we

introduce in the lower bound (26) is indispensable in estimating E[DP ].

In summary, what have been observed from Fig. 4 are consistent with the (3-case) discussion
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Fig. 5. Average system completion delay per packet and its lower bounds for perfect RLNC with buffer.

about the accuracy to approximate E[DP ]−E[D̂P ] as D̃P in the previous section (above Corollary

8), and they affirm that (28) is a tighter lower bound than the individual use of (26) or (27).

For multi-receiver case R ∈ {20, 100}, Fig. 5 compares the average system completion delay

per packet E[DP ]/P with (D̃P + E[D̂P ])/P (labeled as “approx”) and max1≤r≤R E(DP,r)/P

(labeled as “single r”), which constitute the lower bound in (35) as an extension of (28). The

comparison is conducted under three different settings of p0 and pr: (a) p0 = 0.75 and pr is

evenly distributed over {0.9, 0.8, 0.7, 0.6}; (b) p0 = 0.7 and pr = 0.75 for each receiver r; (c)

p0 = 0.95 and pr = 0.9 for each receiver r. The followings can be observed.

• For all 3 settings, there is a noticeable gap between max1≤r≤R E(DP,r)/P and the average

system completion delay per packet E[DP ]/P even for large P (compare with Fig. 4 in

which the gap is very small for P = 50). This is mainly because the number of receivers

considered herein is much more than that in Fig. 4, so that the approximation accuracy

from the perspective of a single receiver declines.

• In Settings (a) and (c), the curve of (D̃P + E[D̂P ])/P is close to the average system

completion delay per packet E[DP ]/P for all 2 choices of R. However, the tightness of

(D̃P + E[D̂P ])/P in Setting (a) is slightly worse than that in Setting (c) mainly because

half of the receivers’ pr in Setting (a) are larger than p0.

• In Setting (b), the accuracy of (D̃P + E[D̂P ])/P to approximate E[DP ]/P is not as good

as that in Settings (a) and (c), because p0 < pr herein. Meanwhile, the approximation
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max1≤r≤R E[DP,r]/P becomes more accurate for large P , affirming that (35) is a tighter

lower bound of E[DP ] compared with (D̃P + E[D̂P ])/P or max1≤r≤R E[DP,r]/P .

V. CONCLUDING REMARKS

In this paper, for full-duplex relay networks, we consider two fundamental perfect RLNC

schemes to investigate the fundamental benefit RLNC can provide, and derive closed-form

formulae for their expected completion delay, both at a single receiver and for the whole system.

The expected completion delay of the two schemes can respectively serve as an upper bound for

all perfect RLNC schemes and a lower bound for all RLNC schemes. It provides a theoretical

guideline for future works on the detailed design of RLNC-based transmission schemes in the

full-duplex relay networks. As an ensuing work, by adapting recently proposed efficient RLNC

schemes such as Fulcrum [30] or circular-shift RLNC [38], we will further design practical

RLNC schemes with small buffer as well as low coding complexity at the RS, and with the

completion delay performance closer to the theoretical limit characterized in this paper. Another

ensuing work is to study the completion delay performance of perfect RLNC in a more general

network model which contains direct links between the BS and the receivers as well as multiple

full-duplex relays.

APPENDIX

A. Proof of Eq. (40)

For brevity, write ∆ = p0+pr−p0pr = 1−(1−p0)(1−pr). Let qij,i′j′ denote the total probability

to enter state (i′, j′) starting from state (i, j) in the Markov chain under the constraint that the

transitions from (i, j) to (i′, j′) are not allowed to visit states (i+ l, j + l′) for all 0 ≤ l < i′ − i

and l′ > l. E.g., q10,21 =
p0pr
∆2 when P ≥ 3. For brevity, q00,ij will be written as qij .

