
ar
X

iv
:2

20
4.

09
03

0v
2 

 [
cs

.N
I]

  3
0 

Se
p 

20
22

IEEE TRANSACTIONS ON COMMUNICATIONS 1

Decentralized Control of Distributed Cloud

Networks with Generalized Network Flows

Yang Cai, Graduate Student Member, IEEE, Jaime Llorca, Member, IEEE,

Antonia M. Tulino, Fellow, IEEE, and Andreas F. Molisch, Fellow, IEEE

Abstract

Emerging distributed cloud architectures, e.g., fog and mobile edge computing, are playing an

increasingly important role in the efficient delivery of real-time stream-processing applications (also

referred to as augmented information services), such as industrial automation and metaverse experiences

(e.g., extended reality, immersive gaming). While such applications require processed streams to be

shared and simultaneously consumed by multiple users/devices, existing technologies lack efficient

mechanisms to deal with their inherent multicast nature, leading to unnecessary traffic redundancy and

network congestion. In this paper, we establish a unified framework for distributed cloud network

control with generalized (mixed-cast) traffic flows that allows optimizing the distributed execution

of the required packet processing, forwarding, and replication operations. We first characterize the

enlarged multicast network stability region under the new control framework (with respect to its unicast

counterpart). We then design a novel queuing system that allows scheduling data packets according to
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their current destination sets, and leverage Lyapunov drift-plus-penalty control theory to develop the

first fully decentralized, throughput- and cost-optimal algorithm for multicast flow control. Numerical

experiments validate analytical results and demonstrate the performance gain of the proposed design

over existing network control policies.

Index Terms

Distributed computing, routing, flow control, distributed control, cost optimal control.

I. INTRODUCTION

Applications receiving the most recent attention, such as system automation (e.g., smart

homes/factories/cities, self-driving cars) and metaverse experiences (e.g., multiplayer gaming,

immersive video, virtual/augmented reality) are characterized by intensive resource consumption

and real-time interactive requirements, where multiple users/devices simultaneously consume

information that results from the real-time processing of a variety of live multimedia streams

[3]. We refer to this general class of services as augmented information (AgI) services.

The high computation and low latency requirements of AgI services are fueling the evolution

of network architectures toward widespread deployments of increasingly distributed computation

resources, leading to what is referred to as distributed cloud/computing networks, including fog

and mobile edge computing (MEC) [4]. In contrast to traditional architectures, where there

is a clear separation between data processing at centralized data centers and data transmission

between remote data centers and end users, distributed cloud networks are evolving toward tightly

integrated compute-communication systems, where the ubiquitous availability of computation

resources enables reduced access delays and energy consumption, thus providing better support

for next-generation delay-sensitive, compute-intensive AgI services.

In addition, the increasing amount of real-time multi-user interactions present in AgI ser-

vices, where media streams can be shared and simultaneously consumed by a large number of

users/devices, is creating the need to efficiently support multicast traffic. While, in general,
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one can describe four types of network flows, i.e., unicast (packets intended for a unique

destination), multicast (packets intended for multiple destinations), broadcast (packets intended

for all destinations), and anycast (packets intended for any node in a given group), we focus

our attention on multicast flows as the most general class, given that the other three types either

become special cases of or can be transformed into multicast flows.

To maximize the benefit of distributed cloud networks for the delivery of next-generation

multicast AgI services, two fundamental flow control problems need to be addressed:

• packet processing: where to process data packets by the required service functions and how

much computation resource to allocate

• packet forwarding and replication: how to route data packets through the required sequence

of service functions, where to replicate data packets in order to satisfy the demand from

multiple destinations, and how much network resource to allocate

In addition, the above processing, routing (including forwarding and replication), and resource

allocation problems must be addressed in an online manner, in response to unknown time-varying

network conditions and service demands.

A. Related Work

With the advent of software defined networking (SDN) and network function virtualization

(NFV), network services can be deployed as a sequence of software functions or service function

chains (SFCs) that can be flexibly interconnected and elastically executed at distributed cloud

locations [4]. A number of studies have investigated the problem of joint SFC placement and

routing with the objective of either maximizing accepted service requests [5], [6], or minimizing

overall resource cost [7], [8], [9]. Nonetheless, these solutions exhibit two main limitations: first,

the problem is formulated as a static optimization problem without considering the dynamic

nature of service requests, a critical aspect in next-generation AgI services; second, due to the

combinatorial nature of the problem, the corresponding formulations typically take the form of
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(NP-hard) mixed integer linear programs, and either heuristic solutions or loose approximation

algorithms are developed, compromising the quality of the resulting solution.

More recently, another line of work has addressed the SFC optimization problem in dynamic

scenarios, where one needs to make joint packet processing and routing decisions in an online

manner [10], [11], [12], [13]. The work in [10] leverages Lagrange duality and saddle point

theory to design an iterative algorithm that employs global candidate path information to optimize

service chain multi-path routing and associated sending rates. The works in [11], [12] employ a

generalized cloud network flow model that allows joint control of processing and transmission

flows. The work in [13] shows that the cloud network flow control problem (involving processing

and transmission decisions) can be reduced to a packet routing problem on a cloud layered

graph that includes extra edges to characterize the computation operations (i.e., data streams

pushed through these edges are interpreted as being processed by a service function). By this

transformation, control policies designed for packet routing can be extended to address cloud

network control problems.

Dynamic unicast routing is a long-explored problem, with a number of existing algorithms

known to maximize network throughput with bounded average delay. In particular, the back-

pressure (BP) algorithm [14] is a well-known approach for throughput-optimal routing that

leverages Lyapunov drift control theory to steer data packets based on the pressure difference

(differential queue backlog) between neighbor nodes. In addition, the Lyapunov drift-plus-penalty

(LDP) control approach [15] extends the BP algorithm to also minimize network operational

cost (e.g., energy expenditure), while preserving throughput-optimality. However, both BP and

LDP approaches can suffer from poor average delay performance, especially in low congestion

scenarios, where packets can follow unnecessarily long, and sometimes even cyclic, paths for

delivery [16]. To address this problem, [17] combines BP and hop-distance based shortest-path

routing, which can effectively reduce the average delay.

Going beyond unicast traffic and addressing the design of optimal routing policies for multicast
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traffic is a much more challenging problem, as the need for packet replications violates the flow

conservation law [13]. Despite the large body of existing works on this topic [18], throughput-

optimal least-cost multicast packet routing remains an open problem. Even under static arrivals,

the Steiner tree problem, which aims to find the multicast tree (a tree that covers all destinations)

with minimum weight, is known to be NP-hard [19]. Many heuristic approaches have been

developed to address this problem, such as the Extended Dijkstra’s Shortest Path Algorithm

(EDSPA) [20], which delivers multicast packets along a tree formed by the union of the shortest

paths from the source to all destinations. However, in addition to their heuristic nature, packets

are delivered along fixed paths under these policies, lacking dynamic exploration of route and

processing diversity. Considering dynamic arrivals becomes a further challenge that requires

additional attention. A centralized dynamic packet routing and scheduling algorithm, UMW,

was proposed in [21], shown to achieve optimal throughput with mixed-cast network flows.

Nonetheless, this design exhibits two limitations: (i) it makes centralized decisions based on

global queuing information, incurring additional communication overhead, (ii) it leaves out

operational cost minimization, an important aspect in modern elastic network environments.

B. Contributions

The goal of this work is to develop decentralized control policies for distributed cloud network

flow problems dealing with mixed-cast AgI services. We establish a new multicast control

framework that guides the creation of copies of data packets as they travel toward their cor-

responding destinations. Compared to the state-of-the-art unicast approach [11] that “creates

one copy for each destination of a multicast packet upon arrival, and treats them as individual

unicast packets”, the proposed policy employs a joint forwarding and replication strategy that (i)

eliminates redundant transmissions along network links common to multiple copies’ routes, and

(ii) reduces computation operations by driving computation before replication when beneficial.

The proposed approach is based on a novel multicast queuing system that allows formalizing
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the packet replication operation, which defines “where to create copies” and “how to assign

destinations to resulting copies”, as a network control primitive. Under the proposed queuing

system, each packet is labeled and queued according to its replication status, which keeps track

of its current destination set. The packet replication operation is then specified by the partition of

the destination set of a given packet into the destination sets of each resulting copy. We finally

devise a fully decentralized packet processing, forwarding, and replication policy that attains

optimal throughput and cost performance (see Theorem 2 for details), as well as a variant

achieving sub-optimal performance with polynomial complexity.

Our contributions can be summarized as follows:

1) We establish a novel queuing system to accommodate packets according to their replication

status that allows supporting packet processing, routing, and replication operations as

necessary cloud network control primitives for the delivery of mixed-cast AgI services.

2) We characterize the enlarged multicast network stability region obtained by including

packet replication as an additional control primitive, and quantify the resulting gain with

respect to (w.r.t.) its unicast counterpart.

3) We devise GDCNC, the first fully decentralized, throughput- and cost-optimal algorithm

for distributed cloud network control with mixed-cast network flows.

4) We design GDCNC-R, a computational-efficient policy achieving sub-optimal performance

with polynomial complexity by focusing on a subset of effective replication operations.

5) We conduct extensive numerical experiments that support analytical results and demonstrate

the performance benefits of the proposed design for the delivery of mixed-cast AgI services.

Organization: In Section II, we introduce the model for the “multicast packet routing”

problem. In Section III, we define the policy space and present a characterization for the

multicast network stability region. Section IV describes the multicast queuing system and defines

the problem formulation. In Section V, we devise the GDCNC control policy and analyze its
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performance, which further motivates the design of GDCNC-R in Section VI. Extensions to the

proposed design are discussed in Section VII. Section VIII presents the numerical results, and

conclusions are drawn in Section IX.

Notation: Let {0, 1}D denote the set of all D-dimensional binary vectors. We use 0 to denote

the zero vector, 1 the all-ones vector, and bk the vector with only the kth entry equal to 1

(and 0’s elsewhere). Given a binary vector q ∈ {0, 1}D, q̄ = 1− q denotes its complement and

2q , {s : sk = qkuk, u ∈ {0, 1}D} its power set. The inner product of vector x and y is denoted

by 〈x, y〉. E {z} is the expectation of random variable z, and {z(t)} , limT→∞(1/T )
∑T−1

t=0 z(t)

the time average of random process {z(t) : t ≥ 0}. I{A } denotes the indicator function (equal

to 1 if event A is true, and 0 otherwise), and |A| the cardinality of set A.

II. SYSTEM MODEL

A. Cloud Layered Graph

The ultimate goal of this work is to design decentralized control policies for distributed cloud

networks equipped with computation resources (e.g., cloud servers, edge/fog computing nodes,

etc.) able to host AgI service functions and execute corresponding computation tasks.