To reflect the number of original packets in the notation, write EP = E[DP,r]. Stemming from

(6), we can obtain the following equivalent characterization

EP = (1, 0, . . . , 0)
∑

k≥0
P

k
1 =

∑

0≤j≤i≤P

1

1− pij,ij
qij . (36)

Let q′ij represent the total probability that state (i, j) can be entered starting from (0, 0) in

the Markov chain MP−1, so that qij = q′ij for all 0 ≤ j ≤ i ≤ P − 2. For j ≤ P − 2,
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because qjjpr + qPj +
pr
∆

∑P−1
i=j+1 qij = 1 and q′jjpr + q′(P−1)j +

pr
∆

∑P−2
i=j+1 q

′
ij = 1, we have

qPj +
p1
∆
q(P−1)j = q′(P−1)j and thus

qPj

pr
=

q′(P−1)j

pr
−

q(P−1)j

∆
. (37)

Since 1 − pr is the 1-step transition probability from state (P, j) to itself in MP as well as

from state (P − 1, j) to itself in MP−1, and 1−∆ is the 1-step transition probability from state

(P −1, j) to itself in MP , based on (36) and (37), we obtain the following recursive expression

EP = EP−1 +
q(P−1)(P−1)

p0
+

qP (P−1)

pr
. (38)

As 1 = qPP = q(P−1)(P−1)pr + qP (P−1), we have qP (P−1) = 1− q(P−1)(P−1)pr and

EP = EP−1 +
1

pr
+

1− p0
p0

q(P−1)(P−1). (39)

As E1 = 1/p0 + 1/pr − 1, in order to prove (5) based on (39) for P ≥ 2, it remains to show

(1− p0)q(P−1)(P−1) − 1

p0
=
∑P−2

i=0

∑i

j=0

Ti,j(p0pr)
i

(−∆)i+j+1
, (40)

which is equivalent to prove

1− p0
p0

(q(P−1)(P−1) − q(P−2)(P−2)) =
∑P−2

j=0

TP−2,j(p0pr)
P−2

(−∆)P+j−1
(41)

In the remaining proof, we shall first make a connection between qii and q10,(i+1)i for 0 < i <

P . Notice that for every 0 ≤ j < i < P , the 1-step transition probability for state (i, j) keeps

the same, and qij,(i+1)j =
p0
∆
qi′i′,(i′+1)i′ , qij,(i+1)(j+1) =

p0
∆
qi′i′,(i′+1)(i′+1) for all 0 ≤ i′ < P . Thus,

q11 =
∆
p0
q10,21. Moreover, by making use of the property

pr(1− p0)

p0
qij,(i+1)j = qi′i′,(i′+1)i′ −qij,(i+1)j ,

pr(1− p0)

p0
qij,(i+1)(j+1) = qi′i′,(i′+1)(i′+1)−qij,(i+1)(j+1)

for 0 ≤ j < i < P and 0 ≤ i′ < P , one may readily verify that for 1 < i < P ,

qii =
∆

p0
q10,(i+1)i +

pr(1− p0)

p0

∑i−1

j=1
qjjq10,(i−j+1)(i−j) (42)

On the other hand, for 0 < i < P − 1, q(i+1)(i+1) can also be expressed as

q(i+1)(i+1) =
pr
∆
qii +

∑i−1

j=0

pr(1− p0)(1− pr)

∆
qjjq(j+1)j,(i+1)i

=
pr
∆
qii +

∑i−1

j=0

pr(1− p0)(1− pr)

∆
qjjq10,(i−j+1)(i−j) (43)
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where the last equality holds due to qij,(i+i′)(j+j′) = q10,(i′+1)j′ for all i, i′, j, j′ subject to 0 ≤ j < i

and j + j′ < i + i′ < P . Then, the addition of (43) and (42) multiplied by −p0(1−pr)
∆

on both

sides yields q(i+1)(i+1) − qii = −p0(1−pr)
∆

q10,(i+1)i, which implies for 1 < i < P ,

1− p0
p0

(qii − q(i−1)(i−1)) = (1−
1

∆
)q10,i(i−1). (44)

We last characterize q10,i(i−1) given that 1 < i < P . Notice that qij,(i+1)(j+1) =
p0pr(1−p0)(1−pr)

∆2 +

p0pr
∆

= p0pr
∆2 for 0 ≤ j < i. It turns out that

q10,i(i−1) =
(p0pr)

i−1

∆2(i−1)

∑i−1

j=1
Ni−1,j [(1− p0)(1− pr)]

i−j−1 =
(p0pr)

i−1

∆2(i−1)

∑i−1

j=1
Ni−1,j(1−∆)i−j−1

(45)

where Ni−1,j represents the number of all those transitions from (1, 0) to (i, i− 1) that contain

• exactly j 1-step transitions in the form (i′, j′) → (i′+1, j′+1), i−j−1 1-step transitions in

the form (i′, j′) → (i′+1, j′), and i−j−1 1-step transitions in the form (i′, j′) → (i′, j′+1);

• no 2-step transitions in the form (i′, j′) → (i′ + 1, j′) → (i′ + 1, j′ + 1).