While in traditional packet routing problems, each node treats its neighbor nodes as outgoing

interfaces over which packets can be scheduled for transmission, a key step to address the AgI

service delivery problem, involving packet processing and routing decisions, is to treat co-located

computing devices as an additional interface over which packets can be scheduled for processing

[11]. As illustrated in [13], the AgI service control problem can be transformed into a packet

routing problem on a layered graph where cross-layer edges represent computation resources.

Motivated by such a connection and for ease of exposition, in this paper, without loss of

generality, we illustrate the developed approach focusing on the single-commodity, least-cost

multicast packet routing problem. We remark that (i) the optimal decentralized multicast control
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problem has been open up to now even in traditional communication networks, and (ii) the

extension to distributed cloud network control is presented in Section VII-A.

B. Network Model

The considered packet routing network is modeled by a directed graph G = (V, E), where

each edge (i, j) ∈ E represents a network link supporting data transmission from node i to j,

and δ−i and δ+i denote the incoming and outgoing neighbor sets of node i, respectively.

Time is slotted. For each link (i, j) ∈ E , we define: (i) transmission capacity Cij as the

maximum number of data units (e.g., packets) that can be transmitted in one time slot, and (ii)

unit transmission cost eij as the cost (e.g., power consumption) incurred in transmitting one unit

of data in one time slot. We note that a linear cost model is used here for ease of exposition, while

extensions to a non-linear cost model characterizing power expenditure in a practical wireless

scenario is studied in Section VII-B.

We emphasize that in the layered graph, cross-layer edges represent data processing, i.e., data

streams pushed through these edges are interpreted as being processed by corresponding service

functions, and the capacity and cost of these edges represent the processing capacity and unit

processing cost of the associated computation resources (e.g., cloud/edge servers).

C. Arrival Model

We focus on a multicast application (the extension to multiple applications is straightforward,

and details are given in Appendix F) where each incoming packet is associated with a destination

set D = {d1, · · · , dD} ⊂ V , with dk denoting the k-th destination and D = |D| the destination

set size. At least one copy of the incoming packet must be delivered to every destination in D.

Importantly, we assume that delivering multiple copies of the same packet (containing the same

content) to a given destination does not increase network throughput.

Multicast packets originate at the application source nodes S ⊂ V \ D. Let ai(t) denote the

number of exogenous packets arriving at node i at time t, with ai(t) = 0, ∀i /∈ S. We assume
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that the arrival process is i.i.d. over time, with mean arrival rate λi , E
{
ai(t)

}
and bounded

instantaneous arrivals; the corresponding vectors are denoted by a(t) =
{
ai(t) : i ∈ V

}
and λ.

Remark 1: By properly defining the destination set D, the above model can capture all four

network flow types: (i) unicast and broadcast flows are special cases of a multicast flow, defined

by setting D = {d} and D = V , respectively; and (ii) an anycast flow can be transformed into

a unicast flow by creating a super destination node connected to all the candidate destinations

[21]. Therefore, it suffices to focus on the multicast flow to derive a general solution for the

mixed-cast flow control problem.

D. In-network Packet Replication

We now formalize the most important operation for multicast packet routing, namely in-

network packet replication.

1) Replication Status: We assume that each packet is associated with a label that indicates

its current destination set, i.e., the set of destinations to which a copy of the packet must still

be delivered, formally defined as follows.

Definition 1: For a given packet, the replication status q = [q1, · · · , qD] is a D-dimensional

binary vector where the k-th entry (k = 1, · · · , D) is set to qk = 1 if destination dk ∈ D belongs

to its current destination set, and to qk = 0 otherwise.

Three important cases follow: (i) q = 1 indicates the status of every newly arriving packet

prior to any replication operation, with the entire destination set D as their current destination set;

(ii) q = bk describes a packet with one destination dk, which behaves like a unicast packet; (iii)

q = 0 describes a packet without any destination, which is removed from the system immediately.

2) Packet Replication and Coverage Constraint: A replication operation creates copies of

a packet and assigns a new destination set, which must be a subset of the original packet’s

destination set, to each resulting copy. Let q ∈ {0, 1}D denote the replication status of the

original packet; then, the set of all possible replication status of the copies is given by its power
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set 2q. To ensure the delivery of a packet to all of its destinations, we impose the Coverage

constraint on the replication operation: each destination node of the original packet must be

present in the destination set of at least one of the resulting copies.

3) Conditions on Replication Operation: In addition to the Coverage constraint, we require

the replication operation to satisfy the following Conditions:

a) Joint forwarding and replication: Replication is performed only on packets to be transmitted.

b) Efficient replication: The destination sets of the created copies do not to overlap.

c) Duplication: Only two copies are created by one replication operation.

d) Non-consolidation: Co-located packets of identical content are not combined; they are kept

as separate copies.

It can be shown that these Conditions do not reduce the achievable throughput nor increase

the minimum attainable cost. Condition a) avoids replicating packets that are not scheduled for

transmission, which only increases network congestion and should be avoided. Condition b) is

motivated by the fact that “receiving multiple packets of identical content at the same destination

does not increase network throughput”, and thus replication should be performed in an efficient

manner, i.e., NOT producing copies with overlapping destinations, to alleviate network traffic

and associated resource consumption. Conditions c) and d) are justified in Appendix A.

Combining the Coverage constraint and the above Conditions leads to the following important

property: each destination node of a packet undergoing duplication (we use “duplication” instead

of “replication” in the rest of the paper, e.g., duplication status) must be present in the destination

set of exactly one of the two resulting copies.

As illustrated in Fig. 1, the duplication operation process works as follows. Let q denote the

duplication status of a packet selected for (transmission) operation. Upon duplication, one copy

is transmitted to the corresponding neighbor node (referred to as the transmitted copy, of status

s), and the other copy stays at the node waiting for future operation (referred to as the reloaded

copy, of status r). Then, q = s+ r, and we refer to the pair (q, s) as the duplication choice (and
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r = q − s). Let Ω =
{
(q, s) : q ∈ {0, 1}D, s ∈ 2q

}
denote the set of all duplication choices.

Remark 2: We note that the duplication choice (q, q) describes the special case that a packet

is transmitted without duplication. In particular, note that for a status bk packet, i.e., a (unicast)

packet with one destination, (bk, bk) is the only duplication choice.

Remark 3: Duplication (q, bk) automatically takes place when a status q packet with dk in its

current destination set (i.e., qk = 1) arrives at destination dk, in which case: the status bk copy

departs the network immediately, and the status q − bk copy stays at node dk.

III. POLICY SPACES AND NETWORK STABILITY REGION

In this section, we introduce the policy space for multicast packet delivery, based on which

we characterize the multicast network stability region.

A. Policy Space

1) Decision Variables: We consider a general policy space for multicast packet delivery,

encompassing joint packet forwarding and duplication operations, whose associated forwarding

and duplication scheduling variables are described by

µ(t) =
{
µ
(q,s)
ij (t) : (q, s) ∈ Ω, (i, j) ∈ E

}
(1)

where µ
(q,s)
ij (t) denotes the amount of status q packets selected for (forwarding and duplication)

operation, with duplication choice (q, s) and forwarding choice (i, j), at time t. That is, µ
(q,s)
ij (t)

status q packets are duplicated, resulting in µ
(q,s)
ij (t) status s packets transmitted over link (i, j),

and µ
(q,s)
ij (t) status q − s packets reloaded to node i, as illustrated in Fig. 1.

2) Admissible Policies: A control policy is admissible if the flow variables satisfy:

a) non-negativity: µ(t) � 0, i.e., µ
(q,s)
ij (t) ≥ 0 for ∀ (i, j) ∈ E , (q, s) ∈ Ω.

b) link capacity constraint:
∑

(q,s)∈Ω µ
(q,s)
ij (t) ≤ Cij for ∀ (i, j) ∈ E .

c) generalized flow conservation: for each intermediate node i ∈ V \ D and q ∈ {0, 1}D,

∑

s∈2q̄

∑

j∈δ−i

{
µ
(q+s,q)
ji (t)

}
+

∑

s∈2q̄

∑

j∈δ+i

{
µ
(q+s,s)
ij (t)

}
+ λ

(q)
i =

∑

s∈2q

∑

j∈δ+i

{
µ
(q,s)
ij (t)

}
(2)
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where λ
(q)
i is the mean rate of exogenously arriving packets a

(q)
i (t) = ai(t) I{q = 1}, and

q̄ = 1− q denotes the complement of q, i.e., the set of destinations not included in q.

d) boundary conditions: µ
(q,s)
dkj

(t) = 0 for ∀ dk ∈ D, j ∈ δ+dk , q with qk = 1, k ∈ {1, · · · , D}.

The generalized flow conservation c) can be described as follows. (i) In contrast to the

instantaneous constraints, a), b), and d), which must hold at each time slot, c) imposes an

equality constraint on the average flow rates of incoming/outgoing status q packets to/from

node i. (ii) As illustrated in Fig. 1, for each node i and status q queue: the incoming flow of

status q packets has three components: packets received from each neighbor node j ∈ δ−i after

undergoing duplication (q + s, q) (which creates transmitted copies of status q), i.e., µ
(q+s,q)
ji (t);

packets that stay at node i after undergoing local duplication (q + s, s) (which creates reloaded

copies of status q = (q+ s)− s), i.e., µ
(q+s,s)
ij (t); and exogenously arriving status q packets, i.e.,

a
(q)
i (t). The outgoing flow includes all status q packets selected for operation with duplication

choice (q, s), i.e., µ
(q,s)
ij (t).

3) Cost Performance: The instantaneous overall resource operational cost of an admissible

policy is given by

h(t) = h(µ(t)) =
∑

(i,j)∈E

eij
∑

(q,s)∈Ω

µ
(q,s)
ij (t) = 〈e,µ(t)〉. (3)

We employ the expected time average cost {E {h(t)}} to characterize the cost performance, in

which the expectation is taken w.r.t. the flow variables µ(t), governed by the arrival process

a(t) and the (possibly randomized) control policy. We denote by h⋆(λ) the minimum attainable

cost under the arrival vector λ.

B. Multicast Network Stability Region

In this section, we characterize the multicast network stability region Λ to measure the

throughput performance of the system, defined as the set of arrival vectors λ = {λi : i ∈ V}

under which there exists an admissible policy satisfying the constraints in Section III-A2.

DRAFT October 3, 2022



SUBMITTED PAPER 13

Duplication choice

Reloaded copy Duplication choice Transmitted copy

Packet selected for operation

Outgoing flow

Incoming flow

Node

Node

queues

Exogenous

arrival

Node

Node

Duplication choice
Operation Interface

a
(q)
i (t)

q + s1

q

q − s2

µ
(q

1

+s1,s1)
ij (t)

µ
(q

2

+s3,q)
j i (t)

µ
(q

3

,s2)
ij (t) µ

(q

3

,s2)
ij (t)

µ
(q

3

,s2)
ij (t)

(q + s1, s1)

(q, s2)

(q + s3, q)

s1

q + s3

s3

s2

i

j1

j2

j3

Fig. 1. Illustration of joint packet forwarding and duplication operations (solid, dashed, and dotted lines represent packets

selected for operation, transmitted copies, and reloaded copies, respectively) and incoming/outgoing flow variables associated

with the status q queue of node i (while only explicitly indicated for the red flow, note that all arrows with the same color are

associated with the same flow variable).