Under this constraint, Ni−1,j coincides with the Narayana number (see, e.g., Chapter 2 in [39])

with parameters 1 ≤ j ≤ i− 1, so Ni−1,j =
1

i−1

(

i−1
j

)(

i−1
j−1

)

. As Ni−1,j = Ni−1,i−j ,

∑i−1

j=1
Ni−1,j(1−∆)i−j−1

=
∑i−1

j=1
Ni−1,j(1−∆)j−1

=
∑i−1

j=1
Ni−1,j

∑j

j′=1
(−∆)j

′−1

(

j − 1

j′ − 1

)

=
∑i−1

j′=1
(−∆)j

′−1
∑i−1

j=j′

(

j − 1

j′ − 1

)

Ni−1,j

=
∑i−1

j′=1

(−∆)j
′−1

i− 1

(

i− 1

j′ − 1

)(

2i− j′ − 1

i

)

=
∑i−1

j=1

(−∆)i−j−1

i− 1

(

i− 1

j

)(

i+ j − 1

i

)

, (46)

where the second last equality can be readily verified based on the combinatorial equation
(

n+m
n+1

)

=
∑n

j=n−m+1

(

n
j

)(

m
n+1−j

)

for 1 ≤ m ≤ n+ 1. By plugging (46) back to (45),

q10,i(i−1) =
(p0pr
∆2

)i−1
i−1
∑

j=1

(−∆)i−j−1

i− 1

(

i− 1

j

)(

i+ j − 1

i

)

.
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Thus, the right-hand side of (44) can be expressed as

(1−
1

∆
)q10,i(i−1)

=
∑i−1

j=1

(p0pr)
i−1

(i− 1)(−∆)i+j−1

(

i− 1

j

)(

i+ j − 1

i

)

+
∑i−1

j=1

(p0pr)
i−1

(i− 1)(−∆)i+j

(

i− 1

j

)(

i+ j − 1

i

)

(47)

As
(

i−1
j

)

= i−1
j

(

i−2
j−1

)

, the first term in (47) can be expressed as

∑i−1

j=1

(p0pr)
i−1

(i− 1)(−∆)i+j−1

(

i− 1

j

)(

i+ j − 1

i

)

=
∑i−1

j=1

(p0pr)
i−1

j(−∆)i+j−1

(

i− 2

j − 1

)(

i+ j − 1

i

)

=
(p0pr)

i−1

(−∆)i
+
∑i−1

j=2

(p0pr)
i−1

j(−∆)i+j−1

(

i− 2

j − 1

)(

i+ j − 1

i

)

Moreover, by altering the index of j and the fact 1
i−1

(

2i−2
i

)

= 1
i

(

2i−2
i−1

)

, we can express the second

term in (47) as

∑i−1

j=1

(p0pr)
i−1

(i− 1)(−∆)i+j

(

i− 1

j

)(

i+ j − 1

i

)

=
∑i−1

j=2

(p0pr)
i−1

(i− 1)(−∆)i+j−1

(

i− 1

j − 1

)(

i+ j − 2

i

)

+
(p0pr)

i−1

i(−∆)2i−1

(

2i− 2

i− 1

)

.

Consequently,

(1−
1

∆
)q10,i(i−1)

=
(p0pr)

i−1

(−∆)i
+
∑i−1

j=2

(p0pr)
i−1

j(−∆)i+j−1

(

i− 2

j − 1

)(

i+ j − 1

i

)

+
∑i−1

j=2

(p0pr)
i−1

(i− 1)(−∆)i+j−1

(

i− 1

j − 1

)(

i+ j − 2

i

)

+
(p0pr)

i−1

i(−∆)2i−1

(

2i− 2

i− 1

)

=
(p0pr)

i−1

(−∆)i
+
∑i−1

j=2

(p0pr)
i−1

j(−∆)i+j−1

(

i+ j − 2

i− 1

)(

i− 1

j − 1

)

+
(p0pr)

i−1

i(−∆)2i−1

(

2i− 2

i− 1

)

=
∑i

j=1

(p0pr)
i−1

j(−∆)i+j−1

(

i+ j − 2

i− 1

)(

i− 1

j − 1

)

=
∑i−1

j=0

(p0pr)
i−1Ti−1,j

(−∆)i+j
. (48)

where the second equality holds because 1
j

(

i−2
j−1

)(

i+j−1
i

)

+ 1
i−1

(

i−1
j−1

)(

i+j−2
i

)

= 1
j

(

i+j−2
i−1

)(

i−1
j−1

)

.

Eq. (41) can now be verified based on (44) and (48) with the setting i = P − 1.
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B. Proof of Theorem 6

Given that there are R = 2 receivers and P + 1 source packets in the network. For the

parameter Emax defined in (18), by the min-max identity, Emax = 1/p1 + 1/p2 − Emin, where

Emin = E[min{N1, N2}] = 1/(1− (1− p1)(1− p2)) = 1/(p1 + p2 − p1p2). Moreover, we have

Pr(TP+1,2 ≤ TP,1) + Pr(TP+1,1 > TP,2, TP+1,2 > TP,1) = Pr(TP+1,1 > TP,2),

Pr(TP+1,1 ≤ TP,2) + Pr(TP+1,1 > TP,2, TP+1,2 > TP,1) = Pr(TP+1,2 > TP,1),

and taking a summation on each side of the above two equations yields

1 + Pr(TP+1,1 > TP,2, TP+1,2 > TP,1) = Pr(TP+1,1 > TP,2) + Pr(TP+1,2 > TP,1). (49)

As a result, Eq. (20) in Lemma 5 and (21) can be respectively rewritten as

E[DP+1]− E[DP ] =Pr(TP+1,1 > TP,2)(
1

p1
− Emin) + Pr(TP+1,2 > TP,1)(

1

p2
−Emin) + Emin+

Pr(SP+1 > max{TP,1, TP,2})(
1

p0
− 1),

E[D̂P+1]− E[D̂P ] = Pr(T̂P+1,1 > T̂P,2)(
1

p1
−Emin) + Pr(T̂P+1,2 > T̂P,1)(

1

p2
− Emin) + Emin.

By the above two equations and (22), in order to prove (23), it suffices to show

εP+1 =(Pr(TP+1,1 > TP,2)− Pr(T̂P+1,1 > T̂P,2))(
1

p1
−Emin)+

(Pr(TP+1,2 > TP,1)− Pr(T̂P+1,2 > T̂P,1))(
1

p2
−Emin)

(50)

Observe that

Pr(TP+1,1 > TP,2) =1− Pr(TP,2 ≥ TP+1,1)

=1− Pr(TP+1,2 > TP+1,1) + Pr(TP+1,2 > TP+1,1 > TP,2). (51)

Due to the memoryless property of geometric distribution, under the condition TP+1,2 > TP,1

and TP+1,1 > TP,2, the events TP+1,2 > TP+1,1 and TP+1,2 = TP+1,1 are independent of the

arrival timeslot SP+1 of packet P +1 at the RS, and they have respective probability
p1(1−p2)

p1+p2−p1p2

and p1p2
p1+p2−p1p2

to occur. Hence,

Pr(TP+1,2 > TP+1,1 > TP,2)

=Pr(TP+1,2 > TP+1,1|TP+1,2 > TP,1, TP+1,1 > TP,2)Pr(TP+1,2 > TP,1, TP+1,1 > TP,2)

=Pr(TP+1,2 > TP,1, TP+1,1 > TP,2)
p1(1− p2)

p1 + p2 − p1p2
,

Pr(TP+1,2 = TP+1,1) = Pr(TP+1,2 > TP,1, TP+1,1 > TP,2)
p1p2

p1 + p2 − p1p2
.
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It turns out that Pr(TP+1,2 > TP+1,1 > TP,2) = Pr(TP+1,2 = TP+1,1)
1−p2
p2