Theorem 1: An arrival vector λ is interior to the stability region Λ if and only if there exist

flow variables f =
{
f
(q,s)
ij ≥ 0 : ∀ (q, s), (i, j)

}
and probability values β =

{
β
(q,s)
ij ≥ 0 :

∑

(q′,s′)∈Ω β
(q′,s′)
ij ≤ 1, ∀ (q, s), (i, j)

}
such that:

∑

s∈2q̄

∑

j∈δ−i

f
(q+s,q)
ji +

∑

s∈2q̄

∑

j∈δ+i

f
(q+s,s)
ij + λ

(q)
i ≤

∑

s∈2q

∑

j∈δ+i

f
(q,s)
ij , ∀ i ∈ V, q ∈ {0, 1}D, (4a)

f
(q,s)
ij ≤ β

(q,s)
ij Cij, ∀ (i, j) ∈ E , (q, s) ∈ Ω, (4b)

f
(q,s)
dkj

= 0, ∀ dk ∈ D, j ∈ δ+dk , q : qk = 1, k ∈ {1, · · · , D}. (4c)

In addition, there exists a stationary randomized policy specified by probability values β (i.e.,

at each time slot t, each link (i, j) selects Cij status q packets for forwarding and duplication

operation with duplication choice (q, s) with probability β
(q,s)
ij ) and attains optimal cost h⋆(λ).

Proof: The proof follows the same steps as [11, Appendix A] with the following changes:

(i) to show Necessity, we consider a multicast stabilizing policy that makes additional decisions

on duplication choices (q, s), and (ii) to show Sufficiency, we consider the stationary randomized

policy presented in Theorem 1. The detailed proofs are presented in Appendix B.

Next, we analyze the benefit of the multicast framework exploiting in-network packet dupli-
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cation to enlarge network stability region, compared to its unicast counterpart Λ0.

Proposition 1: The multicast network stability region Λ satisfies Λ0 ⊆ Λ ⊆ DΛ0, in which

DΛ0 , {Dλ : λ ∈ Λ0}. Furthermore, for any arrival vector λ ∈ Λ0, the minimum attainable

cost under the unicast framework, denoted by h⋆
0(λ), satisfies h⋆

0(λ) ≥ h⋆(λ).

Proof: Since unicast policies, which perform all duplication operations at the source node,

become special solutions under the multicast framework, the attained throughput and cost perfor-

mance cannot be superior to that of the optimal multicast policy, which can eliminate redundant

transmissions leveraging in-network packet duplication. Hence, Λ0 ⊆ Λ and h⋆
0(λ) ≥ h⋆(λ).

Next, we show Λ ⊆ DΛ0. For each packet delivered along a multicast route (under a given

multicast policy Pm), the unicast policy Pu can send each copy along the same path as in

the multicast route. For each link, Pu consumes at most D times the communication resources

consumed by Pm (when Pu sends D individual copies over a link common to all unicast paths,

while Pm only sends 1 packet and performs duplication later). With this key observation, we

can show (by contradiction) that the gain factor is bounded by D. The detailed proofs are given

in Appendix B.

IV. PROBLEM FORMULATION

A. Queuing System

Since forwarding and duplication decisions are driven by each packet’s destination set, keeping

track of data packets’ destination sets is essential. A key step is to construct a queuing system

with distinct queues for packets of different duplication status q. In particular, we denote by

Q
(q)
i (t) the backlog of the queue holding status q packets at node i at time t. Define Q

(0)
i (t) = 0

and Q(t) =
{
Q

(q)
i (t) : i ∈ V, q ∈ {0, 1}D

}
.

Each time slot is divided into two phases. In the transmitting phase, each node makes and

executes forwarding and duplication decisions based on the observed queuing states. In the

receiving phase, the incoming packets, including those received from neighbor nodes, reloaded
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copies generated by duplication, as well as exogenously arriving packets, are loaded into the

queuing system, and the queuing states are updated.

1) Queuing Dynamics: The queuing dynamics are derived for two classes of network nodes.

(i) For an intermediate node i ∈ V \ D, the queuing dynamics are given by

Q
(q)
i (t + 1) ≤ max

[

0, Q
(q)
i (t)− µ

(q)
i→(t)

]

+ µ
(q)
→i(t) + a

(q)
i (t), ∀ q ∈ {0, 1}D (5)

where µ
(q)
i→(t) and µ

(q)
→i(t) are the outgoing and (controllable) incoming network flows of status

q packets from/to node i, given by (as illustrated in Fig. 1)

µ
(q)
i→(t) =

∑

j∈δ+
i

∑

s∈2q

µ
(q,s)
ij (t), µ

(q)
→i(t) =

∑

j∈δ−
i

∑

s∈2q̄

µ
(q+s,q)
ji (t) +

∑

j∈δ+
i

∑

s∈2q̄

µ
(q+s,s)
ij (t). (6)

Note that (5) holds with inequality when the number of status q packets incoming to node i is

less than µ
(q)
→i(t) (see Remark 4), and the difference is bounded by

∑

j∈δ−i
Cji +

∑

j∈δ+i
Cij .

(ii) For a destination node i = dk (k = 1, · · · , D), the queuing dynamics are given by

Q
(q)
i (t+ 1) ≤

(
I + µ

(q+bk)
→i (t)

)
I{qk = 0}, ∀ q ∈ {0, 1}D, (7)

where I represents the right hand side of (5). To wit, at destination node dk: (i) all status q

queues with qk = 1 are always empty, and (ii) all other queues have an additional incoming flow

corresponding to the reloaded copies resulting from the automatic duplication of status q + bk

packets arriving at the destination (see also Remark 3), i.e., µ
(q+bk)
→i (t).

Remark 4: Similar to many existing control policies, e.g., [11], [14], [15], [22], we note that

flow variable µ(t) can lead to a total outgoing flow µ
(q)
i→(t) exceeding the available packets in

queue Q
(q)
i (t), and we include the ramp function max[0, · ] in (5) to avoid negative queue length.

If µ
(q)
i→(t) > Q

(q)
i (t), the residual capability µ

(q)
i→(t)−Q

(q)
i (t) is either used with idle fill (referred

to as dummy packets) or wasted, which is shown not to affect the network stability region [15].

B. Problem Formulation

The goal is to develop an admissible control policy that stabilizes the queuing system, while

minimizing overall operational cost. Formally, we aim to find a control policy with decisions
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{µ(t) : t ≥ 0} satisfying

min
µ(t)�0

{E {h(t)}} (8a)

s. t. {E {‖Q(t)‖1}} < ∞, i.e., stabilizing Q(t) (5) – (7), (8b)

∑

(q,s)∈Ω

µ
(q,s)
ij (t) ≤ Cij, ∀ (i, j), (8c)

µ
(q,s)
dkj

(t) = 0, ∀ dk ∈ D, j ∈ δ+dk , q : qk = 1, k ∈ {1, · · · , D}. (8d)

In addition, note that by Little’s Theorem [15], the average delay is linear in the queue backlog

{E {‖Q(t)‖1}}, and thus (8b) is equivalent to guaranteeing finite average delay.

V. GENERALIZED DISTRIBUTED CLOUD NETWORK CONTROL ALGORITHM

In this section, we leverage the LDP theory [15] to address (8), which guides the design of

the proposed GDCNC algorithm.

A. Lyapunov Drift-plus-Penalty

Consider the Lyapunov function L(t) = ‖Q(t)‖22/2 and associated Lyapunov drift ∆(Q(t)) =

L(t + 1)− L(t). The LDP approach aims to minimize an upper bound of a linear combination

of the Lyapunov drift (whose derivation follows the steps in [15, Section 3.1.2], and details are

shown in Appendix C) and the objective function weighted by a tunable parameter V , i.e.,

∆(Q(t)) + V h(t) ≤ |V|B + 〈a(t),Q(t)〉 − 〈w(t),µ(t)〉 (9)

where B is a constant, and the duplication utility weights w(t) = {w(q,s)
ij (t)} are given by

w
(q,s)
ij (t) = Q

(q)
i (t)−Q

(q−s)
i (t)−Q

(s)
j (t)− V eij. (10)

Equivalently, the proposed algorithm selects the flow variable µ(t) to maximize 〈w(t),µ(t)〉 at

each time slot, which can be decomposed into separate problems for each link (i, j):

max
µ
(q,s)
ij (t) : (q,s)∈Ω

∑

(q,s)∈Ω

w
(q,s)
ij (t)µ

(q,s)
ij (t), s. t.

∑

(q,s)∈Ω

µ
(q,s)
ij (t) ≤ Cij, µ

(q,s)
ij (t) ≥ 0. (11)

The resulting max-weight solution is described in the next section.
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Algorithm 1 GDCNC

1: for t ≥ 0 and (i, j) ∈ E do

2: Calculate the duplication utility weight w
(q,s)
ij (t) for all duplication choices (q, s) by (10).

3: Find the (q, s) pair with the largest weight (q⋆, s⋆) = argmax(q,s)∈Ω w
(q,s)
ij (t).

4: Assign transmission flow: µ
(q,s)
ij (t) = Cij I

{
w

(q⋆, s⋆)
ij (t) > 0, (q, s) = (q⋆, s⋆)

}
.

5: end for

B. Generalized Distributed Cloud Network Control

The developed generalized distributed cloud network control (GDCNC) algorithm is described

in Algorithm 1, and exhibits two salient features. (i) Decentralized: it only requires local in-

formation exchange (i.e., queuing states of neighbor nodes) and decision making, which can

be implemented in a fully distributed manner. (ii) Sparse: for each link (i, j), it selects one

duplication choice (q⋆, s⋆) at each time slot, which affects the states of status q⋆ and q⋆ − s⋆

queues at node i, and status s⋆ queue at node j. Therefore, for each node i, the number of

queues with changing states in one time slot is 2|δ+i | + |δ−i | ∼ O(|δi|), where |δi| denotes the

degree of node i.

Remark 5: Note that when dealing with a unicast flow, where all packets have the same single

destination, the only valid duplication status is q = 1 and the only valid duplication choice is

(q, s) = (1, 1), in which case GDCNC reduces to DCNC [11].

C. Performance Analysis

In this section, we analyze the delay and cost performance of GDCNC, and its complexity

from both communication and computation dimensions.

1) Delay-Cost Tradeoff: In the following theorem, we employ the minimum attainable cost

h⋆(λ) as the benchmark to evaluate the performance of GDCNC.
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Theorem 2: For any arrival vector λ interior to the multicast stability region Λ, the average

queue backlog and the operational cost achieved by GDCNC satisfy

{E {‖Q(t)‖1}} ≤
|V|B

ǫ
+

[
h⋆(λ+ ǫ1)− h⋆(λ)

ǫ

]

V, {E {h(t)}} ≤ h⋆(λ) +
|V|B

V
, (12)

for any ǫ > 0 such that λ+ ǫ1 ∈ Λ.