. By plugging the above

expression back to (51), we obtain

Pr(TP+1,1 > TP,2) = 1− Pr(TP+1,2 > TP+1,1) + Pr(TP+1,2 = TP+1,1)
1− p2
p2

, (52)

and similarly

Pr(TP+1,2 > TP,1) = 1− Pr(TP+1,1 > TP+1,2) + Pr(TP+1,1 = TP+1,2)
1− p1
p1

. (53)

Based on (52), (53), and Emin = 1/(p1 + p2 − p1p2), the correctness of (50) can be verified.

C. Proof of Theorem 7

It remains to prove
∑P

j=2 εj ≥ 0. To ease the analysis, we make use of the following Markov

chain M consisting of (P + 1)2 states, in which (i) state (i, j), 0 ≤ i, j ≤ P , represents the

scenario that receivers 1 and 2 have respectively obtained i and j packets; (ii) there is a 1-

step transition once at least one receiver obtains a new packet. In the Markov chain, let pij,i′j′

represent the 1-step transition probability from state (i, j) to (i′, j′), and qij denote the total

probability to visit state (i, j) among all paths from (0, 0) to (P, P ). Notice that the Markov

chain M defined herein is different from the one modeled at the beginning of Sec. III-C and

illustrated in Fig. 2, because it does not involve the number of received packets at the RS in the

state description. Observe that for 1 ≤ i < P ,

qii = Pr(Ti+1,1 > Ti,2, Ti+1,2 > Ti,1). (54)

For brevity, write Qi
0 = q(i−1)(i−1)p(i−1)(i−1),ii, Qi

1 =
∑i−1

j=0 qij, Qi
2 =

∑i−1
j=0 qji for 1 ≤ i ≤ P

and write ∆ij = 1− (1− pi)(1− pj) = pi + pj − pipj for 0 ≤ i < j ≤ 2. In this way,

Qi
0 = Pr(Ti,1 = Ti,2), Qi

1 = Pr(Ti,2 > Ti,1), Qi
2 = Pr(Ti,1 > Ti,2), Qi

0 +Qi
1 +Qi

2 = 1, (55)

εi = (Qi
0− Q̂i

0)
(1− p1)(1− p2)(p1 + p2)

p1p2∆12
+(Q̂i

2 −Qi
2)
p1(1− p2)

p2∆12
+ (Q̂i

1−Qi
1)
(1− p1)p2
p1∆12

(56)

for 1 ≤ i ≤ P . We next characterize the 1-step transition probability in M.

For 0 ≤ i < P , by the memoryless property of a geometric distribution, the 1-step transition

probability starting from state (i, i) is not affected by the arrival time Si+1 of the (i+1)st packet

at the RS and thus is invariant of i. Specifically,

pii,(i+1)(i+1) =
p1p2
∆12

, pii,(i+1)i =
p1(1− p2)

∆12
, pii,i(i+1) =

(1− p1)p2
∆12

. (57)
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For 0 ≤ j < i < P , the 1-step transition probability starting from state (i, j) is affected

by the arrival time Si+1 of the (i + 1)st packet at the RS. Notice that when M is in state

(i, j), it implies the occurrence of the joint event of Ti+1,1 > Tj,2 and Tj+1,2 > Ti,1, which

will be denoted by Aij . Thus, we can respectively express pij,i(j+1) = Pr(Tj+1,2 < Ti+1,1|Aij),

pij,(i+1)(j+1) = Pr(Tj+1,2 = Ti+1,1|Aij), and pij,(i+1)j = Pr(Tj+1,2 > Ti+1,1|Aij) as

pij,i(j+1) =Pr(Tj+1,2 < Si+1|Si+1 > Ti,1, Aij)Pr(Si+1 > Ti,1|Aij)+

Pr(Si+1 ≤ Tj+1,2 < Ti+1,1|Si+1 > Ti,1, Aij)Pr(Si+1 > Ti,1|Aij)+

Pr(Tj+1,2 < Ti+1,1|Si+1 ≤ Ti,1, Aij)Pr(Si+1 ≤ Ti,1|Aij)