Proof: Applying expected time average and telescope sum [15] to (9), we can obtain

V {E {h(t)}} ≤ |V|B − ǫ{E {‖Q(t)‖1}} + V h⋆(λ + ǫ1). Then, using {E {h(t)}} ≥ h⋆(λ)

and −ǫ{E {‖Q(t)‖1}} ≤ 0 leads to (12). See Appendix D for a detailed derivation.

The above theorem is illustrated as follows. For any arrival vector interior to the stability

region, GDCNC (using any fixed V ≥ 0) can stabilize the queuing system, and thus is throughput-

optimal. In addition, GDCNC achieves an [O(V ),O(1/V )] tradeoff between delay (which is

linear in queue backlog) and cost: by pushing V → ∞, the attained cost can be arbitrarily close

to the minimum h⋆(λ), with a tradeoff in network delay.

2) Complexity Issues: Next, we analyze the complexity of GDCNC.

Communication Overhead: At each time slot, GDCNC requires local exchange of queue

backlog information. Instead of the entire queuing states (of size |{0, 1}D| ∼ O(2D)), we can

leverage sparsity (see Section V-B) to reduce communication overhead, i.e., nodes only exchange

information of the queues with changing states, reducing the overhead to O(|δi|).

Computational Complexity: At each time slot, GDCNC calculates the utility weight of

each duplication choice (q, s), of computational complexity proportional to |Ω| ∼ O(3D) (see

Appendix G), i.e., exponential in the destination set size. This is due to the combinatorial nature

of the multicast routing problem. Indeed, the state-of-the-art centralized solution to the multicast

flow control problem [13] requires solving the NP-complete Steiner tree problem for route

selection at each time slot.
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(1,0,0)

(0,1,1)
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route B
(0,1,1)(1,1,1)

Fig. 2. Different multicast routes (i.e., routing trees) can share the same duplication choices (i.e., duplication tree). For

example, the red and blue routes used to deliver the status (1, 1, 1) packet from source node 0 to destination nodes {1, 2, 3}

are associated with the same duplication tree.

VI. GDCNC-R WITH REDUCED COMPLEXITY

In this section, we develop GDCNC-R, a variant of GDCNC achieving sub-optimal perfor-

mance with reduced complexity.

A. Duplication Tree

To illustrate the complexity reduction of GDCNC-R, we first define the duplication tree as a

useful representation of the duplication operations performed on a given multicast packet.

Definition 2: A duplication tree T is a binary tree with each node associated with a duplication

status: the root node and the D leaf nodes represent the status of the initial multicast packet,

1, and of the copies delivered to each destination, bk (k ∈ {1, · · · , D}), respectively. Each

internal node q splits into two child nodes s and r, associated with duplication (q, s) and (q, r),

respectively.

As illustrated in Fig. 2, the duplication choices of a given multicast route are described by

a duplication tree. Note however that different routes can share the same duplication choices,

hence the same duplication tree. GDCNC achieves optimal performance by evaluating all possible

duplication choices at each node, which is equivalent to consider all routes in all duplication

trees. This is also the reason for its high computational complexity.

B. Proposed Approach

In contrast, the developed GDCNC-R algorithm narrows the focus on the multicast routes

included in a subset of effective duplication trees and associated duplication choices. Given a
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duplication tree, the policy can select from all the multicast routes mapping into the tree for

packet delivery, with the goal of reducing network congestion, and as a result, improving the

delay performance. The selected duplication trees shall minimize the resulting (throughput and

cost) performance loss, and the proposed approach is referred to as destination clustering.

Importantly, the main benefit of the multicast framework is to save redundant operations by

exploiting in-network packet duplication. To maximize this gain, a duplication shall be performed

only on packets with “distant” destinations in their current destination set (under the distance

metrics listed at the end of this section).

To this end, we propose to construct the duplication tree as follows (in this paragraph, we refer

to a node in the duplication tree as a vertex to distinguish from a node in the routing network). We

start from the entire network node set V , which includes all destinations and corresponds to the

root vertex of the duplication tree. At each step, the current node set is divided into two disjoint

clusters – in line with the duplication condition (see Section II-D3). The two child vertices are

given by the destinations in the resulting clusters. Then, we move to the child vertices and repeat

this step for the corresponding clusters, until each cluster only includes one destination node

(we discard clusters not including any destinations in the procedure).

While there are many existing clustering methods, we use the widely adopted k-means clus-

tering [23], described as follows. Given a set of data points with known features and a distance

function measuring the similarity between two data points, the algorithm starts assigning random

labels (i.e., the cluster to which the data point belongs) to the data points; then, it (i) calculates

the center for each cluster, and (ii) updates the label of each data point to the cluster with the

nearest center (under the given distance function) in an iterative manner until converging.

Some effective choices for the inter-node distance are listed as follows. In the wired case:

To optimize the throughput performance, we can use the reciprocal transmission capacity as

the inter-node distance; while unit transmission cost is a proper metric to deal with the cost

performance. For nodes that are not directly connected, we assume that there is a link of zero
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capacity and infinity cost between them. Given the pairwise similarities, we can apply spectrum

clustering techniques [24] to define features for the data points, followed by k-means clustering.

In the wireless scenario, a straightforward distance metric is the Euclidean distance, which leads

to using the geographical location of each network node as its feature, and whose effectiveness

is validated by numerical experiments (see Fig. 3a and 3b).

C. Complexity Analysis

As shown in Appendix G, each duplication tree includes 2D − 1 nodes, with D − 1 internal

nodes (including the root node) and D leaf nodes. There are 3 possible duplication choices

associated with each internal node q (with child nodes s and r), i.e., (q, q), (q, s) and (q, r),

while only one duplication choice (bk, bk) is associated with each leaf node bk. Therefore, every

duplication tree includes 4D − 3 ∼ O(D) possible duplication choices.

GDCNC-R uses K duplication trees, with K chosen to strike a good balance between per-

formance optimality and computational complexity. Specifically, GDCNC-R has O(KD) com-

plexity, i.e., polynomial in the number of duplication trees and destination set size.

VII. EXTENSIONS

In this section, we present extensions to the GDCNC algorithms, including: (i) a cloud network

control policy for multicast AgI service delivery, (ii) a modified algorithm for MEC scenarios

(with wireless links), and (iii) a variant of GDCNC with Enhanced delay performance, EGDCNC.

A. Multicast AgI Service Delivery

In line with [11], [13], the additional packet processing decisions involved in the distributed

cloud network setting can be handled as follows.
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1) Cloud Network Model: Consider a cloud network composed of compute-enabled nodes

that can process data packets via corresponding service functions, with the available processing

resources and associated costs defined as: (i) processing capacity Ci, i.e., the computation

resource units (e.g., computing cycles per time slot) at node i, and (ii) unit processing cost

ei, i.e., the cost to run one unit of computation resource in one time slot at node i.

2) AgI Service Model: Consider an AgI service modeled as SFC, i.e., a chain of M − 1

functions, through which source packets must be processed to produce consumable results,

resulting in the end-to-end data stream divided into M stages. Each processing step can take

place at different network locations hosting the required service functions, and each function

(m ∈ {1, · · · ,M − 1}) in the service chain is described by two parameters: (i) scaling factor

ξ(m), i.e., the number of output packets per input packet, and (ii) workload r(m), i.e., the amount

of computation resource to process one input packet.

3) Processing Decision: We create different queues to hold packets of different processing

stages and duplication status. Let Q
(m,q)
i (t) denote the backlog of (stage m, status q) packets, and

µ
(m,q,s)
i (t) the scheduled processing flow, i.e., the amount of (stage m, status q) packets selected

for (processing and duplication) operation with duplication choice (q, s) at node i at time t.

Following the procedure in Section V-A on a properly constructed cloud layered graph [13]

(see Appendix F for the full derivation), the processing decisions for each node i at time t are

given by

(i) Calculate the duplication utility weight w
(m,q,s)
i (t) for each (m, q, s) tuple:

w
(m,q,s)
i (t) =

[
Q

(m,q)
i (t)− ξ(m)Q

(m+1,s)
i (t)−Q

(m,q−s)
i (t)

]/
r(m) − V ei . (13)

(ii) Find the (m, q, s) tuple with the largest weight: (m⋆, q⋆, s⋆) = argmax(m,q,s) w
(m,q,s)
i (t).

(iii) Processing flow µ
(m, q, s)
i (t) =

(
Ci/r

(m)
)
I
{
w

(m⋆, q⋆, s⋆)
i (t) > 0, (m, q, s) = (m⋆, q⋆, s⋆)

}
.
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B. MEC Scenario

In line with [22], the packet transmission decisions can be modified to handle wireless

distributed cloud network settings, e.g., MEC [25], as follows.

1) Wireless Transmission Model: Consider a MEC network composed of two types of nodes,

i.e., user equipments (UEs) and edge servers (ESs), collected in VUE and VES, respectively.

Each ES, equipped with massive antennas, is assigned a separate frequency band of width B0,

and with the aid of beamforming techniques, it can transmit/receive data to/from multiple UEs

simultaneously without interference (assuming that the UEs are spatially well separated) [26];

while each UE is assumed to associate with only one ES at each time slot. For each wireless

link (i, j), the transmission power pij(t) is assumed to be constant during a time slot (and the

maximum power budget of node i is denoted by Pi), incurring cost (ẽiτ) pij(t), with ẽi denoting

the unit energy cost at node i and τ the time slot length. Besides, we assume that the channel

gain gij(t) is i.i.d. over time and known by estimation, and the noise power is denoted by σ2
ij .

The ESs are connected by wired links, as described in Section II-B.

2) Wireless Transmission Decision: In addition to flow assignment µ(t) = {µ(q,s)
ij (t) ≥ 0 :

(i, j), (q, s)}, the control policy makes decisions on power allocation, i.e., p(t) = {pij(t) ≥ 0 :

(i, j)}, and UE-ES association, i.e., χ(t) = {χij(t) ∈ {0, 1} : (i, j)}, where χij(t) indicates if

node i is associated with node j (χij(t) = 1) or not (χij(t) = 0).

The LDP bound (9) remains valid, and the resulting problem (11) is given by

max
∑

(i,j)∈E
χij(t)Ψij(t), Ψij(t) ,

∑

(q,s)∈Ω
w

(q,s)
ij (t)µ

(q,s)
ij (t)− V (ẽiτ)pij(t) (14a)

s. t.
∑

j∈δ+i
χij(t) ≤ 1 for ∀ i ∈ VUE; χij(t) = 1 for ∀ i ∈ VES, j ∈ δ+i , (14b)

∑

(q,s)∈Ω
µ
(q,s)
ij (t) ≤ τRij(t), Rij(t) , B0 log2

(
1 + gij(t) pij(t)

/
σ2
ij

)
, ∀ (i, j) (14c)

∑

j∈δ+i
χij(t) pij(t) ≤ Pi, ∀ i ∈ V (14d)

where w
(q,s)
ij (t) = Q

(q)
i (t)−Q

(q−s)
i (t)−Q

(s)
j (t), and (14b) represents the constraint that each UE
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can only select one ES to communicate with at each time slot. Following the procedure in [22],

we can solve (14) to derive the wireless transmission decisions for each link (i, j) at time t as

Power allocation: p⋆ij(t) = min
[
pij(t; 0), Pi

]
, i ∈ VUE; p⋆ij(t) = pij(t; ν

⋆), i ∈ VES, (15a)

Flow assignment: µ
⋆ (q,s)
ij (t) = τRij(t) I{(q, s) = (q⋆, s⋆)}, (q⋆, s⋆) = argmax

(q,s)

w
(q,s)
ij (t), (15b)

UE-ES association: χ⋆
ij(t) = I{j = j⋆,Ψ⋆

ij(t) > 0}, i ∈ VUE; χ⋆
ij(t) = 1, i ∈ VES (15c)

where pij(t; ν) , max
[
B0w

(q⋆, s⋆)
ij (t)

/(
ẽiV + ν

)/
ln 2− σ2

ij

/
gij(t), 0

]
, ν⋆ = max{0, ν0} with ν0

satisfying
∑

j∈δ+i
pij(t; ν0) = Pi, and j⋆ = argmaxj Ψ

⋆
ij(t).

C. EGDCNC with Enhanced Delay

In line with [17], [11], a biased queue that incorporates network topology information can be

designed to enhance the delay performance of multicast flow control.

In the unicast setting, [17] defines the bias term for each node i, HU(i, d), as the minimum

hop-distance between node i and destination d, and combines it with the physical queue as

Q̃i(t) = Qi(t) + η HU(i, d). The bias term creates an intrinsic pressure difference that pushes

packets along the shortest path to the destination. The parameter η can be found by grid search

to optimize the combined effect of hop-distance and queue backlog on the total network delay.

In the multicast setting, we propose to modify the biased queue as

Q̃
(q)
i (t) = ‖q‖1Q

(q)
i (t) + η HM(i, q), with HM(i, q) ,

D∑

k=1

qk HU(i, dk). (16)

Differently from the unicast case, (i) the bias term HM(i, q) is now the sum of minimum hop-

distances to all current destinations, and (ii) the backlog term Q
(q)
i (t) is now weighted by ‖q‖1

in line with its contribution to the average delay (i.e., the delay a status q packet experiences

will impact the delay of the ‖q‖1 copies resulting from its subsequent duplications; the detailed

proof is given in Appendix E.
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TABLE I

NETWORK RESOURCES AND OPERATIONAL COSTS OF THE STUDIED SYSTEM

Processing Transmission

UE Ci = 1 GHz, ei = 2 /GHz UE-ES i ∈ VUE: Pi = 200mW, ẽi = .01 /J; i ∈ VES: Pi = 1W, ẽi = .005 /J

ES Ci = 5 GHz, ei = 1 /GHz ES-ES Cij = 1 Gbps, eij = 1 /Gbps for (i, j) if distance(i, j) = 100m

EGDCNC works just like GDCNC, but using Q̃(t) in place of Q(t) to make forwarding and

duplication decisions. Following the procedure in [17], we can show that EGDCNC (using any

fixed η ≥ 0) does not lose throughput and cost optimality as compared to GDCNC.

VIII. NUMERICAL RESULTS

A. Network Setup

We consider a MEC network within a square area of 200 m× 200 m, including 9 UEs and 4

ESs. In a Cartesian coordinate system with the origin located at the square center, the ESs are

placed at (±50 m,±50 m). Each user is moving according to Gaussian random walk (reflected

when hitting the boundary), and the displacement in each time slot distributes in N (0, 10−4 I) m.

The length of each time slot is τ = 1 ms.

We employ the transmission model described in Section VII-B, where ESs are connected by

wired links, while UEs and ESs communicate via wireless links with the following parameters:

bandwidth B0 = 100 MHz, path-loss = 32.4 + 20 log10(fc) + 31.9 log10(distance) dB with

fc = 30 GHz (urban microcell [27]), communication range = 150 m, standard deviation of

shadow fading σSF = 8.2 dB, and σ2
ij = N0B0 with noise spectral density N0 = −174 dBm/Hz.

The processing/transmission capacities and associated costs are shown in Table I.

Consider two AgI services composed of 2 functions with parameters given by (the subscript

of each parameter denotes the associated service φ, and workload r
(m)
φ is in GHz/Mbps):

ξ
(1)
1 = 1, r

(1)
1 =

1

300
, ξ

(2)
1 = 2, r

(2)
1 =

1

400
; ξ

(1)
2 =

1

3
, r

(1)
2 =

1

200
, ξ

(2)
2 =

1

2
, r

(2)
2 =

1

100
.

Each service has 1 source node and D = 3 destination nodes, which are randomly selected from

the UEs, and the arrival process is modeled as i.i.d. Poisson with λ Mbps.
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B. Uniform Resource Allocation

First, we compare the proposed GDCNC algorithms with two state-of-the-art cloud network

control policies: UCNC (a throughput-optimal source routing algorithm) [13] and EDSPA (a

widely used multicast routing technique) [20]. Since resource allocation exceeds the scope of the

benchmark algorithms, the following policy is employed for all algorithms for fair comparisons:

each node/link uses maximum processing/transmission capacity, and each ES allocates equal

transmission power for each UE. In the GDCNC algorithms, we select V = 0 to optimize the

delay performance; in GDCNC-R, we select K = 1 duplication tree by k-means clustering using

geographic distance; in UCNC, route selection is based on delayed information resulting from

hop-by-hop transmission of the queuing states from all nodes to the source.

Fig. 3a depicts the average delay attained by the algorithms under different arrival rates. First,

we focus on the throughput performance. We observe an identical critical point (≈ 430 Mbps)

for GDCNC, EGDCNC, and UCNC, at which point the average delay blows up, indicative of

the stability region boundary, validating Proposition 2, i.e., the throughput-optimality of GD-

CNC/EGDCNC (because UCNC is throughput-optimal [13]). GDCNC-R/EGDCNC-R achieve

sub-optimal throughput by only ≈ 2%, illustrating the marginal performance loss from precluded

duplication trees. Finally, EDSPA only achieves a maximum rate ≈ 70 Mbps, which is far from

the stability region boundary, due to the lack of route diversity.

When looking at the delay performance, we observe that the enhanced variants EGDCNC/

EGDCNC-R effectively reduce the delay of the initial solutions GDCNC/GDCNC-R, by adding

the shortest path bias to improve the delay performance. In low-congestion regimes, the end-to-

end delay mainly depends on the hop-distance of the route; as a result, EDSPA, which delivers

the packet along the shortest path, and UCNC, which requires the entire path to be acyclic for

hop-distance reduction, outperform EGDCNC/EGDCNC-R. As arrival rate increases, queuing

delay becomes the dominant component, and gaps between EGDCNC/EGDCNC-R and UCNC

vanish, demonstrating the good performance of the algorithms in high-congestion regimes.
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Fig. 3. Network stability regions attained by the benchmark and proposed algorithms.

Finally, we study the complexity of the algorithms. We first sort the algorithms by commu-

nication overhead, i.e., required information for decision making. Noting that network topology

changes much slower than queuing states, we have: EDSPA (requiring network topology) ≪

GDCNC (requiring local queuing states) ≈ EGDCNC (requiring local queuing states and network

topology) ≪ UCNC (requiring global queuing states). We then present the running time of the

algorithms as a measure for computational complexity: EDSPA (1.3 s) < GDCNC ≈ EGDCNC

(2.7 s) ≪ UCNC (5.8min), among which: EDSPA runs fastest because it uses fixed routes;

GDCNC can operate efficiently to complete simple algebraic operations (10); and UCNC requires

solving the NP-complete Steiner tree problem (in a 39-node layered graph) at each time slot,

which incurs high computational complexity that can increase when applied to larger networks.

To sum up: in low-congestion regimes, EDSPA is a good choice due to its low complexity and

superior delay performance; in high-congestion regimes, UCNC works better for small networks

that impose low overhead for information collecting and decision making; and EGDCNC is

competitive in all regimes and especially suitable for large-scale distributed cloud networks.

C. Optimal Resource Allocation

Next, we demonstrate the cost performance of the GDCNC algorithms, employing DCNC

[11] as the benchmark, which is throughput- and cost-optimal for unicast flow control.
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1) Network Stability Region: Fig. 3b shows the network stability regions attained by the

algorithms. We find that: the designed power allocation policy (15) boosts the stability region

(≈ 580 Mbps), compared to uniform power allocation (≈ 430 Mbps, as shown in Fig. 3a).

Another observation is: compared to DCNC (which attains the unicast stability region ≈ 210

Mbps), in the studied setting (with D = 3 destinations), the multicast framework enlarges the

stability region by a factor of 2.76, which is bounded by D, validating Proposition 1. Finally,

the performance loss of GDCNC-R is marginal (≈ 2%) compared to GDCNC, which, together

with the results shown in Fig. 3a, validates its competitive throughput performance.

2) Delay and Cost Performance: Next, we present the tunable delay and cost performance

of the algorithms, under λ = 150 Mbps and η = 0 (we fix η and focus on the effects of V ).

As shown in Fig. 4a, the average delay attained by each algorithm increases linearly with

V . Note however that DCNC can achieve a better delay than GDCNC (and almost the same

as GDCNC-R) for arrival rates within the unicast stability region (low congestion regime in

the enlarged multicast stability region), because it can select separate paths for each copy to

optimize the individual delays. This is expected, as the throughput-optimal design of GDCNC,

which jointly selects the copies’ paths to reduce network traffic and enlarge the stability region,

can lead to higher delay in low-congestion regimes.

Fig. 4b shows the reduction in operational cost with growing V , validating Theorem 2. By

pushing V → ∞, the curves converge to the corresponding optimal costs, given by: DCNC

(7.7) > GDCNC-R (2.8) ≈ GDCNC (2.65). For V < 107, GDCNC-R attains an even lower

cost than GDCNC, even though it has sub-optimal asymptotic performance (e.g., V > 107).

However, note that a large V also leads to an excessive delay, making it a sub-optimal choice

in practical systems. For example, when increasing V from 106 to 107, the cost attained by

GDCNC reduces from 21.4 to 6.7, while the delay grows from 1.3 to 13.4 seconds (these results

are for comparison purpose, and can be improved by EGDCNC, as shown in Fig. 3a and 3b).
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Fig. 4. Delay-cost tradeoffs attained by the three algorithms under different V parameters and destination set sizes D.