=
(1− p1)p2

∆12
+

(1− p0)p1p2
∆02∆12

Pr(Si+1 > Ti,1|Aij)

=
(1− p1)p2

∆12

(1 +
p1

1− p1
αij), (58)

pij,(i+1)(j+1) =Pr(Si+1 ≤ Tj+1,2 = Ti+1,1|Si+1 > Ti,1, Aij)Pr(Si+1 > Ti,1|Aij)+

Pr(Tj+1,2 = Ti+1,1|Si+1 ≤ Ti,1, Aij)Pr(Si+1 ≤ Ti,1|Aij)

=
p1p2
∆12

−
(1− p0)p1p

2
2

∆02∆12

Pr(Si+1 > Ti,1|Aij)

=
p1p2
∆12

(1− p2αij), (59)

pij,(i+1)j =Pr(Si+1 ≤ Ti+1,1 < Tj+1,2|Si+1 > Ti,1, Aij)Pr(Si+1 > Ti,1|Aij)+

Pr(Tj+1,2 > Ti+1,1|Si+1 ≤ Ti,1, Aij)Pr(Si+1 ≤ Ti,1|Aij)

=
p1(1− p2)

∆12

−
(1− p0)p1p2(1− p2)

∆02∆12

Pr(Si+1 > Ti,1|Aij)

=
p1(1− p2)

∆12
(1− p2αij), (60)

where αij =







1−p0
∆02

Pr(Si+1 > Ti,1|Aij) if i > j

1−p0
∆01

Pr(Sj+1 > Tj,2|Aij) if i < j
.

Similarly, for 0 ≤ i < j ≤ P ,

pij,(i+1)j =
p1(1− p2)

∆12
(1 +

p2
1− p2

αij), pij,(i+1)(j+1) =
p1p2
∆12

(1− p1αij),

pij,i(j+1) =
(1− p1)p2

∆12
(1− p1αij).

(61)

For the special case p0 = 1, let p̂ij,i′j′ , q̂ij and Q̂i
j respectively represent pij,i′j′ , qij and Qi

j .

Based on the above derivation of 1-step transition probabilities in M, we obtain the following
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comparisons. For 0 ≤ i < P ,

pii,(i+1)i = p̂ii,(i+1)i, pii,i(i+1) = p̂ii,i(i+1), pii,(i+1)(i+1) = p̂ii,(i+1)(i+1). (62)

For 0 ≤ j < i < P ,

pij,i(j+1) − p̂ij,i(j+1) ≥ 0, pij,(i+1)(j+1) − p̂ij,(i+1)(j+1) ≤ 0, pij,(i+1)j − p̂ij,(i+1)j ≤ 0. (63)

For 0 ≤ i < j < P ,

pij,(i+1)j − p̂ij,(i+1)j ≥ 0, pij,(i+1)(j+1) − p̂ij,(i+1)(j+1) ≤ 0, pij,i(j+1) − p̂ij,i(j+1) ≤ 0. (64)

Assume 2 ≤ i ≤ P and p0 < 1. Eqs. (62)-(64) together imply that there are higher probabilities

to visit state (i, i) along the paths from (0, 0) to (P, P ) compared with the case p0 = 1, that is,

q(i−1)(i−1) > q̂(i−1)(i−1). Since p(i−1)(i−1),ii = p̂(i−1)(i−1),ii, Q
i
0 > Q̂i

0. Since Qi
0 +Qi

1 +Qi
2 = 1,

Q̂i
1 + Q̂i

2 > Qi
1 +Qi

2. (65)

When p1 = p2, we have Qi
1 = Qi

2, so (65) implies Q̂i
1 > Qi

1 and Q̂i
2 > Qi

2. Therefore, εi > 0

and
∑

2≤i≤P εi > 0.