3) Effects of Destination Set Size: Finally, we present in Fig. 4c the delay-cost tradeoffs

attained by the GDCNC algorithms, under different destination set sizes varying from D = 2 to

5, and λ = 300 Mbps.

We make the following observations. A larger destination set size D results in (i) increasing

delay and cost, since more network resources are consumed to handle copies for additional

destinations, which also results in longer time waiting for available network resources, (ii)

growing running time, due to the greater number of duplication choices, e.g., GDCNC (3.2 s)

≈ GDCNC-R (2.9 s) when D = 3, and GDCNC (8.9 s) > GDCNC-R (5.8 s) when D = 5, (iii)

a widening gap between the average delay performance of GDCNC and GDCNC-R (in order

to attain a given cost, e.g., 20), which validates the benefit of GDCNC-R reducing the queuing

system and improving the delay performance (which is observed also in Fig. 3a and 3b).

Again we emphasize that the selection of parameter V targeting optimal cost performance can

lead to excessive delay (tens of seconds when D = 3), which is a sub-optimal choice in practical

systems. With appropriate V values, GDCNC-R can attain suitable delay-cost performance pairs

(0.8 s, 20), (1.3 s, 23), (2 s, 27) under destination set sizes D = 3, 4, 5, respectively.

To sum up, although we cannot provide an analytical bound on the performance loss of

GDCNC-R, numerical results validate that it can remain competitive in throughput performance

(with negligible performance loss), while striking an even better delay-cost tradeoff than GDCNC.
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IX. CONCLUSIONS

We addressed the problem of decentralized control of mixed-cast AgI services in distributed

cloud networks. Under the multicast framework, we characterized the enlarged network stability

region and analyzed the benefit of exploiting in-network packet duplication. By extending LDP

control to a novel queuing system that allows accommodating the duplication operation and

making flow control decisions driven by data packets’ current destinations, we designed the first

decentralized, throughput- and cost-optimal packet processing, routing, and duplication policy

for generalized (multicast) flow control, GDCNC, as well as practical variants targeting reduced

complexity, enhanced delay, and extended scenarios. Via numerical experiments, we validated

the performance gain attained via effective in-network packet duplication, as well as the benefits

of joint processing, routing, and duplication optimization for the efficient delivery of multicast

AgI services over distributed cloud networks.
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APPENDIX A

REPLICATION OPERATION CONDITIONS DO NOT SACRIFICE PERFORMANCE

Condition a) and b) are justified in Section II-D.

Duplication: For any general policy P1, which can create (and operate on) multiple copies

at each time slot, we construct a policy P2 as follows: for each multicast packet, P2 performs

replication and transmits the resulting packets along the same paths as in P1, but creating two

copies at each time slot and spending multiple slots to complete a replication producing multiple

copies under P1. In the following, we show that the transmission rate of each link under P2

is the same as that of P1.

Consider the single commodity setting, and denote by ς a possible route to deliver the multicast

packet. Let f
(ς)
ij denote the average rate of packets traversing link (i, j) that are associated with

route ς under P1, which satisfies
∑

ς f
(ς)
ij ≤ C̄ij , where C̄ij = {Cij(t)} denotes the average

channel capacity of link (i, j). Define

α
(ς)
ij = f

(ς)
ij

/
C̄ij . (17)

Then, under P2, at each time slot, we use α
(ς)
ij percentage of the instantaneous link capacity

Cij(t) to transmit packets associated with route ς , i.e., {C(ς)
ij (t) = α

(ς)
ij Cij(t) : ∀ ς}. We focus on

the transmission of packets associated with route ς over link (i, j): on one hand, the arrival rate

of such packets is f
(ς)
ij (since each packet is delivered along the same path); on the other hand,

the average transmission rate (or service rate) of such packets is
{

C
(ς)
ij (t)

}

= α
(ς)
ij {Cij(t)} =

α
(ς)
ij C̄ij = f

(ς)
ij . Therefore, the queue collecting packets waiting to cross the link (i, j) and

associated with route ς is stable (due to equal arrival and service rates [15, Theorem 2.4]). This

result holds for each route ς and link (i, j), concluding the proof.

Non-consolidation: Assume that a general policy P1 consolidates two copies (of status q1

and q2) at node i, and we construct a policy P2 to eliminate this operation as follows. Suppose

under P1, the ancestor packet splits into two copies of status (q1 + s1) and (q2 + s2) at node
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j, sent along different routes, where s1 and s2 denote the possible replication operations after

the two packets leave node j and before they rejoin at node i. Then in P2, we can create the

two copies with status (q1 + q2 + s1) and s2 at node j, and send them along the same routes.

The system state remains unchanged after P1 consolidates the two packets, while it saves the

network resources to transmit packet q2 from where it is created to node i. Therefore, P2 can

achieve the same performance as P1, if not better.

APPENDIX B

MULTICAST NETWORK STABILITY REGION

A. Proof of Theorem 1

1) Necessity: We need to show: for ∀λ ∈ Λ, there exist f and β satisfying (4).

Consider the cost-optimal multicast stabilizing policy that is under the arrival λ. Let X
(q,s)
ij (t)

denote the number of packets successfully delivered to all destinations by time t, that underwent

the (forwarding and duplication) operation with forwarding choice (i, j) and duplication choice

(q, s), during the delivery. It is straightforward to obtain the following relationships:

X
(q,s)
ij (t) ≥ 0, ∀ (i, j), (q, s) (18a)

∑

j∈δ−i

∑

s∈2q̄

X
(q+s,q)
ji (t) +

∑

j∈δ+i

∑

s∈2q̄

X
(q+s,s)
ij (t) +

t∑

τ=1

a
(q)
i (τ) ≤

∑

j∈δ+i

∑

s∈2q

X
(q,s)
ij (t), (18b)

∑

(q,s)

X
(q,s)
ij (t) ≤ t Cij, (18c)

X
(q,s)
dk j (t) = 0, ∀ q : qk = 1 (18d)

where (18b) is w.r.t. status q packets incoming to and outgoing from node i, which is an inequality

because not all arrival packets (last term on the left-hand-side) are delivered by time t.

Divide the above relationships by t, let t → ∞, and define limt→∞ X
(q,s)
ij (t)

/
t , f

(q,s)
ij , and
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we can obtain (4). In particular, the link capacity constraint (18c) becomes:

lim
t→∞

[∑

(q,s)

X
(q,s)
ij (t)

t

]

=
∑

(q,s)

lim
t→∞

[X
(q,s)
ij (t)

t

]

=
∑

(q,s)

f
(q,s)
ij ≤ Cij , (19)

and we define:

β
(q,s)
ij , f

(q,s)
ij

/
Cij ≥ 0, ∀ (i, j) ∈ E , (q, s) ∈ Ω. (20)

Then, according to (19): for ∀ (i, j) ∈ E ,
∑

(q,s) β
(q,s)
ij ≤ 1, i.e.,

{
β
(q,s)
ij : (q, s) ∈ Ω

}
is a set of

probability values. In addition, by (20), the flow variables satisfy:

f
(q,s)
ij = β

(q,s)
ij Cij, ∀ (i, j) ∈ E , (q, s) ∈ Ω (21)

which satisfies (4b), i.e., f
(q,s)
ij ≤ β

(q,s)
ij Cij .

2) Sufficiency: We need to show: if there exist f , β, λ satisfying (4), then λ ∈ Λ.

Consider the stationary randomized policy defined in Theorem 1 (using β
(q,s)
ij , f

(q,s)
ij /Cij),

and denote by µ
∗(q,s)
ij (t) the associated decisions; then, E

{
µ
∗(q,s)
ij (t)

}
=

(
f
(q,s)
ij

/
Cij

)
Cij = f

(q,s)
ij .

Substitute it to (4a), and we obtain

E

{

µ
∗(q)
i→ (t)− µ

∗(q)
→i (t)− λ

(q)
i

}

≥ 0 ⇐⇒ ∃ ǫ ≥ 0 : E
{

µ
∗(q)
→i (t) + λ

(q)
i − µ

∗(q)
i→ (t)

}

≤ −ǫ (22)

where µ
∗(q)
i→ (t) and µ

∗(q)
→i (t) are defined in (6). Furthermore, in (34b) (in Appendix C), we show

E

{

∆
(
Q

(q)
i (t)

)}

≤ B + E

{(
µ
∗(q)
→i (t) + λ

(q)
i − µ

∗(q)
i→ (t)

)
Q

(q)
i (t)

}

≤ B − ǫE
{

Q
(q)
i (t)

}

, (23)

which implies the stability of Q
(q)
i (t) [15, Section 3.1.4], and thus λ ∈ Λ.

B. Proof of Proposition 1

1) Unicast Stability Region: The unicast stability region is characterized in [11, Theorem 1],

and we rephrase it as follows.
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An arrival vector λ is within the stability region Λ0 if and only if there exist flow variables

f̂ =
{
f̂
(k)
ij ≥ 0

}
and probability values β̂ =

{
β̂
(k)
ij ≥ 0 :

∑D
k=1 β̂

(k)
ij ≤ 1

}
such that:

f̂
(k)
→i + λi ≤ f̂

(k)
i→ , ∀ i, k, (24a)

f̂
(k)
ij ≤ β̂

(k)
ij Cij , ∀ (i, j), k (24b)

f̂
(k)
dk→

(t) = 0, ∀ k (24c)

where f̂
(k)
→i =

∑

j∈δ−i
f̂
(k)
ji and f̂

(k)
i→ =

∑

j∈δ+i
f̂
(k)
ij (throughout this section, we use the subscripts

“→ i ” and “ i →” to denote “
∑

j∈δ−i
” and “

∑

j∈δ+i
” operations on corresponding quantities).

2) Proof for “Λ0 ⊂ Λ”: We aim to show: for any λ, f̂ , β̂ satisfying (24), the flow variable

f defined as follows, together with the probability values β
(q,s)
ij = f

(q,s)
ij

/
Cij and λ, satisfies (4):

f
(q,s)
ij =

D∑

k=1

(
f̂
(k)
ij /f̂

(k)
i→

)[
λi I{(q, s) = (1− b1 − · · · − bk−1, bk)}+ f̂

(k)
→i I{(q, s) = (bk, bk)}

]
.

The flow variable defined above describes the unicast approach that “creates one copy for each

destination of a multicast packet upon arrival, and treats them as individual unicast packets”,

thus satisfying (4a).

For any link (i, j), the associated transmission rate is given by

fij =
∑

(q,s)∈Ω

f
(q,s)
ij =

D∑

k=1

(f̂
(k)
ij /f̂

(k)
i→ )(λi + f̂

(k)
→i ) =

D∑

k=1

f̂
(k)
ij = f̂ij , (25)

thus satisfying (4b). In addition, it also indicates that the policies has a cost performance of

h⋆
0(λ). Therefore, the optimal cost under the multicast framework h⋆(λ) ≤ h⋆

0(λ).

3) Proof for “Λ ⊂ DΛ0”: Next, we show that: for any λ, f , β satisfying (4), the following

flow variable f̂ , together with probability values β̂
(k)
ij = f̂

(k)
ij

/
Cij and λ′ = (λ/D), satisfies (24):

f̂
(k)
ij =

1

D

∑

(q′,s′)∈S1

f
(q′,s′)
ij , (26)
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in which

S1 = {(q + s, q) : qk = 1, s ∈ 2q̄}, (27a)

S2 = {(q, s) : qk = 1, s ∈ 2q}, (27b)

S3 = {(q + s, s) : qk = 1, s ∈ 2q̄}. (27c)

To verify the unicast flow conservation law (24a), we note that:

f̂
(k)
→i + λ′

i =
∑

(q′,s′)∈S1

f
(q′,s′)
→i

D
+

λi

D

(a)

≤
∑

(q′,s′)∈S2

f
(q′,s′)
i→

D
−

∑

(q′,s′)∈S3

f
(q′,s′)
i→

D

(b)
=

∑

(q′,s′)∈S1

f
(q′,s′)
i→

D
= f̂

(k)
i→

where (a) is obtained by first summing up (4a) over {q : qk = 1}

∑

{q:qk=1}

[ ∑

s∈2q̄

f
(q+s,q)
→i +

∑

s∈2q̄

f
(q+s,s)
i→ + λ

(q)
i

]

≤
∑

{q:qk=1}

∑

s∈2q

f
(q,s)
i→ , (28)

and then plugging in the definition (27):

∑

(q′,s′)∈S1

f
(q′,s′)
→i +

∑

(q′,s′)∈S3

f
(q′,s′)
i→ + λi ≤

∑

(q′,s′)∈S2

f
(q′,s′)
i→ , (29)

and (b) results from S1 = S2 \ S3 as proved in Lemma 1.

For any link (i, j), the associated transmission rate is given by

D∑

k=1

f̂
(k)
ij =

1

D

D∑

k=1

∑

(q′,s′)∈S1

f
(q′,s′)
ij

(c)

≤
1

D

D∑

k=1

∑

(q,s)∈Ω

f
(q,s)
ij =

∑

(q,s)∈Ω

f
(q,s)
ij ≤ Cij (30)

where (c) is because S1 ⊂ Ω, and thus (24b) is verified.

Lemma 1: S1 = S2 \ S3.

Proof: We show the following results: (i) S1 ∩ S3 = ∅, and (ii) S13 , S1 ∪ S3 = S2.

To show (i), note that sk = 1 if (q, s) ∈ S1, while sk = 0 if (q, s) ∈ S3, and thus S1∩S3 = ∅.

We prove (ii) in two steps:

a) First, we show S13 ⊆ S2. Take any (q, s) ∈ S13,

• If (q, s) ∈ S1, i.e., q = q′ + s′, s = q′ with q′k = 1, which satisfies qk = 1 and s ∈ 2q,

and thus (q, s) ∈ S2.
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• If (q, s) ∈ S3, i.e., q = q′ + s′, s = s′ with q′k = 1, which satisfies qk = 1 and s ∈ 2q,

and thus (q, s) ∈ S2.

b) Next, we show S2 ⊆ S13. Take any (q, s) ∈ S2 (and by definition qk = 1),

• If sk = 1, then we can represent (q, s) as (q′ + s′, q′) with q′ = s and s′ = q − s,

which satisfy q′k = sk = 1 and s′ = q − s ∈ 2s̄ = 2q
′

, and thus (q, s) ∈ S1 ⊂ S13.

• If sk = 0, then we can represent (q, s) as (q′ + s′, s′) with q′ = q − s and s′ = s,

which satisfy q′k = qk − sk = 1 and s′ = s ∈ 2q−s = 2q
′

, and thus (q, s) ∈ S3 ⊂ S13.

Combining (i) and (ii) leads to S1 = S2 \ S3, concluding the proof.

APPENDIX C

DERIVATION OF LDP BOUND

Square the queuing dynamics (5):

[
Q

(q)
i (t+ 1)

]2
≤

[
Q

(q)
i (t)− µ

(q)
i→(t)

]2
+
[
µ
(q)
→i(t) + a

(q)
i (t)

]2
+ 2

[
µ
(q)
→i(t) + a

(q)
i (t)

]
Q

(q)
i (t) (31a)

=
[
Q

(q)
i (t)

]2
− 2

[
µ
(q)
i→(t)− µ

(q)
→i(t)− a

(q)
i (t)

]
Q

(q)
i (t) (31b)

+
[
µ
(q)
i→(t)

]2
+
[
µ
(q)
→i(t) + a

(q)
i (t)

]2
. (31c)

We first study the sum of (31c) over q ∈ {0, 1}D:

∑

q∈{0,1}D

[
µ
(q)
i→(t)

]2
=

∑

q∈{0,1}D

[∑

s∈2q

∑

j∈δ+i

µ
(q,s)
ij (t)

]2
≤

[ ∑

(q,s)∈Ω

∑

j∈δ+i

µ
(q,s)
ij (t)

]2
≤

( ∑

j∈δ+i

Cij

)2
. (32)

Similarly, we can obtain

∑

q∈{0,1}D

[
µ
(q)
→i(t) + a

(q)
i (t)

]2
≤

( ∑

j∈δ−i

Cji +
∑

j∈δ+i

Cij + Ai,max

)2
. (33)

Therefore, we can define B = (2|δmax|Cmax + Ai,max)
2/2 as a constant bound on the sum of

them, where |δmax| is the maximum node degree, Cmax is the maximum link capacity, and Ai,max

is the maximum arrival at node i.
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The Lyapunov drift of the entire network is given by

∆(Q(t)) ,
∑

i∈V

∑

q∈{0,1}D

Q
(q)
i (t + 1)2 −Q

(q)
i (t)2

2
(34a)

≤ |V|B +
∑

i∈V

∑

q∈{0,1}D

a
(q)
i (t)Q

(q)
i (t) (34b)

−
∑

i∈V

∑

q∈{0,1}D

[∑

s∈2q

∑

j∈δ+i

µ
(q,s)
ij (t)−

∑

s∈2q̄

∑

j∈δ−i

µ
(q+s,q)
ji (t)−

∑

s∈2q̄

∑

j∈δ+i

µ
(q+s,s)
ij (t)

]

︸ ︷︷ ︸

=µ
(q)
i→(t)−µ

(q)
→i(t)

Q
(q)
i (t)

(a)
= |V|B +

∑

i∈V

∑

q∈{0,1}D

a
(q)
i (t)Q

(q)
i (t)

−
∑

(i,j)∈E

∑

(q,s)∈Ω

[
Q

(q)
i (t)−Q

(s)
j (t)−Q

(q−s)
i (t)

]
µ
(q,s)
ij (t) (34c)

where we rearrange the order of summations in (a). Combining the above result with the

operational cost model (3) leads to the weight w
(q,s)
ij (t) given by (10).

APPENDIX D

PROOF OF THEOREM 2

Using (34b), we can derive the following LDP bound:

∆(Q(t)) + V h(t) ≤ |V|B −
∑

i∈V

∑

q∈{0,1}D

(
µ
(q)
i→(t)− µ

(q)
→i(t)− a

(q)
i (t)

)
Q

(q)
i (t) + V h(t)

≤ |V|B −
∑

i∈V

∑

q∈{0,1}D

E

{(
µ
∗(q)
i→ (t)− µ

∗(q)
→i (t)− a

(q)
i (t)

)
Q

(q)
i (t)

}

+ V E {h∗(t)}

(a)

≤ |V|B − ǫ
∑

i∈V

∑

q∈{0,1}D

E

{

Q
(q)
i (t)

}

+ V h⋆(λ+ ǫ1) (35)

where µ∗(t) denotes the decisions associated with the cost-optimal stationary randomized policy

under arrival vector λ+ǫ1 (defined in Theorem 1). In (a), note that: (i) the decisions are indepen-

dent with Q
(q)
i (t), and thus expectation multiplies, (ii) E

{

µ
∗(q)
i→ (t)− µ

∗(q)
→i (t)− (λ

(q)
i + ǫ)

}

≥ 0

because the randomized policy stabilizes λ+ ǫ1, (iii) the policy is cost-optimal under λ+ ǫ1.
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Fix any T > 0, and apply telescope sum [15] to the interval [0, T−1] (assuming empty queues

at t = 0). Divide the result by T , push T → ∞, and we obtain:

V {E {h(t)}} ≤ |V|B − ǫ{E {‖Q(t)‖1}}+ V h⋆(λ+ ǫ1). (36)

Based on this inequality, we can derive:

(i) Average queue backlog: note that {E {h(t)}} ≥ h⋆(λ), and we obtain

{E {‖Q(t)‖1}} ≤
|V|B

ǫ
+

[
h⋆(λ+ ǫ1)− h⋆(λ)

ǫ

]

V. (37)

(ii) Operational cost: dropping the second term in the right hand side, we obtain

{E {h(t)}} ≤ h⋆(λ+ ǫ1) +
|V|B

V

{ǫn} ↓ 0
−−−−−→ {E {h(t)}} ≤ h⋆(λ) +

|V|B

V
(38)

where we take a sequence {ǫn} ↓ 0 and use the fact that the inequality holds for any ǫn > 0.

APPENDIX E

AVERAGE QUEUING DELAY

Each duplication tree T is a possible way to accomplish the goal of multicast packet delivery.

We divide the physical queue Q(q)(t) =
∑

i∈V Q
(q)
i (t) into sub-queues Q

(q)
T (t) associated with

each duplication tree T , and Q(q)(t) =
∑

T ∈U(q) Q
(q)
T (t) where U(q) = {T : q ∈ T } denotes the

set of duplication trees including status q as a tree node.

With this model, the average delay can be derived in two steps: (i) calculate the average delay

∆T for each duplication tree T , (ii) calculate the average delay of all trees (weighted by λT ,

which is the rate of packets selecting each duplication tree T ):

(i) Consider a given duplication tree T , with an associated packet rate of λT . First, we focus

on the delivery of the k-th copy, i.e., the path from the root node 1 to the leaf node bk, denoted

by ωk (which is composed of all tree nodes in the path). By Little’s Theorem, the average delay

of this path is given by ∆T (k) =
∑

q∈ωk
Q̄

(q)
T /λT , in which Q̄

(q)
T =

{

E

{

Q
(q)
T (t)

}}

, and we
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average over all the copies k = 1, · · · , D:

∆T =
1

D

D∑

k=1

∆T (k) =
1

D

D∑

k=1

∑

q∈ωk

Q̄
(q)
T

λT

(a)
=

1

DλT

∑

q∈T

‖q‖1Q̄
(q)
T (39)

where we exchange the order of summations in (a), and use the fact that node q in the duplication

tree T is included in ‖q‖1 different paths (e.g., each leaf node bk belongs to one path ωk, the

root node 1 belongs to all paths ω1, · · · , ωD).