Assume p1 < p2. In this case, Qi
0 > Q̂i

0, Q̂i
2 > Qi

2 > Qi
1, and Q̂i

2 converges to 1 while Q̂i
0

and Q̂i
1 converge to 0 with increasing i (assume P is sufficiently large). For relatively small i,

Q̂i
1 is still larger than Qi

1 due to the effect of (63), so we have εi > 0. However, with increasing

i, Q̂i
1 < Qi

1 will occur because Q̂i
1 decreases faster than Qi

1, (Qi
1 may or may not converge to 0

depending on whether p0 is larger than p1). As a result, for large P , (65) is insufficient to imply

εi > 0 so that we need further manipulation on the expression of εi.

For 1 ≤ i < P , write Qi
10 = qi(i−1)pi(i−1),ii, Q

i
20 = q(i−1)ip(i−1)i,ii, and let Q̂i

10, Q̂i
20 respectively

represent Qi
10, Qi

20 for the special case p0 = 1. In terms of Qi
10, we can express Qi+1

1 , 1 ≤ i < P ,

recursively as

Qi+1
1 = Qi

1 −Qi
10 + qiipii,(i+1)i = Qi

1 −Qi
10 + qii

p1(1− p2)

∆12

= Qi
1 −Qi

10 +Qi+1
0

1− p2
p2

, (66)

where the last equality holds by (57) and the definition of Qi
0. Similarly,

Qi+1
2 = Qi

2 −Qi
20 + qii

(1− p1)p2
∆12

= Qi
2 −Qi

20 +Qi+1
0

1− p1
p1

. (67)

By plugging (66), (67) back to (56), we can deduce the following recursive expression of εi+1,

εi+1

=(Q̂i
2 −Qi

2 +Qi
20 − Q̂i

20)
p1(1− p2)

p2∆12

+ (Q̂i
1 −Qi

1 +Qi
10 − Q̂i

10)
(1− p1)p2
p1∆12

=εi + (Qi
20 − Q̂i

20)
p1(1− p2)

p2∆12

+ (Qi
10 − Q̂i

10)
(1− p1)p2
p1∆12

− (Qi
0 − Q̂i

0)
(1− p1)(1− p2)(p1 + p2)

p1p2∆12

,
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where C i
1 = Qi

10 − Qi
0
1−p2
p2

= Qi
10 − q(i−1)(i−1)

p1(1−p2)
∆12

, C i
2 = Qi

20 − Qi
0
1−p1
p1

= Qi
20 −

q(i−1)(i−1)
(1−p1)p2

∆12

. In this way, for 1 ≤ i < P , we have εi+1 = εi + (C i
1 − Ĉ i

1)
(1−p1)p2
p1∆12

+

(C i
2 − Ĉ i

2)
p1(1−p2)
p2∆12

, where Ĉ i
1, Ĉ i

2 respectively refer to C i
1, C

i
2 in the case of p0 = 1. Because

C i
1 + C i

2 =Qi
10 +Qi

20 − q(i−1)(i−1)
p1 + p2 − 2p1p2

∆12
= qii − q(i−1)(i−1), (68)

we has εi+1 = (qii − q̂ii)
p1(1−p2)
p2∆12

+
∑i

j=1(C
j
1 − Ĉj

1)(
1
p1

− 1
p2
). When p0 = 1 or p1 = p2 = 1,

qii = q̂ii and Cj
1 = Ĉj

1 , so that εi+1 = 0 for all 1 ≤ i < P .

Assume p0, p1, p2 6= 1. Based on (58) and (61), we have

q11 − q̂11 =
p1p2(1− p1)(1− p2)

∆2
12

(
p1

1− p1
α01 +

p2
1− p2

α10) > 0,

C1
1 − Ĉ1

1 = Q1
10 − Q̂1

10 =
p1p2(1− p1)(1− p2)

∆2
12

p2
1− p2

α10 > 0,

so that ε2 > 0. With increasing i, both qii and q̂ii decrease and qii− q̂ii converges to a nonnegative

constant value (for sufficiently large P ). We can then deduce, based on (68), that both Cj
1 and

Cj
2 converge to zero with increasing i too. As a result, even if C i

1− Ĉ i
1 < 0 is possible to occur,

|C i
1 − Ĉ i

1| is negligible compared with
∑i

j=1(qjj − q̂jj) > 0. We can now assert
∑P

j=2 εj > 0.
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