(ii) With the average delay of each duplication tree given by (39), the overall average delay

can be derived as follows

∆ =
∑

T

λT

‖λ‖1
∆T =

∑

T

λT

‖λ‖1

[ 1

DλT

∑

q∈T

‖q‖1Q̄
(q)
T

]

=
1

D‖λ‖1

∑

T

∑

q∈T

‖q‖1Q̄
(q)
T

(b)
=

1

D‖λ‖1

∑

q∈{0,1}D

‖q‖1
∑

T ∈U(q)

Q̄
(q)
T =

1

D‖λ‖1

∑

q∈{0,1}D

‖q‖1Q̄
(q)

=
1

D‖λ‖1

∑

q∈{0,1}D

‖q‖1{E {Q(q)(t)}}

(40)

where we exchange the order of summations in (b). Therefore, the average delay is linear in the

queue backlog, and the coefficient of the status q queue is proportional to ‖q‖1.

APPENDIX F

TRANSFORMATION OF AGI SERVICE DELIVERY INTO PACKET ROUTING

A. Constructing the Layered Graph

Denote the topology of the actual network by G = (V, E). For any service φ (consisting of

Mφ − 1 functions), the layered graph G(φ) is constructed as follows:

(i) make Mφ copies of the actual network, indexed as layer 1, · · · ,Mφ from top to bottom,

and we denote node i ∈ V on the m-th layer by im;

(ii) add directed links connecting corresponding nodes between adjacent layers, i.e., (im, im+1)

for ∀ i ∈ V , m = 1, · · · ,Mφ − 1.
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To sum up, the layered graph G(φ) = (V(φ), E (φ)) is defined as

V(φ) = {im : i ∈ V, 1 ≤ m ≤ Mφ} (41a)

E (φ)
pr,i = {(im, im+1) :, 1 ≤ m ≤ Mφ − 1} (41b)

E (φ)
tr,ij = {(im, jm) : (i, j) ∈ E , 1 ≤ m ≤ Mφ} (41c)

with E (φ) = {E (φ)
pr,i : i ∈ V} ∪ {E (φ)

tr,ij : (i, j) ∈ E}.

Physical interpretation: Layer m in G(φ) accommodates packets of stage m. The edges in E (φ)
pr,i

and E (φ)
tr,ij indicate the processing and transmission operations in the actual network, respectively.

More concretely, the flow on (im, im+1) denotes the processing of stage m packets by function m

at node i, while (im, jm) denotes the transmission of stage m packets over link (i, j). In addition,

D(φ)
Mφ

denotes the destination set in the graph (since only stage Mφ packets are consumable), where

D(φ) is the destination set of service φ in the actual network.

We define two parameters (ζ
(φ)
ı , ρ

(φ)
ı ) for each link (ı, ) in the layered graph

(ζ (φ)ı , ρ(φ)ı ) =







(ξ
(m)
φ , r

(m)
φ ) (ı, ) = (im, im+1)

(1, 1) (ı, ) = (im, jm)

. (42)

The two parameters can be interpreted as the generalized scaling factor and workload: for

transmission edges (the second case), ζ
(φ)
ı = 1 since flow is neither expanded or compressed

by the transmission operation, and ρ
(φ)
ı = 1 since the flow and the transmission capability are

quantified based on the same unit.

B. Relevant Quantities

We define flow variable µ
(φ,q,s)
ı (t) for link (ı, ) in the layered graph, which is the flow sent

to the corresponding interface, leading to the received flow by node  given by ζ
(φ)
ı µ

(φ,q,s)
ı (t).

By this definition, for ∀φ and ı ∈ G(φ), the queuing dynamics are modified by

Q(φ,q)
ı (t + 1) ≤ max

[
Q(φ,q)

ı (t)− µ(φ,q)
ı→ (t), 0

]
+ µ(φ,q)

→ı (t) + a(φ,q)ı (t) (43)
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where the incoming and outgoing flows are given by

µ(φ,q)
ı→ (t) =

∑

∈δ+ı

∑

s∈2q

µ(φ,q,s)
ı (t), (44a)

µ(φ,q)
→ı (t) =

∑

∈δ−ı

∑

s∈2q̄

ζ (φ)ı µ(φ,q+s,q)
ı (t) +

∑

∈δ+ı

∑

s∈2q̄

µ(φ,q+s,s)
ı (t). (44b)

The modified link capacity constraints are

∑

(ı,)∈E
(φ)
pr,i

∑

φ

∑

(q,s)∈Ω

ρ(φ)ı µ(φ,q,s)
ı (t) ≤ Ci, (45a)

∑

(ı,)∈E
(φ)
tr,ij

∑

φ

∑

(q,s)∈Ω

ρ(φ)ı µ(φ,q,s)
ı (t) ≤ Cij , (45b)

and the modified resource operational cost is

h(t) =
∑

(ı,)∈E(φ)

eı
∑

φ

∑

(q,s)∈Ω

ρ(φ)ı µ(φ,q,s)
ı (t) (46)

where eimim+1 = ei and eimjm = eij .

Similarly, the goal is to minimize the time average cost while stabilizing the modified queues,

and we can follow the procedure in Section V-A, i.e., deriving the upper bound for LDP and

formulating an optimization problem to minimize the bound, and the derived solution is in the

max-weight fashion as shown in Section V-B and VII-A.

Remark 6: In contrast to data transmission, the processing operation can expand/compress data

stream size, and queues of expanding data streams can attract more attention in the developed

algorithm. To address this problem, we can normalize the queues by Q̃
(φ,q)
ı (t) = Q

(φ,q)
ı (t)

/
Ξ
(m)
φ

if ı = im, in which

Ξ
(m)
φ =

m−1∏

s=1

ξ
(m)
φ , and Ξ

(1)
φ = 1 (47)

is interpreted as the cumulative scaling factor till stage m. The resulting design, i.e., optimize the

drift of the normalized queues, can achieve a better balance among the queues, while preserving

(throughput and cost) optimality.
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APPENDIX G

COMPLEXITY ANALYSIS

A. GDCNC

The number of all duplication choices (q, s) is given by

|Ω| =
D∑

k=1

C(k;D)(2k − 1) = 3D − 2D ∼ O(3D) (48)

where C(k;D) denotes the combinatorial number of choosing k from D. To wit, we divide the

elements of Ω, (q, s), into D groups based on the first element q: group k (k = 1, · · · , D)

collects the (q, s) pairs such that q has k entries equal to 1, including C(k;D) different q; in

addition, fix q, there are |2q| − 1 = 2k − 1 different s (other than 0). Therefore, the complexity

of GDCNC, which is proportional to |Ω|, is O(3D).

B. GDCNC-R

The key problem is to calculate the number of nodes in each duplication tree.

We note that each duplication tree includes D−1 duplication operations (which can be shown

by mathematical induction); in addition, each duplication operation involves 3 nodes, i.e., the

parent node q and two child node s and r, and the total number of nodes is 3(D− 1). However,

note that every node is counted twice – one time as the parent q (packet to duplicate), and the

other time as a child s or r (the created copy) – other than the root node and the D leaf nodes,

since there is no duplication operation with the root node 1 as a child, or a leaf node bk as the

parent, i.e., these D + 1 nodes are counted only once.

As a result, the number of internal nodes other than the root node is:

3(D − 1)− (D + 1)

2
= D − 2, (49)

and together with the root node, each tree has D− 1 = (D− 2)+ 1 internal nodes (and each of

them is associated with 3 duplication choices), and D leaf nodes (and each of them is associated

with 1 duplication choice), leading to a complexity of O(D).
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APPENDIX H

NOTES ON GENERALIZED FLOW CONSERVATION CONSTRAINT

In [1, Eq (4)], we present the following flow conservation law:

∑

{q:qk=1}

[
f̆
(q)
→i + λ

(q)
i

]
=

∑

{q:qk=1}

f̆
(q)
i→ (50)

where f̆
(q)
→i and f̆

(q)
i→ are the total incoming/outgoing flow rates of status q packets to/from node

i, given by

f̆
(q)
→i =

∑

s∈2q̄

∑

j∈δ−i

f
(q+s,q)
ji , f̆

(q)
i→ =

∑

s∈2q̄

∑

j∈δ+i

f
(q+s,q)
ij . (51)

Despite of the neat form and clear insight of this relationship, we will show that the generalized

flow conservation constraint (2) is a more fundamental characterization for the in-network packet

duplication operation.

First, we show (2) ⇒ (50). Substitute (51) into (50), and the result to be shown is given by:

∑

{q:qk=1}

[ ∑

s∈2q̄

∑

j∈δ−i

f
(q+s,q)
ji + λ

(q)
i

]

=
∑

{q:qk=1}

∑

s∈2q̄

∑

j∈δ+i

f
(q+s,q)
ij . (52)

Sum up (4a) over {q : qk = 1}, and we obtain

∑

{q:qk=1}

[ ∑

s∈2q̄

∑

j∈δ−i

f
(q+s,q)
ji +

∑

s∈2q̄

∑

j∈δ+i

f
(q+s,s)
ij + λ

(q)
i

]

=
∑

{q:qk=1}

∑

s∈2q

∑

j∈δ+i

f
(q,s)
ij . (53)

Compare (52) and (53), and it remains to be shown that

∑

j∈δ+i

∑

{(q,s):qk=1,s∈2q}

f
(q,s)
ij =

∑

j∈δ+i

∑

{(q,s):qk=1,s∈2q̄}

[
f
(q+s,q)
ij + f

(q+s,s)
ij

]
, (54)

or equivalently,

∑

j∈δ+i

[ ∑

(q,s)∈S2

f
(q,s)
ij −

∑

(q,s)∈S1

f
(q,s)
ij −

∑

(q,s)∈S3

f
(q,s)
ij

]

= 0 (55)

where S1, S2, S3 are defined in (27) and satisfy S1 = S2 \ S3 as shown in Lemma 1. Therefore,

each term in the summation (over j ∈ δ+i ) equals 0.
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Next, we present a counterexample to show (50) is not sufficient to guarantee the existence

of a feasible policy: Consider D = 3 destinations. Let f̆
(q)
→i = 1 for q = 1 = (1, 1, 1) and

q = b1 = (1, 0, 0), f̆
(q)
i→ = 1 for q = (1, 1, 0) and q = (1, 0, 1), and the other flow variables and

λ
(q)
i be 0. This flow assignment satisfies (50).

The corresponding operation is described as follows: (i) first “consolidate” the incoming

packets of (1, 1, 1) and (1, 0, 0), and (ii) then create (by duplication) outgoing packets of (1, 1, 0)

and (1, 0, 1). However, the operation in step (i) cannot be realized in the actual network, because

the packets are not of identical content (since the status 1 packet is prior to any duplication,

whose content is different from the status b1 packet) and cannot be consolidated. In fact, there

does not exist flow variable satisfying (2) to describe the above operation.
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